

Chapter 9
Adapting graph visualization techniques for
the visualization of RDF data

Flavius Frasincar, Alexandru Telea, and Geert-Jan Houben

9.1 Introduction

The foundation language for the Semantic Web is the Resource Description
Framework (RDF). RDF is intended to describe the Web metadata so that the Web
content is not only machine readable but also machine understandable. In this way
one can better support the interoperability of Web applications. RDF Schema
(RDFS) is used to describe different RDF vocabularies (schemas), i.e., the classes
and properties associated to a particular application domain. An instantiation of
these classes and properties form an RDF instance. It is important to note that both
an RDF schema and an RDF instance have RDF graph representations.

Realizing the advantages that RDF offers, in the last couple of years, many
tools were built in order to support the browsing and editing of RDF data. Among
these tools we mention Protégé (Noy et al., 2001), OntoEdit (Sure et al., 2003), and
RDF Instance Creator (RIC) (Grove, 2002). Most of the text-based environments
are unable to cope with large amounts of data in the sense of presenting them in a
way that is easy to understand and navigate (Card et al., 1999). The RDF data we
have to deal with describes a large number of Web resources, and can thus easily
reach tens of thousands of instances and attributes. We advocate the use of visual
tools for browsing RDF data, as visual presentation and navigation enables users to
effectively understand the complex structure and interrelationships of such data.
Existing visualization tools for RDF data are: IsaViz (Pietriga, 2002), OntoRAMA
(Eklund et al., 2002), and the Protégé visualization plugins like OntoViz (Sintek,
2004) and Jambalaya (Storey et al., 2001).
The most popular textual RDF browser/editor is Protégé (Noy et al., 2001). The
generic modelling primitives of Protégé enable the export of the built model in
different data formats among which is also RDF/XML. Protégé distinguishes
between schema and instance information, allowing for an incremental view of the
instances based on the selected schema elements. One of the disadvantages of
Protégé is that it displays the information in a hierarchical way, i.e., using a tree
layout (Sugiyama et al., 1981), which makes it difficult to grasp the inherent graph
structure of RDF data.

In this paper, we advocate the use of a highly customizable, interactive
visualization system for the understanding of different RDF data structures. We

implemented an RDF data format plugin for GViz (Telea et al., 2002), a general
purpose visual environment for browsing and editing graph data. The largest
advantage that GViz provides in comparison with other RDF visualization tools is
the fact that it is easily and fully customizable. GViz was architected with the
specific goal in mind of allowing users to define new operations for data
processing, visualization, and interaction to support application specific scenarios.
GViz also integrates a number of standard operations for manipulation and
visualization of relational data, such as data viewers, graph layout tools, and data
format support. This combination of features has enabled us to produce, in a short
time, customized visualization scenarios for answering several questions about
RDF data. We demonstrate our approach to RDF data visualization by using a real
dataset example of considerable size.

In the next section, we describe the real-world dataset we use, and show the
results obtained when visualizing it with several existing RDF tools. Our
visualization tool, GViz, is presented in Section 9.3. Section 9.4 presents several
visualization scenarios we built with GViz for the used RDF dataset, and details
various lessons learnt when building and using such visualizations. Finally, Section
9.5 concludes the chapter proposing future directions for visualizing RDF
information.

9.2 Background

Throughout this paper, we will use an example based on real data made available
by the Rijksmuseum in Amsterdam, the largest art and history museum in the
Netherlands. In the example there is a museum schema used to classify different
artists and their artefacts. The museum instance describes more than 1000 artists
and artefacts. For comparison purposes, we chose to represent the same museum
RDFS schema in several browsing tools.

Figure 9.1 depicts the museum schema in Protégé. As can be noticed from this
figure such a text-based representation cannot nicely depict the structure of a large
amount of data. More exactly, a text-based display is very effective for data
mining, i.e., posing targeted queries on a dataset once one knows what structure
one is looking for. However, text-based displays are not effective for data
understanding, i.e., making sense of a given (large) dataset of which the global
structure is unknown to the user.

Figure 9.1 Museum schema in Protégé (text-based).

In order to alleviate the above limitation, Protégé offers a number of built-in
visualization plugins. Figure 9.2 shows the graph representation generated by the
OntoViz plugin for two classes from the museum schema. The weak point of
OntoViz is the fact that it is not able to produce good (understandable) layouts for
graphs that have more than 10 nodes.

Figure 9.2 Museum schema in Protégé (with OntoViz plugin).

IsaViz (Pietriga, 2002) is a visual tool for browsing/editing RDF models. IsaViz
uses AT&T's GraphViz package (North and Koutsofios, 1996) for the graph
layout.
Figure 9.3 shows the same museum schema using IsaViz. The layout produced by
the tool is much better than the one generated with OntoViz. However, the directed
acyclic graph layout used (Sugiyama et al., 1981) becomes ineffective when the
dataset at hand has roughly more than hundred nodes, as can be seen from Figure

9.3. IsaViz has a 2.5D GUI with zooming capabilities and provides numerous
operations like text-based search, copy-and-paste, editing of the geometry of nodes
and arcs, textual attribute browsing, and graph navigation.

Figure 9.3 Museum schema in IsaViz.

For all these reasons, we believe that IsaViz is a state of the art tool for
browsing/editing RDF models. However, its rigid architecture makes it difficult to
define application-dependent operations others than the standard ones currently
provided by the tool. Experience in several communities interested in visualizing
relational data in general, such as software engineering and web engineering, and
our own experience with RDF data in particular, has shown that tool customization
is extremely important. Indeed, there is no ‘silver bullet’ or best way to visualize
large graph-like datasets. The questions to be answered, the data structure and size,
and the user preferences all determine the ‘visualization scenario’, i.e., the kind of
(interactive) operations the users may want to perform to get insight in the data and
answers to their questions. It is not that each separate application domain demands
a specific visualization scenario. Users of the same domain and/or even the same
dataset within the same domain may require different scenarios. Building such
scenarios often is responsible for a large part of the complete time spent in
understanding a given dataset (Telea, 2004). This clearly requires the visualization
tool in use to be highly (and easily) customizable.

9.3 GViz

In our attempt to understand RDF data through visual representations, an existing
tool was used. We implemented an RDF data format plugin for GViz (Telea et al.,
2002), a general purpose visual environment for browsing and editing graph data.
The largest advantage that GViz provides in comparison with other RDF
visualization tools is the fact that it is easily and quickly customizable. One can
seamlessly define new operations to support application specific scenarios, making
thus the tool more amenable for the user needs. In the past, GViz was successfully

used in the reverse engineering domain, in order to define application specific
visualization scenarios.
Figure 9.4 presents the architecture of GViz based on four components: selection,
mapping, editing, and visualization. In the next section we describe the data model
used in GViz. Next, we outline the operation model describing the tasks that can
be defined on the graph data. We finish the description of the GViz architecture
with the visualization component which we illustrate using the museum schema
dataset.
The GViz core implementation is done in C++ while the user interface and
scripting layer were implemented in Tcl (Raines, 1998) to take advantage of the
run-time scripting and weak typing flexibility that this language provides. All the
GViz customization code developed for the RDF visualization scenarios presented
in this chapter was done in Tcl.

 Graph Data Selection Data

 Mapping

 Glyph Mapper

 Splat Mapper

 Graph Editing

 Graph Layout

Operations

 Visual Data
 Viewing
 and
 Interaction

reference

read

read

write

write read

selection/editing events

Figure 9.4 GViz architecture.

9.3.1 Data Model

The data model of GViz consists of three elements:
• graph data: this is the RDF graph model, i.e., a labelled directed multi-graph

in which no edges between the same two nodes are allowed to share the same
label. Nodes stand for RDF resources/literals and edges denote properties.
Each node has a type attribute which states if the node is a NResource
(named resource), an AResource (anonymous resource), or a Literal.
The label associated to a node/edge is given by the value attribute. The
labels for NResource nodes and edges are URIs. The label for Literals is
their associated string. The value of an AResource is an internal identifier
with no RDF semantics. Note that the type and value attributes are GViz
specific attributes that should not be confused with their RDF counterparts.
Since GViz's standard data model is an arbitrary attributed graph, with any
number of (name, value) type of attributes per node and edge, the RDF data
model is directly accommodated by the tool.

• selection data: selections are subsets of nodes and edges in the graph data.
Selections are used in GViz to specify the inputs and outputs of its operations;
their use is detailed in Section 9.3.2.

• visual data: this is the information that GViz ultimately displays and allows
the user to interact with. Since GViz allows customizing the mapping
operation, i.e., the way graph data is used to produce visual data, the latter may
assume different look-and-feel appearances. Section 9.4 illustrates this in the
context of our application.

9.3.2 Operation Model

As shown in Figure 9.4, the operation model of GViz has three operation types:
selection, graph editing, and mapping. Selection operations allow users to specify
subsets of interest from the whole input graph. In the RDF visualization scenarios
that we built with GViz, we defined different complex selections based on the
attributes of the input model. These selections can perform tasks like: “extract the
schema from an input set of RDF(S) data (which mixes schema and instance
elements)”. Custom selections are almost always needed when visualizing
relational data, since a) the user doesn’t usually want to look at too many data
elements at the same time, and b) different subsets of the input data may have
different semantics, thus have to be visualized in different ways. A basic example
of the latter assertion is the schema extraction selection mentioned above.

Graph editing operations enable the modification, creation, and deletion of
nodes/edges and/or their attributes. For our RDF visualization scenarios, we did
not create or delete nodes or edges. However, we did create new data attributes, as
follows. One of the key features of GViz is that it separates the graph layout, i.e.,
computing 2D or 3D geometrical positions that specify where to draw nodes and
edges, from the graph mapping, i.e., specifying how to draw nodes and edges. The
graph layout is defined as a graph editing operation which computes position
attributes. Among the different layouts that GViz supports we mention the spring
embedder, the directed (tree), the 3D stacked layout, and the nested layout (Telea
et al., 2002). Although based on the same GraphViz package as IsaViz, the layouts
of GViz are relatively more effective, as the user can customize their behaviour in
detail via several parameters.

Mapping operations, or briefly mappers, associate nodes/edges (containing also
their layout information) to visual data. The latter is implemented using the Open
Inventor 3D toolkit, which delivers high quality, efficient rendering and interaction
with large 2D and 3D geometric datasets (Wernecke, 1993). GViz implements two
mappers: the glyph mapper and the splat mapper. The glyph mapper associates to
every node/edge in the input selection a graphical icon (the glyph) and positions
the glyphs based on the corresponding node/edge layout attributes. Essentially, the
glyph mapper produces the ‘classical’ kind of graph drawings, e.g., similar to those
output by IsaViz. However, in contrast to many graph visualization tools, the glyph
mapper in GViz allows full customization of the way the nodes and edges are
drawn. The user can specify, for example, shapes, sizes, and colors for every
separate node and edge, if desired, by writing a small Tcl script of 10 to 20 lines of
code on the average. We used this feature extensively to produce our RDF
visualizations described in Section 9.4. The splat mapper produces a continuous
two-dimensional splat field for the input selection. For every 2D point, the field
value is proportional to the density of nodes per unit area at that point. Essentially,

the splat mapper shows high values where the graph layout used has placed many
nodes, and low values where there are few nodes. Given that a reasonably good
layout will cluster highly interconnected nodes together, the splat mapper offers a
quick and easy way to visually find the clusters in the input graph (Figure 9.9,
Section 9.4). For more details on this layout, see (Van Liere and De Leeuw, 2003).

A final way to customize the visualizations in GViz is to associate custom
interaction to the mappers. These are provided in the form of Tcl callback scripts
that are called by the tool whenever the user interactively selects some node or
edge glyph with the mouse, in the respective mapper windows. These scripts can
initiate any desired operation using the selected elements as arguments, for
example showing some attributes of the selected arguments. Examples of this
mechanism are discussed in Section 9.4.

As explained above, GViz allows users to easily define new operations. For the
incremental view of RDF(S) data, we defined operations as: extract schema, select
classes and their corresponding instances, select instances and their attributes. As
for the glyph mappers, these operations have been implemented as Tcl scripts of 10
to 25 lines of code. The usage of the custom selection, layout, and mapping
operations for visualizing RDF(S) data is detailed in the remainder of this chapter.

9.3.3 Visualization

Figure 9.5 presents the museum data schema in GViz. We use here a radial tree
layout, also available in the GraphViz package, instead of the directed tree layout
illustrated in Figure 9.3 for IsaViz. As a consequence, the structure of the schema
is easier to understand now.

Figure 9.5 Museum schema in GViz (2D).

In the above picture the edges with the label rdf:type are depicted in blue.

There are two red nodes to which these blue edges connect, one with the label
rdfs:Class and the other with the label rdf:Property, shown near the
nodes as balloon pop-up texts. We chose to depict the property nodes (laid out in a
large circular arc around the upper-left red node) in orange and the class nodes
(laid out in a smaller circle arc around the lower-right red node) in green. As it can
be noticed from the picture there are a lot of orange nodes which is in accordance
with the property-centric approach for defining RDFS schemas. In order to express
richer domain models we extended the RDFS primitives with the cardinality of
properties, the inverse of properties, and a media type system. These extensions are
showed in yellow edges (see also below) and yellow spheres (positioned at the
right end of the image). The yellow edges that connect to orange nodes represent
the inverse of a property. The yellow edges that connect an orange node with the
yellow rectangle labeled “multiple” (positioned at the middle of the figure bottom)
state that this property has cardinality one-to-many. The default cardinality is one-
to-one. Note that there are not many-to-many properties as we had previously
decomposed these properties in two one-to-many properties. The three yellow
spheres represent the media types: String, Integer, and Image. The light gray thin
edges denote the domain and the range of properties. Note that only range edges
can have a media node at one of its ends. As these edges are a) not so important for
the user and b) quite numerous and quite hard to lay out without many overlaps, we

chose to represent them in a visually inconspicuous way, i.e., make them thin and
using a background-like, light gray color.

The tailoring of the graph visualization presented above is only one example.
One can define some other visualizations depending on ones needs. Figure 9.6
presents a 3D view of the same museum schema example. Here, we used a spring
embedder layout, also available from the GraphViz package, to position all schema
nodes in a 2D plane. Next, we designed a custom operation that selects the two
rdfs:Class and rdf:Property nodes and offsets them away from the 2D
layout plane, in opposite directions. This creates a 3D layout, which allows the user
to better distinguish the different kinds of edges. For example, the edges labeled
rdf:type (colored in blue) are now clearly separated, as they reach out of the 2D
plane to the offset nodes.

Figure 9.6 Museum schema in GViz (3D).

9.4 Applications

In order to better understand the context in which we developed our visualization
applications we now briefly describe the Hera project (Vdovjak et al., 2003). Hera
is a methodology for designing and developing Web Information Systems (WISs)
on the Semantic Web. All the system specifications are represented in RDFS. For
the scope of this paper it is important to have a look at two of these specifications:
the conceptual model (domain model) and the application model (navigation
model).

The conceptual model describes the types of the instances that need to be
presented. An example of the conceptual model we already saw in Figure 9.5. A
conceptual model is composed of concepts and concept properties. There are two
kinds of concept properties: relationships (properties between concepts) and
attributes (properties that refer to media types).

The application model defines the navigation over the data, i.e., a view on the
conceptual model that contains appropriate navigation links. The application model
is an overlay model over the conceptual model, a feature exploited in the definition

of the transformations of the conceptual model instances into application model
instances. An application model is composed of slices and slice properties. A slice
contains concept attributes (not necessarily from the same concept) as well as other
slices. There are two kinds of slice properties: compositional properties
(aggregations) and navigational properties (links). The owner relationship is used
to associate a slice to a concept. Each slice has a title attribute related to it.

A conceptual model instance and an application model instance are represented
in RDF (which should be valid according to the corresponding RDFS
specifications, i.e., the conceptual model and the application model, respectively).
In the WIS application it is only the application model instance that will be visible
to the user.

We consider now four types of RDF(S)-related visualization scenarios that are
relevant in the support of the WIS application designer:

• conceptual model visualization
• conceptual model instance visualization
• application model visualization
• application model instance visualization

In Section 9.3.3 we already showed how one can visualize conceptual models.
A second similar scenario for the conceptual model visualization is described next.

9.4.1 Conceptual Model Visualization

The conceptual model visualization enables one to better understand the structure
of the application’s domain. It answers questions like: what are the concepts?, what
are the properties?, what are the relationships between concepts and properties?
what are the most referenced concepts?, what are the most referenced media
types?, etc.

Figure 9.7 shows the extracted schema from an RDF file that contains both the
schema and its associated instance. The extraction is done by a custom selection
operation, as described in Section 9.3.2. The picture is very similar to the one from
Figure 9.5. However, there are two differences between this picture and the one
from Figure 9.5. First, we now use a different layout, i.e., a spring embedder
instead of a radial tree. Secondly, we now depict also the direction of the edges.
The edges are fading out towards the start node. A direction effect is created: the
edges get brighter as they approach the end node. We found this representation of
the edge direction much more effective than the arrow representation when
visualizing large graphs, as the drawing of arrows produces too much visual clutter
in this case. Moreover, the edge fading glyph is faster to render than an arrow
glyph, as it involves a single (shaded) line primitive.

From Figure 9.7 we can deduce that the most used media type is String (the
text-based descriptions are the most popular for this domain specification) and the
most referenced concept is the Artefact (it has the most relationships). Each
artefact is classified by some museum terms (e.g., Self Portraits). There is a
hierarchy of museum terms, terms are grouped in broader terms (e.g.,
Portraits), and broader terms are grouped in top terms (e.g., Paintings).

Figure 9.7 Museum extracted conceptual model.

9.4.2 Conceptual Model Instance Visualization

The conceptual model instance visualization answers questions like: what are the
instances of a certain concept?, what are the relations between two selected
concept instances?, what are the most referenced instances?, what are the attributes
of a selected instance?, etc.

In most of the encountered situations, there are (much) more concept instances
than concepts. For example, our museum dataset contains tens of thousands of
instances. It is easy to imagine other applications where this number goes up to
hundreds of thousands, or even more. Drawing all these instances simultaneously
is neither efficient nor effective. Indeed, no graph layout we were able to test could
produce an understandable image of an arbitrary, relatively tightly connected
graph with tens of thousands of nodes in a reasonable amount of time (e.g., tens of
seconds). In order to keep the instance visualization manageable, we decided for an
incremental view scenario on the RDF(S) data. First, the user selects the subpart of
the schema for which he wants the corresponding instances to be visualized. Next,
we use a custom interaction script (Section 9.3.2) of about ten lines of code to
separately visualize the instances of the selected items. For example, when the user
selects the Artist and Artefact concepts from Figure 9.7, the GViz tool
automatically shows the instances of these concepts and their relations in another

window, using a spring embedder layout (Figure 9.8). In Figure 9.8 we used a
custom glyph mapper to depict the artefacts with blue rectangles and the artists
with green rectangles. The relations between these instances are represented by
fading white edges. One can note that there are more artefacts than artists, as
expected.

Figure 9.8 Artists/artefacts properties in the conceptual model instance.

Figure 9.9 shows the same selected data (artists and artefacts) but using a splat

mapper instead of the classical glyph mapper. The scalar density function (splat
field) is constructed as outlined in Section 9.3.2. We visualize the splat field using
a blue-to-red colormap that associates cold hues (blue) to low values and warm
hues (yellow, red) to medium and high values. Figure 9.9 (left) shows the splat
field as seen from above. Figure 9.9 (right) shows the same splat field, this time
visualized using an elevation plot that shows high density areas also by offsetting
these points in the Z (vertical) direction. A red/yellow color (Figure 9.9 left and
right) or a high elevation point (Figure 9.9 right) indicate that there are a lot of
relations for a particular instance or group of instances. In this way one can notice
from Figure 9.9 which are the artists with the most artefacts. The artists with the
most artefacts are the unknown artists (potter, goldsmith, bronzesmith, etc.) that
show up as the singular peak in the left of Figure 9.9 (left). On the average, these
artists have several tens (up to 60) artefacts. They are followed by Rembrandt and
the unknown painters, who show up as the other two higher peaks to the right of
Figure 9.9 (left). This can be explained by the fact that in the 17th century, for
which the Rijksmuseum has a special focus, there were a lot of artefacts done by
unknown artists.

Figure 9.9 Conceptual model instance splatting (left: 2D; right: elevation plot).

We have further customized our visualization scenario, as follows. When the
user selects one instance of Figure 9.8, we use a custom interaction script on the
mapper of Figure 9.8 to pop up another window to display the instance attributes.
The selected instance is shown as having the balloon pop-up label in Figure 9.8.
Figure 9.10 shows the attributes of the selected instance, in this case Rembrandt:
the painter’s year of birth, year of death, first name, etc.

Figure 9.10 Attributes of a selected concept instance.

9.4.3 Application Model Visualisation

The application model visualization enables one to better understand the navigation
structure of a hypermedia presentation. It answers questions like: what are the
application model slices?, what are their links?, what are the slice owners?, what
are the slice titles?, what slices are navigation hubs?, what are possible navigation
paths from a certain slice?, etc.

Figure 9.11 depicts the application model for the museum example. We chose
to present here the top-level slices (slices that correspond to web pages) and the
links between them in order to decrease the complexity of the picture. A new glyph
shape was designed in order to represent the pizza slice shape for slices (as defined
in the application model’s graphical representation language). The blue thick edges
represent links between slices. Each slice has associated with it two attributes. We
use a custom layout to place these nodes right above the top of the slice node. The
slice nodes themselves are laid out using the spring embedder already discussed
before. The two attributes of each slice are visualized by using two custom square
glyphs, as follows: the yellow glyph (left) stands for the name of the slice and the
green glyph (right) denotes the concept owner of the slice (remember that the
concept owner is a concept from the conceptual model). In the center of the picture
is the Slice.artefact.main slice which has the most links associated with
it, i.e., it is a navigation hub. The figure also shows the designer’s choice to present
the museum information based of the terms hierarchy: top terms, broader terms,
and terms.

Figure 9.11 Museum application model.

9.4.4 Application Model Instance Visualisation

The application model instance visualization answers questions like: what are the
instances of a certain slice?, what are the slice instances reachable from a certain
slice instance?, what are the most referenced slice instances?, what are the
attributes of a selected slice instance?, etc.

As there are more slice instances than slices, in order to keep the visualization
manageable we used the same visualization scenario as for conceptual model
instances, i.e., to use incremental views. The user can select from the mapper in
Figure 9.11 the slices for which he wants the corresponding instances to be
visualized. For example, after selecting the Slice.topterm.main,
Slice.broaderterm.main, and Slice.term.main slices from Figure
9.11, we use the same mechanism of a custom interaction script (Section 9.3.2) to
pop up another window that shows the instances of these slices and their associated
links. Figures 9.12 and 9.13 show the corresponding slice instances, as described
below.

Figure 9.12 Broader term slice instances accessible from the Paintings slice instance (one step).

For the visualizations in Figures 9.12 and 9.13, we use yellow sphere glyphs for

nodes labelled Slice.topterm.main, green sphere glyphs for nodes labelled
Slice.broaderterm.main, and blue rectangle glyphs for nodes labelled
Slice.term.main. The chosen colors and shapes are motivated by the need to

produce an expressive, easy to understand picture when presenting a large number
of instances coming from three slices linked in a hierarchical way, as follows. We
did give up the pizza slice glyph for these visualizations as we found out that this
glyph produces too much visual clutter for large graphs. Next, we chose colors of
increasing brightness (blue, green, and yellow) to display items of increasing
importance (terms, broader terms, and top terms, respectively). The size of the
glyphs used for these items also reflects their importance (the top term glyphs are
the largest, whereas the term glyphs are the smallest). A final significant cue is the
shape: the more important top and broader terms are drawn as 3D shaded spheres,
whereas the less important terms are drawn as 2D flat squares. For the edges
connecting these glyphs in the visualization, we used a varying color and size
scheme that varies both line color and line thickness along the edge between the
end nodes’ colors and sizes respectively. Summing up, the combination of above
choices produces a visualization where the overall structure of top terms and
broader terms ‘pops’ into the foreground, whereas the less important terms and
their links ‘fade’ into the background. As a comparison, we were unable to get the
same clear view of the structure by just varying the layout parameters and using the
same glyph for all nodes.

After selecting the slice instance corresponding to the Paintings top term,
we obtain in Figure 9.12 the broader term slice instances accessible after one step,
showed in red. By this, we mean the terms that a user of the web site (whose
design our dataset captures) can access after one navigation step. This translates to
nodes which are directly connected (via an edge) to the selected slice instance in
our RDF dataset. In Figure 9.13 we visualize the term slice instances accessible
from the same Paintings top term instance slice after two steps, also drawn in
red. These correspond to web pages that the user of the web site can access after
two navigation steps. An example for the second step is the navigation from the
broader term Portraits. Using such a visualization scenario one can view
which are the slice instances reachable from a selected slice instance after a certain
number of navigation steps.

Figure 9.13 Term slice instances accessible from the Paintings slice instance (two steps).

9.5 Future Work

In the future, we would like to explore the GViz 3D visualization capabilities for
RDF data, possibly getting an even better insight into the data structure. Another
research direction would be to use GViz in conjunction with a popular RDF query
language (like RQL for example). Our purpose is here twofold: to use the RDF
query language as a selection operation implementation for GViz when visualizing
RDF data and to support the RDF query language with the visualization of the
input and resulted set of RDF data. Finally, as it is planned in the Hera project to
use OWL instead of RDF for the future input data/design specifications we would
like also to conduct visualization experiments on the more semantically rich OWL
data.

9.6 Summary

In this chapter we have shown how a general purpose graph visualization tool,
GViz, can be used for the visualization of large RDF graphs produced from real-
world data. All experiments were performed in the context of the Hera project, a
project that investigates the designing and developing of Web Information Systems
on the Semantic Web. The visualization of large amounts of RDF input data and
RDF design specifications enabled us to answer complex questions about this data
and to give an effective insight into its structure.

Several ingredients were crucial for obtaining these results. First, the amount of
customizability of the GViz tool (layouts, selections, node and edge drawing,
choice between glyph and splat mappers, and custom user interaction) was
absolutely necessary to produce the desired visualization scenarios. We found all
these elements to be necessary to create the desired results. We have actually
experimented with customizing just the layout but not the glyphs and/or the
interaction. In all cases, the results were not flexible enough to give the users the
desired look-and-feel that would make the scenario effective for answering the
relevant questions. Secondly, the script-based customization mechanism of GViz
allowed a user experienced with Tcl scripting to produce the scenarios described
here (which were imagined by a different user, inexperienced with Tcl) in a matter
of minutes. Thirdly, we found that using several visual cues (shape, color, size, and
shading) together to enhance a single attribute, as for example described in Section
9.4.4, is much more effective than using a single cue. Finally, we mention that
none of the investigated RDF visualization tools (Section 9.2) showed the high
degree of customization of GViz needed for our scenarios.

9.7 Acknowledgements

The authors would like to thank the Rijksmuseum in Amsterdam for their kind
permission to use copyrighted data in our running example. We also wish to thank
our colleagues Lloyd Rutledge and Lynda Hardman, from CWI, Amsterdam, for
helpful discussions.

9.8 References

Card S, Mackinlay J, Shneiderman B (1999) Readings in Information Visualization. Morgan Kaufmann.
Eklund P W, Roberts N, Green S P (2002) OntoRama: Browsing RDF Ontologies using a Hyperbolic-

style Browser. The First International Symposium on CyberWorlds (CW2002), pp.405-411, Theory
and Practices, IEEE CS Press.

Grove M (2002) RDF Instance Creator (RIC) for the MIND-SWAP Project. Available online from
http://www.mindswap.org/~mhgrove/RIC/RIC.shtml.

North S C, Koutsofios E (1996), DOT and NEATO User’s Guide. AT&T Bell Labs Reports.
Noy N F, Sintek M, Decker S, Crubezy M, Fergerson R W, Musen M A (2001) Creating Semantic Web

Contents with Protege-2000. IEEE Intelligent Systems, 16(2):60–71.
Pietriga E (2002) Isaviz: a Visual Environment for Browsing and Authoring RDF Models. The Eleventh

International World Wide Web Conference (WWW2002), Developer’s Day.
Raines P (1998) Tcl/Tk Pocket Reference. O’Reilly & Associates.
Sintek M (2004) OntoViz Tab: Visualizing Protégé Ontologies. Available online from

http://protege.stanford.edu/plugins/ontoviz/ontoviz.html.
Storey M-A D, Musen M, Silva J, Best C, Ernst N, Fergerson R, Noy N (2001) Jambalaya: Interactive

visualization to enhance ontology authoring and knowledge acquisition in Protégé. Workshop on
Interactive Tools for Knowledge Capture (K-CAP-2001).

Sugiyama C, Tagawa S, Toda M (1981) Methods for Visual Understanding of Hierarchical Systems.
IEEE Transactions of System, Man, and Cybernetics, 11(2):109-125.

Sure Y, Angele J, Staab S (2003) OntoEdit: Multifaceted Inferencing for Ontology Engineering.
Journal on Data Semantics, LNCS 2800, pp. 128-152, Springer.

Telea A, Maccari A, Riva C (2002) An Open Toolkit for Prototyping Reverse Engineering
Visualization. IEEE EG Symposium on Visualization (VisSym’02), pp. 241–250, The Eurographics
Association.

Telea A (2004) An Open Architecture for Visual Reverse Engineering. Managing Corporate
Information Systems Evolution and Maintenance, pp. 211-227, Idea Group Inc.

Van Liere R, De Leeuw W (2003) GraphSplatting: Visualizing Graphs as Continuous Fields. IEEE
Transactions on Visualization and Computer Graphics, 9(2):206-212, IEEE CS Press.

Vdovjak R, Frasincar F, Houben G J, Barna P (2003) Engineering Semantic Web Information Systems
in Hera. Journal of Web Engineering (JWE), 2(1-2):3-26, Rinton Press.

Wernecke J (1993) The Inventor Mentor: Programming Object-Oriented 3D Graphics. Addison
Wesley.

