
Transparent Mobile Querying of online RDF sources

using Semantic Indexing and Caching

William Van Woensel
1
, Sven Casteleyn

2
, Elien Paret

1
, Olga De Troyer

1

1 Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium

{William.Van.Woensel, Elien.Paret, Olga.Detroyer}@vub.ac.be
1 Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Sven.Casteleyn@upv.es

Abstract. Due to advancements in mobile technology and connectivity, mobile

devices have become fully-fledged web clients. At the same time, more and

more Semantic Web data is becoming available, to a point where it becomes

usable for various mobile application scenarios. However, most applications are

limited to using pre-defined query endpoints in order to access Semantic Web

data, which leaves a huge part of the Semantic Web, consisting of online RDF

files and semantically annotated websites, inaccessible. In this paper, we

present a mobile query service for the efficient and transparent querying of

large amounts of small online RDF sources. In order to achieve this, the query

service relies on two key components: 1/ a lightweight semantics-based

indexing scheme, to identify sources relevant to posed queries, and 2/ a caching

mechanism that locally stores frequently-used data.

1. Introduction

The Semantic Web has evolved greatly in its ten-year existence. With the building

blocks (i.e. RDF(S), OWL and SPARQL) already in place for some years, and mature

and reliable software becoming widespread (e.g. Jena, Sesame, Virtuoso), we are now

finally seeing increasing amounts of semantic web data becoming available online.

The Linked Data initiative has fostered the deployment and interconnection of large

semantic datasets, covers various domains and currently amounts up to 4.5 trillion

triples. The so-called lightweight Semantic Web, where existing (X)HTML content is

annotated using semantic annotation languages (e.g. RDFa, microformats), is also

growing. According to Yahoo! BOSS, currently close to 955 million websites make

use of RDFa. These RDFa annotated websites represent semantic sources in their own

right, as RDF triples can be extracted from their annotations.

In a parallel evolution, the performance and screen resolution of mobile devices

has steadily increased, up to a point where they are capable of supporting common

software applications (e.g. organizer, mail client, Web browser). Combined with the

widespread availability of wireless networks and affordable high-speed transmission

rates for mobile phone networks, these mobile devices have become fully-fledged,

(quasi-)permanently connected Web clients. Their use has become prevalent, and it is

estimated that mobile Internet access is to surpass desktop access by 20141.

Therefore, a key factor in the realization of the Semantic Web is realizing efficient

mobile access to its data. In various mobile application settings, the management,

access and integration of local and remote semantic data is already of paramount

importance. Examples include context-aware service discovery [1], mobile

augmented reality [2], mobile personalization [3], context-aware systems [4] and

mobile social applications [5]. Most existing mobile Semantic Web applications gain

access to remote RDF(S) datasets via their exposed SPARQL query endpoints,

allowing efficient access to online datasets without straining the mobile device.

However, it requires a considerable effort to set up a query endpoint, as none of the

existing solutions (e.g. OpenLink Virtuoso, Sesame Server) work out-of-the-box and

require substantial setup time. In practice, only major data providers make query

endpoints available; smaller online RDF sources are mostly put online as semantic

documents (i.e. RDF files). Sindice, a lookup index for the Semantic Web, currently

indexes around 246 million of such online semantic documents. This means that a

huge part of the Semantic Web, consisting of online RDF files and semantically

(RDFa) annotated websites, is currently unavailable to mobile clients.

We present a client-side query service that can be employed by mobile applications

to transparently and efficiently query large amounts of small online RDF sources.

This service is built on top of an existing mobile query engine (such as androjena2 or

RDF On the Go [6]) to locally query RDF(S)/OWL data. In order to achieve efficient

access on mobile devices, with limited processing power and storage space, the query

service relies on two key components: 1/ a lightweight indexing scheme, to identify

sources relevant for a particular query based on semantic source metadata (i.e.

occurring predicates, subject and object types), and 2/ a caching mechanism that

locally stores frequently-used data. We evaluate different variants of each component,

and discuss their respective advantages and disadvantages. We also compare the

performance of the query service to that of the native mobile query engine.

2. General approach

As mentioned in the introduction, we focus on providing query access to the huge

set of online RDF files and semantically annotated websites. Evidently, it is not

possible to consider the entire dataset in existence. Instead, we focus on a selection of

this data, as typically required by a certain type of mobile applications, such as

semantic context-aware systems [4] or mobile social applications [5]. This querying

scenario has its own set of challenges for efficient access. One challenge is to identify

sources from this dataset that contain information relevant for a posed query, with a

high degree of selectivity. This way, sources irrelevant for the current query can be

excluded, keeping the final dataset to query smaller and manageable, and therefore

1 http://www.morganstanley.com/institutional/techresearch/pdfs/Internet_Trends_041210.pdf
2 http://code.google.com/p/androjena/

the overall query execution time lower. To achieve this, we build and maintain an

index containing metadata about datasources. A second challenge is that, once

obtained, source data should be cached locally for efficient access and later re-use.

The caching of data is paramount in our setting, because of the overhead of obtaining

query-relevant data; every datasource that may contain some query-relevant

information needs to be downloaded in its entirety. Naturally, the amount of cached

data will be limited due to the space restrictions on mobile devices.

Our approach consists of two phases: the indexing phase and the query phase. An

overview of these two phases can be found in fig. 1. In the indexing phase, references

to new online RDF sources are received from the application (a.1). In our evaluation

(see section 5), this application is a context-aware component called SCOUT [4],

which identifies datasources related to physical entities in the user’s vicinity (e.g. by

reading URLs from RFID tags near the entities). The Source Manager downloads

these sources, and extracts metadata on their content (a.2). Our approach focuses on

semantic metadata, namely used predicates, subject and object types. This metadata is

then added to our index, called the Source Index Model (SIM), along with the URL of

its origin source (a.3). Finally, once the source has been indexed, it is passed to the

cache component, which locally caches the source data (a.4).

Fig. 1. (a) Indexing phase (b) Query phase

The query phase is triggered whenever the application poses a new query to the

query service (b.1). Firstly, the Query Handler analyzes the query and extracts

metadata, i.e. used predicates, subject and object types, from the query (b.2). This

query metadata is passed to the SIM, which matches it to the extracted metadata of

the indexed sources, and returns references to the sources containing query-relevant

information (b.3). Based on these source references, the Source Manager then obtains

the required source data (b.4), ideally retrieved from local cache (b.5), or else by re-

downloading the corresponding online sources (b.6). Once all source data is obtained,

it is combined in one dataset (b.7) on which the query is executed (b.8). After query

execution, the results are returned (b.9) to the application. Finally, the cache is

updated with the downloaded source data (b.10). In the following sections, we

elaborate on the two major parts of our approach, namely indexing and selection of

relevant of sources, and the local caching of source data.

3. Indexing and selecting sources

Our practical experience (comfirmed in our experiments, see section 5) shows that

executing a query over large sets of datasources is problematic on a mobile device.

For one, querying very large datasets slows down query execution time. Also, the

entire dataset to query needs to be kept in memory for fast querying, leading to out-

of-memory exceptions for even relatively small amounts of sources (around 400

sources with total size of 67Mb). As a result, we aim to keep the dataset to be queried

(called the query dataset) as small as possible. We achieve this by keeping metadata

from online datasources in the Source Index Model (SIM); posed queries are analyzed

and matched to this source metadata, allowing us to rule out sources irrelevant to the

query. Afterwards, the query is executed on the reduced dataset.

Our indexing mechanism needs to comply with certain requirements, related to our

mobile, volatile setting. Because we are dealing with mobile devices, we must firstly

minimize the required storage space and computational effort for the index.

Additionally, in our mobile setting, the query service may receive references to new

datasources at any time (e.g. a context-aware system passing data related to the

surroundings of the user), meaning the index must be updateable on-the-fly.

Therefore, we require a lightweight index that is quick to construct and maintain, and

requires minimal space (for optimal performance, the index should fit into volatile

memory). At the same time, the index should still guarantee a high selectivity (in

other words, filter large amounts of irrelevant sources), in order to reduce the query

dataset. We elected for a compact index storing semantic metadata on datasources;

namely, the found predicates together with their subject/object types3. This metadata

can be efficiently obtained and does not require a lot of storage space (compared to

other types of metadata, see related work), making it lightweight. Furthermore,

predicates and subject/object type restrictions are often specified in queries, allowing

for a high source selectivity (as also shown by our evaluation, see section 5).

Therefore, it also complies with the second requirement.

During our evaluation, we compared three variants of the SIM: the first variant

(SIM1) stores the found predicates; SIM2 stores the predicates together with their

subject types; and SIM3 keeps the found predicates together with their subject and

object types. Note that although the two latter variants store additional metadata, they

still support queries with unspecified subject and/or object types. In our evaluation

section, we compare the different SIMs to study the trade-off between source

selectivity on the one hand, and computational and storage overhead on the other.

We can now make some steps in the two general phases of fig. 1 more concrete. In

the first phase, the indexing phase, the required metadata is extracted using a

predefined SPARQL extraction query (a.2). The metadata is then stored in one of the

SIM variants, which are implemented using a collection of hashtables. In the query

phase (see fig. 1b), the query is analyzed and the same kind of metadata is extracted

from the query (b.2) using the SPARQL Parser library4. Finally, RDF triples are

extracted from RDFa-annotated websites by using a ported version of java-rdfa5.

3 We currently consider resource types on a per-source level.
4 http://sparql.sourceforge.net/
5 https://github.com/shellac/java-rdfa

4. Caching of source data

The local caching of source data occurs during the indexing phase, when the source

data is passed to the cache after SIM metadata extraction (see fig. 1.a.4), and at the

end of the query phase, where the cache may be updated with source data in case of a

cache miss (see fig. 1.b.10). Depending on the popularity of the cached data (decided

by the used replacement function), some of the cache data will be kept in-memory,

while other data will be stored persistently or removed. Since the metadata of

removed sources is kept in the SIM, these can still contribute to a posed query;

however, they will need to be re-downloaded in case they are required.

In a mobile setting, huge amounts of data can be aggregated after a while.

Although it can be argued that modern mid-to high-range mobile devices have ample

persistent native storage (e.g. the iPhone is available with 16 and 32 GB of storage),

users are probably not keen on spending a large portion to store caching data. By

applying a replacement (or removal) function, data is removed from the cache that is

not likely to be required in the future. A lot of work has been done concerning

replacement strategies specifically meant for location-aware systems (see related

work). As our query service does not target one particular type of application, we

currently rely on the generic Least Recently Used (LRU) replacement policy; further

experimentation with other replacement policies is considered future work.

As was the case for the SIM, the cache needs to comply with certain requirements.

Firstly, in order to reduce the query dataset and thereby the overall execution time, a

sufficiently fine-grained level of storage and retrieval is needed. Secondly, only a

small amount of additional data (e.g. indices such as B+-trees, hashtables) should be

kept; ideally, this data should fit in volatile memory (16MB on the Android platform).

This is needed to avoid frequent swapping with persistent storage that causes

performance loss. Thirdly, it must be possible to add data and update the cache in a

quick and efficient way, as data needs to be added on-the-fly on mobile devices with

limited computational capabilities. Finally, as for any cache, we must consider the

validity of the data in our cache, and ensure data freshness. In the sections below, we

discuss the cache organization and cache validity in more detail, and highlight how

they comply with the aforementioned requirements.

4.1. Cache organization

The source data kept in the cache can be organized in different ways, influencing the

efficiency and fine-grainedness of cached data retrieval, and the cache construction

and update cost. A natural choice for cache organization is to organize the cached

triples via their origin source (this organization is called source-cache). In this

organization, a cache element (or cache unit) corresponds to a downloaded

datasource. The cache contains a search index on the source URI of the cached

sources, so specific sources can be quickly retrieved. This organization fulfills our

second requirement (i.e. minimal additional space overhead) as only one index is kept

with a relatively small amount of index entries. Also, the third requirement (i.e.

efficient add and update) is met, as the source is simply stored as a single cache unit.

However, this organization does not comply with the first requirement, as it does not

allow for fine-grained selection of cached source data; it returns all triples from a

cached source, instead of only the triples relevant for a given query. Although such

coarse-grained retrieval is unavoidable when dealing with online RDF files or RDFa

annotated webpages (i.e. they can only be downloaded as a whole), this can be

improved upon when dealing with locally stored data.

An alternative choice is to organize the triples according to their shared metadata

(called meta-cache). This metadata, as was the case for the Source Index Model,

includes predicate and subject/object types. For fast retrieval, indices are created on

predicates, subject and object types. In this organization, a cache unit contains triples

sharing the same metadata (e.g. certain predicate and subject type). This organization

allows data to be obtained in a more fine-grained way, as only units with metadata

matching the extracted query metadata are retrieved. As such, it complies with our

first requirement, i.e. fine-grained storage and retrieval of source data. However, this

comes with an additional computational overhead. Firstly, the metadata of the source

triples needs to be extracted for each source; secondly, adding the extracted source

data to the cache becomes more expensive, as several cache units may need to be

updated for a single source (i.e. all units with metadata matching the found predicates,

subject and object types). Furthermore, this organization requires three indices with

considerable more index entries compared to the source-cache. Finally, each cache

unit should also keep the origin source URIs of the triples it contains, to support

validity checking (see following section) and to identify sources that need to be re-

downloaded, in case this unit is removed and referenced again in the future (i.e. cache

miss). Because of these reasons, the fulfillment of the second requirement (i.e.

minimal additional storage overhead) and third requirement (i.e. efficient add and

update) is tentative. However, meta-cache still has a much lower overhead than the

storage and computionally demanding indices traditionally employed to speed up

access to RDF data on mobile devices (see related work). We tested both cache

organizations in our evaluation, checking how this computational and storage

overhead compares to the reduction in data to be retrieved, combined and queried.

We can now again make some of the steps in the general two phases more

concrete. For meta-cache, predefined SPARQL extraction queries are employed

whenever new source data is added to the cache, in order to extract triples together

with their metadata from downloaded sources. When retrieving data from meta-cache

(see fig. 1.b.5,), the SPARQL Parser library is again employed to extract metadata

from the query, to be matched to the metadata indices. In both source-cache and meta-

cache, the indices are implementated as hashtables.

4.2. Cache validity

Extensive invalidation strategies already exist to efficiently detect invalid data items

in traditional client-server architectures and mobile settings. In our setting however,

the cached data originates from online RDF files (and annotated websites) stored on

general-purpose HTTP webservers, instead of dedicated servers. Therefore, we need

to rely the cache support features of HTTP (typically used by proxy caches) to check

the validity of cache items. We utilize both the server-specified expiration times (via

the expires or Cache-Control: max-age header fields) and conditional requests for

files (using the Last-Modified header field) to verify validity of cache units.

To manage the validity of cached data, we need to keep information on the origin

source of the cached information, as well as expiration information (i.e. expiration

time, or last download time). In source-cache, where all data from a certain source is

stored in a single cache unit, we keep this provenance and expiration information per

cache unit. For meta-cache, where cache units contain triples from various sources,

we also chose to store origin information per cache unit. To avoid duplicating

expiration data, we keep a separate data-structure that stores the expiration

information for each source. In case source data requires updating, the source is

downloaded and re-indexed, replacing all outdated data from that source in the cache.

5. Experiments

Our experiments have been designed to evaluate the two major parts of our

approach. For the first part, the three different SIM variants are compared. In this part,

we store all downloaded datasources locally in a cache of unlimited size, to avoid

cache interference. For the second part, we employ the best performing SIM variant

when comparing the two cache organizations discussed in section 4.1, namely source-

cache (i.e. based on origin source) and meta-cache (i.e. based on metadata).

We validate our solution in the application field of context-aware mobile

applications using the SCOUT [4] framework. SCOUT gradually discovers physical

entities in the user’s vicinity, and offers application developers a query-able view of

the user’s physical environment by combining information from a variety of online

RDF(S) sources describing these detected entities. To manage this data and provide

efficient query access, SCOUT makes use of the developed query service. In our

architecture, SCOUT fulfills the role of the application component (see fig. 1.a),

gradually providing new source references to the Source manager over time.

Both SCOUT and the developed query service are based on Android OS 2.2. We

employ a fine-tuned version of the androjena library to access, manipulate and query

RDF data on the mobile device. The experiments were performed on a Samsung

Galaxy S with a 1 GHz processor and 512 MB RAM memory. A total number of

2500 datasources is employed in the experiments6, with total size of 477Mb and

average size of around 195 Kb. These sources were partly obtained from real-life

datasets (e.g. IMDB data), and complemented with generated data, using random

resource types and predicates from both selected well-known ontologies (e.g. geo,

travel or SUMO) and from proprietary ontologies. In order to reflect a real-world

situation, different properties and types reflecting the same concepts (e.g. absolute

coordinates) were randomly used. The datasources were distributed across three

different web servers with different response times. Finally, we extracted five types of

queries from existing mobile SCOUT applications [3, 4] to evaluate the performance

of the query service. We give two examples of these queries in listing 1.

6 The used dataset and queries can be found at http://wise.vub.ac.be/SCOUT/WISE2011/.

Listing 1. Two employed validation queries.

5.1. Indexing and selecting sources

Firstly, we measure the overhead in size and time for maintaining the SIM during the

indexing phase, as the application passes source references to the Source Manager

(see fig. 1.a.1). Table 1a shows the total size of the different SIM variants, for

increasing portions of the total dataset (625-1250-2500 sources). The table also shows

how this size compares to the total size of the indexed sources. The computational

overhead to create the SIM is shown in table 1b, and includes the average times of

downloading a source, extracting the required metadata, and updating the SIM.

Table 1. (a) Size overhead (Kb) (b) Computational overhead (ms)

Table 2a illustrates the selectivity of each SIM variant for our 5 sample queries, by

showing the number of identified relevant sources. For brevity, we only show the

results for the total dataset of 2500 sources. In table 2b, we show the corresponding

overall query execution time over the collected set of datasources. This includes the

times required for query analysis, SIM access, data collection, and query execution.

Note that SIM1 fails with out-of-memory error for all but the first and third queries; in

the case where no SIM is used (i.e. native query engine performance) the same error

occurs for any query. Therefore, no entries are available for these cases.

Table 2. (a) Source selectivity (#sources) (b) Query execution time (s)

sources&size SIM1 SIM2 SIM3

625

(119Mb)

210

(0,2%)

412

(0,3%)

521

(0,4%)

1250
(243Mb)

416
(0,2%)

798
(0,3%)

991
(0,4%)

2500

(477Mb)

833

(0,2%)

1586

(0,3%)

1946

(0,4%)

 SIM1 SIM2 SIM3

extract + add 38 140 298

download 372 434 336

total 410 574 634

 SIM1 SIM2 SIM3

Q1 263 46 6

Q2 2025 326 326

Q3 48 48 4

Q4 1875 83 83

Q5 2203 328 328

 SIM1 SIM2 SIM3 no SIM

Q1 112,0 14,3 1,9 /

Q2 / 21,4 20,9 /

Q3 8,4 8,3 0,7 /

Q4 / 13,1 12,9 /

Q5 / 34,1 33,6 /

SELECT ?photo ?lat ?long

WHERE {

?statue rdf:type region:Statue .

?statue perv-sp:latitude ?lat .

?statue perv-sp:longitude ?long .

?statue dc:description ?photo .

?photo rdf:type dc-type:Image . }

SELECT ?rest ?cuisine

WHERE {

?rest rdf:type region:Restaurant .

?rest rest:typeOfCuisine ?cuisine .

?cuisine rdf:type rest:ItalianCuisine .

}

5.2. Caching of source data

Like for the SIM, we first measure the overhead of constructing and maintaining

the cache during the indexing phase. For each of the tests, we allow the cache to use

75% of the size of the total dataset as persistent storage space on the device. We also

allow 1Mb of volatile memory space for storing frequently-used source data (this

does not include extra data such as indices). This limited amount was chosen because

Android applications only have 16Mb heap space available, and other components of

the query service also consume this memory: for instance, SIM3 takes up about 2Mb

for 2500 sources (which will grow as the number of sources increases), while

androjena graph objects are also created in-memory.

Table 3 shows the size (in Kb) of in-memory and persistent storage space used by

the two different cache organizations, for increasing portions of the dataset (625-

1250-2500). We show both the size of in-memory source data and the total size of the

in-memory cache, which includes additional data such as index data.

Table 3. (a) size overhead for source-cache (Kb) (b) size overhead for meta-cache (Kb)

sources
in-memory

persistent
in-memory

persistent
total source data total source data

625 1076 1024 3083 258 136 3235

1250 1130 1024 175955 1623 871 171894
2500 1195 1024 365694 2781 1023 331431

In table 4, we show the average computational overhead of adding new source data

to the cache during the indexing phase. For meta-cache, this includes extracting the

metadata from the source, and updates to existing cache units. These two overheads

do not occur in source-cache. For both cache types, overhead also comprises running

the replacement function in case the cache becomes full.

Table 4. (a) time overhead for source-cache (ms) (b) time overhead for meta-cache (ms)

extract add update replacement extract add update replacement

0 1 0 563 673 2 180 50

Tables 5 and 6 contain the overall query execution times for the query phase. The

following parts are distinguished: 1) query analysis, 2) cache access, 3) data

assembly, and 4) query execution. Query analysis denotes the extraction of metadata

from a query. Cache access denotes total access time; tables 7 and 8 show a more

detailed view on the constituent parts. Data assembly represents the time needed to

combine the retrieved data triples into a single RDF graph, on which the query will be

executed. Here, the total number of returned triples is also shown, illustrating the fine-

grainedness of the data retrieval. Finally, we show the total amount of time required

for query resolving (together with the number of query results in brackets).

Table 5. Query execution times for source-cache (ms)

query query analysis cache access
combine data

query execution total
triples time

Q1 195 2463 784 81 34 (6) 2773

Q2 46 47383 5460 1541 1105 (409) 50075

Q3 32 1068 550 35 17 (4) 1152
Q4 31 28593 10076 985 37 (4) 29646

Q5 40 61635 15898 1564 515 (214) 63754

Table 6. Query execution times for meta-cache (ms)

query query analysis cache access
combine data

query execution total
triples time

Q1 29 3090 6 5 7 (6) 3131
Q2 31 39789 1061 464 301 (409) 40585

Q3 30 1654 4 1 10 (4) 1695

Q4 15 17383 371 261 21 (4) 17680
Q5 57 9276 5965 2908 123 (214) 12364

Tables 7 and 8 show the times related to cache access and maintenance. Cache

access comprises: 1) SIM access time, 2) time required to retrieve the cache units (the

number of returned units is also shown in brackets), and 3) number of cache misses

(the resulting amount of sources to be downloaded is shown in brackets), together

with the retrieval times for missing cache data. Note that in case of meta-cache, the

latter not only includes the download time but also the time required to extract the

relevant triples. In case of source-cache, the SIM is employed to identify relevant

sources (present in the cache or not); meta-cache does not employ the SIM for cache

element identification. Cache maintenance comprises adding new source data and

updating the cache (in case missing data was downloaded), and running the

replacement strategy if space is needed. As cache maintenance occurs after query

execution, it is not included in the cache access times shown in tables 5 and 6.

Table 7. Cache access / update times for source-cache (ms)

 Cache access Cache maintenance

query SIM access cache retrieval
cache miss

add / update replacement
misses retrieval

Q1 4 2087 (5) 1 (1) 372 0 11806
Q2 127 25008 (254) 72 (72) 22248 0 31043
Q3 1 1067 (4) 0 (0) 0 0 318
Q4 7 17282 (59) 24 (24) 11304 1 24818
Q5 75 61560 (328) 0 (0) 0 0 70455

Table 8. Cache access / update times for meta-cache (ms)

 Cache access Cache maintenance

query SIM access cache retrieval cache miss add / update replacement
misses retrieval

Q1 0 4 (0) 2 (6) 3086 10 0
Q2 0 1994 (6) 4 (112) 37795 64 572
Q3 0 2 (0) 1 (4) 1652 4 0
Q4 0 477 (16) 21 (40) 16906 219 193
Q5

0 9276 (6) 0 (0) 0 0 6251

5.3. Discussion

First, we discuss the results for the identification and selection of sources.

Regarding space overhead (see table 1a), we observe that any of the SIM variants

stores only a very small fraction of the total dataset (the largest, SIM3, stores around

0,4%), complying with the requirement for minimal storage space set in section 3.

Nevertheless, it should be noted that space overhead amounts to around 2Mb for the

largest SIM (SIM3) for 2500 sources. Considering Android applications have a max

heap space of 16Mb (not exclusive for use by the SIM), a sufficiently larger amount

of sources would require swapping parts of the SIM to persistent storage, decreasing

performance. The computational overhead of extracting and adding data (see table 1b)

is reasonable, complying with the requirement for minimal computational overhead. It

can therefore be observed that, while the computational and storage overhead rises

with the SIM complexity, this overhead appears to be acceptable (making the SIMs

indeed lightweight). As expected, the selectivity of the SIM increases with the amount

of metadata stored (see table 2a). The selectivity of SIM1 is so poor that an out-of-

memory error occurs when assembling the sources for three of the queries (see table

2b); for no SIM (i.e. native query engine performance), an out-of-memory error

already occurs for 400 sources. We thus observe that a considerable gain is made in

query execution time for SIM2 and SIM3. The difference in selectivity between SIM2

and SIM3 is only visible for queries 1 and 3. This is because these queries constrain

the object types of most triple patterns, allowing SIM3 to be more selective. We may

thus conclude that the best SIM depends on the posed queries and is application

dependent. In our cache experiments, we opted to work with SIM3, as we found the

potential increase in selectivity makes up for its (relatively small) overhead.

We now elaborate on the results of caching downloaded source data. First, we

consider the cache space and build times (see tables 3 and 4). The additional in-

memory storage, taken up by cache index data, is about 0,04% of the total source

dataset size for source-cache, while meta-cache requires 0,36%. For meta-cache, this

may again lead to memory issues for larger sets, requiring swapping to persistent

storage with performance loss. We also observe that, as expected, the total cost of

adding new sources is higher for meta-cache, as it requires triple metadata to be

extracted. Also, a single source may require updating many units in meta-cache,

leading to a higher update time. On the other hand, cache replacement is less costly

for meta-cache, because cache units are more fine-grained and thus replacement (i.e.

moving units to persistent storage, removing units) is more effective.

With regards to query execution (see tables 5 and 6), our results show that meta-

cache retrieves data in a much more fine-grained way than source-cache (i.e. less

amount of triples), leading to lower overall data combination and query execution

times. Looking in more detail at the cache access times (see tables 7 and 8), we

observe that in order to serve a given query, source-cache also requires more cache

elements to be retrieved than meta-cache. Indeed, typically a large number of sources

contain data relevant to posed queries (e.g. certain predicates). This leads to much

higher cache retrieval times for source-cache, and also more cache misses on average.

However, although the number of cache misses for meta-cache is smaller, the actual

number of downloaded sources is much higher. When a cache unit is removed and

later referenced again (cache miss), all sources containing the associated metadata

need to be re-downloaded. In case this metadata is contained in a large number of

sources (e.g. query 2 and 4), the associated source retrieval time becomes exceedingly

high. For more complex queries (requiring more cache units), this higher cache miss

overhead can be compensated by the much lower cache retrieval times (query 2 and

4). Regarding cache maintenance, replacement times are again much higher for

source-cache than for meta-cache. As larger, more coarse-grained cache units are

retrieved and employed to serve a given query (becoming “recently used”), fitting

these units into the available cache space takes more time.

To conclude, meta-cache considerably outperforms source-cache for the three more

complex queries due to the smaller granularity of retrieval, and is only slightly slower

for the two simpler queries. In any case, the cache maintenance overhead is much

smaller for meta-cache. This improved execution and cache maintenance time

outweighs the extra overhead incurred during the indexing phase. However, cache

misses present a problem for meta-cache and greatly reduce performance. More

advanced and fine-tuned replacement policies could be investigated to avoid cache

misses, or the available cache space may be increased. Also, the architecture could be

extended to reduce the amount of downloaded sources (see future work).

6. Related work

Our solution for transparent, efficient querying of a large set of small, online RDF

sources is based on two pillars: indexing and caching. Below, we elaborate on both.

In other fields, indexing is a well-known technique to optimize data access. In the

field of query distribution, metadata indices are employed to divide a query into

subqueries and distribute them over datasources containing relevant data. Often,

additional information to optimize the query distribution plan is also stored. For

example, Quilitz et. al [7] use a service description containing information about

found predicates, together with statistical information such as the amount of triples

using a specific predicate and certain objects (e.g. starting with letters A to D). In [8],

characteristics about the data provider are also kept, such as the data production rate.

In [9], full-text indices are used to determine which peers contains particular triples.

So-called source-index hierarchies are employed in [10], which enable the

identification of query endpoints that can handle combinations of query triple patterns

(or “paths”), to reduce the number of local joins. Although we share a common goal,

namely identifying relevant datasources, these approaches focus on keeping index

information to optimize query distribution. In the context of RDF stores, full-resource

indices (i.e. indexing found s/p/o resources and potentially combinations thereof) are

often employed in RDF stores, to speed up access to the RDF data (e.g. androjena,

HexaStore [11], RDF On the Go [6]). However, as noted in [11] and similar to full-

text indices [9], such indices are very memory and computationally intensive, with

high update and insertion costs. Therefore, the index structures from these fields do

not comply with the requirement discussed in section 3; namely, that a source index in

a mobile setting should be lightweight to construct and update, and compact in size.

The goal of client-side caching is to exploit the capabilities of client devices, such

as storage space and processing power, to increase performance and scalability of a

system [12, 13]. Most existing caching approaches are based on client-server

architectures, where all necessary data can be obtained from the server. In traditional

data-shipping techniques, clients perform queries locally on data obtained from a

server; the data can then be cached for later re-use [12]. In case of a cache miss, the

missing tuples (or pages) are obtained by sending their identifiers to the server. In our

setting, such caching cannot be directly applied, as no single server exists defining

such unique identifiers. In query caching, query results are cached and re-used by

future queries, by using query folding techniques [14]. When the cached query results

are not sufficient to answer a new query, a remainder query is generated to obtain the

missing data from the server in a fine-grained way. In our approach, there is no

possibility to obtain specific non-cached data items. Instead, the corresponding full

sources need to be downloaded, defeating the purpose of the remainder query.

Comparable to query caching, we group triples in the cache according to the

semantics of the cached data. However, instead of relying on posed queries to define

these semantics, we exploit the inherent semantics of the cached data.

Ample work has been put in the development of cache replacement functions fine-

tuned towards mobile environments. Unlike traditional replacement policies (e.g.

relying on temporal locality), such functions utilize semantic locality, where general

properties and relations of the data items are exploited. For instance, in [12], cached

query results associated with physical locations furthest away from the location of the

latest query are removed. In the FAR policy [15], cached units not located in the

user’s movement direction and furthest away from the user are removed. As our

query service is not targeted to one single application type (e.g. location-aware

systems), we currently rely on the generic LRU strategy to replace cache units. Future

work consists of investigating alternative replacement strategies (see next section).

7. Conclusions and future work

We have presented a query service for the efficient and transparent querying of

large numbers of small online sources. In order to achieve this efficient access, we

rely on 1/ indexing and selection of query-relevant sources, based on semantic source

metadata, and 2/ caching of often-used downloaded source data. For each component

we have realized different variants, taking into account the requirements that exist in a

mobile, volatile setting. For the indexing component, our evaluation has shown that

significant reduction in query execution time can be reached for SIM2 and SIM3.

SIMs storing more meta-data perform better due to increased selectivity, but also

cause increased overhead; therefore, a trade-off needs to be made. Regarding the

caching component, we found that organizing the cached data around their metadata

(i.e. predicate and type information) significantly increases the fine-grainedness of

cached data retrieval and overall cache performance. At the same time however,

cache misses present a serious overhead for this kind of cache organization.

Future work consists of minimizing the effects of cache misses, by exploring more

advanced replacement policies (e.g. location-aware) and investigating source-level

replacement in meta-cache. Also, we aim to investigate the effectiveness of

replacement policies in different mobile scenarios (potentially selecting suitable ones

automatically). Finally, to deal with the limited storage of mobile devices, two-level

indices that can be efficiently swapped to persistent storage should be investigated.

Acknowledgement

Sven Casteleyn is supported by an EC Marie Curie Intra-European Fellowship (IEF)

for Career Development, FP7-PEOPLE-2009-IEF, N° 254383.

References

[1] P. Bellavista, A. Corradi, R. Montanari, A. Toninelli, Context-Aware Semantic

Discovery for Next Generation Mobile Systems, in: Communications Magazine,

IEEE. 44(9), 62-71, 2006.

[2] V. Reynolds, M. Hausenblas, A. Polleres, Exploiting Linked Open Data for

Mobile Augmented Reality, in: Proc. of W3C Workshop: Augmented Reality On

the Web, Spain, 2010.

[3] S. Casteleyn, W.V. Woensel, O.D. Troyer, Assisting Mobile Web Users: Client-

Side Injection of Context-Sensitive Cues into Websites, in: Proc. of 12th

International Conference on Information Integration and Web-based Applications

& Services, 443-450, France, 2010.

[4] W.V. Woensel, S. Casteleyn, O.D. Troyer, A Framework for Decentralized,

Context-Aware Mobile Applications Using Semantic Web technology, in: Proc.

On the Move to Meaningful Internet Systems: Workshops, 88-97, 2009.

 [5] Melinger, D., Bonna, K., Sharon, M., SantRam, M. Socialight: A Mobile Social

Networking System. Proc. of the 6th International Conference on Ubiquitous

Computing, 429 - 436, England, 2004.

[6] D. Le-phuoc, J.X. Parreira, V. Reynolds, RDF On the Go: An RDF Storage and

Query Processor for Mobile Devices, in: Proc. of 9th International Semantic Web

Conference (ISWC2010), China, 2010.
[7] B. Quilitz, U. Leser, Querying Distributed RDF Data Sources with SPARQL, in:

Proc. of 5th European Semantic Web Conference, Spain, 2008.

[8] S. Lynden, I. Kojima, A. Matono, Y. Tanimura, Adaptive Integration of

Distributed Semantic Web Data, in: Databases in Networked Information Systems

5999, 174-193, 2010.
[9] Z. Kaoudi, K. Kyzirakos, M. Koubarakis, SPARQL Query Optimization on Top

of DHTs, in: Proc. of 9th Int. Semantic Web Conference, China, 418-435, 2010.
[10]H., Stuckenschmidt, R., Vdovjak, G.J. Houben, J. Broekstra, Towards Distributed

Processing of RDF Path Queries, in: International Journal of Web Engineering

and Technology 2(2/3), 207-230, 2005.

[11] C. Weiss, A. Bernstein, Hexastore: Sextuple Indexing for Semantic Web Data

 Management, in: Proc. of VLDB Endowment 1(1), 1008-1019, 2008.

[12] Dar, S., Franklin, M. J., Jónsson, B., Srivastava, D., & Tan, M. Semantic Data

Caching and Replacement. Proc. of the 22th Int. Conference on Very Large Data

Bases, USA, 330-341, 1996.

[13] Jónsson, B., Arinbjarnar, M., Bórsson, B., Franklin, M. J., & Srivastava, D.

(2006). Performance and overhead of semantic cache management. ACM Trans.

Int. Technology, 6(3), 302-331, USA, 2006.

[14] Ren, Q., Dunham, M. H., & Kumar, V. Semantic Caching and Query Processing.

IEEE Trans. on Knowl. and Data Eng., 15(1), 192-210. P, USA, 2003

[15] Ren, Q., & Dunham, M. H. Using semantic caching to manage location

dependent data in mobile computing. MobiCom ’00: Proc. of the 6th annual int.

conference on Mobile computing and networking, 210-221, USA., 2000.

