
Proceedings of Virtual Concept 2005

Biarritz, France, November 8th – November 10th, 2005

69 -1- Copyright Virtual Concept

Conceptual Modeling of Object Behavior in a Virtual
Environment

Bram Pellens, Olga De Troyer, Wesley Bille, Frederic Kleinermann

WISE Research Group

Vrije Universiteit Brussel

Pleinlaan 2, B-1050 Brussels, Belgium

Phone: +32 2 629 37 13 / Fax: +32 2 629 35 25

E-mail : {Bram.Pellens, Olga.DeTroyer, Wesley.Bille, Frederic.Kleinermann}@vub.ac.be

Abstract: Today, the design of a Virtual Reality (VR)

application is still a specialized and time consuming task.

Many techniques and software tools have been created to

facilitate the development process. However, they all require

considerable knowledge of VR technology. Furthermore,

modeling the behaviors of the objects in a Virtual Environment

requires programming skills. For this reason, we have

developed an approach called “VR-WISE” that allows

specifying a VR application at a conceptual level, free from

any implementation details, and from the viewpoint of a

domain expert, allowing non-VR experts to participate in the

design of a Virtual Environment. This approach uses

ontologies, incorporating domain knowledge, and high-level

modeling concepts for describing the Virtual Environment. In

this paper, we explain how object-behavior in a Virtual

Environment can be described at a conceptual level. We show

how simple behaviors can be combined for composing more

complex behaviors. We illustrate the different modeling

concepts by means of examples.

Key words: Conceptual Modeling, Virtual Reality, High-

level specifications, Behavior

1- Introduction

Although the creation of Virtual Reality (VR) applications is

supported by a number of software tools, the development of a

VR application is still a specialized and tedious task. The tools

available today for developing VR applications can be

classified in two categories. The first category consists of the

so-called toolkits (like Performer [1]). Toolkits are

programming libraries that provide a set of functions with

which a skilled programmer can create VR applications. The

second category is the one of the authoring tools (like 3D

Studio Max [2]). Authoring tools are complete programs with

graphical interfaces for creating Virtual Environments without

having to resort to detailed programming. Although these tools

assist the developer in creating a VR application, they require

considerable background knowledge about VR technology.

Current practice for developing a VR application is that first

an authoring tool is used to create the static part of (parts of)

the Virtual Environment which is afterwards imported in a

toolkit where the code for behavior is added, either by means

of a special script language or by means of a traditional

programming language.

When developing a VR application, a first snag encountered

is the necessity to translate the domain objects needed in the

Virtual Environment (e.g. a house), into a combination of VR

primitives (such as cylinders, spheres, textures, …) and free

deformations. None of the available VR development tools

allow the developer to specify the Virtual Environment in

terms of domain concepts. We illustrate this with VRML, the

Virtual Reality Modeling Language [3]. Although VRML

allows the developer to create 3D content without having to

deal with the low-level details of the platform or rendering

process, the developer still has to specify the concepts using

low-level primitives like a sphere and a cube.

Another observation is that the design phase in the

development process of a VR application (from the

perspective of a classical software engineering life cycle) is

usually a very informal activity. Few formal techniques in

the context of VR exist to support this phase effectively. A

systematic approach that uses the output of the design phase

as input for the implementation phase does not exist.

Especially for the behavioral part of a VR application no true

design is done. Adding an explicit design phase to the

development process of a VR application could also meet the

first snag mentioned. If the design phase is at a conceptual

level, the design of a Virtual Environment can be expressed

in terms of domain concepts. This could make the design

also accessible for non-VR experts such as domain experts.

In addition, tools can be developed that may assist in the

translating of the domain objects into VR primitives. With

this in mind we developed a new approach called VR-WISE

Virtual Concept 2005 Conceptual Modeling of Object Behavior in a VE

69 -2- Copyright Virtual Concept

[4] that supports an explicit conceptual design phase for VR

applications. It provides a set of high-level modeling concepts

to allow modeling a VR application using knowledge from the

application domain. To achieve the use of domain knowledge,

the approach uses (domain) ontologies [5][6]. When we

developed the set of high-level modeling concepts to support

this design process, we carefully watched over their

intuitiveness for non-VR experts. However, as we also wanted

to investigate how to derive an implementation from such a

conceptual design, it was also important to take their

expressive power into account. The expressiveness of the

modeling concepts needs to be high enough to be able to serve

as input for the implementation process (automatic code

generation). The modeling concepts also need to be

unambiguous. Unambiguousness is needed from the

perspective of the designer but also from the perspective of

code generation. Also a graphical notation for the modeling

concepts is provided. This will enhance the communication

between the designers, programmers and other stakeholders. It

is also more efficient in use.

In this paper we will mainly focus on the modeling concepts

developed for modeling behavior in a VR application. The

concepts proposed are so called action-oriented by which we

mean that they focus on the actions that an object needs to

perform rather than on the state of the object. Specifying the

behavior in such a way is more natural for non-professionals.

This allows involving them more into the specification process.

Furthermore, the behavior can be specified independent from

the objects on the one hand and from the interaction used to

invoke the behavior on the other hand, thereby improving the

reusability.

The paper is structured as follows. In the next section we will

discuss related work concerning methodologies for developing

VR and high-level behavior modeling. Section 3 will introduce

the VR-WISE approach. In section 4 we will give an overview

of the modeling concepts for describing object behavior within

the VR-WISE approach together with their graphical

representation. An elaborated example will demonstrate the

concepts. In section 5 we will discuss tool support and its use

into a larger research project, the VR-DeMo project. The paper

ends with a conclusion and future work.

2- Related work

As already explained in the introduction, VR-WISE uses high-

level conceptual design specifications in order to facilitate the

development of a complete Virtual Environment.

The lack of high-level design methodologies for Virtual

Reality development has been addressed in [7] with the

presentation of VRID (Virtual Reality Interface Design). Four

key components are identified for designing Virtual Reality

interfaces: graphics, behaviors, interactions and

communications. The VRID methodology divides the design

process into a high-level design phase and a low-level design

phase.

In [8], a software engineering approach is presented to design

Virtual Environments. The specification is divided into three

interrelated aspects: form, function and behavior. These three

aspects need to be modeled simultaneously. A tool called

ADASAL/PROTO has been developed to support the

modeling process. It allows specifying the VR application by

means of a set of graphical diagrams.

These approaches define methodologies for designing a VR

application at a conceptual level. However, they do not allow

expressing the modeling of the VR application in terms of

the application domain. The ontology-based approach of VR-

WISE allows incorporating domain knowledge that can be

used in the development process and hence the VR

applications can be expressed in terms of the application

domain.

The design of Virtual Environment behavior has been

addressed in [9]. The Flownet formalism is being used as a

graphical notation for specifying the behavior. The discrete

part is described using Petri-nets while a notation based on

system dynamics describes the continuous part. The

Marigold toolset can be used to specify the behavior

diagrams [10]. However, even for simple behaviors, the

specification becomes large and difficult to read and is

therefore not suitable for non-VR experts. The VR-WISE

approach allows specifying the behavior in terms of simple

actions combined by means of relationships which closely

relates to the mental representation of a non-VR expert.

Another methodology, called Rube [11], facilitates dynamic

multi-model construction and reuse within a 3D immersive

environment. It allows the designer to build models in 3D,

using personalized metaphors for well-known modeling

formalisms like state machines, Petri nets, etc. Although the

metaphors make it easier for unskilled people to model

simple behavior, still, more sophisticated behavior results in

a complex 3D behavior model.

Our work is also related to the PiP model [12]. PiP is a

programming by demonstration system that allows a designer

to create object behavior directly in the Virtual Environment

using 3D interaction techniques. But again, complex

behaviors are difficult to model within this system.

The work presented here is also related to the modeling of

Smart Objects described in [13]. Object behavior is defined

using a script language consisting of a number of instructions

that can be combined with each other. The instructions allow

triggering movements on the objects. Complex behavior is

dealt with by means of templates organizing the most

commonly used behaviors. However, a textual language like

this is not easily accessible by untrained users.

The STEP (Scripting Technology for Embodied Persona)

language is a scripting language that is mainly designed for

the specification of communicative acts on embodied agents

in the Virtual Environment [14]. A number of primitive

actions are defined together with a set of operators to

combine these actions into more complex movements. The

most important operators par and seq, for creating

respectively parallel and sequential behaviors, are not

intuitive enough and are therefore not appropriate to be used

by non-skilled people. VR-WISE allows behavior

Virtual Concept 2005 Conceptual Modeling of Object Behavior in a VE

69 -3- Copyright Virtual Concept

composition by means of a set of time concepts. VR-WISE

also introduces a way to trigger the behaviors either at a

specific point in time or as a reaction to some user interaction.

In summary, some work has already been done on conceptual

modeling of Virtual Environments, as well as on high-level

specification of behavior. Most approaches use graphical

notations or textual descriptions. The main difference with

these approaches is the use of more intuitive modeling

concepts and the use of ontologies, which gives us many

advantages as will be shown in the next section.

3- VR-WISE approach

To provide the context of our research, we will first give a

general overview of our approach, called VR-WISE, to build

VR applications. More details about the approach can be found

in [15].

The goals of the research are to facilitate and shorten the

development process of Virtual Environments by means of

conceptual specifications (also called a conceptual model). A

conceptual specification is a high-level representation of the

objects in the Virtual Environment, how they are related to

each other, how they will behave and interact with each other

and with the user. Such a conceptual specification must be free

from any implementation details and not influenced by the

current technical limitations of the VR technology. The use of

a conceptual model will improve the reusability, extensibility

and modularity of the VR application.

As underlying representation formalism for the conceptual

specifications, VR-WISE uses ontologies. Ontologies are used

for two different purposes. (1) Ontologies are used explicitly

during the design process for representing knowledge about the

domain under consideration. (2) Ontologies are also used

(internally) as general information representation formalism.

This means that the modeling concepts developed, are

described by means of an ontology and that all information

collected during the design phase are maintained in ontologies.

The design process in the VR-WISE approach is divided into

three (mainly) sequential steps, namely the specification step,

the mapping step and the generation step (see figure 1). We

will now briefly discuss these three steps.

The specification step allows the designer to specify the

Virtual Environment at a high level using domain knowledge

and without taking any implementation details into account.

During this step, two ontologies are used.

The first ontology, the Domain Ontology, describes the

concepts (comparable to object types in OO-design methods)

available in a domain under consideration for the application.

Such an ontology describes the domain concepts by means of

their properties as well as their relationships. For example, in

the architectural domain, this ontology would contain concepts

like Wall, Door, Window, Beam, and relationships such as “a

Door is always located in a Wall”, “a Room consists of a

number of Walls”. Note that this ontology does not necessarily

need to be created but can be an existing ontology originally

used for other purposes.

The second ontology, the World Specification, will contain

the actual conceptual description of the Virtual Environment

to be built. This ontology is created by instantiating the

concepts given in the Domain Ontology. These instances

represent the objects that will populate the Virtual

Environment. For the architect example, there will be a

number of Wall-instances, multiple Window-instances and

Door-instances. In addition, instance specific information,

(e.g. size, color, location and orientation) and information

specific for the world itself (e.g. gravity, lights…) is given in

the World Specification.

To define the concepts, their properties and relationships in

both the Domain Ontology and the World Specification, a

number of high-level modeling concepts are provided. These

modeling concepts are independent of any application

domain and are defined in a so-called upper ontology [16].

We have called this ontology, the Virtual Reality Conceptual

Modeling Ontology because it acts as a repository of our VR

modeling concepts.

Virtual Reality
Conceptual Modeling

Ontology

Domain
Ontology

World
Specification

« instantiation of »

« uses » « uses »

Specification step (1)

Mapping step (2)

Domain Ontology

World Specification

Generation step (3)

Domain
Ontology

World
Specification

Virtual Reality
Application

Conceptual
Mappings

Virtual Reality Lang.
Ontology

« using »

Conceptual
Mappings

Virtual Reality
Conceptual Modeling

Ontology

Domain
Ontology

World
Specification

« instantiation of »

« uses » « uses »

Specification step (1)

Mapping step (2)

Domain Ontology

World Specification

Generation step (3)

Domain
Ontology

World
Specification

Virtual Reality
Application

Conceptual
Mappings

Virtual Reality Lang.
Ontology

« using »

Conceptual
Mappings

Figure 1 : VR-WISE approach

The mapping step involves specifying the mappings from

the conceptual level into the implementation level. This step

also uses two ontologies.

The Domain Mapping defines the mappings from the

concepts in the Domain Ontology to VR implementation

primitives. The purpose of this mapping is to specify how a

Virtual Concept 2005 Conceptual Modeling of Object Behavior in a VE

69 -4- Copyright Virtual Concept

domain concept should be represented in the Virtual

Environment. For example, in the architectural domain, a

Beam could be mapped onto a box
1
. The low-level VR

concepts that can be used in the mappings are described in an

ontology called the Virtual Reality Language Ontology. The

concepts in this ontology can be used as target concepts in the

mappings.

Although instances may be of the same type (concept), they

may in some cases require different representations. Therefore,

the World Mapping allows defining the mappings from the

instances in the World Specification onto concepts in the VR

Language Ontology and thus allows the designer to override

the default mappings, specified for the concepts in the Domain

Mapping. For example, some Beams will have a round shape

and therefore should be mapped onto a cylinder instead of onto

a box (which was specified as the default mapping).

The generation step will generate the actual source code for

the Virtual Environment specified in the specification step

using the mappings defined in the mapping step, i.e. the

conceptual specifications given by means of the Domain

Ontology and the World Specification are converted into a

working application by means of the conceptual mappings

given by the Domain Mapping and the World Mapping.

4- Modeling Behavior in VR-WISE

In this section we will introduce the VR-WISE modeling

concepts developed for specifying behavior, together with their

graphical notation. The behavior specification process is

divided into two steps, the behavior definition and the behavior

invocation. Both steps will be explained in more detail and

examples will be presented.

4.1 - Behavior Definition

The first step of the behavior modeling process consists of

building Behavior Definition Diagrams. A Behavior Definition

Diagram allows the designer to define the different behaviors

for an object. Note that in our approach, the behaviors of an

object are defined separated from the structure of the object

and independent of how the behavior will be triggered. This

improves reusability and enhances flexibility since the same

behavior definition can be reused for different objects (if

different types of objects have the same behavior) and the same

behavior can be triggered in different ways (e.g. by some user

interaction or by a collision with another object).

We will first explain the different modeling concepts that can

be used in a Behavior Definition Diagram.

4.1.1 - Actor

The main modeling concept in a Behavior Definition Diagram

is the actor. An actor represents an object that is involved in a

behavior. Depending of the role in the specification, the actor

can act as the object for which some behavior is defined or as

reference object (see later). Because we separate the definition

of a behavior from the actual definition of the structure of an

1
 Note that in this case the mapping is easy (one-to-one), but

more complex mappings are possible as well.

object, actors are used in the definition of a behavior instead

of the actual object(s). An actor is a kind of abstract object.

An actor is graphically represented by a circle with the name

of the actor written inside (see figure 2a). Figure 2b shows an

actor called ‘Door’. For an actor, we only indicate the

minimal properties needed to have the specified behavior

(not shown graphically here). This implies that each object

that has those minimal properties can replace the actor and

thus have the defined behavior (see section 4.2).

actor

(a) (b)

Dooractor

(a) (b)

Door

Figure 2 : Actor

Generalization/specialization can be used as an abstraction

mechanism. A generalization/specialization link can be

defined between two actors (as shown in figure 3a). It

represents a relationship between a more general actor

(parent) and a more specific actor (child). The child actor

inherits all the behavior defined from the parent actor and

optionally adds additional behavior or overrides inherited

behavior.

parent

child

Door

Sliding Door

(a) (b)

parent

child

Door

Sliding Door

(a) (b)

Figure 3 : Generalization

Figure 3b shows an example: the ‘Sliding Door’ actor will

inherit the behavior defined for the ‘Door’ actor and may add

additional behavior or overrides inherited behavior.

4.1.2 - Behavior

A behavior can be defined for an actor. We distinguish

between primitive behavior and complex behavior. A

behavior is graphically represented by means of a rectangle.

For primitive behavior (see figure 4), the rectangle carries a

symbol denoting the type of primitive behavior as well as

some additional information (i.e. parameters). We will first

focus on the primitive behaviors. The definition of complex

behavior is given later in this section.

We distinguish the following types of primitive behavior

concepts: move, turn and roll. These primitive behaviors

either change the position of an object or its orientation. The

move behavior can be used to express a change in the

position of an object. To express a change in the orientation

of an object two different behaviors are defined. The turn

expresses a rotation of the object around its top-to-bottom

Virtual Concept 2005 Conceptual Modeling of Object Behavior in a VE

69 -5- Copyright Virtual Concept

axis while the roll expresses the rotation of an object around

either its left-to-right axis or its front-to-back axis. See figure

4a, b and c for the graphical representations of these three

primitive behaviors.

direction

(distance)

direction

(angle)

direction

(angle) script

(a) (b) (c) (d)

direction

(distance)

direction

(angle)

direction

(angle) script

(a) (b) (c) (d)

Figure 4 : Primitive Behaviors

To completely specify a move (figure 4a), a direction and a

distance are needed. These are specified in the bottom part of

the rectangle; the distance is enclosed in parenthesis (see figure

5). The direction can have one of the values: left, right,

forward, backward, up or down. The distance parameter

expresses the distance to move and should be given by means

of a value and a unit (e.g. meter). In the example in figure 5 a

move behavior is defined with direction ‘forward’ and a

distance of ‘3m’ (note that the direction of the arrow-symbol is

adapted to the direction specified for the move). Additional

parameters are possible, e.g. the speed of the movement can be

given by means of a value and a unit (e.g. 5 m/s) or by means

of a natural language term like ‘slow’, ‘normal’ or ‘fast’.

forward
(3m)

forward
(3m)

Figure 5 : Forward Move

For a turn behavior (figure 4b), the value for the direction can

only be left or right. This is because a turn of an object is only

possible around the top-to-bottom axis. An angle parameter is

needed to specify how much the object needs to be turned. It

should be given by means of a value and a unit. Similar as for

the move, a speed can be specified, either by means of a value

and unit or by means of a natural language term.

A roll (figure 4c) specifies a change in the orientation around

the object’s front-to-back axis in which case the value for

direction can be left or right, or around the left-to-right axis in

which case the value for direction can be either forward or

backward. A speed parameter can be given similar as the speed

parameter for the move or turn.

forward
right
(3m)

(a) (b)

right

forward 3m

forward
right
(3m)

(a) (b)

right

forward 3m

Figure 6 : Combined move

The directions given for the primitive behaviors can be

combined to form more complex directions. For example, an

object can move in the direction ‘forward-right’ as shown in

the example in figure 6a. The direction ‘forward-right’ is the

direction in between the two main directions, as represented by

the dashed arrow in figure 6b.

By default, the directions specified for the primitive

behaviors are the directions as perceived from the object’s

local reference frame. A reference frame can be seen as an

axes system (front-to-back, top-to-bottom, left-to-right)

attached to the object. Note that each object has an own

reference frame. However, sometimes we want the object to

do the movement ‘as seen from’ another object. This means

that not the object’s local reference frame should be used but

an external reference frame. In the graphical notation,

attaching an actor to the behavior by means of a so-called

reference-link indicates this. The existence of this reference-

link indicates that the reference frame of the reference-actor

must be used to perform the primitive behavior. For example,

in figure 7, the object will roll forward as seen from the

‘Door’ actor.

forward
(90°)

Door

« reference »

forward
(90°)

Door

« reference »

Figure 7 : Roll with external reference frame

Sometimes, behavior may be very complicated or too

laborious to specify graphically. Therefore, we allow custom

behavior. By means of custom behavior, designers can

incorporate existing functions, or build their own customized

scripts. Custom behavior can then be used like any other

primitive behavior.

For complex behavior, the rectangle is divided into three

parts (see figure 8). The top part holds the name of the

behavior; the middle one holds the diagram that describes the

complex behavior; and the bottom part optionally holds

parameters. The complex behavior element allows us to

obtain a certain level of abstraction. It can be used anywhere

in the Behavior Definition Diagram where a primitive

behavior can be used. It can also be referred to and reused in

other behavior definitions.

ComplexBehaviourName

<<SubDiagram>>

type1 : parameter1
type2 : parameter2
…

ComplexBehaviourName

<<SubDiagram>>

type1 : parameter1
type2 : parameter2
…

Figure 8 : Complex Behavior

4.1.3 - Operators

To achieve more complex behavior, primitive behaviors can

be combined with each other (or with previously defined

behaviors) in a well-structured manner by means of

operators. Operators are graphically represented by rounded

Virtual Concept 2005 Conceptual Modeling of Object Behavior in a VE

69 -6- Copyright Virtual Concept

rectangles (see figure 9). The symbol within the rectangle

indicates the type of operator. We distinguish three types of

operators: temporal, lifetime and conditional operators.

operatoroperator expr

(a) (b) (c)

true

falseoperatoroperator expr

(a) (b) (c)

true

false

true

false

Figure 9 : Operators

The temporal operators (figure 9a) allow synchronizing

behaviors. They are based on the binary temporal relations as

defined by Allen [17].

� before(x, y, t): behavior x ends t seconds before the

behavior y starts; there is a gap of t seconds

� meets(x, y): behavior y starts immediately after the

end of behavior x

� overlaps(x, y, t): behavior y starts t seconds before the

end of behavior x; there is an overlap of t seconds

� contains(x, y, t1, t2): behavior x starts t1 seconds after

the start of behavior y and ends t2 seconds before the

end of behavior y

� starts(x, y, […]): behavior x and behavior y start at the

same moment ([…] means that more than two

behaviors can be specified)

� ends(x, y, […]): behavior x and behavior y stop at the

same moment

� equals(x, y, […]): behavior x and behavior y both start

and stop at the same moments

before
(10s)

forward
(1.5m)

right
(90°)

before
(10s)

forward
(1.5m)

right
(90°)

Figure 10 : Before operator

Graphically, these operators are specified as in figure 10. The

operator connects two behaviors by means of an arrow. The

start behavior corresponds with the x-parameter; the end

behavior corresponds with the y-parameter. The time

parameter(s) are specified between brackets at the bottom of

the operator. In figure 10 the temporal operator before is

specified between a forward move behavior (x) and a right turn

behavior (y) meaning that the move ends 10 seconds before the

turn starts.

All of these temporal operators, except for equals, have an

inverse, namely after, met-by, overlapped-by, contained-by,

started-by and ended-by. As indicated, starts, ends, and equals

can also be used in an n-ary form. The use of the n-ary

temporal operators can seriously reduce the amount of

operators that need to be used, resulting in less complex

specifications.

The lifetime operators (figure 9b) control the lifetime of a

behavior, i.e. a particular behavior can be either enabled or

disabled, and when it is enabled, it can be either active or

passive. The following lifetime operators are supported:

� enable(x, y, […]): behavior y gets enabled when

behavior x ends

� disable(x, y, […]): behavior y is disabled just after

behavior x ends; behavior y cannot be triggered

anymore until it has been enabled again

� suspend(x, y, […]): when behavior x ends, behavior

y stops operating and holds its state to be able to be

resumed later on; behavior y can only be resumed or

disabled afterwards

� resume(x, y, […]): behavior y is resumed when

behavior x ends; it allows a behavior to continue to

operate after it has been suspended; the continuation

starts where the behavior stopped upon the

suspension

Figure 11 illustrates the lifetime operator. Here, the behavior

OpenDoor (y) is enabled when the behavior UnlockDoor (x)

is finished. Note that both the OpenDoor and the

UnlockDoor behavior are complex behaviors (specified

elsewhere).

enable

OpenDoorUnlockDoor

enable

OpenDoorOpenDoorUnlockDoorUnlockDoor

Figure 11 : Enable operator

A conditional operator (figure 9c) controls the flow of

behavior. By using a conditional operator, the behavior that

will be invoked next will depend on the value of the

conditional expression that has been specified within the

operator. Conditional expressions can be built using the

standard mathematical and logical operators. Figure 12

shows an example. The figure shows (an extract of) the

‘Open’ behavior. The object first moves backward, then the

value of a parameter ‘code’ (given as a parameter to the

behavior) is compared with the value 1 and if this expression

results in a true value, the behavior ‘OpenDoor’ is executed,

otherwise, the object moves forward.

code <> 1

true

false

Open

OpenDoor

Integer: code

backward
(0.02m)

forward
(0.02m)

code <> 1

true

false

Open

OpenDoor

Integer: code

backward
(0.02m)

forward
(0.02m)

Figure 12 : Conditional operator

In general, a Behavior Definition Diagram contains an actor

together with a number of behaviors that are defined for this

actor. The behaviors of a single actor could even be spread

out over different Behavior Definition Diagrams if the

behaviors are very complex. Sometimes, when a behavior of

one actor has an influence on behaviors of other actors, it is

better to define the behavior of multiple actors in the same

diagram. An example of this is given in section 4.3.

Virtual Concept 2005 Conceptual Modeling of Object Behavior in a VE

69 -7- Copyright Virtual Concept

4.2 - Behavior Invocation

So far, we have seen the modeling constructs that can be used

for defining behavior. As explained, the definition of behavior

is done independently from the actual objects in the Virtual

Environment. To connect defined behavior to actual objects, a

second step is needed. In this step, a Behavior Invocation

Diagram is created for each Behavior Definition Diagram. A

Behavior Invocation Diagram assigns the behaviors defined in

a Behavior Definition Diagram to the actual objects.

Furthermore, it also denotes the events that may trigger the

behaviors of the objects. In this way, we also have the

interaction separated from the actual definition of the behavior

so that the same behavior can be triggered by different

interactions depending on the situation.

In this section, we will introduce the modeling concepts that

can be used in a Behavior Invocation Diagram.

4.2.1 - Concept – Instance

As was explained before, in VR-WISE, the structure of the

Virtual Environment is expressed in terms of intuitive domain

concepts and relationships between those concepts. A concept

can be compared to an object type, or a class in object-oriented

programming. It is graphically represented by a rectangle with

the name of the concept written inside (see figure 13). The

instances of concepts are the objects that are actually

populating the Virtual Environment and are represented by an

ellipse containing the name together with the name of its

concept. Concepts and instances are the main elements in the

Behavior Invocation Diagrams.

ConceptName Conceptname: InstancenameConceptName Conceptname: Instancename

Figure 13 : Concept and Instance

By assigning an actor to a concept, we couple behavior to the

concept, i.e. every instance of that concept will have all the

behaviors defined for the actor. By assigning an actor to an

instance, only that particular instance will have all the

behaviors of the actor. Concepts as well as instances can have

multiple actors being assigned. The actors that are assigned to

a concept or instance are represented inside the element by

their names enclosed in brackets (see figure 14).

Gate: FrontGate
(Door)

Figure 14 : Actor assigned to an Instance

Figure 14 represents an instance of a ‘Gate’ concept, called

‘FrontGate’. This instance has one actor assigned ‘Door’;

hence it will have all the behaviors defined for the ‘Door’

actor.

The concept and instance elements in the Behavior Invocation

Diagram are references to concepts and instances defined in

the Static Model Diagrams, the diagrams for describing the

static structure of the Virtual Environment (the description of

this type of diagram is outside the scope of this paper).

4.2.2 - Events

In our approach, behaviors are triggered by means of events.

Events are graphically represented by a hexagon with a

symbol denoting the type of event and some additional

information below the symbol. We distinguish between three

kinds of events: timeEvent, userEvent and objectEvent (see

figure 15).

Date/Time EventName EventName

(a) (b) (c)

Date/Time EventName EventName

(a) (b) (c)

Figure 15 : Events

With the timeEvent (figure 15a), the designer can specify a

time on which the behavior needs to be triggered. This time

can be given as a concrete date and time (e.g. 12/08/2005

10:30:00), a relative time (e.g. 25s after startup), or a more

extended timing schedule can be given (e.g. every day at

10:30:00). This can be specified inside the hexagon below

the symbol.

A userEvent (figure 15b) allows specifying a user action that

will trigger the behavior. A number of pre-specified user

actions are provided (OnClick (see figure 16), OnTouch,…).

Additional arguments for the event can be specified which

can then be given as parameters to the behavior.

OnClickOnClick

Figure 16 : Example "OnClick" event

Apart from the pre-specified user actions, also more

complicated user interaction techniques (e.g. menus, dialogs)

can be specified, as we will see in section 5.2. If we return to

the “Open” behavior from figure 12, a dialog could be

modeled to trigger this behavior. Selecting the “Open”

behavior from a menu that is modeled on the object would

pop-up a dialog asking the user to enter a code first. The

value given by the user is then used as the parameter when

triggering the behavior.

An objectEvent (figure 15c) is used to represent the event

that is fired when two (or more) objects in the Virtual

Environment interact with each other.

4.3 - Example: Virtual Robot

In this section, we will illustrate the modeling concepts

introduced in the previous sections, using an example from

an industrial context.

Figure 17 shows an extract of the Behavior Definition

Diagram of a virtual robot in a manufacturing plant. For an

actor, called Master, the behavior ProductionCycle is

defined. It performs the following scenario of synchronized

Virtual Concept 2005 Conceptual Modeling of Object Behavior in a VE

69 -8- Copyright Virtual Concept

movements. The object first moves forward, and then

immediately some behaviors on its parts (LeftArmMovement

and RightArmMovement) start, as well as a leftward movement.

After the forward movement is ended, it turns right and this

movement ends at the same time as the left movement.

The diagram also shows a powerOn and a PowerOff behavior

for a Control actor. These behaviors will move the Control and

enable, respectively disable, the ProductionCycle behavior of

the Master. These last actions are specified by means of the

lifetime operators enable and disable.

ProductionCycle

right
(90°)

forward
(1.5m)

meets

starts

LeftArmMovement RightArmMovement

left
(0.5m)

ends

Control

PowerOn

enable

Master

PowerOff

disable

forward
(30°)

backward
(30°)

ProductionCycle

right
(90°)

forward
(1.5m)

meets

starts

LeftArmMovement RightArmMovement

left
(0.5m)

ends

Control

PowerOn

enable

Master

PowerOff

disable

forward
(30°)
forward
(30°)

backward
(30°)

backward
(30°)

Figure 17 : Behavior Definition Diagram

After having defined the different behaviors, we can assign

them to the objects defined for the Virtual Environment. This

is done by means of the Behavior Invocation Diagram. Figure

18 shows such a Behavior Invocation Diagram. The Virtual

Environment contains four object instances: an Assembler, a

Gripper A, a Gripper B, and a Switch. The Master actor is

assigned to the Assembler instance. Hence, the Assembler will

possess the behavior defined for the Master actor

(ProductionCycle). The diagram specifies that this behavior

can be invoked by means of a user interaction (userEvent

OnClick). This means that when the user “clicks” (e.g. by a

mouse) on the Assembler this behavior will be executed. It is

visually specified using a diamond connecting the behavior,

the concept (or instance) and the event. If we now for example

want to have another interaction triggering the behavior (e.g. in

another situation), we can simply connect the object and

behavior with a different event.

When the ProductionCycle behavior is attached to an object,

also the behaviors that are causally linked (represented by the

dashed arrows) to this behavior need to be assigned to objects.

To assign behavior to Gripper A and Gripper B, the actors

RightArm, respectively LeftArm are assigned to them. For the

actors RightArm and LeftArm the behavior

RightArmMovement, respectively LeftArmMovement were

defined (not shown here). These two behaviors are invoked

by the ProductionCycle. Therefore, there are no events

needed to trigger these behaviors. The Switch instance is

given behavior by assigning the Control actor to it. As a

consequence, this instance will have two behaviors PowerOn

and PowerOff. In the diagram it is specified that both the

PowerOn and the PowerOff behavior must be invoked by a

timeEvent (at 9h00 for PowerOn and at 18h00 for the

PowerOff).

ProductionCycle

OnClick

PowerOn

Robot:Assembler
(Master)

LeftArmMovement

RobotArm:Gripper B
(LeftArm)

Lever:Switch
(Control)

PowerOff

RobotArm:GripperA
(RightArm)

RightArmMovement

09h00
18h00

ProductionCycle

OnClick

PowerOn

Robot:Assembler
(Master)

LeftArmMovement

RobotArm:Gripper B
(LeftArm)

Lever:Switch
(Control)

PowerOff

RobotArm:GripperA
(RightArm)

RightArmMovement

09h00
18h00

Figure 18 : Behavior Invocation Diagram

5- Tool Support and Integration in VR-DeMo

In the previous section, we introduced the different modeling

concepts for specifying 3D object behavior in Virtual

Environments. This section now discusses tool support and

gives an overview of the integration into the VR-DeMo

project.

5.1 – Tool Support

To support the VR-WISE approach, we developed a

prototype tool called OntoWorld. The tool enables a designer

to make the conceptual design, specify the desired mappings

and finally generate a VR application from the specifications

as described in section 3. At the moment, only code in

VRML/X3D formats is generated but in the future the tool

can be extended to generate code for other implementation

platforms as well.

For the purposes of this research, we have extended the

prototype tool with the Conceptual Specification Generator

(CSG). This is a graphical diagram editor supporting the

modeling of the behavior as described. The tool has been

implemented as an extension to Microsoft Visio [18]. The

Virtual Concept 2005 Conceptual Modeling of Object Behavior in a VE

69 -9- Copyright Virtual Concept

static structure of the Virtual Environment as well as the

behavior of its objects can be specified using the CSG. The

graphical representations of the modeling concepts discussed

in this paper can be dragged and dropped onto a canvas and

connections can be made. Properties can be added, displayed

and modified by double-clicking on the graphical

representation.

The CSG communicates with the previously developed

OntoWorld tool. Consistency between the diagrams and the

ontologies is maintained. The CSG can be considered as a

graphical interface for the specification phase (first step in the

VR-WISE approach).

5.2 – Integration into VR-DeMo

The research presented in this paper is part of the VR-DeMo

project (Virtual Reality: Conceptual Descriptions and Models

for the Realization of Virtual Environments). The project aims

at allowing designers to describe a complete Virtual

Environment (the static structure, the behavior and the

interaction), at an abstract level that is much higher than

programming code. The OntoWorld toolkit, as described in

section 5.1, has been integrated into the VR-DeMo framework

(given in figure 19).

Conceptual Specification Generator
(CSG)

OntoWorld Interaction Toolkit

Code
Framework

Code
(C++)

XML

Compiler

ECMA-
Scripts

Scene
Graph
(X3D)

XML

Run-time binary

« initialization »

« initialization »

« generates »

« communicates with »

« generates »

« source »

« linked with »

« produces »

Conceptual Specification Generator
(CSG)

OntoWorld Interaction Toolkit

Code
Framework

Code
(C++)

XML

Compiler

ECMA-
Scripts

Scene
Graph
(X3D)

XML

Run-time binary

« initialization »

« initialization »

« generates »

« communicates with »

« generates »

« source »

« linked with »

« produces »

Figure 19 : Common Framework

The VR-DeMo framework mainly consists of three major

modules: the OntoWorld tool with the CSG interface, the

Interaction toolkit and the Code framework. The OntoWorld

toolkit has already been described in section 5.1. It generates

the scene graph (in X3D) together with the scripts used for the

object behaviors and an additional XML initialization file. This

initialization file will be used in the second module, the

Interaction toolkit.

This Interaction toolkit is concerned with the high-level

modeling of the interaction and its connection to the object

behaviors [19]. Here the modeling of menu systems and dialog

boxes can be done. These can then be used to trigger the

behaviors modeled using the CSG. The Interaction module

also generates C++ source code and a number of XML

initialization files. The source code will be compiled and

linked together with the third module, the Code Framework,

into the run-time binary, implementing the VR application as

described by the designer.

The Code Framework is a repository that deals not only with

the hardware but also with code libraries and provides the

necessary support for the creation and manipulation of a

scene graph, multimodal interaction, collision detection, etc.

Finally, the binary that is generated can be executed with the

static scene and the scripts from the OntoWorld toolkit, and

the initialization files from the Interaction toolkit as its input.

The interaction part is investigated by our research partner in

this project, the Expertise center for Digital Media (EDM) in

Belgium.

6- Conclusion and future work

Our ultimate goal is to make the development of VR

application available to a much broader public. We want to

realize this by introducing an explicit conceptual design

phase in the development process of a VR application. The

use of a conceptual modeling phase with high-level modeling

concepts and in terms of domain concepts allows a better

participation of domain experts into the development of a VR

application. In this paper we have introduced the modeling

concepts developed for the specification of object behavior.

The behavior specification is split into two parts. In the first

part, the behavior definitions are specified. Here, the use of

actors allows us to define behavior independent of the actual

objects that are going to perform the behavior and

independent of the events that will trigger the behavior. In

the second part, the behavior invocations are specified. In

this part, the behaviors defined are assigned to the virtual

objects. It also specifies how the behaviors can be triggered.

A prototype tool called OntoWorld was already created to

support the overall approach. For the purpose of specifying

behavior, we build a front-end in Microsoft Visio to allow

creating the conceptual specification graphically. The

graphical notation may seriously reduce the complexity of

specifying the behavior in a Virtual Environment.

Future work will focus on extending the current set of

modeling concepts. For example, the modeling of physics, to

obtain applications with a higher degree of physical

correctness, will be investigated. We will also investigate

how to model, at a high level, constraints on behavior.

7- Acknowledgements

This research is carried out in the context of the Ontobasis

and the VR-DeMo project; both projects are funded by the

Institute for the Promotion of Innovation by Science and

Technology in Flanders (IWT). It is also partially funded by

the FWO (Fund of Scientific Research – Flanders).

Virtual Concept 2005 Conceptual Modeling of Object Behavior in a VE

69 -10- Copyright Virtual Concept

8- References

[1] Rohlf J. and Helman J. IRIS Performer: A High

Performance Multiprocessing Toolkit for Real--Time 3D

Graphics. In Proceedings of the 21st annual conference on

Computer Graphics and Interactive Techniques, Orlando -

Florida USA, pp. 381-395, 1994

[2] Murdock K.L. 3DS Max 5 Bible. Wiley Publishing

Incorporated, 2003

[3] Ames A.L., Nadau D.R. and Moreland J.L. VRML 2.0

Sourcebook. John Wiley & Sons Inc., 1997

[4] Bille W., Pellens B., Kleinermann F. and De Troyer O.

Intelligent Modelling of Virtual Worlds Using Domain

Ontologies. In Proceedings of the Workshop of Intelligent

Computing (WIC), Mexico City - Mexico, pp. 272-279, 2004

[5] Gruber T.R. A translation approach to portable ontologies.

In Journal of Knowledge Acquisition, 5(2):199-220, 1993

[6] Guarino N. and Giaretta P. Ontologies and knowledge

bases: towards a terminological clarification. In Towards Very

Large Knowledge Bases: Knowledge Building Knowledge

Sharing, N.J.I. Mars (ed.), IOS Press, Amsterdam, The

Netherlands, pp. 25-32, 1995

[7] Tanriverdi V. and Jacob R.J.K. VRID: A Design Model and

Methodology for Developing Virtual Reality Interfaces. In

Proceedings of ACM Symposium on Virtual Reality Software

and Technology, Alberta, Canada, pp. 175-182, 2001

[8] Kim G.J., Kang K.C., Kim H. and Lee J. Software

Engineering of Virtual Worlds. In Proceedings of the ACM

Symposium on Virtual Reality Software & Technology ’98,

Taipei, Taiwan, pp. 131-139, 1998

[9] Willans J.S. Integrating behavioural design into the virtual

environment development process. Phd thesis, University of

York, UK, 2001

[10] Willans J.S. and Harrison M.D. A toolset supported

approach for designing and testing virtual environment

interaction techniques. In International Journal of Human-

Computer Studies, 55(2):145-165, Academic Press, 2001

[11] Fishwick P., Lee J., Park M. and Shim H. RUBE: a

customized 2d and 3d modeling framework for simulation. In

Proceedings of the 35th conference on Winter simulation:

driving innovation, New Orleans, Louisiana, pp. 755-762, 2003

[12] Lee G. A., Kim G. J. and Park C. Modeling Virtual Object

Behavior within Virtual Environment. In Proceedings of ACM

Symposium on Virtual Reality Software and Technology

(VRST), Hong Kong, China, pp. 41-48, 2002

[13] Kallmann M. and Thalmann D. Modeling Behaviors of

Interactive Objects for Virtual Reality Applications. In Journal

of Visual Languages and Computing, 13(2):177-195, 2002

[14] Huang Z., Eliens A. and Viseer C. Implementation of a

scripting language for VRML/X3D-based embodied agents. In

Proceedings of the Web3D 2003 Symposium, Saint Malo,

France, S. Spencer (ed.) ACM Press, pp. 91-100, 2003

[15] De Troyer O., Bille W., Romero R. and Stuer P. On

Generating Virtual Worlds from Domain Ontologies. In

Proceedings of the 9th International Conference on Multimedia

Modeling, Taipei, Taiwan, pp. 279-294, 2003

[16] Valente A. and Breuker J. Towards principled core

ontologies. In Proceedings of the Tenth Knowledge

Acquisition for Knowledge-Based Systems Workshop,

Alberta, Canada, pp. 301-320, 1996

[17] Allen J.F. Maintaining Knowledge about Temporal

Intervals. In Communications of the ACM, 26(11):832-843,

1983

[18] Walker M., Eaton N.J. and Eaton N. Microsoft Office

Visio 2003 Inside Out. Microsoft Press, 2003

[19] Raymaekers C., Coninx K., De Boeck J., Cuppens E.

and Flerackers, E. High-level Interaction Modelling to

Facilitate the Development of Virtual Environments. In

Proceedings of Virtual Reality International Conference,

Laval, France, pp. 81-86, 2004

