2101.05198v1 [cs.CV] 29 Dec 2020

arxXiv

OpenHPS: An Open Source Hybrid Positioning System

Maxim Van de Wynckel
Web & Information Systems Engineering Lab
Vrije Universiteit Brussel
1050 Brussels, Belgium
mvdewync@vub.be

ABSTRACT

Positioning systems and frameworks use various techniques to de-
termine the position of an object. Some of the existing solutions
combine different sensory data at the time of positioning in order
to compute more accurate positions by reducing the error intro-
duced by the used individual positioning techniques. We present
OpenHPS, a generic hybrid positioning system implemented in
TypeScript, that can not only reduce the error during tracking by
fusing different sensory data based on different algorithms, but also
also make use of combined tracking techniques when calibrating
or training the system. In addition to a detailed discussion of the
architecture, features and implementation of the extensible open
source OpenHPS framework, we illustrate the use of our solution in
a demonstrator application fusing different positioning techniques.
While OpenHPS offers a number of positioning techniques, future
extensions might integrate new positioning methods or algorithms
and support additional levels of abstraction including symbolic
locations.

KEYWORDS

OpenHPS; hybrid positioning; open source; processing network;
indoor positioning

1 INTRODUCTION

Determining the location of a person or asset is an important aspect
of various human-computer interaction (HCI) solutions. Position
tracking can be used to create autonomous vehicles, navigation
systems and in context brokers such as CoBrA [7] to create implicit
interactions based on the location and possibly other contextual
information [35]. While we mainly rely on the Global Positioning
System (GPS) to determine our location outdoors, many other posi-
tioning techniques exist that work both, indoors as well outdoors
and sometimes even have been designed for completely different use
cases as described later in Section 2.1. Each positioning technique
has its advantages and disadvantages depending on the environ-
ment where it is being used. Hybrid positioning systems use the
combination of different techniques and sensors to determine a
more accurate position through sensor fusion [8].

One of the disadvantages with most commonly used indoor po-
sitioning methods such as Bluetooth Beacons or Wi-Fi access point
positioning is the requirement of some form of calibration or train-
ing. With our proposed hybrid system called OpenHPS!, the goal is
to achieve hybrid positioning during both, the navigation or track-
ing (online stage) and between tracking, training and calibration
of the used positioning techniques (offline stage). Unlike many of
the existing frameworks, the goal of OpenHPS is to offer a layered

!https://www.openhps.org

Beat Signer
Web & Information Systems Engineering Lab
Vrije Universiteit Brussel
1050 Brussels, Belgium
bsigner@vub.be

abstraction supporting a wide range of positioning techniques and
fusion algorithms.

Using our knowledge on various positioning techniques and
algorithms which are discussed in Section 2.1 and Section 2.2, we
identified and analysed the actors of our system as highlighted in
Section 4.1.1. This analysis revealed that actors play a different role
depending on the positioning method being used. In order to allow
the system to combine different existing positioning methods, we
opted for a processing stream network where each node in a graph
topology contributes to the sampled data.

Our design goal with the chosen processing network is to handle
positioning data in real time, giving developers complete control
over the data flow. The proposed OpenHPS framework is presented
in Section 4 together with an illustrative demonstrator use case
before discussing some future work in Section 5.

2 BACKGROUND

The first step in conceptualising our hybrid positioning framework
was to investigate existing positioning methods in order to find
their similarities as well as differences. OpenHPS has to be able to
support a wide range of different positioning methods and imple-
mentation goals. When analysing existing approaches, we made a
distinction between positioning methods and algorithms, similar to
Wilson et al. [34]. Positioning methods represent the techniques
and technologies that are available to determine a location while
positioning algorithms include the algorithms that can be used to
combine these methods.

2.1 DPositioning Methods

In this section we list some of the more prominent positioning
methods ranging from signal-based to visual solutions. Note that
the selected positioning methods represent a limited set of the
techniques and functional requirements we aim to support.

2.1.1 Global Position System (GPS). Starting with the most well-
known technology, the Global Positioning System (GPS) is used
for outdoor positioning [6]. It makes use of satellites in an orbit
around the Earth to triangulate a location consisting of a longitude,
latitude and elevation. There also exist variations on the original
global position system, including Differential GPS (DGPS) [33] or
the Assisted GPS (a-GPS) [13] that fuses GPS with dead reckoning
described later in Section 2.1.5.

2.1.2 RF-based Positioning. RF-based positioning is a commonly
used technique for indoor environments. Examples of technologies
used for RF-based positioning include Wi-Fi, Bluetooth Beacons,
RFID and LTE cell towers. These RF signals offer a landmark that

https://www.openhps.org

can be used as a reference when determining the position based on
fingerprinting or other mathematical calculations.

2.1.3 Simultaneous Localisation and Mapping (SLAM). Simultane-
ous Localisation and Mapping, or SLAM for short, is a positioning
method that makes use of 2D sensors to map its surroundings. One
of the more common examples includes the use of LIDAR (Light
Detection and Ranging) [28], capturing distance readings around a
sensor. These readings can then be used to generate a 2D map of
the environment.

2.1.4 Visual Positioning Techniques. Existing visual positioning
techniques use image sensors to determine the position of the object
the sensor is attached to (e.g. Visual SLAM [38]) or the position
of objects in its field of view. In previously mentioned positioning
methods, the tracked object obtains the sensor data. With Multi-
Target Multi-Camera Tracking (MTMCT) [23] the tracked object is
moving within the field of view of one or more image sensors.

2.1.5 Dead Reckoning. Dead reckoning calculates the current po-
sition based on the previous known position and the velocity or
acceleration that is applied to that position [3, 20]. While the ac-
curacy of dead reckoning is not ideal, it can be used to improved
other positioning techniques such as GPS.

2.2 Positioning Algorithms

In order to calculate a position or to combine multiple positioning
methods, different algorithms are used. The list of algorithms pre-
sented in this section offers a baseline for the types of positioning
algorithms to be supported, but our OpenHPS framework is not
limited to the presented set of algorithms.

2.2.1 Triangulation and Multilateration. Mathematical operations
such as triangulation and multilateration can be used for several
positioning methods and technologies discussed in Section 2.1. For
techniques that provide a landmark such as RF-based positioning,
the received signal strength (RSS) might provide a rough estimate
of the distance. Other examples include mathematical positioning
using a time difference with respect to the time of arrival (ToA) or
the angle of arrival (AoA).

2.2.2 Fingerprinting. While with multilateration we only need in-
formation about the position of the used landmarks, fingerprint-
ing requires a calibration for all possible positions in the tracking
area [39]. A fingerprint of the sensor data at a given provided
position is created during the offline stage. Later, these stored fin-
gerprints are used during the online stage to reverse the sensor
data into a position.

2.2.3 Noise Filtering. Sensor data should be filtered, which can be
done through different noise filters. Similar to dead reckoning, a
noise filter often requires knowledge of previous sensor readings
and positions to predict the next result.

Noise filtering is one of the main requirements of our hybrid
positioning system. The reason why we want to combine multiple
technologies or algorithms is to reduce errors and noise filtering
is the key component in realising this error reduction of position-
ing data. Note that individual positioning methods such as object

Maxim Van de Wynckel and Beat Signer

recognition or dead reckoning may want to perform different types
of noise filtering algorithms tailored to their data.

2.24 Machine Learning. This type of algorithms includes a number
of machine learning algorithms that can be of aid during calibration
as well as positioning. These algorithms require training during
the offline stage with the results being deployed during the online
stage. This issue will be further discussed when discussing the
requirements in Section 4.1, where we allow data to be used in the
online and offline stages of the OpenHPS framework.

2.2.5 Computer Vision. With the visual positioning methods dis-
cussed in Section 2.1.4, the tracked actor is not always uniquely
identified. Such visual positioning methods have to be able to detect
and track objects between multiple frames, camera angles or posi-
tions. The algorithms used to track and detect persons or objects
from a video stream are beyond the scope of our framework, but
OpenHPS should be able to provide a generic interface supporting
these types of algorithms.

2.3 Hybrid Positioning

Apart from supporting different positioning methods and algo-
rithms, OpenHPS should be able to combine these methods. This
requires a choice of algorithms to specify how the result of each
method can be used in the combined output.

Sensor fusion can occur at a low or high level [14]. Raw sensor
data such as IMU sensors or the relative signal strength from a
transmitter can be fused in noise filtering algorithms. On a high
level, calculated or provided positions (i.e. by third-party position-
ing systems) with a certain predicted accuracy can be combined
using linear regression, heuristic weighted averages or any decision
fusion algorithm.

3 RELATED WORK

Location-based Services (LBS) represent a generalised category
of systems that provide the current location of a person or other
objects [24]. A distinction between a push- and pull-based LBS is
made [37]. A pull LBS provides a location when it is requested to
do so, while a push LBS delivers information when a new location
is determined by a provider.

The idea of combining multiple positioning methods in an LBS
is not new. In this section we present some related work, ranging
from existing hybrid positioning systems, frameworks, their used
terminology and standards throughout location-based services.

3.1 Location APIs and Specifications

On the Web, the Geolocation API [31] offers a high-level interface
for single or repeated position updates. The API provides an ab-
straction of the underlying technologies and algorithms used to
determine the position. However, developers can request a high
accuracy result or maximum cache age if hardware permits this.
Resulting positions are geographical coordinates complying with
the WGS84 standard [11].

JSR-179 and the improved JSR-293 [2] specifications are Java 2
Micro Edition (J2ME) modules that provide developers an API to
obtain the location and orientation of a mobile device. Included in
the API is a storage interface for landmarks (see Section 2.1.2). The

OpenHPS: An Open Source Hybrid Positioning System

specification represents locations as timestamped coordinates with
an orientation, accuracy, speed and information about the used
positioning method [12]. When requesting a location, criteria such
as the desired accuracy, power consumption and response timeout
can be provided.

WebXR [22, 27] is a Web API that provides an interface for the
tracking and use of VR or AR headsets. The API uses the pose
terminology to indicate the position and orientation of the person
wearing an XR headset in 3D space. While WebXR should not be
considered as a location AP, its specification uses terminology that
is common in our framework. As an API that provides a tracking
position, it adds a goal for our framework to support these third-
party APIs.

3.2 Hybrid Positioning Systems

Various research concerning the fusion of sensor data to predict
a more accurate position exists. SignalSLAM [29] represents an
example of a hybrid system that uses signals of various positioning
methods such as GPS, Wi-Fi and Bluetooth to map the surround-
ings. Chen et al. [8] have shown how a smartphone can combine
sensor data of Wi-Fi access point positioning and Pedestrian Dead
Reckoning (PDR). This combination of dead reckoning with another
positioning method is a common combination used by many hybrid
systems. LearnLoc [30] is a smartphone-centred positioning frame-
work that uses fingerprinting algorithms (k-nearest neighbours
algorithm) in combination with various sensor data available on
a smartphone to provide power-efficient indoor positioning. The
consideration of power efficiency is a common requirement in mo-
bile positioning systems. Other than achieving the most accurate
position, these location-based services use sensor fusion to prevent
the continuous use of precise sensors such as cameras or GPS.
IndoorAtlas provides a Platform-as-a-Service (PaaS) with a well-
established Software Development Kit (SDK) for combining Wi-Fi,
GPS, Bluetooth beacons, dead reckoning and even geomagnetic
positioning [18]. While the latter method has been found to be less
ideal in steel reinforced buildings [30], it still offers a useful addi-
tion for creating a hybrid positioning system where geomagnetic
positioning might be combined with other positioning methods.
In the research by Bekkelien and Deriaz [4] a framework called
Global Positioning Module (GPM) had been presented for in- and
outdoor positioning. GPM provides a uniform interface to different
position providers. These providers are fused in a kernel that selects
the position based on provided criteria (e.g. precision, accuracy or
detection probability). Their approach offers a clear methodology
on how this criteria can contribute to the selection or fusion of
different technologies. However, the position providers and kernels
are implemented on a high level of abstraction providing no room
for developers to choose different algorithms or fusion techniques.
Ficco and Russo [15] presented a technology-independent hy-
brid positioning middleware called HyLocSys. Position estimators,
representing different technologies, provide positions when a user
performs a pull of their current position. Sensor fusion combines
these estimated positions into a final response. With the middleware
being an extension of the JSR-179 specification presented earlier,
these pull requests accept criteria such as the preferred response
time and expected accuracy. Other than many frameworks that

only provide geographical positions, HyLocSys provides geometric,
symbolic as well as hybrid location models. Symbolic locations rep-
resent abstract places such as buildings, floors and rooms that are
relatively positioned to each other. A hybrid location can convert
this symbolic location to a geometric position. Note that the paper
does not discuss positioning technologies such as dead reckoning or
SLAM that require periodic updates in order to keep an up-to-date
position.

Scholl et al. [36] propose a system that uses a LIDAR scanner
to determine the fingerprinting position. This is somewhat similar
to our goal of using different positioning methods to support the
offline stage.

The Robot Operating System (ROS) [32] is a structured com-
munication layer that can be used to create autonomous robots.
It focuses on the integration of various robotics aspects such as
positioning, computing and hardware interfacing. ROS provides
the concept of peer-connected nodes that perform computational
tasks. These nodes represent interchangeable software modules
that help to build a pipeline from sensory data to an output action.
For positions and orientations, ROS uses the pose concept which
contains both the position and orientation of a user.

Our framework should adhere to specifications such as WGS84
when working with geographical positions. However, unlike many
of the related work discussed in this section, we also want to support
non-geometric positions. The hybrid location model presented by
Ficco and Russo [15] offers a good type of location, but is still
heavily focused on geometric positions.

Positioning methods and algorithms are often represented un-
der the term providers that are optionally combined via high-level
decision fusion. In our framework, we want to separate providers
into generic algorithms and positioning methods that can easily be
switched. This not only allows for more extensibility, but also some
low-level sensor fusion.

The Geolocation API, JSR-179 and HyLocSys allow for the speci-
fication of accuracy or other criteria when requesting a position.
However, unlike high-level APIs that hide the underlying technolo-
gies, OpenHPS is aimed towards developers with an understanding
of the available hardware and positioning techniques that influence
the criteria.

The landmark storage of JSR-179 is a very useful addition to a po-
sitioning system, as it is a common requirement for many position-
ing techniques. The persistence of landmarks between the online
and offline stage is an important requirement that is extended to fin-
gerprinting information and cached position storage in OpenHPS.
This persistence should allow us to interface with existing systems
such as the Geolocation API that support both push-based position
updates as well as retrieving the current (cached) position.

4 OPENHPS FRAMEWORK

In this section, we present and discuss the system design of our
proposed OpenHPS hybrid positioning framework. After listing
some general requirements in Section 4.1, we outline the overall
architecture in Section 4.2. Next, we provide some general infor-
mation on our chosen implementation and demonstrate the use of
OpenHPS in Section 4.3 and Section 4.4.

4.1 Requirements

Based on existing positioning methods and algorithms discussed in
Section 2.1 and Section 2.2, the following framework requirements
have been derived. We start by specifying the actors of our system
and motivate the use of a processing network where each node of
the graph topology might represent one of these actors.

4.1.1 System Actors. After investigating different existing posi-
tioning techniques, we defined four actors in OpenHPS:

e Tracked actor: This is an actor that can be tracked during
the online positioning stage. A tracked actor can be an end
user or an asset that might optionally contain sensors to
further support the tracking. Our main goal is to determine
the most accurate position of this type of actor.

e Tracking actor: This type of actor is responsible for track-
ing a tracked actor. Note that for some positioning methods,
the same actor might act as a tracking actor as well as a
tracked actor. However, for positioning methods such as the
visual object tracking introduced in Section 2.1.4, the track-
ing actor is represented by the camera while a tracked actor
is the object that is being detected.

e Calibration actor: Some positioning methods require a cal-
ibration before the positioning method can be used. Unlike
the tracked actor, the purpose of a calibration actor is to
train and calibrate how the tracking actor will be used in the
online stage of the system.

e Computing actor: The computing actor is responsible for
providing the final position output by our system. This ac-
tor combines the data generated by one or more tracking
actors about a tracked actor and processes the data by, for
example, using one of the positioning algorithms described
in Section 2.2.

These four actors represent the four main components within
OpenHPS. By distinguishing between the tracked and tracking actor,
the system is able to support the tracking of persons or objects that
do not actively participate in the positioning process.

4.1.2 Functional Requirements. In the following, we list the mini-
mal functional requirements for our OpenHPS framework.

e Online stage positioning: In order to perform hybrid po-
sitioning or sensor fusion, multiple (processed) sources need
to be combined by using different algorithms.

o Offline stage positioning: Processed results can be used
to calibrate positioning methods of another (online) stage.

o Third-party frameworks: Our framework needs to sup-
port third-party high-level positioning systems. These ex-
ternal systems might provide their own calculated position
of a tracked actor that needs to be fused with the position
determined by our framework. In addition, the identification
of this tracked actor might differ between frameworks.

¢ Environment mapping: With the requirement to support
positioning methods such as SLAM and VSLAM, the system
does not only offer the possibility to output an absolute
position, but might also create an environment map. Our
solution should be capable of handling, storing and using
this map to its advantage.

Maxim Van de Wynckel and Beat Signer

e Decentralisation: Our positioning framework should be
able to combine the four different actors introduced in the
previous section based on remote hardware. This requires
the framework to work decentralised without requiring any
centralised sensor fusion, which can be achieved by allowing
multiple computing actors to work independently. However,
developers should still be given the option to centralise cer-
tain parts of the system if needed.

e Monotonicity: Partial information from a source should
result in a partial output. In the context of a positioning
system, this means that a computing actor does not need
the sensor data of all positioning methods to determine a
position. This requirement also helps in the decentralisation
and parallelisation of the framework.

4.1.3 Non-functional Requirements. The following non-functional
requirements contributed to the final decision about the software
language used for OpenHPS.

e Availability: Our solution has to be available on various
platforms ranging from servers to embedded systems; also
supporting the decentralisation functional requirement.

e Performance and latency: Throughput is an important
criteria when processing streaming data. Input data such as
video and audio streams needs to be processed in real time.
The latency also indicates how long it takes for data to be
used in computations. As our goal is to achieve an accurate
current position, outdated sensor data is not relevant.

e Modularity: The framework should be modular with both,
a low-level API and modules that can be added and removed
based on the available sensors and concrete use cases. De-
velopers should remain in control of the types of algorithms
and the flow of data from producer to consumer.

4.2 Framework Architecture

In order to support the presented functional and non-functional
requirements, we decided to build on a stream-based positioning
system that takes various types of input data and processes this data
to get the desired output. Data that is transmitted between nodes
is encapsulated in so-called data frames that can contain sensory
data as well as one or more data objects the sensor data applies to,
and are described in detail in Section 4.2.2.

For the design of our process network, a number of existing
stream- and layer-based frameworks such as Akka Streams [9] or
TensorFlow [1] have been investigated. These frameworks solve
similar issues and are further detailed in Section 4.2.1. Due to the fact
that each node needs to be configured individually, the decision was
made to investigate flow-based frameworks where each component
of the stream network is added individually.

Unlike low-level data stream frameworks, OpenHPS focuses on
data that is helpful for positioning. We offer a higher-level API
for creating the network and data that is handled by the sytem.
Concepts such as edges or ports that are often found in stream-based
programming languages are abstracted and not directly accessible
by developers. However, unlike other hybrid frameworks [4, 18],
the stream processing is extensible enough to give developers the
opportunity to modify the positioning methods along with the used
algorithms.

OpenHPS: An Open Source Hybrid Positioning System

We start by discussing our process network design that uses
a graph topology similar to other stream frameworks. Next, we
present the data frames, objects and positional data that are being
handled by the network.

4.2.1 Process Network Design. The OpenHPS framework uses a
process network to handle data. The data is processed and dynam-
ically manipulated by multiple connected nodes in a predefined
graph topology. In the following, we list our three main design
goals for this network:

(1) Consistent data types: Data that is being processed in the
network should have a reliable type and content. We process
DataObjects encapsulated in DataFrames, which provides
a defined scope how generic parts of our network should
handle information.

(2) Processing goal: Processing has the goal of providing an
absolute position for our tracked actors. With this goal we
have a clear understanding how every computing actor con-
tributes to the output.

(3) Producer priority: The producer or tracking actor has the
highest priority. Slow consumers or computing actors must
not result in outdated sensor information. Rather, developers
should be given the opportunity to control what happens
with the overflow of information that cannot be processed
timely.

Starting from the goal of producing up-to-date positioning in-
formation, we opted for a push-pull-based stream. Data can be
dropped if its not relevant for determining a more up-to-date po-
sition. The monotonicity of our framework ensures that positions
can be determined based on partial data.

Each node can be designed to accept both push and pull requests.
Similar to reactive streams [16], push and pull actions are promise-
based and can be executed asynchronously. If a node that receives a
pull request cannot respond with a data frame itself, it will forward
the pull request to its incoming node(s).

Different to a traditional pull that returns a response, we use
the push terminology to indicate a response for a given pull. This
behaviour and terminology is similar to Akka Streams [9], but
unlike reactive streams where data can only be provided when
there is a demand, there is no back pressure built into the stream
itself. Using the push terminology for a pull response removes the
ambiguity of a response arriving after an already existing push in
the pipeline. It also enforces the design goal of producers having
the highest priority, even if a producer only generates information
when requested.

A regular node has a unique identifier and push/pull functionality
for data frames. Each node can have 0. .. n inlets or outlets. Our
system consist of the following three subtypes of the regular node:

e Source node: A source node provides a specific data type.
This can either be a push or pull node that pushes data
frames when they are available (e.g. a camera recording at
a fixed frame rate) or creates a new data frame when the
downstream node asks for it via a pull request (e.g. triggering
a Bluetooth scan). The source node merges data objects in
the data frame with those that were previously stored via
data services. This merging behaviour prevents the need for

feedback loops to gain knowledge on previously calculated
positioning data.

e Processing node: A processing node is a higher-level inter-
face for a regular node. It provides an abstraction on the push
and pull functionality to simplify the creation of a processing
function of either data frames or individual data objects.

¢ Sink node: An output node or sink node accepts a specific
data type as output frame. Unlike processing nodes, this type
of node will not push data to other nodes. Upon receiving a
data frame, the data objects will be stored using a compat-
ible data service. Once saved, an event is sent upstream to
indicate that the processing of this frame and its contained
objects is completed.

Extensions of these nodes, allowing for specific data flow shapes
and common position processing nodes, are provided in our core
component. Figure 1 shows an example of a positioning model that
has a source node, a sink node and four processing nodes connected
in a graph structure. This positioning model describes a configured
computational model aimed for processing sensor and positioning
data [25]. Similar to existing streaming or pipelining frameworks,
the graph can contain data flow shapes that manipulate the flow of
data frames. Examples of such shapes include, but are not limited
to balance nodes, data frame chunking, debouncing and merging
of data objects and their processed positions.

---=> Process I i Process r >@
e o S .
& J
Y
Service A Service B Service C
Map User Data Room
Store Store Store

Figure 1: Example OpenHPS positioning model

All nodes in a positioning model have access to a set of ser-
vices that allow the storage of objects. In the given example, three
services are added for the storage of map, user data and room in-
formation. In our implementation, sink nodes always store data
objects contained in received data frames. However, every node has
the ability to fetch or insert new data into available services. This
persistence allows for the storage of landmark objects, similar to
the JSR-179 specification [12]. At the same time, these services can
be used as an interface to fetch the latest position without requiring
a specific implementation in the sink.

The positioning model can be created by using a builder pattern
as illustrated in Listing 1. This builder creates the immutable prop-
erties of the model, including data services and the flow of data
from source to sink. Models can have multiple flow shapes, each
with one or more sources, processing nodes and sinks.

/* @openhps/core | version 0.2.0 */
ModelBuilder.create()
.addService(/* ... */)
.addShape (GraphBuilder.create()
from(/x ... */)
wvia(/x .. */)
Lto(/*x Ll %))
.build().then((model: Model) => { /x ... */ });

PO N R SR

Listing 1: Creation of a positioning model

In Figure 2, data is being pushed by an active source node. Pro-
cessing nodes will process the data and push the modified frame to
their output nodes. Push and pull actions are promise-based and
resolved whenever the node finishes processing the frame. This
allows for non-blocking asynchronous requests. The resolved push
promise (indicated in green) gives an indication that the processing
of the push is finished. However, it does not provide knowledge on
whether or not the frame is processed by the complete network. To
indicate this, sink nodes that receive a frame will emit a completed
event that includes the data frame identifier and list of persisted
object identifiers.

Node #2] [

Node #1 Node #4
SourceNode ProcessingNode

Node #3
ProcessingNode SinkNode

push(data) '

resolve push push(data')

push(data")

resolve push

ompleted data"

Figure 2: Data being pushed by a source

With the swim lane shown in Figure 3, the data is not auto-
matically pushed by the source node. A downstream node such
as a sink will send a pull() request to its input nodes. If these
nodes cannot provide a frame of their own, the pull() request is
forwarded to their respective input nodes. If the source has data
available, a response to this pull is provided asynchronously. As
mentioned in the beginning of this section, a pull () response will
use the same invocation as a push(). In that case, the pull promise
is resolved right after the source sends this push as indicated by
the blue resolve chain in Figure 3.

As promises are resolved after the data frame is processed by
a node, upstream nodes in the process chain cannot determine
whether data has been processed successfully. Figure 5 shows a
push () request that throws an error at the sink node (e.g. failure to
store). An error event is triggered on previous node(s). By default,
these nodes will chain the error to upstream nodes. However, each
node can act upon this error in its individual implementation.

Nodes are implemented by developers on a high level of abstrac-
tion compared to other stream processing frameworks. Developers
do not have the ability to push or pull from specific incoming or
outgoing edges. Listing 2 shows two custom source nodes. The

Maxim Van de Wynckel and Beat Signer

Node #1 Node #2 Node #3 Node #4
SourceNode ProcessingNode ProcessingNode SinkNode
L pull() L pull() L pull() :

push(data) i E E
resolve pull resolve pull 1 resolve pull H
__________ pull | |...resovepull . resobvepul
resolve push push(data') 1 H
Koo pr 1
» resolve push push(data”) E

Figure 3: Data being pushed by source after receiving a pull

pull-based source node on lines 1 to 7 implements the onPull()
function that is called whenever the source receives a pull() re-
quest. This function expects a promise of a data frame. Internally,
the extended source node class will push this data frame as shown
in Figure 3. With the push-based source (lines 9 to 22), the onPull ()
is unused. Instead, a timer is created that pushes a new data frame
every 1000 milliseconds. A similar abstraction exists for sink nodes
with the onPush () function.

/* Qopenhps/core | version 0.2.0 */
1 export class PullBasedSource extends SourceNode<DataFrame> {

2 public onPull(): Promise<DataFrame> {

3 return new Promise((resolve) => {

4 resolve(new DataFrame(this.source));

5 N

6 i

7}

8

9 export class PushBasedSource extends SourceNode<DataFrame> {
10 constructor(source: DataObject) {

11 super(source);

12 this.on('build', () => {

13 setInterval(this._generate.bind(this), 1000);
14 s

15 3

16 private _generate(): void {

17 this.push(new DataFrame(this.source))

19 public onPull(): Promise<DataFrame> {
20 return Promise.resolve(undefined);
21 }

2 }

Listing 2: Push- and pull-based SourceNode classes

Similar to sources and sinks, processing nodes are abstracted.
Any pull() requests to these nodes are automatically forwarded
to the incoming nodes, as these process nodes do not generate new
data frames. Developers are expected to implement a process()
function manipulating a frame or individual objects within a frame.

4.2.2 Data Frame. Data that is pushed through the positioning
model is represented within data frames, generated by a source

OpenHPS: An Open Source Hybrid Positioning System

VideoDataFrame | IMUDataFrame | RFDataFrame |
uid timestamp] uid timestamp uid timestamp]
source DataObject source source AP1
CameraObject DataObject RFReceiverObject DataObject
Detected
uid: "camera", jroot = uid: "imusensor", uid: "wifiscanner", uid: "AP1",
position: { DataObject position: { No additional objects relativePositions: [position: £
x:2,y:5,z:3 x: 0, y: 0, { x:0,y: AP2
I Detected linearVelocity: { obj: "API1", } DataObject
projection: ..., DataObject &Ct x:1,y:0 distance: 5
width: 1280, i } o uid: "AP2",
height: 1024 Detected } obj: "AP2", position: {
object distance: 8 x:15,y:3
1 }
Image Acceleration ‘ ’ Sensor Frequency

Figure 4: Data frame content examples

node. This ensures that the origin of data can be determined via
some collection of metadata. The data contained in these frames
includes (but is not limited to) the following attributes:

e Unique identifier: Each frame generated by a source is
uniquely identified. This ensures that frames which are being
processed by multiple processing nodes in parallel can be
merged at a later stage in the stream.

o Timestamp: Required for determining when the data was
created or obtained. When working with multiple sources
that capture data of the same tracked actor, the timestamps
will be used to merge the data frames. A timestamp is kept for
the creation of each data frame by the source. This timestamp
can also be used for time-based calculations such as applying
velocity to a position. Using this timestamp instead of the
system time results in a more deterministic output.

e Source data object: This is the data object that obtained the
sensory data (e.g. the camera object or RF receiver). It is not
always the object that is being tracked, but it can be required
in order to determine the position of other objects (see actors
in Section 4.1.1). Similar to the timestamp and identifier, the
source data object can be used to specify certain criteria on
how data frames or positions should be merged.

e Data objects: Data objects include everything that is of
relevance to the positioning (e.g. the tracking and tracked
actor). This also includes reference spaces needed for the
positioning as pointed out later in Section 4.2.5. By grouping
the data objects in the same data frame, nodes do not have
to access any services to get this relevant information.

In order to demonstrate the content of data frames, Figure 4
depicts three situations where data is contained in frames. The
first example shows a data frame created by a camera source. This
camera object has a certain position and projection matrix. Linked
to the data frame is a single image (i.e. video frame) captured by this
source. During the processing of the image, objects can be detected
and added to this frame before being pushed further downstream. In
the second example we show data obtained by an accelerometer. The
source object has a velocity and position, the frame itself contains
the current acceleration and sensor frequency. This information
can be used by a processing node to add the acceleration to the

existing velocity. In our third and final example, we show a data
frame created by a Wi-Fi scanner. The scanner (source) has two
relative distances to access points (AP). The information, mainly
the position of these access points is included in the frame.

Node #2 Node #3
ProcessingNode ProcessingNode

[Node #1

Node #4
SourceNode

SinkNode

push(data) E

resolve push

push(data')

push(data")

reject push

N

Figure 5: Error handling in push() request

4.2.3 Position. Similar to existing work [17, 26], OpenHPS distin-
guishes between relative and absolute positions. Absolute positions
represent a fixed position in a specified space while relative po-
sitions indicate the position relative to another object. Absolute
positions contain the following information:

e Timestamp: The time when the absolute position has been
recorded or modified. The timestamp can be set by the sensor
or by a processing node that calculated the position.

e Accuracy: General position accuracy with the same unit

as the position itself. In the context of a hybrid positioning

system, the accuracy can be used as a weight when merging
with other calculated positions.

Orientation: Stationary orientation of the data object at the

recorded position. This orientation is relative to the X-axis

and is represented in quaternions. However, it is possible to
convert the quaternion representation to (and from) Euler
or axis angles.

e Linear velocity: Linear velocity at the recorded position,
relative to the orientation of the object (see Figure 6) using
the axis Xpp; and Ypp ; of the point P with orientation ¢.

e Angular velocity: Similar to linear velocity, the angular
velocity is relative to the orientation of the object.

e Position vector: Each position can be converted to a three-
dimensional vector, which enables the use of 2D positions
in 3D reference spaces.

e Unit: Length unit of the position. This unit applies to the
position vector and its accuracy.

Y

Yoo,

Figure 6: Position representation

Relative positions have the following attributes:

o Timestamp: Similar to the absolute position, this is the time
when the relative position has been recorded.

e Accuracy: General position accuracy in a specified unit.

e Reference object: The referenced data object to which the
position is relative to.

o Reference value: The value that determines the relative
position to the reference object. This can be a distance, angle
or velocity.

By default, OpenHPS and its core positioning algorithms sup-
port 2D, 3D and geographical coordinates. Developers can further
extend the coordinate space with higher-level absolute and relative
positions. Positions can be stored with a specified unit (i.e. length
unit for absolute positions) in order to offer developers flexibility
in the stored precision. Linear and angular velocity values are con-
verted to a fixed unit (m/s for linear and rad/s for angular velocity).
However, this can be customised by extending the velocity objects.

The position terminology is used throughout the API as opposed
to location or pose. Pose is a term that is often used when defining
a position and orientation in a three-dimensional space. However,
with the support of 2D positions, this term was not favourable.
Location is described by the English Oxford Dictionary as “a par-
ticular place or position”. This abstraction of “place” led us to our
final decision of choosing the more precise position terminology.

4.2.4 Data Object. A data object represents anything that is rele-
vant to the positioning. It can be the tracked object, the tracking
object or alandmark needed for the relative positioning. Each object
contains the following attributes:

e Unique identifier: Data objects are uniquely identified, ei-
ther by a supplied identifier or a random UID. Optionally, a
developer can provide a more user-friendly display name.

o Absolute position: Data objects store their last known ab-
solute position. The stored position is always relative to the
global reference space introduced later in Section 4.2.5. The

Maxim Van de Wynckel and Beat Signer

relevance of this last known position can be determined
using its timestamp and developers can request the trans-
formed position in their own reference space.

o Relative positions: These are relative positions to other
reference objects. Each object can have multiple types of
positions relative to different objects. This allows a data
object to have a relative distance, angle and velocity to the
same object.

e Parent object: A data object can specify its parent. This can
be useful for indicating that individual sensor objects belong
to the same tracked actor.

Depending on what the data object represents, it can be extended
to store the information needed for its representation. In Listing 3,
we create a basic data object of a user who is uniquely identified by
their e-mail. During the creation of this object, we set the current
position to a geographical coordinate.

/* @openhps/core | version 0.2.0 */

1 const object = new DataObject("mvdewync@vub.be");
2 object.displayName = "Maxim Van de Wynckel";
3 object.setPosition(new GeographicalPosition(5@.82075, 4.39234));

Listing 3: Creation of a DataObject

Data objects can be created and modified without those changes
being persisted in the positioning model. In order to detect persisted
changes, a listener can be added to the data object service as shown
in Listing 4.

/* @openhps/core | version 0.2.0 */
const service = myModel.findDataSerice(DataObject);
service.on('insert', (uid, changedObject) => {
if (uid === object.uid)
console.log(changedObject.getPosition());
D;

(£ SRT I C

Listing 4: Listener for data object changes

4.25 Reference Space. Reference spaces are data objects that rep-
resent spaces which are used for absolute positions. Using these
reference spaces, absolute positions created in a different space can
easily be identified and transformed to the global reference space
created when building a model.

/* @Qopenhps/core | version 0.2.0 */

1 const refSpace = new ReferenceSpace(model.referenceSpace)
2 .unit(LengthUnit.CENTIMETER)

3 .translation(10, 10, 0)

4 .scale(1, 1, 0)

5 .rotation(@, @, @, AngleUnit.RADIANS);

Listing 5: Creation of a ReferenceSpace

Listing 5 shows the creation of a reference space relative to the
global space represented by model.referenceSpace. This refer-
ence space has an origin offset. Absolute positions set when provid-
ing this reference space will automatically transform to the origin
of the global space.

OpenHPS: An Open Source Hybrid Positioning System

A reference space can transform the position, velocity and orienta-
tion in the following ways:

e Translation: Translate the position with an origin offset.

¢ Rotation: Rotate the position, orientation and angular ve-
locity.

e Scale: Scale the position and linear velocity.

e Perspective: Transform the (inverse) perspective of the po-
sition (e.g. the perspective of a camera).

e Unit conversion: Convert the unit of a position to a refer-
ence unit.

Reference spaces can be created to model different scenarios:

o Third-party positioning systems: Frameworks like the
WebXR [22] API manage their own origin and orientation
based on the underlying hardware. The output of such third-
party frameworks are high-level positions that should be
aligned with the other positioning methods.

e Sensor placement: Developers can model a reference space

for sensors that have a static offset or rotation (e.g. a motion

sensor that is placed upside down).

Calibrated reference space: Some sensors require a cali-

bration (either automatic or by manual user input). A goal

of OpenHPS is to easily persist this type of calibration.

e Map storage: As a data object, a reference space can be
extended to store environment map information as outlined
in our functional requirements.

In Listing 6, we set the current position of a data object to (5, 5, 5)
using the previously created reference space shown in Listing 5.
Internally, the stored position of myObject will be the transformed
position with coordinates (-5, -5, 5).

/* @openhps/core | version 0.2.0 */
1 myObject.setPosition(new Absolute3DPosition(5, 5, 5), refSpace);

Listing 6: Setting the object position in a reference space

As these spaces are data objects, they are uniquely identified and
can have a parent object or space. This parent allows for abstract
reference spaces such as rooms, floors and buildings. These types of
abstractions allow us to use different positioning methods per floor
that are stored in a global reference space representing a building.

4.2.6 Services. Each positioning model can have multiple services.

A service can be accessed by all nodes in that model to perform
certain general actions ranging from communication services that
handle the data between remote nodes, to data services that store
data frames, objects or other relevant information.

A data service serialises and stores information. By default, our
core API offers data services for:

e Data objects: To store the processed objects and their last
known position. This can also be used as a persistent storage
for landmarks used in the positioning.

e Node data: Node-specific data about DataObjects can be
stored. This can be useful for intermediate calculations by
noise filtering algorithms or sensor fusion techniques.

o Trajectories: Historical position data of DataObjects. Dri-
vers can be implemented for storing this information in
specialised databases such as MobilityDB [40].

Normal services in our framework include, but are not limited
to a time service that allows developers to synchronise the time
between multiple machines, and a worker service that acts as a
(remote) proxy for data services.

Listing 7 shows examples of how a service can be retrieved from
the model. Nodes can retrieve a data service by providing either
the class of an object, an object instance or the class name of the
object. This allows the use of difference services for different types
of DataObjects.

/* @openhps/core | version 0.2.0 */

// Finding a data service by class
this.model.findDataService(DataObject);

// Finding a data service object instance
this.model.findDataService(myObject);

// Finding a data service by name
this.model.findDataService("RFDataObject");

T T C

Listing 7: Retrieving a data service from a model

4.2.7 Measurement Units. Unlike many positioning frameworks
aiming for geographical positioning, OpenHPS aims to support
a wide range of use cases ranging from small scale to celestial
positioning. We provide a unit system consisting of the Unit and
DerivedUnit objects. A derived unit consists of multiple units with
a specific power and offset. Math.js [10] offers a similar unit system
with the possibility to automatically evaluate and convert units.
While this allows for the easy creation of derived units, it is not
necessary for our framework.

/* @openhps/core | version 0.2.0 */
// Time unit called 'second'

1

2 const second = new TimeUnit('second', {

3 // Unit for 'time'

4 baseName: 'time',

5 // Also called 's', 'sec' or plural

6 aliases: ['s', 'sec', 'seconds'],

7 // Supports decimal prefixes (milli, micro, ...)
8 prefixes: 'decimal',

&l 1);

11 // Millisecond is a second with the prefix specifier milli
12 const millisecond = second.specifier(UnitPrefix.MILLI);

14 const minute = new TimeUnit('minute', {

15 baseName: 'time',

16 aliases: ['m', 'min', 'minutes'],

17 // Minute can be defined as 60 * 1 second

18 definitions: [{ magnitude: 60, unit: 's' }1,

v 1)
Listing 8: Unit creation

Listing 8 shows the creation of a base unit second for time.
During its creation the developer can specify aliases for the unit and
similar to Math.js, a unit can have a set of unit prefixes. This allows
the use of “millisecond, microsecond, nanosecond, ...” without

specifically creating individual units for these specifiers. Note that
aliases can be provided to optionally allow the units to be converted
to string evaluators of other mathematical modules.

When creating a new unit, the developer should specify the base
unit. For the minute example in Listing 8 this is done by creating a
definition for converting minutes to seconds (using a magnitude of
60 for the unit seconds).

/* @openhps/core | version 0.2.0 */

1 const radSecond = new DerivedUnit('radian per second', {
2 baseName: 'angularvelocity',

3 aliases: ['rad/s', 'radians per second'],

4 1))

5 .addUnit(AngleUnit.RADIAN, 1)

6 .addUnit(TimeUnit.SECOND, -1);

7
8
9

const degreeSecond = radSecond. swap(
[AngleUnit.DEGREE],

10 {

11 baseName: 'angularvelocity',

12 name: 'degree per second',

13 aliases: ['deg/s', 'degrees per second'],
1 1);

16 const degreeMinute = radSecond.swap(
17 [AngleUnit.DEGREE, TimeUnit.MINUTE],

18 {

19 baseName: 'angularvelocity',

20 name: 'degree per minute',

21 aliases: ['deg/min', 'degrees per minute'l,
2 1)

Listing 9: Derived unit creation

In order to use a unit that is derived from other base units, a
DerivedUnit can be created as shown in Listing 9. The developer
provides a name of the unit and adds the units that are contained in
the derived unit (lines 5 and 6) along with their magnitude. Variants
on derived units can be created by swapping a unit (lines 9 and 17).

4.3 Framework Implementation

OpenHPS is implemented in TypeScript?, a type-safe superset of
JavaScript. It can be executed as a client-side browser application,
hybrid mobile applications, on JavaScript supported embedded
systems such as Espruino and even as a server-side application
using Node.js> or Deno*.

The ability to run our positioning model on a large range of
server and client devices enables the decentralisation mentioned
in the functional requirements. Additional remote components
such as the socket API outlined in Section 4.3.4 allow for other
programming languages to be supported as well.

4.3.1 Serialisation. Data frames and contained objects are serialis-
able throughout the framework. This functionality is implemented
using an extension of TypedJSON® that adds the ability for poly-
morphic data types. The detection of such data types is necessary
for allowing developers to create additional position or data objects
without having to recreate all classes where these are used.

https://www.typescriptlang.org
3https://nodejs.org/en/about/
“https://deno.land
Shttps://github.com/JohnWeisz/TypedJSON

Maxim Van de Wynckel and Beat Signer

/* @openhps/core | version 0.2.0 */

1 {

2 "createdTimestamp":1606501972983302,

3 "uid":"8865727c-7c98-4a8d-a33c-506d2650e59d",
4 "position":{

5 "x'":-4.07093248547983,

6 "y":55.59130128032057,

7 "timestamp":1606502001594449,

8

9

"velocity":{
"linear":{

10 "x'":-0.27608249684331726,
11 "y":0.3606549076013354,
12 "z":0.013291033512841348
13 },
14 "angular":{
15 "x":-3.9937982517329886,
16 "y":0.2311694373502423,
17 "z":-0.5070813464456928
18 3
19 1,
20 "orientation":{
21 "x":-0.09754179767548248,
22 "y":0.15388368786071302,
23 "z":0.04266920115206052,
24 "w":0.9823363719162936
25 o
2 "unit":{
27 "name":"centimeter"
28 },
29 "referenceSpaceUID": "5582d63d-c7af-4624-9fed-6ce@d9036f62",
30 "accuracyUnit":{
31 "name": "meter"
32 },
33 "__type":"Absolute2DPosition"
34 o
35 "relativePositions":[],
36 "__type":"DataObject"
37 %}

Listing 10: Serialised DataObject

Listing 10 shows a serialised data object created with sensor
data retrieved from a Sphero Mini® toy. The main DataObject and
Absolute2DPosition have a __type key that defines the object
type. Definitions of a unit are not included in the serialisation and
its complete name is used to indicate the unit. This means that a
custom unit should be available in all processes that are required
to deserialise the unit.

4.3.2 Performance. One of the non-functional requirements men-
tioned in Section 4.1 is the ability to perform real-time data process-
ing. In order to achieve these performance requirements, parts of
the processing network can be run in their own thread, web worker
or process. This threading is made possible due to the serialisability
of data frames and objects, which allows the transmission of frames
from one process or thread to another.

Listing 11 shows the creation of a model with parts of the graph
going through a WorkerNode. This threaded node is initialised with
a model builder function evaluated on the threaded process. If no
data services are (re)initialised in this function, the data services of
the main thread are made accessible in the individual threads.

A WorkerNode can also run a larger portion of a process network
that is declared in a separate file. This is more developer friendly

®https://sphero.com/products/sphero-mini

https://www.typescriptlang.org
https://nodejs.org/en/about/
https://deno.land
https://github.com/JohnWeisz/TypedJSON
https://sphero.com/products/sphero-mini

OpenHPS: An Open Source Hybrid Positioning System

/* @openhps/core | version 0.2.0 */

1 ModelBuilder.create()

2 .addService(/* ... */)

3 from(/x ... */)

4 .via(new WorkerNode((builder: GraphShapeBuilder) => {

5 const { TrilaterationNode } = require('@openhps/core');
6 builder.via(new TrilaterationNode())

7

8

9

T {
poolSize: 4

»
10 to(/*x ... /)
11 .build().then(model => { /* ... */ });

Listing 11: Threaded node creation

than having to import all the nodes within a builder function. List-
ing 12 shows the worker node named “video” being created in the
main thread (lines 2 to 6). Internally, this node is a graph created in
video. ts. Pull requests to this node (line 8) will be forwarded to a
pool of four workers.

/* @openhps/core | version 0.2.0 */

1 // main.ts //
2 ModelBuilder.create()

3 .addNode (new WorkerNode("video.ts", {

4 poolSize: 4,

5 name: "video"

6 1)

7 .from("video")

3 .via(new TimedPull(1, TimeUnit.MILLISECOND))
9 to(/x ... /)

10 .build().then(model => { /% ... %/ });

12 // video.ts //

13 export default GraphBuilder.create()
14 from(/x ... */)

15 via(/x ... */)

16 .to();

Listing 12: Threaded graph creation

As a simple demonstration of our worker node, we created a
processing node calculating 5000 prime numbers for every received
frame. This test was conducted on an Intel i7-6700HQ laptop CPU
with 8 logical cores, running Node.js 14.10. These 5000 prime num-
bers can be calculated 237.03 times per second without the over-
head of data frames, objects and services. The data frames that we
push contain a source object, position and velocity to simulate the
amount of data normally serialised and communicated between the
main process and workers. However, the contained data does not
affect the time it takes to compute the prime numbers.

Table 1 shows the results of our benchmark with one worker
assigned to each logical CPU core. Performance is measured in
frames per second (FPS) represented by the amount of computed
data frames received by the sink of our model. For each worker we
indicate the speed-up compared to the sequential implementation.
The overhead shown with a single worker is due to the serialisation
and deserialisation of data, an operation that is not required when
pushing in a sequential network.

4.3.3 Precision. Calculations within the framework are made us-
ing JavaScript number operations. Time-critical operations use a

#workers | FPS | Error | Speed-up
Sequential | 229.04 | 1.19% -

1 200.74 | 0.67% 0.88

2 389.44 | 0.56% 1.70

3 512.42 | 0.92% 2.24

4 616.29 | 1.15% 2.69

5 671.00 | 0.59% 2.93

6 746.07 | 0.67% 3.26

7 801.32 | 0.90% 3.50

8 822.47 | 0.69% 3.59

Table 1: WorkerNode benchmark

time service that returns the time in a specific unit. This allows de-
velopers to extend the framework with additional modules such as
microtime’ for more precise calculations. In addition, Decimal.js8
could be used with an extended position class to provide more
precise number operations.

4.3.4 Modularity. OpenHPS provides a modular API that splits
the functionality of positioning methods and algorithms in differ-
ent npm® modules. Using this method, developers can extend on
our core framework or other compo