
OpenHPS: An Open Source Hybrid Positioning System
Maxim Van de Wynckel

Web & Information Systems Engineering Lab
Vrije Universiteit Brussel
1050 Brussels, Belgium
mvdewync@vub.be

Beat Signer
Web & Information Systems Engineering Lab

Vrije Universiteit Brussel
1050 Brussels, Belgium

bsigner@vub.be

ABSTRACT
Positioning systems and frameworks use various techniques to de-
termine the position of an object. Some of the existing solutions
combine different sensory data at the time of positioning in order
to compute more accurate positions by reducing the error intro-
duced by the used individual positioning techniques. We present
OpenHPS, a generic hybrid positioning system implemented in
TypeScript, that can not only reduce the error during tracking by
fusing different sensory data based on different algorithms, but also
also make use of combined tracking techniques when calibrating
or training the system. In addition to a detailed discussion of the
architecture, features and implementation of the extensible open
source OpenHPS framework, we illustrate the use of our solution in
a demonstrator application fusing different positioning techniques.
While OpenHPS offers a number of positioning techniques, future
extensions might integrate new positioning methods or algorithms
and support additional levels of abstraction including symbolic
locations.

KEYWORDS
OpenHPS; hybrid positioning; open source; processing network;
indoor positioning

1 INTRODUCTION
Determining the location of a person or asset is an important aspect
of various human-computer interaction (HCI) solutions. Position
tracking can be used to create autonomous vehicles, navigation
systems and in context brokers such as CoBrA [7] to create implicit
interactions based on the location and possibly other contextual
information [35]. While we mainly rely on the Global Positioning
System (GPS) to determine our location outdoors, many other posi-
tioning techniques exist that work both, indoors as well outdoors
and sometimes even have been designed for completely different use
cases as described later in Section 2.1. Each positioning technique
has its advantages and disadvantages depending on the environ-
ment where it is being used. Hybrid positioning systems use the
combination of different techniques and sensors to determine a
more accurate position through sensor fusion [8].

One of the disadvantages with most commonly used indoor po-
sitioning methods such as Bluetooth Beacons or Wi-Fi access point
positioning is the requirement of some form of calibration or train-
ing. With our proposed hybrid system called OpenHPS1, the goal is
to achieve hybrid positioning during both, the navigation or track-
ing (online stage) and between tracking, training and calibration
of the used positioning techniques (offline stage). Unlike many of
the existing frameworks, the goal of OpenHPS is to offer a layered
1https://www.openhps.org

abstraction supporting a wide range of positioning techniques and
fusion algorithms.

Using our knowledge on various positioning techniques and
algorithms which are discussed in Section 2.1 and Section 2.2, we
identified and analysed the actors of our system as highlighted in
Section 4.1.1. This analysis revealed that actors play a different role
depending on the positioning method being used. In order to allow
the system to combine different existing positioning methods, we
opted for a processing stream network where each node in a graph
topology contributes to the sampled data.

Our design goal with the chosen processing network is to handle
positioning data in real time, giving developers complete control
over the data flow. The proposed OpenHPS framework is presented
in Section 4 together with an illustrative demonstrator use case
before discussing some future work in Section 5.

2 BACKGROUND
The first step in conceptualising our hybrid positioning framework
was to investigate existing positioning methods in order to find
their similarities as well as differences. OpenHPS has to be able to
support a wide range of different positioning methods and imple-
mentation goals. When analysing existing approaches, we made a
distinction between positioning methods and algorithms, similar to
Wilson et al. [34]. Positioning methods represent the techniques
and technologies that are available to determine a location while
positioning algorithms include the algorithms that can be used to
combine these methods.

2.1 Positioning Methods
In this section we list some of the more prominent positioning
methods ranging from signal-based to visual solutions. Note that
the selected positioning methods represent a limited set of the
techniques and functional requirements we aim to support.

2.1.1 Global Position System (GPS). Starting with the most well-
known technology, the Global Positioning System (GPS) is used
for outdoor positioning [6]. It makes use of satellites in an orbit
around the Earth to triangulate a location consisting of a longitude,
latitude and elevation. There also exist variations on the original
global position system, including Differential GPS (DGPS) [33] or
the Assisted GPS (a-GPS) [13] that fuses GPS with dead reckoning
described later in Section 2.1.5.

2.1.2 RF-based Positioning. RF-based positioning is a commonly
used technique for indoor environments. Examples of technologies
used for RF-based positioning include Wi-Fi, Bluetooth Beacons,
RFID and LTE cell towers. These RF signals offer a landmark that

ar
X

iv
:2

10
1.

05
19

8v
1

 [
cs

.C
V

]
 2

9
D

ec
 2

02
0

https://www.openhps.org

Maxim Van de Wynckel and Beat Signer

can be used as a reference when determining the position based on
fingerprinting or other mathematical calculations.

2.1.3 Simultaneous Localisation and Mapping (SLAM). Simultane-
ous Localisation and Mapping, or SLAM for short, is a positioning
method that makes use of 2D sensors to map its surroundings. One
of the more common examples includes the use of LIDAR (Light
Detection and Ranging) [28], capturing distance readings around a
sensor. These readings can then be used to generate a 2D map of
the environment.

2.1.4 Visual Positioning Techniques. Existing visual positioning
techniques use image sensors to determine the position of the object
the sensor is attached to (e.g. Visual SLAM [38]) or the position
of objects in its field of view. In previously mentioned positioning
methods, the tracked object obtains the sensor data. With Multi-
Target Multi-Camera Tracking (MTMCT) [23] the tracked object is
moving within the field of view of one or more image sensors.

2.1.5 Dead Reckoning. Dead reckoning calculates the current po-
sition based on the previous known position and the velocity or
acceleration that is applied to that position [3, 20]. While the ac-
curacy of dead reckoning is not ideal, it can be used to improved
other positioning techniques such as GPS.

2.2 Positioning Algorithms
In order to calculate a position or to combine multiple positioning
methods, different algorithms are used. The list of algorithms pre-
sented in this section offers a baseline for the types of positioning
algorithms to be supported, but our OpenHPS framework is not
limited to the presented set of algorithms.

2.2.1 Triangulation and Multilateration. Mathematical operations
such as triangulation and multilateration can be used for several
positioning methods and technologies discussed in Section 2.1. For
techniques that provide a landmark such as RF-based positioning,
the received signal strength (RSS) might provide a rough estimate
of the distance. Other examples include mathematical positioning
using a time difference with respect to the time of arrival (ToA) or
the angle of arrival (AoA).

2.2.2 Fingerprinting. While with multilateration we only need in-
formation about the position of the used landmarks, fingerprint-
ing requires a calibration for all possible positions in the tracking
area [39]. A fingerprint of the sensor data at a given provided
position is created during the offline stage. Later, these stored fin-
gerprints are used during the online stage to reverse the sensor
data into a position.

2.2.3 Noise Filtering. Sensor data should be filtered, which can be
done through different noise filters. Similar to dead reckoning, a
noise filter often requires knowledge of previous sensor readings
and positions to predict the next result.

Noise filtering is one of the main requirements of our hybrid
positioning system. The reason why we want to combine multiple
technologies or algorithms is to reduce errors and noise filtering
is the key component in realising this error reduction of position-
ing data. Note that individual positioning methods such as object

recognition or dead reckoning may want to perform different types
of noise filtering algorithms tailored to their data.

2.2.4 Machine Learning. This type of algorithms includes a number
of machine learning algorithms that can be of aid during calibration
as well as positioning. These algorithms require training during
the offline stage with the results being deployed during the online
stage. This issue will be further discussed when discussing the
requirements in Section 4.1, where we allow data to be used in the
online and offline stages of the OpenHPS framework.

2.2.5 Computer Vision. With the visual positioning methods dis-
cussed in Section 2.1.4, the tracked actor is not always uniquely
identified. Such visual positioning methods have to be able to detect
and track objects between multiple frames, camera angles or posi-
tions. The algorithms used to track and detect persons or objects
from a video stream are beyond the scope of our framework, but
OpenHPS should be able to provide a generic interface supporting
these types of algorithms.

2.3 Hybrid Positioning
Apart from supporting different positioning methods and algo-
rithms, OpenHPS should be able to combine these methods. This
requires a choice of algorithms to specify how the result of each
method can be used in the combined output.

Sensor fusion can occur at a low or high level [14]. Raw sensor
data such as IMU sensors or the relative signal strength from a
transmitter can be fused in noise filtering algorithms. On a high
level, calculated or provided positions (i.e. by third-party position-
ing systems) with a certain predicted accuracy can be combined
using linear regression, heuristic weighted averages or any decision
fusion algorithm.

3 RELATEDWORK
Location-based Services (LBS) represent a generalised category
of systems that provide the current location of a person or other
objects [24]. A distinction between a push- and pull-based LBS is
made [37]. A pull LBS provides a location when it is requested to
do so, while a push LBS delivers information when a new location
is determined by a provider.

The idea of combining multiple positioning methods in an LBS
is not new. In this section we present some related work, ranging
from existing hybrid positioning systems, frameworks, their used
terminology and standards throughout location-based services.

3.1 Location APIs and Specifications
On the Web, the Geolocation API [31] offers a high-level interface
for single or repeated position updates. The API provides an ab-
straction of the underlying technologies and algorithms used to
determine the position. However, developers can request a high
accuracy result or maximum cache age if hardware permits this.
Resulting positions are geographical coordinates complying with
the WGS84 standard [11].

JSR-179 and the improved JSR-293 [2] specifications are Java 2
Micro Edition (J2ME) modules that provide developers an API to
obtain the location and orientation of a mobile device. Included in
the API is a storage interface for landmarks (see Section 2.1.2). The

OpenHPS: An Open Source Hybrid Positioning System

specification represents locations as timestamped coordinates with
an orientation, accuracy, speed and information about the used
positioning method [12]. When requesting a location, criteria such
as the desired accuracy, power consumption and response timeout
can be provided.

WebXR [22, 27] is a Web API that provides an interface for the
tracking and use of VR or AR headsets. The API uses the pose
terminology to indicate the position and orientation of the person
wearing an XR headset in 3D space. While WebXR should not be
considered as a location API, its specification uses terminology that
is common in our framework. As an API that provides a tracking
position, it adds a goal for our framework to support these third-
party APIs.

3.2 Hybrid Positioning Systems
Various research concerning the fusion of sensor data to predict
a more accurate position exists. SignalSLAM [29] represents an
example of a hybrid system that uses signals of various positioning
methods such as GPS, Wi-Fi and Bluetooth to map the surround-
ings. Chen et al. [8] have shown how a smartphone can combine
sensor data of Wi-Fi access point positioning and Pedestrian Dead
Reckoning (PDR). This combination of dead reckoning with another
positioning method is a common combination used by many hybrid
systems. LearnLoc [30] is a smartphone-centred positioning frame-
work that uses fingerprinting algorithms (k-nearest neighbours
algorithm) in combination with various sensor data available on
a smartphone to provide power-efficient indoor positioning. The
consideration of power efficiency is a common requirement in mo-
bile positioning systems. Other than achieving the most accurate
position, these location-based services use sensor fusion to prevent
the continuous use of precise sensors such as cameras or GPS.

IndoorAtlas provides a Platform-as-a-Service (PaaS) with a well-
established Software Development Kit (SDK) for combining Wi-Fi,
GPS, Bluetooth beacons, dead reckoning and even geomagnetic
positioning [18]. While the latter method has been found to be less
ideal in steel reinforced buildings [30], it still offers a useful addi-
tion for creating a hybrid positioning system where geomagnetic
positioning might be combined with other positioning methods.

In the research by Bekkelien and Deriaz [4] a framework called
Global Positioning Module (GPM) had been presented for in- and
outdoor positioning. GPM provides a uniform interface to different
position providers. These providers are fused in a kernel that selects
the position based on provided criteria (e.g. precision, accuracy or
detection probability). Their approach offers a clear methodology
on how this criteria can contribute to the selection or fusion of
different technologies. However, the position providers and kernels
are implemented on a high level of abstraction providing no room
for developers to choose different algorithms or fusion techniques.

Ficco and Russo [15] presented a technology-independent hy-
brid positioning middleware called HyLocSys. Position estimators,
representing different technologies, provide positions when a user
performs a pull of their current position. Sensor fusion combines
these estimated positions into a final response.With themiddleware
being an extension of the JSR-179 specification presented earlier,
these pull requests accept criteria such as the preferred response
time and expected accuracy. Other than many frameworks that

only provide geographical positions, HyLocSys provides geometric,
symbolic as well as hybrid location models. Symbolic locations rep-
resent abstract places such as buildings, floors and rooms that are
relatively positioned to each other. A hybrid location can convert
this symbolic location to a geometric position. Note that the paper
does not discuss positioning technologies such as dead reckoning or
SLAM that require periodic updates in order to keep an up-to-date
position.

Scholl et al. [36] propose a system that uses a LIDAR scanner
to determine the fingerprinting position. This is somewhat similar
to our goal of using different positioning methods to support the
offline stage.

The Robot Operating System (ROS) [32] is a structured com-
munication layer that can be used to create autonomous robots.
It focuses on the integration of various robotics aspects such as
positioning, computing and hardware interfacing. ROS provides
the concept of peer-connected nodes that perform computational
tasks. These nodes represent interchangeable software modules
that help to build a pipeline from sensory data to an output action.
For positions and orientations, ROS uses the pose concept which
contains both the position and orientation of a user.

Our framework should adhere to specifications such as WGS84
when working with geographical positions. However, unlike many
of the relatedwork discussed in this section, we alsowant to support
non-geometric positions. The hybrid location model presented by
Ficco and Russo [15] offers a good type of location, but is still
heavily focused on geometric positions.

Positioning methods and algorithms are often represented un-
der the term providers that are optionally combined via high-level
decision fusion. In our framework, we want to separate providers
into generic algorithms and positioning methods that can easily be
switched. This not only allows for more extensibility, but also some
low-level sensor fusion.

The Geolocation API, JSR-179 and HyLocSys allow for the speci-
fication of accuracy or other criteria when requesting a position.
However, unlike high-level APIs that hide the underlying technolo-
gies, OpenHPS is aimed towards developers with an understanding
of the available hardware and positioning techniques that influence
the criteria.

The landmark storage of JSR-179 is a very useful addition to a po-
sitioning system, as it is a common requirement for many position-
ing techniques. The persistence of landmarks between the online
and offline stage is an important requirement that is extended to fin-
gerprinting information and cached position storage in OpenHPS.
This persistence should allow us to interface with existing systems
such as the Geolocation API that support both push-based position
updates as well as retrieving the current (cached) position.

4 OPENHPS FRAMEWORK
In this section, we present and discuss the system design of our
proposed OpenHPS hybrid positioning framework. After listing
some general requirements in Section 4.1, we outline the overall
architecture in Section 4.2. Next, we provide some general infor-
mation on our chosen implementation and demonstrate the use of
OpenHPS in Section 4.3 and Section 4.4.

Maxim Van de Wynckel and Beat Signer

4.1 Requirements
Based on existing positioning methods and algorithms discussed in
Section 2.1 and Section 2.2, the following framework requirements
have been derived. We start by specifying the actors of our system
and motivate the use of a processing network where each node of
the graph topology might represent one of these actors.

4.1.1 System Actors. After investigating different existing posi-
tioning techniques, we defined four actors in OpenHPS:

• Tracked actor: This is an actor that can be tracked during
the online positioning stage. A tracked actor can be an end
user or an asset that might optionally contain sensors to
further support the tracking. Our main goal is to determine
the most accurate position of this type of actor.

• Tracking actor: This type of actor is responsible for track-
ing a tracked actor. Note that for some positioning methods,
the same actor might act as a tracking actor as well as a
tracked actor. However, for positioning methods such as the
visual object tracking introduced in Section 2.1.4, the track-
ing actor is represented by the camera while a tracked actor
is the object that is being detected.

• Calibration actor: Some positioning methods require a cal-
ibration before the positioning method can be used. Unlike
the tracked actor, the purpose of a calibration actor is to
train and calibrate how the tracking actor will be used in the
online stage of the system.

• Computing actor: The computing actor is responsible for
providing the final position output by our system. This ac-
tor combines the data generated by one or more tracking
actors about a tracked actor and processes the data by, for
example, using one of the positioning algorithms described
in Section 2.2.

These four actors represent the four main components within
OpenHPS. By distinguishing between the tracked and tracking actor,
the system is able to support the tracking of persons or objects that
do not actively participate in the positioning process.

4.1.2 Functional Requirements. In the following, we list the mini-
mal functional requirements for our OpenHPS framework.

• Online stage positioning: In order to perform hybrid po-
sitioning or sensor fusion, multiple (processed) sources need
to be combined by using different algorithms.

• Offline stage positioning: Processed results can be used
to calibrate positioning methods of another (online) stage.

• Third-party frameworks: Our framework needs to sup-
port third-party high-level positioning systems. These ex-
ternal systems might provide their own calculated position
of a tracked actor that needs to be fused with the position
determined by our framework. In addition, the identification
of this tracked actor might differ between frameworks.

• Environment mapping: With the requirement to support
positioning methods such as SLAM and VSLAM, the system
does not only offer the possibility to output an absolute
position, but might also create an environment map. Our
solution should be capable of handling, storing and using
this map to its advantage.

• Decentralisation: Our positioning framework should be
able to combine the four different actors introduced in the
previous section based on remote hardware. This requires
the framework to work decentralised without requiring any
centralised sensor fusion, which can be achieved by allowing
multiple computing actors to work independently. However,
developers should still be given the option to centralise cer-
tain parts of the system if needed.

• Monotonicity: Partial information from a source should
result in a partial output. In the context of a positioning
system, this means that a computing actor does not need
the sensor data of all positioning methods to determine a
position. This requirement also helps in the decentralisation
and parallelisation of the framework.

4.1.3 Non-functional Requirements. The following non-functional
requirements contributed to the final decision about the software
language used for OpenHPS.

• Availability: Our solution has to be available on various
platforms ranging from servers to embedded systems; also
supporting the decentralisation functional requirement.

• Performance and latency: Throughput is an important
criteria when processing streaming data. Input data such as
video and audio streams needs to be processed in real time.
The latency also indicates how long it takes for data to be
used in computations. As our goal is to achieve an accurate
current position, outdated sensor data is not relevant.

• Modularity: The framework should be modular with both,
a low-level API and modules that can be added and removed
based on the available sensors and concrete use cases. De-
velopers should remain in control of the types of algorithms
and the flow of data from producer to consumer.

4.2 Framework Architecture
In order to support the presented functional and non-functional
requirements, we decided to build on a stream-based positioning
system that takes various types of input data and processes this data
to get the desired output. Data that is transmitted between nodes
is encapsulated in so-called data frames that can contain sensory
data as well as one or more data objects the sensor data applies to,
and are described in detail in Section 4.2.2.

For the design of our process network, a number of existing
stream- and layer-based frameworks such as Akka Streams [9] or
TensorFlow [1] have been investigated. These frameworks solve
similar issues and are further detailed in Section 4.2.1. Due to the fact
that each node needs to be configured individually, the decision was
made to investigate flow-based frameworks where each component
of the stream network is added individually.

Unlike low-level data stream frameworks, OpenHPS focuses on
data that is helpful for positioning. We offer a higher-level API
for creating the network and data that is handled by the sytem.
Concepts such as edges or ports that are often found in stream-based
programming languages are abstracted and not directly accessible
by developers. However, unlike other hybrid frameworks [4, 18],
the stream processing is extensible enough to give developers the
opportunity to modify the positioning methods along with the used
algorithms.

OpenHPS: An Open Source Hybrid Positioning System

We start by discussing our process network design that uses
a graph topology similar to other stream frameworks. Next, we
present the data frames, objects and positional data that are being
handled by the network.

4.2.1 Process Network Design. The OpenHPS framework uses a
process network to handle data. The data is processed and dynam-
ically manipulated by multiple connected nodes in a predefined
graph topology. In the following, we list our three main design
goals for this network:

(1) Consistent data types: Data that is being processed in the
network should have a reliable type and content. We process
DataObjects encapsulated in DataFrames, which provides
a defined scope how generic parts of our network should
handle information.

(2) Processing goal: Processing has the goal of providing an
absolute position for our tracked actors. With this goal we
have a clear understanding how every computing actor con-
tributes to the output.

(3) Producer priority: The producer or tracking actor has the
highest priority. Slow consumers or computing actors must
not result in outdated sensor information. Rather, developers
should be given the opportunity to control what happens
with the overflow of information that cannot be processed
timely.

Starting from the goal of producing up-to-date positioning in-
formation, we opted for a push-pull-based stream. Data can be
dropped if its not relevant for determining a more up-to-date po-
sition. The monotonicity of our framework ensures that positions
can be determined based on partial data.

Each node can be designed to accept both push and pull requests.
Similar to reactive streams [16], push and pull actions are promise-
based and can be executed asynchronously. If a node that receives a
pull request cannot respond with a data frame itself, it will forward
the pull request to its incoming node(s).

Different to a traditional pull that returns a response, we use
the push terminology to indicate a response for a given pull. This
behaviour and terminology is similar to Akka Streams [9], but
unlike reactive streams where data can only be provided when
there is a demand, there is no back pressure built into the stream
itself. Using the push terminology for a pull response removes the
ambiguity of a response arriving after an already existing push in
the pipeline. It also enforces the design goal of producers having
the highest priority, even if a producer only generates information
when requested.

A regular node has a unique identifier and push/pull functionality
for data frames. Each node can have 0 . . . 𝑛 inlets or outlets. Our
system consist of the following three subtypes of the regular node:

• Source node: A source node provides a specific data type.
This can either be a push or pull node that pushes data
frames when they are available (e.g. a camera recording at
a fixed frame rate) or creates a new data frame when the
downstream node asks for it via a pull request (e.g. triggering
a Bluetooth scan). The source node merges data objects in
the data frame with those that were previously stored via
data services. This merging behaviour prevents the need for

feedback loops to gain knowledge on previously calculated
positioning data.

• Processing node: A processing node is a higher-level inter-
face for a regular node. It provides an abstraction on the push
and pull functionality to simplify the creation of a processing
function of either data frames or individual data objects.

• Sink node: An output node or sink node accepts a specific
data type as output frame. Unlike processing nodes, this type
of node will not push data to other nodes. Upon receiving a
data frame, the data objects will be stored using a compat-
ible data service. Once saved, an event is sent upstream to
indicate that the processing of this frame and its contained
objects is completed.

Extensions of these nodes, allowing for specific data flow shapes
and common position processing nodes, are provided in our core
component. Figure 1 shows an example of a positioning model that
has a source node, a sink node and four processing nodes connected
in a graph structure. This positioning model describes a configured
computational model aimed for processing sensor and positioning
data [25]. Similar to existing streaming or pipelining frameworks,
the graph can contain data flow shapes that manipulate the flow of
data frames. Examples of such shapes include, but are not limited
to balance nodes, data frame chunking, debouncing and merging
of data objects and their processed positions.

SinkProcessSource Process

...

...

Service A
Map
Store

Service B
User Data

Store

Service C
Room
Store

Figure 1: Example OpenHPS positioning model

All nodes in a positioning model have access to a set of ser-
vices that allow the storage of objects. In the given example, three
services are added for the storage of map, user data and room in-
formation. In our implementation, sink nodes always store data
objects contained in received data frames. However, every node has
the ability to fetch or insert new data into available services. This
persistence allows for the storage of landmark objects, similar to
the JSR-179 specification [12]. At the same time, these services can
be used as an interface to fetch the latest position without requiring
a specific implementation in the sink.

The positioning model can be created by using a builder pattern
as illustrated in Listing 1. This builder creates the immutable prop-
erties of the model, including data services and the flow of data
from source to sink. Models can have multiple flow shapes, each
with one or more sources, processing nodes and sinks.

Maxim Van de Wynckel and Beat Signer

/* @openhps/core | version 0.2.0 */

1 ModelBuilder.create()
2 .addService(/* ... */)
3 .addShape(GraphBuilder.create()
4 .from(/* ... */)
5 .via(/* ... */)
6 .to(/* ... */))
7 .build().then((model: Model) => { /* ... */ });

Listing 1: Creation of a positioning model

In Figure 2, data is being pushed by an active source node. Pro-
cessing nodes will process the data and push the modified frame to
their output nodes. Push and pull actions are promise-based and
resolved whenever the node finishes processing the frame. This
allows for non-blocking asynchronous requests. The resolved push
promise (indicated in green) gives an indication that the processing
of the push is finished. However, it does not provide knowledge on
whether or not the frame is processed by the complete network. To
indicate this, sink nodes that receive a frame will emit a completed
event that includes the data frame identifier and list of persisted
object identifiers.

Node #2
ProcessingNode

Node #3
ProcessingNode

resolve push

Node #1
SourceNode

Node #4
SinkNode

push(data)

push(data')

push(data'')

resolve push

resolve push

completed data''completed data'' completed data''

Figure 2: Data being pushed by a source

With the swim lane shown in Figure 3, the data is not auto-
matically pushed by the source node. A downstream node such
as a sink will send a pull() request to its input nodes. If these
nodes cannot provide a frame of their own, the pull() request is
forwarded to their respective input nodes. If the source has data
available, a response to this pull is provided asynchronously. As
mentioned in the beginning of this section, a pull() response will
use the same invocation as a push(). In that case, the pull promise
is resolved right after the source sends this push as indicated by
the blue resolve chain in Figure 3.

As promises are resolved after the data frame is processed by
a node, upstream nodes in the process chain cannot determine
whether data has been processed successfully. Figure 5 shows a
push() request that throws an error at the sink node (e.g. failure to
store). An error event is triggered on previous node(s). By default,
these nodes will chain the error to upstream nodes. However, each
node can act upon this error in its individual implementation.

Nodes are implemented by developers on a high level of abstrac-
tion compared to other stream processing frameworks. Developers
do not have the ability to push or pull from specific incoming or
outgoing edges. Listing 2 shows two custom source nodes. The

Node #2
ProcessingNode

Node #3
ProcessingNode

Node #1
SourceNode

Node #4
SinkNode

pull()

resolve pull resolve pull resolve pull

push(data)

push(data')

push(data'')

resolve push

resolve push

resolve push

completed data''

pull() pull()

completed data''completed data''

Figure 3: Data being pushed by source after receiving a pull

pull-based source node on lines 1 to 7 implements the onPull()
function that is called whenever the source receives a pull() re-
quest. This function expects a promise of a data frame. Internally,
the extended source node class will push this data frame as shown
in Figure 3.With the push-based source (lines 9 to 22), the onPull()
is unused. Instead, a timer is created that pushes a new data frame
every 1000 milliseconds. A similar abstraction exists for sink nodes
with the onPush() function.

/* @openhps/core | version 0.2.0 */

1 export class PullBasedSource extends SourceNode<DataFrame> {
2 public onPull(): Promise<DataFrame> {
3 return new Promise((resolve) => {
4 resolve(new DataFrame(this.source));
5 });
6 }
7 }
8
9 export class PushBasedSource extends SourceNode<DataFrame> {
10 constructor(source: DataObject) {
11 super(source);
12 this.on('build', () => {
13 setInterval(this._generate.bind(this), 1000);
14 });
15 }
16 private _generate(): void {
17 this.push(new DataFrame(this.source))
18 }
19 public onPull(): Promise<DataFrame> {
20 return Promise.resolve(undefined);
21 }
22 }

Listing 2: Push- and pull-based SourceNode classes

Similar to sources and sinks, processing nodes are abstracted.
Any pull() requests to these nodes are automatically forwarded
to the incoming nodes, as these process nodes do not generate new
data frames. Developers are expected to implement a process()
function manipulating a frame or individual objects within a frame.

4.2.2 Data Frame. Data that is pushed through the positioning
model is represented within data frames, generated by a source

OpenHPS: An Open Source Hybrid Positioning System

RFDataFrame

source
RFReceiverObject

 uid: "wifiscanner",
 relativePositions: [
 {
 obj: "API1",
 distance: 5
 }, {
 obj: "AP2",
 distance: 8
 }]

AP1
DataObject

 uid: "AP1",
 position: {
 x: 0, y: 0
 }

AP2
DataObject

 uid: "AP2",
 position: {
 x: 15, y: 3
 }

IMUDataFrame

source
DataObject

 uid: "imusensor",
 position: {
 x: 0, y: 0,
 linearVelocity: {
 x: 1, y: 0
 }
 }

No additional objects

Acceleration Sensor Frequency

VideoDataFrame

source
CameraObject

 uid: "camera",
 position: {
 x: 2, y: 5, z: 3
 },
 projection: ...,
 width: 1280,
 height: 1024

Image

DataObject

 Detected
object

DataObject

 Detected
objectDataObject

 Detected
object

uid timestamp uid timestamp uid timestamp

Figure 4: Data frame content examples

node. This ensures that the origin of data can be determined via
some collection of metadata. The data contained in these frames
includes (but is not limited to) the following attributes:

• Unique identifier: Each frame generated by a source is
uniquely identified. This ensures that frames which are being
processed by multiple processing nodes in parallel can be
merged at a later stage in the stream.

• Timestamp: Required for determining when the data was
created or obtained. When working with multiple sources
that capture data of the same tracked actor, the timestamps
will be used tomerge the data frames. A timestamp is kept for
the creation of each data frame by the source. This timestamp
can also be used for time-based calculations such as applying
velocity to a position. Using this timestamp instead of the
system time results in a more deterministic output.

• Source data object: This is the data object that obtained the
sensory data (e.g. the camera object or RF receiver). It is not
always the object that is being tracked, but it can be required
in order to determine the position of other objects (see actors
in Section 4.1.1). Similar to the timestamp and identifier, the
source data object can be used to specify certain criteria on
how data frames or positions should be merged.

• Data objects: Data objects include everything that is of
relevance to the positioning (e.g. the tracking and tracked
actor). This also includes reference spaces needed for the
positioning as pointed out later in Section 4.2.5. By grouping
the data objects in the same data frame, nodes do not have
to access any services to get this relevant information.

In order to demonstrate the content of data frames, Figure 4
depicts three situations where data is contained in frames. The
first example shows a data frame created by a camera source. This
camera object has a certain position and projection matrix. Linked
to the data frame is a single image (i.e. video frame) captured by this
source. During the processing of the image, objects can be detected
and added to this frame before being pushed further downstream. In
the second examplewe show data obtained by an accelerometer. The
source object has a velocity and position, the frame itself contains
the current acceleration and sensor frequency. This information
can be used by a processing node to add the acceleration to the

existing velocity. In our third and final example, we show a data
frame created by a Wi-Fi scanner. The scanner (source) has two
relative distances to access points (AP). The information, mainly
the position of these access points is included in the frame.

Node #2
ProcessingNode

Node #3
ProcessingNode

Node #1
SourceNode

Node #4
SinkNode

push(data)

push(data')

push(data'')

resolve push

reject pushemit erroremit error

resolve push

Figure 5: Error handling in push() request

4.2.3 Position. Similar to existing work [17, 26], OpenHPS distin-
guishes between relative and absolute positions. Absolute positions
represent a fixed position in a specified space while relative po-
sitions indicate the position relative to another object. Absolute
positions contain the following information:

• Timestamp: The time when the absolute position has been
recorded or modified. The timestamp can be set by the sensor
or by a processing node that calculated the position.

• Accuracy: General position accuracy with the same unit
as the position itself. In the context of a hybrid positioning
system, the accuracy can be used as a weight when merging
with other calculated positions.

• Orientation: Stationary orientation of the data object at the
recorded position. This orientation is relative to the 𝑋 -axis
and is represented in quaternions. However, it is possible to
convert the quaternion representation to (and from) Euler
or axis angles.

• Linear velocity: Linear velocity at the recorded position,
relative to the orientation of the object (see Figure 6) using
the axis 𝑋𝑂𝑏 𝑗 and 𝑌𝑂𝑏 𝑗 of the point 𝑃 with orientation 𝜙 .

• Angular velocity: Similar to linear velocity, the angular
velocity is relative to the orientation of the object.

Maxim Van de Wynckel and Beat Signer

• Position vector: Each position can be converted to a three-
dimensional vector, which enables the use of 2D positions
in 3D reference spaces.

• Unit: Length unit of the position. This unit applies to the
position vector and its accuracy.

𝑋

𝑌

𝑋𝑂𝑏 𝑗

𝑌𝑂𝑏 𝑗

𝜙

𝑃

Figure 6: Position representation

Relative positions have the following attributes:
• Timestamp: Similar to the absolute position, this is the time
when the relative position has been recorded.

• Accuracy: General position accuracy in a specified unit.
• Reference object: The referenced data object to which the
position is relative to.

• Reference value: The value that determines the relative
position to the reference object. This can be a distance, angle
or velocity.

By default, OpenHPS and its core positioning algorithms sup-
port 2D, 3D and geographical coordinates. Developers can further
extend the coordinate space with higher-level absolute and relative
positions. Positions can be stored with a specified unit (i.e. length
unit for absolute positions) in order to offer developers flexibility
in the stored precision. Linear and angular velocity values are con-
verted to a fixed unit (𝑚/𝑠 for linear and 𝑟𝑎𝑑/𝑠 for angular velocity).
However, this can be customised by extending the velocity objects.

The position terminology is used throughout the API as opposed
to location or pose. Pose is a term that is often used when defining
a position and orientation in a three-dimensional space. However,
with the support of 2D positions, this term was not favourable.
Location is described by the English Oxford Dictionary as “a par-
ticular place or position”. This abstraction of “place” led us to our
final decision of choosing the more precise position terminology.

4.2.4 Data Object. A data object represents anything that is rele-
vant to the positioning. It can be the tracked object, the tracking
object or a landmark needed for the relative positioning. Each object
contains the following attributes:

• Unique identifier: Data objects are uniquely identified, ei-
ther by a supplied identifier or a random UID. Optionally, a
developer can provide a more user-friendly display name.

• Absolute position: Data objects store their last known ab-
solute position. The stored position is always relative to the
global reference space introduced later in Section 4.2.5. The

relevance of this last known position can be determined
using its timestamp and developers can request the trans-
formed position in their own reference space.

• Relative positions: These are relative positions to other
reference objects. Each object can have multiple types of
positions relative to different objects. This allows a data
object to have a relative distance, angle and velocity to the
same object.

• Parent object: A data object can specify its parent. This can
be useful for indicating that individual sensor objects belong
to the same tracked actor.

Depending on what the data object represents, it can be extended
to store the information needed for its representation. In Listing 3,
we create a basic data object of a user who is uniquely identified by
their e-mail. During the creation of this object, we set the current
position to a geographical coordinate.

/* @openhps/core | version 0.2.0 */

1 const object = new DataObject("mvdewync@vub.be");
2 object.displayName = "Maxim Van de Wynckel";
3 object.setPosition(new GeographicalPosition(50.82075, 4.39234));

Listing 3: Creation of a DataObject

Data objects can be created and modified without those changes
being persisted in the positioning model. In order to detect persisted
changes, a listener can be added to the data object service as shown
in Listing 4.

/* @openhps/core | version 0.2.0 */

1 const service = myModel.findDataSerice(DataObject);
2 service.on('insert', (uid, changedObject) => {
3 if (uid === object.uid)
4 console.log(changedObject.getPosition());
5 });

Listing 4: Listener for data object changes

4.2.5 Reference Space. Reference spaces are data objects that rep-
resent spaces which are used for absolute positions. Using these
reference spaces, absolute positions created in a different space can
easily be identified and transformed to the global reference space
created when building a model.

/* @openhps/core | version 0.2.0 */

1 const refSpace = new ReferenceSpace(model.referenceSpace)
2 .unit(LengthUnit.CENTIMETER)
3 .translation(10, 10, 0)
4 .scale(1, 1, 0)
5 .rotation(0, 0, 0, AngleUnit.RADIANS);

Listing 5: Creation of a ReferenceSpace

Listing 5 shows the creation of a reference space relative to the
global space represented by model.referenceSpace. This refer-
ence space has an origin offset. Absolute positions set when provid-
ing this reference space will automatically transform to the origin
of the global space.

OpenHPS: An Open Source Hybrid Positioning System

A reference space can transform the position, velocity and orienta-
tion in the following ways:

• Translation: Translate the position with an origin offset.
• Rotation: Rotate the position, orientation and angular ve-
locity.

• Scale: Scale the position and linear velocity.
• Perspective: Transform the (inverse) perspective of the po-
sition (e.g. the perspective of a camera).

• Unit conversion: Convert the unit of a position to a refer-
ence unit.

Reference spaces can be created to model different scenarios:
• Third-party positioning systems: Frameworks like the
WebXR [22] API manage their own origin and orientation
based on the underlying hardware. The output of such third-
party frameworks are high-level positions that should be
aligned with the other positioning methods.

• Sensor placement: Developers can model a reference space
for sensors that have a static offset or rotation (e.g. a motion
sensor that is placed upside down).

• Calibrated reference space: Some sensors require a cali-
bration (either automatic or by manual user input). A goal
of OpenHPS is to easily persist this type of calibration.

• Map storage: As a data object, a reference space can be
extended to store environment map information as outlined
in our functional requirements.

In Listing 6, we set the current position of a data object to (5, 5, 5)
using the previously created reference space shown in Listing 5.
Internally, the stored position of myObject will be the transformed
position with coordinates (−5,−5, 5).

/* @openhps/core | version 0.2.0 */

1 myObject.setPosition(new Absolute3DPosition(5, 5, 5), refSpace);

Listing 6: Setting the object position in a reference space

As these spaces are data objects, they are uniquely identified and
can have a parent object or space. This parent allows for abstract
reference spaces such as rooms, floors and buildings. These types of
abstractions allow us to use different positioning methods per floor
that are stored in a global reference space representing a building.

4.2.6 Services. Each positioning model can have multiple services.
A service can be accessed by all nodes in that model to perform
certain general actions ranging from communication services that
handle the data between remote nodes, to data services that store
data frames, objects or other relevant information.

A data service serialises and stores information. By default, our
core API offers data services for:

• Data objects: To store the processed objects and their last
known position. This can also be used as a persistent storage
for landmarks used in the positioning.

• Node data: Node-specific data about DataObjects can be
stored. This can be useful for intermediate calculations by
noise filtering algorithms or sensor fusion techniques.

• Trajectories: Historical position data of DataObjects. Dri-
vers can be implemented for storing this information in
specialised databases such as MobilityDB [40].

Normal services in our framework include, but are not limited
to a time service that allows developers to synchronise the time
between multiple machines, and a worker service that acts as a
(remote) proxy for data services.

Listing 7 shows examples of how a service can be retrieved from
the model. Nodes can retrieve a data service by providing either
the class of an object, an object instance or the class name of the
object. This allows the use of difference services for different types
of DataObjects.

/* @openhps/core | version 0.2.0 */

1 // Finding a data service by class
2 this.model.findDataService(DataObject);
3 // Finding a data service object instance
4 this.model.findDataService(myObject);
5 // Finding a data service by name
6 this.model.findDataService("RFDataObject");

Listing 7: Retrieving a data service from a model

4.2.7 Measurement Units. Unlike many positioning frameworks
aiming for geographical positioning, OpenHPS aims to support
a wide range of use cases ranging from small scale to celestial
positioning. We provide a unit system consisting of the Unit and
DerivedUnit objects. A derived unit consists of multiple units with
a specific power and offset. Math.js [10] offers a similar unit system
with the possibility to automatically evaluate and convert units.
While this allows for the easy creation of derived units, it is not
necessary for our framework.

/* @openhps/core | version 0.2.0 */

1 // Time unit called 'second'
2 const second = new TimeUnit('second', {
3 // Unit for 'time'
4 baseName: 'time',
5 // Also called 's', 'sec' or plural
6 aliases: ['s', 'sec', 'seconds'],
7 // Supports decimal prefixes (milli, micro, ...)
8 prefixes: 'decimal',
9 });
10
11 // Millisecond is a second with the prefix specifier milli
12 const millisecond = second.specifier(UnitPrefix.MILLI);
13
14 const minute = new TimeUnit('minute', {
15 baseName: 'time',
16 aliases: ['m', 'min', 'minutes'],
17 // Minute can be defined as 60 * 1 second
18 definitions: [{ magnitude: 60, unit: 's' }],
19 });

Listing 8: Unit creation

Listing 8 shows the creation of a base unit second for time.
During its creation the developer can specify aliases for the unit and
similar to Math.js, a unit can have a set of unit prefixes. This allows
the use of “millisecond, microsecond, nanosecond, . . . ” without

Maxim Van de Wynckel and Beat Signer

specifically creating individual units for these specifiers. Note that
aliases can be provided to optionally allow the units to be converted
to string evaluators of other mathematical modules.

When creating a new unit, the developer should specify the base
unit. For the minute example in Listing 8 this is done by creating a
definition for converting minutes to seconds (using a magnitude of
60 for the unit seconds).

/* @openhps/core | version 0.2.0 */

1 const radSecond = new DerivedUnit('radian per second', {
2 baseName: 'angularvelocity',
3 aliases: ['rad/s', 'radians per second'],
4 })
5 .addUnit(AngleUnit.RADIAN, 1)
6 .addUnit(TimeUnit.SECOND, -1);
7
8 const degreeSecond = radSecond.swap(
9 [AngleUnit.DEGREE],
10 {
11 baseName: 'angularvelocity',
12 name: 'degree per second',
13 aliases: ['deg/s', 'degrees per second'],
14 });
15
16 const degreeMinute = radSecond.swap(
17 [AngleUnit.DEGREE, TimeUnit.MINUTE],
18 {
19 baseName: 'angularvelocity',
20 name: 'degree per minute',
21 aliases: ['deg/min', 'degrees per minute'],
22 });

Listing 9: Derived unit creation

In order to use a unit that is derived from other base units, a
DerivedUnit can be created as shown in Listing 9. The developer
provides a name of the unit and adds the units that are contained in
the derived unit (lines 5 and 6) along with their magnitude. Variants
on derived units can be created by swapping a unit (lines 9 and 17).

4.3 Framework Implementation
OpenHPS is implemented in TypeScript2, a type-safe superset of
JavaScript. It can be executed as a client-side browser application,
hybrid mobile applications, on JavaScript supported embedded
systems such as Espruino and even as a server-side application
using Node.js3 or Deno4.

The ability to run our positioning model on a large range of
server and client devices enables the decentralisation mentioned
in the functional requirements. Additional remote components
such as the socket API outlined in Section 4.3.4 allow for other
programming languages to be supported as well.

4.3.1 Serialisation. Data frames and contained objects are serialis-
able throughout the framework. This functionality is implemented
using an extension of TypedJSON5 that adds the ability for poly-
morphic data types. The detection of such data types is necessary
for allowing developers to create additional position or data objects
without having to recreate all classes where these are used.
2https://www.typescriptlang.org
3https://nodejs.org/en/about/
4https://deno.land
5https://github.com/JohnWeisz/TypedJSON

/* @openhps/core | version 0.2.0 */

1 {
2 "createdTimestamp":1606501972983302,
3 "uid":"8865727c-7c98-4a8d-a33c-506d2650e59d",
4 "position":{
5 "x":-4.07093248547983,
6 "y":55.59130128032057,
7 "timestamp":1606502001594449,
8 "velocity":{
9 "linear":{
10 "x":-0.27608249684331726,
11 "y":0.3606549076013354,
12 "z":0.013291033512841348
13 },
14 "angular":{
15 "x":-3.9937982517329886,
16 "y":0.2311694373502423,
17 "z":-0.5070813464456928
18 }
19 },
20 "orientation":{
21 "x":-0.09754179767548248,
22 "y":0.15388368786071302,
23 "z":0.04266920115206052,
24 "w":0.9823363719162936
25 },
26 "unit":{
27 "name":"centimeter"
28 },
29 "referenceSpaceUID":"5582d63d-c7af-4624-9fed-6ce0d9036f62",
30 "accuracyUnit":{
31 "name":"meter"
32 },
33 "__type":"Absolute2DPosition"
34 },
35 "relativePositions":[],
36 "__type":"DataObject"
37 }

Listing 10: Serialised DataObject

Listing 10 shows a serialised data object created with sensor
data retrieved from a Sphero Mini6 toy. The main DataObject and
Absolute2DPosition have a __type key that defines the object
type. Definitions of a unit are not included in the serialisation and
its complete name is used to indicate the unit. This means that a
custom unit should be available in all processes that are required
to deserialise the unit.

4.3.2 Performance. One of the non-functional requirements men-
tioned in Section 4.1 is the ability to perform real-time data process-
ing. In order to achieve these performance requirements, parts of
the processing network can be run in their own thread, web worker
or process. This threading is made possible due to the serialisability
of data frames and objects, which allows the transmission of frames
from one process or thread to another.

Listing 11 shows the creation of a model with parts of the graph
going through a WorkerNode. This threaded node is initialised with
a model builder function evaluated on the threaded process. If no
data services are (re)initialised in this function, the data services of
the main thread are made accessible in the individual threads.

A WorkerNode can also run a larger portion of a process network
that is declared in a separate file. This is more developer friendly

6https://sphero.com/products/sphero-mini

https://www.typescriptlang.org
https://nodejs.org/en/about/
https://deno.land
https://github.com/JohnWeisz/TypedJSON
https://sphero.com/products/sphero-mini

OpenHPS: An Open Source Hybrid Positioning System

/* @openhps/core | version 0.2.0 */

1 ModelBuilder.create()
2 .addService(/* ... */)
3 .from(/* ... */)
4 .via(new WorkerNode((builder: GraphShapeBuilder) => {
5 const { TrilaterationNode } = require('@openhps/core');
6 builder.via(new TrilaterationNode())
7 }, {
8 poolSize: 4
9 }))
10 .to(/* ... */)
11 .build().then(model => { /* ... */ });

Listing 11: Threaded node creation

than having to import all the nodes within a builder function. List-
ing 12 shows the worker node named “video” being created in the
main thread (lines 2 to 6). Internally, this node is a graph created in
video.ts. Pull requests to this node (line 8) will be forwarded to a
pool of four workers.

/* @openhps/core | version 0.2.0 */

1 // main.ts //
2 ModelBuilder.create()
3 .addNode(new WorkerNode("video.ts", {
4 poolSize: 4,
5 name: "video"
6 }))
7 .from("video")
8 .via(new TimedPull(1, TimeUnit.MILLISECOND))
9 .to(/* ... */)
10 .build().then(model => { /* ... */ });
11
12 // video.ts //
13 export default GraphBuilder.create()
14 .from(/* ... */)
15 .via(/* ... */)
16 .to();

Listing 12: Threaded graph creation

As a simple demonstration of our worker node, we created a
processing node calculating 5000 prime numbers for every received
frame. This test was conducted on an Intel i7-6700HQ laptop CPU
with 8 logical cores, running Node.js 14.10. These 5000 prime num-
bers can be calculated 237.03 times per second without the over-
head of data frames, objects and services. The data frames that we
push contain a source object, position and velocity to simulate the
amount of data normally serialised and communicated between the
main process and workers. However, the contained data does not
affect the time it takes to compute the prime numbers.

Table 1 shows the results of our benchmark with one worker
assigned to each logical CPU core. Performance is measured in
frames per second (FPS) represented by the amount of computed
data frames received by the sink of our model. For each worker we
indicate the speed-up compared to the sequential implementation.
The overhead shown with a single worker is due to the serialisation
and deserialisation of data, an operation that is not required when
pushing in a sequential network.

4.3.3 Precision. Calculations within the framework are made us-
ing JavaScript number operations. Time-critical operations use a

#workers FPS Error Speed-up
Sequential 229.04 1.19% -

1 200.74 0.67% 0.88
2 389.44 0.56% 1.70
3 512.42 0.92% 2.24
4 616.29 1.15% 2.69
5 671.00 0.59% 2.93
6 746.07 0.67% 3.26
7 801.32 0.90% 3.50
8 822.47 0.69% 3.59

Table 1: WorkerNode benchmark

time service that returns the time in a specific unit. This allows de-
velopers to extend the framework with additional modules such as
microtime7 for more precise calculations. In addition, Decimal.js8
could be used with an extended position class to provide more
precise number operations.

4.3.4 Modularity. OpenHPS provides a modular API that splits
the functionality of positioning methods and algorithms in differ-
ent npm9 modules. Using this method, developers can extend on
our core framework or other components. It also prevents them
from having to depend on very large modules, reducing the overall
dependency size.

object

position

misc

reflect.js threads

typedjson

graph

other processing

shapes

services

math

unit

data

dependencies

graph

nodes

services

utils

Figure 7: @openhps/core minified web module tree map

Our core API, named @openhps/core is available for server and
web deployment in the CommonJS (CJS), ECMAScript (ESM) and
Universal Module Definition (UMD) formats. Figure 7 presents an
overview of the core components content size in its current state
(version 0.2.0). Most of the file size is taken up by dependencies
(≈30%, indicated in blue) and the mathematical classes of Three.js10
(≈22%, as part of the mathematical utilities in yellow). Default nodes
such as processing nodes, graph shapes and common sink or source
nodes account for ≈16%. The main purpose of the dependencies are
to help with serialisation (i.e. TypedJSON, Reflect.js). Mathematical

7https://www.npmjs.com/package/microtime
8https://www.npmjs.com/package/decimal
9https://www.npmjs.com
10https://threejs.org/docs/

https://www.npmjs.com/package/microtime
https://www.npmjs.com/package/decimal
https://www.npmjs.com
https://threejs.org/docs/

Maxim Van de Wynckel and Beat Signer

classes such as quaternions, matrices and vectors from Three.js offer
general operations for handling 2D and 3D position manipulation.
We list several examples of modules that can be used to extend the
core functionality:

• Data storage: By default, the core API provides the possibil-
ity of using in-memory data storage. In order for this data to
be persisted, additional components making use of different
database management systems such as MongoDB, Redis or
MobilityDB [40] can be applied.

• Remote communication: The remote APIs introduce a
RemoteNode that can be added to the model. This node will
transmit push (or pull) requests to a remotely connected
model through either a REST API, socket connection or a
message broker such as MQTT [21].

• Positioning methods and algorithms: The core API of-
fers basic processing nodes to determine a position (i.e. trilat-
eration, triangulation or fingerprinting) and can be extended
with different components. Examples include techniques
that require additional machine learning or computer vision
libraries.

• Symbolic positions: Our core API offers the 2D, 3D and
geographical positioning. This can be abstracted to locations
or places such as a room, building or site.

• Third-party positioning systems: Third-party position-
ing solutions can be integrated into OpenHPS by using mod-
ules that provide this interface.

4.4 Demonstrator
Unlike some of the frameworks discussed in Section 3 that are made
to tackle a certain issue or goal, the core idea of OpenHPS is to
combine different positioning concepts into one model.

As a non-trivial demonstrator, we provide a positioning system
for a Sphero Mini toy using the internal sensors and an external
Logitech Brio11 camera. The Sphero provides raw sensor reading
for the linear and angular velocity, raw accelerometer data, orien-
tation and an internally computed position. This internal position
is computed by the Sphero toy itself and makes use of the motor
velocity, accelerometer and gyroscope.

We make use of the @openhps/core12, @openhps/opencv13 and
the use case-specific @openhps/sphero14 modules to construct a
model that fuses these multiple sources together into one position.
The model consists of four sources; the video input, internally
computed position, the input that is sent to the Sphero and finally
the dead reckoned position that is calculated by the framework
itself using the provided velocity.

Our setup is shown in Figure 8. We used yellow floor markers to
define an area of 260 𝑐𝑚 × 200 𝑐𝑚. The camera is positioned with a
perspective view on the area and the start position of the Sphero is
at the bottom right corner of the camera source.

For the scope of this demonstration, the Sphero performs a sim-
ple trajectory. The input for this device consists of an orientation
(heading) and speed. Before the start of our input trajectory, we

11https://www.logitech.com/en-us/product/brio
12https://github.com/OpenHPS/openhps-core/
13https://github.com/OpenHPS/openhps-opencv/
14https://github.com/OpenHPS/openhps-sphero/

Figure 8: Demonstrator overview

manually calibrated the origin orientation using the provided mo-
bile application for the Sphero. This provides us knowledge on the
start orientation used by the internally calculated position which
allowed us to define the reference spaces.

Various methods exist to combine the aforementioned position-
ing methods. Figure 9 shows the simplified graph presentation of
our demonstrated positioning model. Starting from the four differ-
ent sources, we will discuss how each signal is processed and fused
together. We use two feedback loops from our fused position to
provide temporal information to our positioning model.

Main feedback loop

Sphero
Position

Video
Source

Blob
Detection

Position
Merging

IMU
Source

Velocity
Processing

Input
Source

Velocity
Processing Sink

Velocity
Calculation

Velocity
Processing

Velocity
Processing Debounce

Position
Merging Filter

Figure 9: Demonstrator positioning model

The results of each independent source is shown in the trajectory
scatter plots in Figure 10. Each positioning method has a different
frequency, resulting in a varying amount of data points used to
determine the position. Our main feedback loop in Figure 9 ensures
that the fused position never relies on a single source.

https://www.logitech.com/en-us/product/brio
https://github.com/OpenHPS/openhps-core/
https://github.com/OpenHPS/openhps-opencv/
https://github.com/OpenHPS/openhps-sphero/

OpenHPS: An Open Source Hybrid Positioning System

0 50 100 150 200 250
0

50

100

150

200
(a) Input Position

0 50 100 150 200 250
0

50

100

150

200
(b) Sphero Position

0 50 100 150 200 250
0

50

100

150

200
(c) Dead Reckoning Position

0 50 100 150 200 250
0

50

100

150

200
(d) Video Position

Figure 10: Individual position estimates for the given in-
put (a), including the internally calculated position (b), dead
reckoning position (c) and video source (d)

4.4.1 Input Control. Input to the Sphero is given using a heading
(degrees), speed (0-255) and roll duration. We make the assumption
that the Sphero Mini has a maximum speed of 1𝑚/𝑠 as documented
on the product website15.

As input trajectory, we provide a spiralling rectangle starting
from an outer corner to the centre of the area with a speed of 150
(= 0.58𝑚/𝑠). We provide a basic roll duration of 4.2 seconds (=
2.436𝑚) for the X-axis and a roll duration of 3.2 seconds (= 1.856𝑚)
for the Y-axis. Every turn, the duration of the movement along the
X-axis is reduced by 168ms while the movement along the Y-axis
is reduced by 128ms. This input is fed to our framework’s velocity
processing node resulting in the output shown in Figure 10a.

4.4.2 Visual Positioning. The video source uses the OpenCV [5]
library to capture a 30 FPS camera feed from the Logitech Brio cam-
era which has a perspective view of the floor. When processing the
video stream, we create the inverse perspective view by manually
specifying the position of four yellow markers on the floor. This
creates a wrapped image rectangle of 1040𝑝𝑥 × 800𝑝𝑥 .

Once the video source is wrapped, blob detection is used to
determine the centroid position of the blue Sphero Mini. We apply
a colour mask that converts the image to an HSV colour space and
performs a masking filter to only show the blue ball as illustrated in
Figure 11. Next, in Listing 13 we create a custom processing node
that sets the position of our tracked object to the pixel position
of the blob. As the accuracy for our position we take the square
root of the blob area. A reference space is created (lines 1 to 4 in
Listing 14) and applied to the output position (pixel coordinate) on
line 25 to scale it to the corresponding rectangle dimensions.

Without interference from other sources, the video processing
provides the output shown in Figure 10d. We will use this source
as our most accurate position, as it is the only available external
positioning method.

15https://support.sphero.com/article/6drb2qggx4-sphero-mini-faq

Figure 11: Conversion of wrapped video to blob

4.4.3 Internal Position. In Figure 10b we show the internal posi-
tioning calculated by the Sphero, converted to a certain reference
space created with our calibrated orientation knowledge. Instead
of using the raw position, we determine the displacement of this in-
ternal position (using the filtered feedback loop shown in Figure 9)
and apply this displacement to the fused position.

/* @openhps/core | version 0.2.0 */

1 class ContourDetectionNode extends ProcessingNode<VideoFrame> {
2 public process(frame: VideoFrame): Promise<VideoFrame> {
3 return new Promise((resolve) => {
4 let contours = frame.image.findContours(
5 OpenCV.RETR_EXTERNAL,
6 OpenCV.CHAIN_APPROX_SIMPLE);
7 if (contours.length >= 1) {
8 // Sort contours by area
9 contours = contours.sort((a, b) => a.area - b.area);
10 // Select the contour with the largest area size
11 const m = contours[0].moments();
12 const center = new OpenCV.Vec2(
13 m.m10 / m.m00,
14 m.m01 / m.m00);
15 // Use the center as the 2D pixel position
16 const position = new Absolute2DPosition(
17 center.x,
18 center.y);
19 position.unit = LengthUnit.CENTIMETER;
20 position.accuracy = Math.sqrt(contours[0].area);
21 frame.source.setPosition(position);
22 }
23 resolve(frame);
24 });
25 }
26 }

Listing 13: Contour detection processing node

4.4.4 Dead Reckoning Position. Apart from an internally calculated
position, the Sphero provides raw sensor data for the accelerometer,
gyroscope, orientation and velocity (internally fused from themotor
velocity and acceleration). For the scope of this demonstration we
make use of this velocity and orientation to compute the position
using OpenHPS. The output of this source is shown in Figure 10c.

https://support.sphero.com/article/6drb2qggx4-sphero-mini-faq

Maxim Van de Wynckel and Beat Signer

/* @openhps/core | version 0.2.0 */

1 const videoSpace = new ReferenceSpace(defaultSpace)
2 .translation(1040, 800)
3 .rotation(new Euler(180, 180, 0, 'ZXY', AngleUnit.DEGREE))
4 .scale(4, 4);
5 /* ... */
6 export default GraphBuilder.create()
7 .from(new VideoSource(new CameraObject("sphero_video"), {
8 autoPlay: true,
9 fps: 30,
10 // Do not fetch a frame if the webcam can not handle it
11 throttleRead: true,
12 source: new CameraObject("sphero_video")
13 }).load("/dev/video2"))
14 .via(new ImageTransformNode({
15 src: [
16 new OpenCV.Point2(307, 120),
17 new OpenCV.Point2(1473, 87),
18 new OpenCV.Point2(1899, 891),
19 new OpenCV.Point2(20, 1024),
20],
21 height: 800, // 200cm
22 width: 1040 // 260cm
23 }))
24 .via(new ColorMaskProcessing({
25 minRange: [90, 50, 50],
26 maxRange: [140, 255, 255]
27 }))
28 .via(new ContourDetectionNode())
29 .convertFromSpace(videoSpace)
30 .to();

Listing 14: Graph shape video

4.4.5 Model Creation. In Listing 15 we combine the four graph
shapes for our video output, internal position, input and dead reck-
oned position. We use a built-in object merging node (lines 22 to 30)
that merges frames where the source UID is equal to “sphero”. The
merge node will wait until all of its incoming edges pushed a frame,
or the timeout of 20ms has been reached. By default, this merge
will use the weighted average of all incoming positions, velocities
and orientations (with the weight being the inverse of its accuracy).
Developers have the choice to choose their own strategy by, for
instance, selecting a single position based on the highest accuracy.

This final fused position is presented in Figure 12a. Compared
to the individual positioning methods shown in Figure 10, we have
more data points for our positions. This is because we do not wait
for all sources to provide data before computing the next position
(20𝑚𝑠 timeout). Our feedback loop called “feedback” ensures that
position fusion never relies on just one source.

4.4.6 Evaluation. We have shown our completed positioning sys-
tem in the previous section. Four sources and a feedback loop
resulted in a fused position. In order to evaluate this positioning
model, we removed parts of our video source to simulate an obstacle
or blind spots for the camera.

The goal of this evaluation is to first ensure that the positioning
model can function with missing information and to determine the
error as a result of this missing positioning data.

To illustrate a baseline of the remaining sources that will take
over the positioning, we show the merged position of all sources
except the video source in Figure 12b.

Figures 12c and 12d show two examples with video blind spots
(grey areas). Indicated in blue are the data points where the video

/* @openhps/core | version 0.2.0 */

1 ModelBuilder.create()
2 .addNode(new WorkerNode("video.ts", {
3 poolSize: 1,
4 name: "video"
5 }))
6 .addShape(inputSource)
7 .addShape(spheroPosition)
8 .addShape(spheroVelocity)
9 // Feedback loop
10 .addShape(GraphBuilder.create()
11 .from("merged")
12 .debounce(10, TimeUnit.MILLISECOND)
13 // Clone the frame and update timestamp
14 // (needed to process velocity)
15 .clone({
16 repack: true
17 })
18 .via(new VelocityProcessingNode())
19 .to("feedback"))
20 .addShape(GraphBuilder.create()
21 .from("video", "sphero_position", "input",
22 "sphero_velocity", "feedback")
23 .merge((frame, options) => options.sourceNode,
24 {
25 timeout: 20,
26 timeoutUnit: TimeUnit.MILLISECOND,
27 // Minimum two sources, else the feedback
28 // loop will continue
29 minCount: 2,
30 objectFilter: obj => obj.uid === 'sphero',
31 })
32 .via("merged") // Feedback loop
33 .to(new CSVDataSink("position.csv", [
34 { id: "timestamp", title: "timestamp" },
35 { id: "x", title: "x" },
36 { id: "y", title: "y" },
37], (frame: DataFrame) => {
38 return {
39 timestamp: frame.createdTimestamp,
40 x: frame.source.getPosition().toVector3().x,
41 y: frame.source.getPosition().toVector3().y,
42 };
43 })))
44 .build().then(model => {
45 // Model created
46 });

Listing 15: Demonstration model creation

processing was still able to detect an object, whereas the positions
calculated without input from the video source are highlighted in
red in the figures.

Source(s) Avg error Max error
all sources (Fig. 12a) 0.00 cm 0.00 cm

input control only (Fig. 10a) 23.07 cm 50.06 cm
internal position only (Fig. 10b) 16.16 cm 33.38 cm
dead reckoning only (Fig. 10c) 17.09 cm 34.44 cm
video source only (Fig. 10d) 1.30 cm 4.74 cm

all sources excl. video (Fig. 12b) 13.59 cm 29.73 cm
blind spot left (Fig. 12c) 4.26 cm 21.65 cm
blind spot right (Fig. 12d) 4.81 cm 24.40 cm

Table 2: Average andmaximumXY position error compared
to the fused position with all sources

In Table 2, we show the average and maximum position error
compared to the final fused position from Figure 12a. This error is

OpenHPS: An Open Source Hybrid Positioning System

0 50 100 150 200 250
X-Coordinate (cm)

0

25

50

75

100

125

150

175

200

Y-
Co

or
di

na
te

 (c
m

)

(a) Fused position using all sources

0 50 100 150 200 250
X-Coordinate (cm)

0

25

50

75

100

125

150

175

200

Y-
Co

or
di

na
te

 (c
m

)

(b) Fused position without video source

0 50 100 150 200 250
X-Coordinate (cm)

0

25

50

75

100

125

150

175

200

Y-
Co

or
di

na
te

 (c
m

)

all sources
excl. video

expected
blind spot

(c) Fused position with camera blind spot on the left

0 50 100 150 200 250
X-Coordinate (cm)

0

25

50

75

100

125

150

175

200
Y-

Co
or

di
na

te
 (c

m
)

all sources
excl. video

expected
blind spot

(d) Fused position with camera blind spot on the right

Figure 12: Fused positions processed by our model

determined by taking 100 timestamped key points in each trajectory
(every 51ms) and calculating the average and maximum difference
for those points.

Our results show that the video source is the main positioning
method in the fused position. Blind spots in this source result in
the model falling back to the remaining dead reckoning. However,
the positioning model is self correcting and will gradually align
with the video source position once it becomes available.

The positioning model we illustrated in Figure 9 is highly adapt-
able depending on the desired outcome. For example, noise filtering
nodes such as a Simple Moving Average (SMA) can be used on the
video accuracy to provide a smoother transition at the border of
the blind spot.

With the evaluation in Figure 12 and Table 2 we have proven that
multiple producers of sensor information can be merged together
into a continuous stream of fused positions. By creating blind spots
in our video source, we have shown that the model is capable of
running without our main visual positioning method.

5 CONCLUSION AND FUTUREWORK
We have presented OpenHPS, an open source hybrid positioning
system. We focused on the different actors of our system that have
been defined based on an investigation of some of the more promi-
nent existing positioning methods and algorithms. These actors,
in combination with our requirements, were used in developing

Maxim Van de Wynckel and Beat Signer

our positioning framework with its graph topology. We further
presented our definition of nodes, data frames, data objects as well
as positions. Finally, the OpenHPS implementation in TypeScript
highlighting how we addressed and satisfied our non-functional
requirements, has been discussed in Section 4.3.

In the demonstrator application in Section 4.4, we have illustrated
how multiple positioning methods can be fused via some high-level
decision fusion. We have further highlighted—by removing certain
parts of our main sensor source—how the presented positioning
model continues to work on the remaining positioning methods
and manages to recover once the input from the main sensor source
is back.

A major effort in the design and development of OpenHPS went
into the extensibility of our framework. External modules can be
used to extend OpenHPS with additional positioning methods and
techniques. Some basic positioning methods are currently included
in the core OpenHPS component. However, in order to prevent that
the core contains potentially unused nodes, in the future some of
these basic positioning methods and algorithms might be moved to
their own dedicated modules (e.g. for fingerprinting techniques).
Apart from individual nodes, these modules can also provide com-
plete graph shapes that act similar to position providers in other
high-level hybrid positioning systems.

The real-time processing of positioning information was the
most important goal for the presented OpenHPS framework. During
the development, the computing performance of the positioning
model has therefore always received a high priority and lead to
the introduction of worker nodes and services. Future research
and development of the OpenHPS hybrid positioning system might
focus on optimising the serialisation of data frames in order to only
serialise changes in data rather than all available information. This
optimisation would ensure that data transfers are limited to new
data only.

Overall, the presented OpenHPS framework represents a solid
hybrid positioning solution offering various possibilities for future
extensions. An obvious future extension would be the introduc-
tion of additional layers of abstraction providing similar high-level
functionality as offered by some of the solutions discussed in the
related work. Further, the exiting reference spaces might be ex-
tended in a separate OpenHPS module in order to represent and
deal with symbolic locations, similar as offered by HyLocSys [15].
The support of symbolic locations [19] will further strengthen the
position of OpenHPS as a framework for context-aware computing
and implicit human-computer interaction.

REFERENCES
[1] Martín Abadi et al. 2016. TensorFlow: A System for Large-scale Machine Learning.

In Proceedinsg od USENIX 2016, International Conference on Operating Systems
Design and Implementation. Savannah, USA.

[2] Sean J. Barbeau, Miguel A. Labrador, Philip L. Winters, Rafael Pérez, and
Nevine Labib Georggi. 2008. Location API 2.0 for J2ME: A New Standard in
Location for Java-enabled Mobile Phones. Computer Communications 31, 6 (April
2008). https://doi.org/10.1016/j.comcom.2008.01.045

[3] Stephane Beauregard and Harald Haas. 2006. Pedestrian Dead Reckoning: A Basis
for Personal Positioning. In Proceedings of WPNC 2006, Workshop on Positioning,
Navigation and Communication. Merida City, Mexico. https://doi.org/10.1109/
ICEEE.2011.6106608

[4] Anja Bekkelien and Michel Deriaz. 2012. Hybrid Positioning Framework for
Mobile Devices. In Proceedings of UPINLBS 2012, International Conference on
Ubiquitous Positioning, Indoor Navigation, and Location Based Service. Helsinki,
Finland. https://doi.org/10.1109/UPINLBS.2012.6409759

[5] Gary Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(November 2000). https://www.drdobbs.com/open-source/the-opencv-library/
184404319#

[6] Nirupama Bulusu, John Heidemann, and Deborah Estrin. 2000. GPS-less Low-
Cost Outdoor Localization for Very Small Devices. IEEE Personal Communications
7, 5 (October 2000). https://doi.org/10.1109/98.878533

[7] Harry Chen, Tim Finin, and Anupam Joshi. 2003. An Ontology for Context-aware
Pervasive Computing Environments. The Knowledge Engineering Review 18, 3
(September 2003). https://doi.org/10.1017/S0269888904000025

[8] Zhenghua Chen, Han Zou, Hao Jiang, Qingchang Zhu, Yeng Soh, and Lihua Xie.
2015. Fusion of WiFi, Smartphone Sensors and Landmarks Using the Kalman
Filter for Indoor Localization. Sensors 15, 1 (January 2015). https://doi.org/10.
3390/s150100715

[9] Adam L. Davis. 2019. Akka Streams. In Reactive Streams in Java. https://doi.org/
10.1007/978-1-4842-4176-9_6

[10] Mansfield E. de Jong J. 2014. Math.js: An Advanced Mathematics Library for
JavaScript. Computing in Science & Engineering 20, 1 (January 2014). https:
//doi.org/10.1109/MCSE.2018.011111122

[11] B. Louis Decker. 1986. World Geodetic System 1984. In Proceedings to the Fourth
International Geodetic Symposium on Satellite Positioning. Austin, USA.

[12] Cristiano di Flora, Massimo Ficco, Stefano Russo, and Vincenzo Vecchio. 2005.
Indoor and Outdoor Location Based Services for Portable Wireless Devices. In
International Workshop on Services and Infrastructure for Ubiquitous and Mobile
Internet. Columbus, USA. https://doi.org/10.1109/ICDCSW.2005.77

[13] Goran M. Djuknic and Robert E. Richton. 2001. Geolocation and Assisted GPS.
Computer 34, 2 (February 2001). https://doi.org/10.1109/2.901174

[14] Wilfried Elmenreich. 2002. An Introduction to Sensor Fusion. Technical Report
47/2001. Vienna University of Technology.

[15] Massimo Ficco and Stefano Russo. 2009. A Hybrid Positioning System for
Technology-independent Location-aware Computing. Software: Practice and
Experience 39, 13 (September 2009). https://doi.org/10.1002/spe.919

[16] Marc Geilen and Twan Basten. 2004. Reactive Process Networks. In Proceedings of
EMSOFT 2004, International Conference on Embedded Software. Pisa, Italy. https:
//doi.org/10.1145/1017753.1017778

[17] Yanying Gu, Anthony Lo, and Ignas Niemegeers. 2009. A Survey of Indoor
Positioning Systems for Wireless Personal Networks. IEEE Communications
Surveys & Tutorials 11, 1 (2009). https://doi.org/10.1109/SURV.2009.090103

[18] Janne Haverinen. 2014. Utilizing Magnetic Field Based Navigation. US Patent
8,798,924.

[19] Jeffrey Hightower and Gaetano Borriello. 2001. Location Systems for Ubiquitous
Computing. Computer 34, 8 (August 2001). https://doi.org/10.1109/2.940014

[20] Fabian Hölzke, Johann-P. Wolff, and Christian Haubelt. 2019. Improving Pedes-
trian Dead Reckoning Using Likely Paths and Backtracking for Mobile Devices.
In Proceedings of PerLS 2019, International Workshop on Pervasive Smart Living
Spaces. Kyoto, Japan. https://doi.org/10.1109/PERCOMW.2019.8730734

[21] Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. 2008. MQTT-S: A
Publish/Subscribe Protocol for Wireless Sensor Networks. In Proceedings of the
International ICST Workshop on Intelligent Networks: Adaptation, Communication
& Reconfiguration. Bangalore, India. https://doi.org/10.1109/COMSWA.2008.
4554519

[22] Brandon Jones and Nell Waliczek. 2020. WebXR Device API. https://www.w3.
org/TR/webxr/

[23] John Krumm, Steve Harris, Brian Meyers, Barry Brumitt, Michael Hale, and
Steve Shafer. 2000. Multi-Camera Multi-Person Tracking for EasyLiving. In
Proceedings of VS 2000, International Workshop on Visual Surveillance. Dublin,
Ireland. https://doi.org/10.1109/VS.2000.856852

[24] Axel Küpper. 2005. Location-based Services: Fundamentals and Operation. John
Wiley & Sons.

[25] Edward A. Lee and Thomas M. Parks. 1995. Dataflow Process Networks. Proc.
IEEE 83, 5 (May 1995), 773–801. https://doi.org/10.1109/5.381846

[26] Hui Liu, Houshang Darabi, Pat Banerjee, and Jing Liu. 2007. Survey of Wireless
Indoor Positioning Techniques and Systems. IEEE Transactions on Systems, Man,
and Cybernetics 37, 6 (2007). https://doi.org/10.1109/TSMCC.2007.905750

[27] Blair Maclntyre and Trevor F. Smith. 2018. Thoughts on the Future of WebXR
and the Immersive Web. In Proceedings of International Workshop on Creativity
in Design with & for Mixed Reality. Munich, Germany. https://doi.org/10.1109/
ISMAR-Adjunct.2018.00099

[28] Ellon Mendes, Pierrick Koch, and Simon Lacroix. 2016. ICP-based Pose-Graph
SLAM. In Proceedings of SSRR 2016, International Symposium on Safety, Security,
and Rescue Robotics. Lausanne, Switzerland. https://doi.org/10.1109/SSRR.2016.
7784298

[29] Piotr Mirowski, Tin Kam Ho, Saehoon Yi, and Michael MacDonald. 2013.
SignalSLAM: Simultaneous Localization and Mapping with Mixed WiFi,
Bluetooth, LTE and Magnetic Signals. In Proceedings of IPIN 2013, International
Conference on Indoor Positioning and Indoor Navigation. Montbeliard-Belfort,
France. https://doi.org/10.1109/IPIN.2013.6817853

[30] Sudeep Pasricha, Viney Ugave, Charles W Anderson, and Qi Han. 2015. LearnLoc:
A Framework for Smart Indoor Localization with Embedded Mobile Devices.

https://doi.org/10.1016/j.comcom.2008.01.045
https://doi.org/10.1109/ICEEE.2011.6106608
https://doi.org/10.1109/ICEEE.2011.6106608
https://doi.org/10.1109/UPINLBS.2012.6409759
https://www.drdobbs.com/open-source/the-opencv-library/184404319#
https://www.drdobbs.com/open-source/the-opencv-library/184404319#
https://doi.org/10.1109/98.878533
https://doi.org/10.1017/S0269888904000025
https://doi.org/10.3390/s150100715
https://doi.org/10.3390/s150100715
https://doi.org/10.1007/978-1-4842-4176-9_6
https://doi.org/10.1007/978-1-4842-4176-9_6
https://doi.org/10.1109/MCSE.2018.011111122
https://doi.org/10.1109/MCSE.2018.011111122
https://doi.org/10.1109/ICDCSW.2005.77
https://doi.org/10.1109/2.901174
https://doi.org/10.1002/spe.919
https://doi.org/10.1145/1017753.1017778
https://doi.org/10.1145/1017753.1017778
https://doi.org/10.1109/SURV.2009.090103
https://doi.org/10.1109/2.940014
https://doi.org/10.1109/PERCOMW.2019.8730734
https://doi.org/10.1109/COMSWA.2008.4554519
https://doi.org/10.1109/COMSWA.2008.4554519
https://www.w3.org/TR/webxr/
https://www.w3.org/TR/webxr/
https://doi.org/10.1109/VS.2000.856852
https://doi.org/10.1109/5.381846
https://doi.org/10.1109/TSMCC.2007.905750
https://doi.org/10.1109/ISMAR-Adjunct.2018.00099
https://doi.org/10.1109/ISMAR-Adjunct.2018.00099
https://doi.org/10.1109/SSRR.2016.7784298
https://doi.org/10.1109/SSRR.2016.7784298
https://doi.org/10.1109/IPIN.2013.6817853

OpenHPS: An Open Source Hybrid Positioning System

In Proceedings of CODES 2015, International Conference on Hardware/Software
Codesign and System Synthesis. Amsterdam, Netherlands. https://doi.org/10.
1109/CODESISSS.2015.7331366

[31] Andrei Popescu. 2016. Geolocation API Specification 2nd Edition. https:
//www.w3.org/TR/geolocation-API/

[32] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. 2009. ROS: An Open-Source Robot Operating
System. In Proceedings of the International Workshop on Open Source Software.
Kobe, Japan.

[33] Shahram Rezaei and Raja Sengupta. 2007. Kalman Filter-based Integration of
DGPS and Vehicle Sensors for Localization. IEEE Transactions on Control Systems
Technology 15, 6 (October 2007). https://doi.org/10.1109/TCST.2006.886439

[34] Wilson Sakpere, Michael Adeyeye-Oshin, and Nhlanhla B.W. Mlitwa. 2017. A
State-of-the-Art Survey of Indoor Positioning and Navigation Systems and
Technologies. South African Computer Journal 29, 3 (December 2017). https:
//doi.org/10.18489/sacj.v29i3.452

[35] Albrecht Schmidt, Michael Beigl, and Hans-Werner Gellersen. 1999. There is
More to Context Than Location. Computers & Graphics 23, 6 (December 1999).

https://doi.org/10.1109/TCST.2006.886439
[36] Philipp M. Scholl, Stefan Kohlbrecher, Vinay Sachidananda, and Kristof Van Laer-

hoven. 2012. Fast Indoor Radio-Map Building for RSSI-based Localization Systems.
In Proceedings INSS 2012, International Conference on Networked Sensing. Antwerp,
Belgium. https://doi.org/10.1109/INSS.2012.6240574

[37] Stefan Steiniger, Moritz Neun, and Alistair Edwardes. 2006. Foundations of
Location Based Services.

[38] Shinya Sumikura, Mikiya Shibuya, and Ken Sakurada. 2019. OpenVSLAM: A
Versatile Visual SLAM Framework. In Proceedings of MM 2019, International
Conference on Multimedia. Nice, France. https://doi.org/10.1145/3343031.3350539

[39] Wendong Xiao, Wei Ni, and Yue Khing Toh. 2011. Integrated Wi-Fi Finger-
printing and Inertial Sensing for Indoor Positioning. In Proceedings of IPIN 2011,
International Conference on Indoor Positioning and Indoor Navigation. Guimaraes,
Portugal. https://doi.org/10.1109/IPIN.2011.6071921

[40] Esteban Zimányi, Mahmoud Sakr, Arthur Lesuisse, and Mohamed Bakli. 2019.
MobilityDB: A Mainstream Moving Object Database System. In Proceedings of
SSTD 2019, International Symposium on Spatial and Temporal Databases. Vienna,
Austria. https://doi.org/10.1145/3340964.3340991

https://doi.org/10.1109/CODESISSS.2015.7331366
https://doi.org/10.1109/CODESISSS.2015.7331366
https://www.w3.org/TR/geolocation-API/
https://www.w3.org/TR/geolocation-API/
https://doi.org/10.1109/TCST.2006.886439
https://doi.org/10.18489/sacj.v29i3.452
https://doi.org/10.18489/sacj.v29i3.452
https://doi.org/10.1109/TCST.2006.886439
https://doi.org/10.1109/INSS.2012.6240574
https://doi.org/10.1145/3343031.3350539
https://doi.org/10.1109/IPIN.2011.6071921
https://doi.org/10.1145/3340964.3340991

	Abstract
	1 Introduction
	2 Background
	2.1 Positioning Methods
	2.2 Positioning Algorithms
	2.3 Hybrid Positioning

	3 Related Work
	3.1 Location APIs and Specifications
	3.2 Hybrid Positioning Systems

	4 OpenHPS Framework
	4.1 Requirements
	4.2 Framework Architecture
	4.3 Framework Implementation
	4.4 Demonstrator

	5 Conclusion and Future Work
	References

