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Abstract: Today, the design of a Virtual Reality (VR) 

application is still a specialized and time consuming task. 

Many techniques and software tools have been created to 

facilitate the development process. However, they all require 

considerable knowledge of VR technology. Furthermore, 

modeling the behaviors of the objects in a Virtual Environment 

requires programming skills. For this reason, we have 

developed an approach called “VR-WISE” that allows 

specifying a VR application at a conceptual level, free from 

any implementation details, and from the viewpoint of a 

domain expert, allowing non-VR experts to participate in the 

design of a Virtual Environment. This approach uses 

ontologies, incorporating domain knowledge, and high-level 

modeling concepts for describing the Virtual Environment. In 

this paper, we explain how object-behavior in a Virtual 

Environment can be described at a conceptual level. We show 

how simple behaviors can be combined for composing more 

complex behaviors. We illustrate the different modeling 

concepts by means of examples. 

Key words: Conceptual Modeling, Virtual Reality, High-

level specifications, Behavior 

1- Introduction 

Although the creation of Virtual Reality (VR) applications is 

supported by a number of software tools, the development of a 

VR application is still a specialized and tedious task. The tools 

available today for developing VR applications can be 

classified in two categories. The first category consists of the 

so-called toolkits (like Performer [1]). Toolkits are 

programming libraries that provide a set of functions with 

which a skilled programmer can create VR applications. The 

second category is the one of the authoring tools (like 3D 

Studio Max [2]). Authoring tools are complete programs with 

graphical interfaces for creating Virtual Environments without 

having to resort to detailed programming. Although these tools 

assist the developer in creating a VR application, they require 

considerable background knowledge about VR technology. 

Current practice for developing a VR application is that first 

an authoring tool is used to create the static part of (parts of) 

the Virtual Environment which is afterwards imported in a 

toolkit where the code for behavior is added, either by means 

of a special script language or by means of a traditional 

programming language. 

 

When developing a VR application, a first snag encountered 

is the necessity to translate the domain objects needed in the 

Virtual Environment (e.g. a house), into a combination of VR 

primitives (such as cylinders, spheres, textures, …) and free 

deformations. None of the available VR development tools 

allow the developer to specify the Virtual Environment in 

terms of domain concepts. We illustrate this with VRML, the 

Virtual Reality Modeling Language [3]. Although VRML 

allows the developer to create 3D content without having to 

deal with the low-level details of the platform or rendering 

process, the developer still has to specify the concepts using 

low-level primitives like a sphere and a cube. 

 

Another observation is that the design phase in the 

development process of a VR application (from the 

perspective of a classical software engineering life cycle) is 

usually a very informal activity. Few formal techniques in 

the context of VR exist to support this phase effectively. A 

systematic approach that uses the output of the design phase 

as input for the implementation phase does not exist. 

Especially for the behavioral part of a VR application no true 

design is done. Adding an explicit design phase to the 

development process of a VR application could also meet the 

first snag mentioned. If the design phase is at a conceptual 

level, the design of a Virtual Environment can be expressed 

in terms of domain concepts. This could make the design 

also accessible for non-VR experts such as domain experts. 

In addition, tools can be developed that may assist in the 

translating of the domain objects into VR primitives. With 

this in mind we developed a new approach called VR-WISE 



Virtual Concept 2005 Conceptual Modeling of Object Behavior in a VE 

69 -2- Copyright Virtual Concept 

[4] that supports an explicit conceptual design phase for VR 

applications. It provides a set of high-level modeling concepts 

to allow modeling a VR application using knowledge from the 

application domain. To achieve the use of domain knowledge, 

the approach uses (domain) ontologies [5][6]. When we 

developed the set of high-level modeling concepts to support 

this design process, we carefully watched over their 

intuitiveness for non-VR experts. However, as we also wanted 

to investigate how to derive an implementation from such a 

conceptual design, it was also important to take their 

expressive power into account. The expressiveness of the 

modeling concepts needs to be high enough to be able to serve 

as input for the implementation process (automatic code 

generation). The modeling concepts also need to be 

unambiguous. Unambiguousness is needed from the 

perspective of the designer but also from the perspective of 

code generation. Also a graphical notation for the modeling 

concepts is provided. This will enhance the communication 

between the designers, programmers and other stakeholders. It 

is also more efficient in use.  

 

In this paper we will mainly focus on the modeling concepts 

developed for modeling behavior in a VR application. The 

concepts proposed are so called action-oriented by which we 

mean that they focus on the actions that an object needs to 

perform rather than on the state of the object. Specifying the 

behavior in such a way is more natural for non-professionals. 

This allows involving them more into the specification process. 

Furthermore, the behavior can be specified independent from 

the objects on the one hand and from the interaction used to 

invoke the behavior on the other hand, thereby improving the 

reusability. 

 

The paper is structured as follows. In the next section we will 

discuss related work concerning methodologies for developing 

VR and high-level behavior modeling. Section 3 will introduce 

the VR-WISE approach. In section 4 we will give an overview 

of the modeling concepts for describing object behavior within 

the VR-WISE approach together with their graphical 

representation. An elaborated example will demonstrate the 

concepts. In section 5 we will discuss tool support and its use 

into a larger research project, the VR-DeMo project. The paper 

ends with a conclusion and future work. 

2- Related work 

As already explained in the introduction, VR-WISE uses high-

level conceptual design specifications in order to facilitate the 

development of a complete Virtual Environment. 

 

The lack of high-level design methodologies for Virtual 

Reality development has been addressed in [7] with the 

presentation of VRID (Virtual Reality Interface Design). Four 

key components are identified for designing Virtual Reality 

interfaces: graphics, behaviors, interactions and 

communications. The VRID methodology divides the design 

process into a high-level design phase and a low-level design 

phase. 

 

In [8], a software engineering approach is presented to design 

Virtual Environments. The specification is divided into three 

interrelated aspects: form, function and behavior. These three 

aspects need to be modeled simultaneously. A tool called 

ADASAL/PROTO has been developed to support the 

modeling process. It allows specifying the VR application by 

means of a set of graphical diagrams. 

 

These approaches define methodologies for designing a VR 

application at a conceptual level. However, they do not allow 

expressing the modeling of the VR application in terms of 

the application domain. The ontology-based approach of VR-

WISE allows incorporating domain knowledge that can be 

used in the development process and hence the VR 

applications can be expressed in terms of the application 

domain. 

 

The design of Virtual Environment behavior has been 

addressed in [9]. The Flownet formalism is being used as a 

graphical notation for specifying the behavior. The discrete 

part is described using Petri-nets while a notation based on 

system dynamics describes the continuous part. The 

Marigold toolset can be used to specify the behavior 

diagrams [10]. However, even for simple behaviors, the 

specification becomes large and difficult to read and is 

therefore not suitable for non-VR experts. The VR-WISE 

approach allows specifying the behavior in terms of simple 

actions combined by means of relationships which closely 

relates to the mental representation of a non-VR expert. 

 

Another methodology, called Rube [11], facilitates dynamic 

multi-model construction and reuse within a 3D immersive 

environment. It allows the designer to build models in 3D, 

using personalized metaphors for well-known modeling 

formalisms like state machines, Petri nets, etc. Although the 

metaphors make it easier for unskilled people to model 

simple behavior, still, more sophisticated behavior results in 

a complex 3D behavior model. 

 

Our work is also related to the PiP model [12]. PiP is a 

programming by demonstration system that allows a designer 

to create object behavior directly in the Virtual Environment 

using 3D interaction techniques. But again, complex 

behaviors are difficult to model within this system.  

 

The work presented here is also related to the modeling of 

Smart Objects described in [13]. Object behavior is defined 

using a script language consisting of a number of instructions 

that can be combined with each other. The instructions allow 

triggering movements on the objects. Complex behavior is 

dealt with by means of templates organizing the most 

commonly used behaviors. However, a textual language like 

this is not easily accessible by untrained users. 

 

The STEP (Scripting Technology for Embodied Persona) 

language is a scripting language that is mainly designed for 

the specification of communicative acts on embodied agents 

in the Virtual Environment [14]. A number of primitive 

actions are defined together with a set of operators to 

combine these actions into more complex movements. The 

most important operators par and seq, for creating 

respectively parallel and sequential behaviors, are not 

intuitive enough and are therefore not appropriate to be used 

by non-skilled people. VR-WISE allows behavior 
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composition by means of a set of time concepts. VR-WISE 

also introduces a way to trigger the behaviors either at a 

specific point in time or as a reaction to some user interaction. 

 

In summary, some work has already been done on conceptual 

modeling of Virtual Environments, as well as on high-level 

specification of behavior. Most approaches use graphical 

notations or textual descriptions. The main difference with 

these approaches is the use of more intuitive modeling 

concepts and the use of ontologies, which gives us many 

advantages as will be shown in the next section. 

3- VR-WISE approach 

To provide the context of our research, we will first give a 

general overview of our approach, called VR-WISE, to build 

VR applications. More details about the approach can be found 

in [15]. 

 

The goals of the research are to facilitate and shorten the 

development process of Virtual Environments by means of 

conceptual specifications (also called a conceptual model). A 

conceptual specification is a high-level representation of the 

objects in the Virtual Environment, how they are related to 

each other, how they will behave and interact with each other 

and with the user. Such a conceptual specification must be free 

from any implementation details and not influenced by the 

current technical limitations of the VR technology. The use of 

a conceptual model will improve the reusability, extensibility 

and modularity of the VR application. 

 

As underlying representation formalism for the conceptual 

specifications, VR-WISE uses ontologies. Ontologies are used 

for two different purposes. (1) Ontologies are used explicitly 

during the design process for representing knowledge about the 

domain under consideration. (2) Ontologies are also used 

(internally) as general information representation formalism. 

This means that the modeling concepts developed, are 

described by means of an ontology and that all information 

collected during the design phase are maintained in ontologies. 

 

The design process in the VR-WISE approach is divided into 

three (mainly) sequential steps, namely the specification step, 

the mapping step and the generation step (see figure 1). We 

will now briefly discuss these three steps. 

 

The specification step allows the designer to specify the 

Virtual Environment at a high level using domain knowledge 

and without taking any implementation details into account. 

During this step, two ontologies are used.  

 

The first ontology, the Domain Ontology, describes the 

concepts (comparable to object types in OO-design methods) 

available in a domain under consideration for the application. 

Such an ontology describes the domain concepts by means of 

their properties as well as their relationships. For example, in 

the architectural domain, this ontology would contain concepts 

like Wall, Door, Window, Beam, and relationships such as “a 

Door is always located in a Wall”, “a Room consists of a 

number of Walls”. Note that this ontology does not necessarily 

need to be created but can be an existing ontology originally 

used for other purposes. 

 

The second ontology, the World Specification, will contain 

the actual conceptual description of the Virtual Environment 

to be built. This ontology is created by instantiating the 

concepts given in the Domain Ontology. These instances 

represent the objects that will populate the Virtual 

Environment. For the architect example, there will be a 

number of Wall-instances, multiple Window-instances and 

Door-instances. In addition, instance specific information, 

(e.g. size, color, location and orientation) and information 

specific for the world itself (e.g. gravity, lights…) is given in 

the World Specification. 

 

To define the concepts, their properties and relationships in 

both the Domain Ontology and the World Specification, a 

number of high-level modeling concepts are provided. These 

modeling concepts are independent of any application 

domain and are defined in a so-called upper ontology [16]. 

We have called this ontology, the Virtual Reality Conceptual 

Modeling Ontology because it acts as a repository of our VR 

modeling concepts.  

Virtual Reality 
Conceptual Modeling 

Ontology

Domain
Ontology

World
Specification

« instantiation of »

« uses » « uses »

Specification step (1)

Mapping step  (2)

Domain Ontology

World Specification

Generation step  (3)

Domain
Ontology

World
Specification

Virtual Reality
Application

Conceptual
Mappings

Virtual Reality Lang.
Ontology

« using »

Conceptual
Mappings

Virtual Reality 
Conceptual Modeling 

Ontology

Domain
Ontology

World
Specification

« instantiation of »

« uses » « uses »

Specification step (1)

Mapping step  (2)

Domain Ontology

World Specification

Generation step  (3)

Domain
Ontology

World
Specification

Virtual Reality
Application

Conceptual
Mappings

Virtual Reality Lang.
Ontology

« using »

Conceptual
Mappings

 

Figure 1 : VR-WISE approach 

The mapping step involves specifying the mappings from 

the conceptual level into the implementation level. This step 

also uses two ontologies. 

 
The Domain Mapping defines the mappings from the 

concepts in the Domain Ontology to VR implementation 

primitives. The purpose of this mapping is to specify how a 
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domain concept should be represented in the Virtual 

Environment. For example, in the architectural domain, a 

Beam could be mapped onto a box
1
. The low-level VR 

concepts that can be used in the mappings are described in an 

ontology called the Virtual Reality Language Ontology. The 

concepts in this ontology can be used as target concepts in the 

mappings. 

 

Although instances may be of the same type (concept), they 

may in some cases require different representations. Therefore, 

the World Mapping allows defining the mappings from the 

instances in the World Specification onto concepts in the VR 

Language Ontology and thus allows the designer to override 

the default mappings, specified for the concepts in the Domain 

Mapping. For example, some Beams will have a round shape 

and therefore should be mapped onto a cylinder instead of onto 

a box (which was specified as the default mapping). 

 

The generation step will generate the actual source code for 

the Virtual Environment specified in the specification step 

using the mappings defined in the mapping step, i.e. the 

conceptual specifications given by means of the Domain 

Ontology and the World Specification are converted into a 

working application by means of the conceptual mappings 

given by the Domain Mapping and the World Mapping. 

4- Modeling Behavior in VR-WISE 

In this section we will introduce the VR-WISE modeling 

concepts developed for specifying behavior, together with their 

graphical notation. The behavior specification process is 

divided into two steps, the behavior definition and the behavior 

invocation. Both steps will be explained in more detail and 

examples will be presented. 

4.1 - Behavior Definition 

The first step of the behavior modeling process consists of 

building Behavior Definition Diagrams. A Behavior Definition 

Diagram allows the designer to define the different behaviors 

for an object. Note that in our approach, the behaviors of an 

object are defined separated from the structure of the object 

and independent of how the behavior will be triggered. This 

improves reusability and enhances flexibility since the same 

behavior definition can be reused for different objects (if 

different types of objects have the same behavior) and the same 

behavior can be triggered in different ways (e.g. by some user 

interaction or by a collision with another object). 

We will first explain the different modeling concepts that can 

be used in a Behavior Definition Diagram. 

4.1.1 - Actor 

The main modeling concept in a Behavior Definition Diagram 

is the actor. An actor represents an object that is involved in a 

behavior. Depending of the role in the specification, the actor 

can act as the object for which some behavior is defined or as 

reference object (see later). Because we separate the definition 

of a behavior from the actual definition of the structure of an 

                                                
1
 Note that in this case the mapping is easy (one-to-one), but 

more complex mappings are possible as well. 

object, actors are used in the definition of a behavior instead 

of the actual object(s). An actor is a kind of abstract object. 

An actor is graphically represented by a circle with the name 

of the actor written inside (see figure 2a). Figure 2b shows an 

actor called ‘Door’. For an actor, we only indicate the 

minimal properties needed to have the specified behavior 

(not shown graphically here). This implies that each object 

that has those minimal properties can replace the actor and 

thus have the defined behavior (see section 4.2). 

actor

(a) (b)

Dooractor

(a) (b)

Door

 

Figure 2 : Actor 

Generalization/specialization can be used as an abstraction 

mechanism. A generalization/specialization link can be 

defined between two actors (as shown in figure 3a). It 

represents a relationship between a more general actor 

(parent) and a more specific actor (child). The child actor 

inherits all the behavior defined from the parent actor and 

optionally adds additional behavior or overrides inherited 

behavior. 

parent

child

Door

Sliding Door

(a) (b)

parent

child

Door

Sliding Door

(a) (b)  

Figure 3 : Generalization 

Figure 3b shows an example: the ‘Sliding Door’ actor will 

inherit the behavior defined for the ‘Door’ actor and may add 

additional behavior or overrides inherited behavior. 

4.1.2 - Behavior 

A behavior can be defined for an actor. We distinguish 

between primitive behavior and complex behavior. A 

behavior is graphically represented by means of a rectangle. 

For primitive behavior (see figure 4), the rectangle carries a 

symbol denoting the type of primitive behavior as well as 

some additional information (i.e. parameters). We will first 

focus on the primitive behaviors. The definition of complex 

behavior is given later in this section.  

 

We distinguish the following types of primitive behavior 

concepts: move, turn and roll. These primitive behaviors 

either change the position of an object or its orientation. The 

move behavior can be used to express a change in the 

position of an object. To express a change in the orientation 

of an object two different behaviors are defined. The turn 

expresses a rotation of the object around its top-to-bottom 
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axis while the roll expresses the rotation of an object around 

either its left-to-right axis or its front-to-back axis. See figure 

4a, b and c for the graphical representations of these three 

primitive behaviors. 

direction

(distance)

direction

(angle)

direction

(angle) script

(a) (b) (c) (d)

direction

(distance)

direction

(angle)

direction

(angle) script

(a) (b) (c) (d)  

Figure 4 : Primitive Behaviors 

To completely specify a move (figure 4a), a direction and a 

distance are needed. These are specified in the bottom part of 

the rectangle; the distance is enclosed in parenthesis (see figure 

5). The direction can have one of the values: left, right, 

forward, backward, up or down. The distance parameter 

expresses the distance to move and should be given by means 

of a value and a unit (e.g. meter). In the example in figure 5 a 

move behavior is defined with direction ‘forward’ and a 

distance of ‘3m’ (note that the direction of the arrow-symbol is 

adapted to the direction specified for the move). Additional 

parameters are possible, e.g. the speed of the movement can be 

given by means of a value and a unit (e.g. 5 m/s) or by means 

of a natural language term like ‘slow’, ‘normal’ or ‘fast’. 

forward
(3m)

forward
(3m)  

Figure 5 : Forward Move 

For a turn behavior (figure 4b), the value for the direction can 

only be left or right. This is because a turn of an object is only 

possible around the top-to-bottom axis. An angle parameter is 

needed to specify how much the object needs to be turned. It 

should be given by means of a value and a unit. Similar as for 

the move, a speed can be specified, either by means of a value 

and unit or by means of a natural language term. 

 

A roll (figure 4c) specifies a change in the orientation around 

the object’s front-to-back axis in which case the value for 

direction can be left or right, or around the left-to-right axis in 

which case the value for direction can be either forward or 

backward. A speed parameter can be given similar as the speed 

parameter for the move or turn. 

forward
right
(3m)

(a) (b)

right

forward 3m

forward
right
(3m)

(a) (b)

right

forward 3m

 

Figure 6 : Combined move 

The directions given for the primitive behaviors can be 

combined to form more complex directions. For example, an 

object can move in the direction ‘forward-right’ as shown in 

the example in figure 6a. The direction ‘forward-right’ is the 

direction in between the two main directions, as represented by 

the dashed arrow in figure 6b. 

 

By default, the directions specified for the primitive 

behaviors are the directions as perceived from the object’s 

local reference frame. A reference frame can be seen as an 

axes system (front-to-back, top-to-bottom, left-to-right) 

attached to the object. Note that each object has an own 

reference frame. However, sometimes we want the object to 

do the movement ‘as seen from’ another object. This means 

that not the object’s local reference frame should be used but 

an external reference frame. In the graphical notation, 

attaching an actor to the behavior by means of a so-called 

reference-link indicates this. The existence of this reference-

link indicates that the reference frame of the reference-actor 

must be used to perform the primitive behavior. For example, 

in figure 7, the object will roll forward as seen from the 

‘Door’ actor. 

forward
(90°)

Door

« reference »

forward
(90°)

Door

« reference »

 

Figure 7 : Roll with external reference frame 

Sometimes, behavior may be very complicated or too 

laborious to specify graphically. Therefore, we allow custom 

behavior. By means of custom behavior, designers can 

incorporate existing functions, or build their own customized 

scripts. Custom behavior can then be used like any other 

primitive behavior. 

 

For complex behavior, the rectangle is divided into three 

parts (see figure 8). The top part holds the name of the 

behavior; the middle one holds the diagram that describes the 

complex behavior; and the bottom part optionally holds 

parameters. The complex behavior element allows us to 

obtain a certain level of abstraction. It can be used anywhere 

in the Behavior Definition Diagram where a primitive 

behavior can be used. It can also be referred to and reused in 

other behavior definitions. 

ComplexBehaviourName

<<SubDiagram>>

type1 : parameter1
type2 : parameter2
…

ComplexBehaviourName

<<SubDiagram>>

type1 : parameter1
type2 : parameter2
…  

Figure 8 : Complex Behavior 

4.1.3 - Operators 

To achieve more complex behavior, primitive behaviors can 

be combined with each other (or with previously defined 

behaviors) in a well-structured manner by means of 

operators. Operators are graphically represented by rounded 
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rectangles (see figure 9). The symbol within the rectangle 

indicates the type of operator. We distinguish three types of 

operators: temporal, lifetime and conditional operators. 

operatoroperator expr

(a) (b) (c)

true

falseoperatoroperator expr

(a) (b) (c)

true

false

true

false

 

Figure 9 : Operators 

The temporal operators (figure 9a) allow synchronizing 

behaviors. They are based on the binary temporal relations as 

defined by Allen [17]. 

� before(x, y, t): behavior x ends t seconds before the 

behavior y starts; there is a gap of t seconds 

� meets(x, y): behavior y starts immediately after the 

end of behavior x 

� overlaps(x, y, t): behavior y starts t seconds before the 

end of behavior x; there is an overlap of t seconds 

� contains(x, y, t1, t2): behavior x starts t1 seconds after 

the start of behavior y and ends t2 seconds before the 

end of behavior y 

� starts(x, y, […]): behavior x and behavior y start at the 

same moment ([…] means that more than two 

behaviors can be specified) 

� ends(x, y, […]): behavior x and behavior y stop at the 

same moment 

� equals(x, y, […]): behavior x and behavior y both start 

and stop at the same moments 

before
(10s)

forward
(1.5m)

right
(90°)

before
(10s)

forward
(1.5m)

right
(90°)  

Figure 10 : Before operator 

Graphically, these operators are specified as in figure 10. The 

operator connects two behaviors by means of an arrow. The 

start behavior corresponds with the x-parameter; the end 

behavior corresponds with the y-parameter. The time 

parameter(s) are specified between brackets at the bottom of 

the operator. In figure 10 the temporal operator before is 

specified between a forward move behavior (x) and a right turn 

behavior (y) meaning that the move ends 10 seconds before the 

turn starts. 

 

All of these temporal operators, except for equals, have an 

inverse, namely after, met-by, overlapped-by, contained-by, 

started-by and ended-by. As indicated, starts, ends, and equals 

can also be used in an n-ary form. The use of the n-ary 

temporal operators can seriously reduce the amount of 

operators that need to be used, resulting in less complex 

specifications. 

 

The lifetime operators (figure 9b) control the lifetime of a 

behavior, i.e. a particular behavior can be either enabled or 

disabled, and when it is enabled, it can be either active or 

passive. The following lifetime operators are supported: 

� enable(x, y, […]): behavior y gets enabled when 

behavior x ends 

� disable(x, y, […]): behavior y is disabled just after 

behavior x ends; behavior y cannot be triggered 

anymore until it has been enabled again 

� suspend(x, y, […]): when behavior x ends, behavior 

y stops operating and holds its state to be able to be 

resumed later on; behavior y can only be resumed or 

disabled afterwards 

� resume(x, y, […]): behavior y is resumed when 

behavior x ends; it allows a behavior to continue to 

operate after it has been suspended; the continuation 

starts where the behavior stopped upon the 

suspension 

 

Figure 11 illustrates the lifetime operator. Here, the behavior 

OpenDoor (y) is enabled when the behavior UnlockDoor (x) 

is finished. Note that both the OpenDoor and the 

UnlockDoor behavior are complex behaviors (specified 

elsewhere). 

 

enable

OpenDoorUnlockDoor

enable

OpenDoorOpenDoorUnlockDoorUnlockDoor

 

Figure 11 : Enable operator 

A conditional operator (figure 9c) controls the flow of 

behavior. By using a conditional operator, the behavior that 

will be invoked next will depend on the value of the 

conditional expression that has been specified within the 

operator. Conditional expressions can be built using the 

standard mathematical and logical operators. Figure 12 

shows an example. The figure shows (an extract of) the 

‘Open’ behavior. The object first moves backward, then the 

value of a parameter ‘code’ (given as a parameter to the 

behavior) is compared with the value 1 and if this expression 

results in a true value, the behavior ‘OpenDoor’ is executed, 

otherwise, the object moves forward. 

code <> 1

true

false

Open

OpenDoor

Integer: code

backward
(0.02m)

forward
(0.02m)

code <> 1

true

false

Open

OpenDoor

Integer: code

backward
(0.02m)

forward
(0.02m)

 

Figure 12 : Conditional operator 

In general, a Behavior Definition Diagram contains an actor 

together with a number of behaviors that are defined for this 

actor. The behaviors of a single actor could even be spread 

out over different Behavior Definition Diagrams if the 

behaviors are very complex. Sometimes, when a behavior of 

one actor has an influence on behaviors of other actors, it is 

better to define the behavior of multiple actors in the same 

diagram. An example of this is given in section 4.3. 
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4.2 - Behavior Invocation 

So far, we have seen the modeling constructs that can be used 

for defining behavior. As explained, the definition of behavior 

is done independently from the actual objects in the Virtual 

Environment. To connect defined behavior to actual objects, a 

second step is needed. In this step, a Behavior Invocation 

Diagram is created for each Behavior Definition Diagram. A 

Behavior Invocation Diagram assigns the behaviors defined in 

a Behavior Definition Diagram to the actual objects. 

Furthermore, it also denotes the events that may trigger the 

behaviors of the objects. In this way, we also have the 

interaction separated from the actual definition of the behavior 

so that the same behavior can be triggered by different 

interactions depending on the situation. 

 

In this section, we will introduce the modeling concepts that 

can be used in a Behavior Invocation Diagram. 

4.2.1 - Concept – Instance 

As was explained before, in VR-WISE, the structure of the 

Virtual Environment is expressed in terms of intuitive domain 

concepts and relationships between those concepts. A concept 

can be compared to an object type, or a class in object-oriented 

programming. It is graphically represented by a rectangle with 

the name of the concept written inside (see figure 13). The 

instances of concepts are the objects that are actually 

populating the Virtual Environment and are represented by an 

ellipse containing the name together with the name of its 

concept. Concepts and instances are the main elements in the 

Behavior Invocation Diagrams. 

ConceptName Conceptname: InstancenameConceptName Conceptname: Instancename

 

Figure 13 : Concept and Instance 

By assigning an actor to a concept, we couple behavior to the 

concept, i.e. every instance of that concept will have all the 

behaviors defined for the actor. By assigning an actor to an 

instance, only that particular instance will have all the 

behaviors of the actor. Concepts as well as instances can have 

multiple actors being assigned. The actors that are assigned to 

a concept or instance are represented inside the element by 

their names enclosed in brackets (see figure 14). 

Gate: FrontGate
(Door)

 

Figure 14 : Actor assigned to an Instance 

Figure 14 represents an instance of a ‘Gate’ concept, called 

‘FrontGate’. This instance has one actor assigned ‘Door’; 

hence it will have all the behaviors defined for the ‘Door’ 

actor.  

 

The concept and instance elements in the Behavior Invocation 

Diagram are references to concepts and instances defined in 

the Static Model Diagrams, the diagrams for describing the 

static structure of the Virtual Environment (the description of 

this type of diagram is outside the scope of this paper). 

4.2.2 - Events 

In our approach, behaviors are triggered by means of events. 

Events are graphically represented by a hexagon with a 

symbol denoting the type of event and some additional 

information below the symbol. We distinguish between three 

kinds of events: timeEvent, userEvent and objectEvent (see 

figure 15). 

Date/Time EventName EventName

(a) (b) (c)

Date/Time EventName EventName

(a) (b) (c)  

Figure 15 : Events 

With the timeEvent (figure 15a), the designer can specify a 

time on which the behavior needs to be triggered. This time 

can be given as a concrete date and time (e.g. 12/08/2005 

10:30:00), a relative time (e.g. 25s after startup), or a more 

extended timing schedule can be given (e.g. every day at 

10:30:00). This can be specified inside the hexagon below 

the symbol. 

 

A userEvent (figure 15b) allows specifying a user action that 

will trigger the behavior. A number of pre-specified user 

actions are provided (OnClick (see figure 16), OnTouch,…). 

Additional arguments for the event can be specified which 

can then be given as parameters to the behavior. 

OnClickOnClick  

Figure 16 : Example "OnClick" event 

Apart from the pre-specified user actions, also more 

complicated user interaction techniques (e.g. menus, dialogs) 

can be specified, as we will see in section 5.2. If we return to 

the “Open” behavior from figure 12, a dialog could be 

modeled to trigger this behavior. Selecting the “Open” 

behavior from a menu that is modeled on the object would 

pop-up a dialog asking the user to enter a code first. The 

value given by the user is then used as the parameter when 

triggering the behavior. 

 

An objectEvent (figure 15c) is used to represent the event 

that is fired when two (or more) objects in the Virtual 

Environment interact with each other. 

4.3 - Example: Virtual Robot 

In this section, we will illustrate the modeling concepts 

introduced in the previous sections, using an example from 

an industrial context.  

Figure 17 shows an extract of the Behavior Definition 

Diagram of a virtual robot in a manufacturing plant. For an 

actor, called Master, the behavior ProductionCycle is 

defined. It performs the following scenario of synchronized 
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movements. The object first moves forward, and then 

immediately some behaviors on its parts (LeftArmMovement 

and RightArmMovement) start, as well as a leftward movement. 

After the forward movement is ended, it turns right and this 

movement ends at the same time as the left movement. 

The diagram also shows a powerOn and a PowerOff behavior 

for a Control actor. These behaviors will move the Control and 

enable, respectively disable, the ProductionCycle behavior of 

the Master. These last actions are specified by means of the 

lifetime operators enable and disable. 

ProductionCycle

right
(90°)

forward
(1.5m)

meets

starts

LeftArmMovement RightArmMovement

left
(0.5m)

ends

Control

PowerOn

enable

Master

PowerOff

disable

forward
(30°)

backward
(30°)

ProductionCycle

right
(90°)

forward
(1.5m)

meets

starts

LeftArmMovement RightArmMovement

left
(0.5m)

ends

Control

PowerOn

enable

Master

PowerOff

disable

forward
(30°)
forward
(30°)

backward
(30°)

backward
(30°)

 

Figure 17 : Behavior Definition Diagram 

After having defined the different behaviors, we can assign 

them to the objects defined for the Virtual Environment. This 

is done by means of the Behavior Invocation Diagram. Figure 

18 shows such a Behavior Invocation Diagram. The Virtual 

Environment contains four object instances: an Assembler, a 

Gripper A, a Gripper B, and a Switch. The Master actor is 

assigned to the Assembler instance. Hence, the Assembler will 

possess the behavior defined for the Master actor 

(ProductionCycle). The diagram specifies that this behavior 

can be invoked by means of a user interaction (userEvent 

OnClick). This means that when the user “clicks” (e.g. by a 

mouse) on the Assembler this behavior will be executed. It is 

visually specified using a diamond connecting the behavior, 

the concept (or instance) and the event. If we now for example 

want to have another interaction triggering the behavior (e.g. in 

another situation), we can simply connect the object and 

behavior with a different event.  

 

When the ProductionCycle behavior is attached to an object, 

also the behaviors that are causally linked (represented by the 

dashed arrows) to this behavior need to be assigned to objects. 

To assign behavior to Gripper A and Gripper B, the actors 

RightArm, respectively LeftArm are assigned to them. For the 

actors RightArm and LeftArm the behavior 

RightArmMovement, respectively LeftArmMovement were 

defined (not shown here). These two behaviors are invoked 

by the ProductionCycle. Therefore, there are no events 

needed to trigger these behaviors. The Switch instance is 

given behavior by assigning the Control actor to it. As a 

consequence, this instance will have two behaviors PowerOn 

and PowerOff. In the diagram it is specified that both the 

PowerOn and the PowerOff behavior must be invoked by a 

timeEvent (at 9h00 for PowerOn and at 18h00 for the 

PowerOff). 

ProductionCycle

OnClick

PowerOn

Robot:Assembler
(Master)

LeftArmMovement

RobotArm:Gripper B
(LeftArm)

Lever:Switch 
(Control)

PowerOff

RobotArm:GripperA
(RightArm)

RightArmMovement

09h00
18h00

ProductionCycle

OnClick

PowerOn

Robot:Assembler
(Master)

LeftArmMovement

RobotArm:Gripper B
(LeftArm)

Lever:Switch 
(Control)

PowerOff

RobotArm:GripperA
(RightArm)

RightArmMovement

09h00
18h00

 

Figure 18 : Behavior Invocation Diagram 

5- Tool Support and Integration in VR-DeMo 

In the previous section, we introduced the different modeling 

concepts for specifying 3D object behavior in Virtual 

Environments. This section now discusses tool support and 

gives an overview of the integration into the VR-DeMo 

project. 

5.1 – Tool Support 

To support the VR-WISE approach, we developed a 

prototype tool called OntoWorld. The tool enables a designer 

to make the conceptual design, specify the desired mappings 

and finally generate a VR application from the specifications 

as described in section 3. At the moment, only code in 

VRML/X3D formats is generated but in the future the tool 

can be extended to generate code for other implementation 

platforms as well. 

 

For the purposes of this research, we have extended the 

prototype tool with the Conceptual Specification Generator 

(CSG). This is a graphical diagram editor supporting the 

modeling of the behavior as described. The tool has been 

implemented as an extension to Microsoft Visio [18]. The 
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static structure of the Virtual Environment as well as the 

behavior of its objects can be specified using the CSG. The 

graphical representations of the modeling concepts discussed 

in this paper can be dragged and dropped onto a canvas and 

connections can be made. Properties can be added, displayed 

and modified by double-clicking on the graphical 

representation. 

 

The CSG communicates with the previously developed 

OntoWorld tool. Consistency between the diagrams and the 

ontologies is maintained. The CSG can be considered as a 

graphical interface for the specification phase (first step in the 

VR-WISE approach).  

5.2 – Integration into VR-DeMo 

The research presented in this paper is part of the VR-DeMo 

project (Virtual Reality: Conceptual Descriptions and Models 

for the Realization of Virtual Environments). The project aims 

at allowing designers to describe a complete Virtual 

Environment (the static structure, the behavior and the 

interaction), at an abstract level that is much higher than 

programming code. The OntoWorld toolkit, as described in 

section 5.1, has been integrated into the VR-DeMo framework 

(given in figure 19). 

Conceptual Specification Generator
(CSG)

OntoWorld Interaction Toolkit

Code
Framework

Code
(C++)

XML

Compiler

ECMA-
Scripts

Scene
Graph
(X3D)

XML

Run-time binary

« initialization »

« initialization »

« generates »

« communicates with »

« generates »

« source »

« linked with »

***

« produces »

Conceptual Specification Generator
(CSG)

OntoWorld Interaction Toolkit

Code
Framework

Code
(C++)

XML

Compiler

ECMA-
Scripts

Scene
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(X3D)

XML

Run-time binary

« initialization »

« initialization »

« generates »

« communicates with »

« generates »

« source »

« linked with »

***

« produces »

 

Figure 19 : Common Framework 

The VR-DeMo framework mainly consists of three major 

modules: the OntoWorld tool with the CSG interface, the 

Interaction toolkit and the Code framework. The OntoWorld 

toolkit has already been described in section 5.1. It generates 

the scene graph (in X3D) together with the scripts used for the 

object behaviors and an additional XML initialization file. This 

initialization file will be used in the second module, the 

Interaction toolkit. 

 

This Interaction toolkit is concerned with the high-level 

modeling of the interaction and its connection to the object 

behaviors [19]. Here the modeling of menu systems and dialog 

boxes can be done. These can then be used to trigger the 

behaviors modeled using the CSG. The Interaction module 

also generates C++ source code and a number of XML 

initialization files. The source code will be compiled and 

linked together with the third module, the Code Framework, 

into the run-time binary, implementing the VR application as 

described by the designer. 

 

The Code Framework is a repository that deals not only with 

the hardware but also with code libraries and provides the 

necessary support for the creation and manipulation of a 

scene graph, multimodal interaction, collision detection, etc.  

 

Finally, the binary that is generated can be executed with the 

static scene and the scripts from the OntoWorld toolkit, and 

the initialization files from the Interaction toolkit as its input. 

The interaction part is investigated by our research partner in 

this project, the Expertise center for Digital Media (EDM) in 

Belgium. 

6- Conclusion and future work 

Our ultimate goal is to make the development of VR 

application available to a much broader public. We want to 

realize this by introducing an explicit conceptual design 

phase in the development process of a VR application. The 

use of a conceptual modeling phase with high-level modeling 

concepts and in terms of domain concepts allows a better 

participation of domain experts into the development of a VR 

application. In this paper we have introduced the modeling 

concepts developed for the specification of object behavior.  

The behavior specification is split into two parts. In the first 

part, the behavior definitions are specified. Here, the use of 

actors allows us to define behavior independent of the actual 

objects that are going to perform the behavior and 

independent of the events that will trigger the behavior. In 

the second part, the behavior invocations are specified. In 

this part, the behaviors defined are assigned to the virtual 

objects. It also specifies how the behaviors can be triggered. 

A prototype tool called OntoWorld was already created to 

support the overall approach. For the purpose of specifying 

behavior, we build a front-end in Microsoft Visio to allow 

creating the conceptual specification graphically. The 

graphical notation may seriously reduce the complexity of 

specifying the behavior in a Virtual Environment. 

Future work will focus on extending the current set of 

modeling concepts. For example, the modeling of physics, to 

obtain applications with a higher degree of physical 

correctness, will be investigated. We will also investigate 

how to model, at a high level, constraints on behavior. 
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