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Abstract. Due to advancements in mobile technology and connectivity, mobile 

devices have become fully-fledged web clients. At the same time, more and 

more Semantic Web data is becoming available, to a point where it becomes 

usable for various mobile application scenarios. However, most applications are 

limited to using pre-defined query endpoints in order to access Semantic Web 

data, which leaves a huge part of the Semantic Web, consisting of online RDF 

files and semantically annotated websites, inaccessible. In this paper, we 

present a mobile query service for the efficient and transparent querying of 

large amounts of small online RDF sources. In order to achieve this, the query 

service relies on two key components: 1/ a lightweight semantics-based 

indexing scheme, to identify sources relevant to posed queries, and 2/ a caching 

mechanism that locally stores frequently-used data.  

1. Introduction 

The Semantic Web has evolved greatly in its ten-year existence. With the building 

blocks (i.e. RDF(S), OWL and SPARQL) already in place for some years, and mature 

and reliable software becoming widespread (e.g. Jena, Sesame, Virtuoso), we are now 

finally seeing increasing amounts of semantic web data becoming available online. 

The Linked Data initiative has fostered the deployment and interconnection of large 

semantic datasets, covers various domains and currently amounts up to 4.5 trillion 

triples. The so-called lightweight Semantic Web, where existing (X)HTML content is 

annotated using semantic annotation languages (e.g. RDFa, microformats), is also 

growing. According to Yahoo! BOSS, currently close to 955 million websites make 

use of RDFa. These RDFa annotated websites represent semantic sources in their own 

right, as RDF triples can be extracted from their annotations.  

In a parallel evolution, the performance and screen resolution of mobile devices 

has steadily increased, up to a point where they are capable of supporting common 

software applications (e.g. organizer, mail client, Web browser). Combined with the 

widespread availability of wireless networks and affordable high-speed transmission 

rates for mobile phone networks, these mobile devices have become fully-fledged, 



(quasi-)permanently connected Web clients. Their use has become prevalent, and it is 

estimated that mobile Internet access is to surpass desktop access by 20141. 

Therefore, a key factor in the realization of the Semantic Web is realizing efficient 

mobile access to its data. In various mobile application settings, the management, 

access and integration of local and remote semantic data is already of paramount 

importance. Examples include context-aware service discovery [1], mobile 

augmented reality [2], mobile personalization [3], context-aware systems [4] and 

mobile social applications [5]. Most existing mobile Semantic Web applications gain 

access to remote RDF(S) datasets via their exposed SPARQL query endpoints, 

allowing efficient access to online datasets without straining the mobile device. 

However, it requires a considerable effort to set up a query endpoint, as none of the 

existing solutions (e.g. OpenLink Virtuoso, Sesame Server) work out-of-the-box and 

require substantial setup time. In practice, only major data providers make query 

endpoints available; smaller online RDF sources are mostly put online as semantic 

documents (i.e. RDF files). Sindice, a lookup index for the Semantic Web, currently 

indexes around 246 million of such online semantic documents. This means that a 

huge part of the Semantic Web, consisting of online RDF files and semantically 

(RDFa) annotated websites, is currently unavailable to mobile clients. 

We present a client-side query service that can be employed by mobile applications 

to transparently and efficiently query large amounts of small online RDF sources. 

This service is built on top of an existing mobile query engine (such as androjena2 or 

RDF On the Go [6]) to locally query RDF(S)/OWL data. In order to achieve efficient 

access on mobile devices, with limited processing power and storage space, the query 

service relies on two key components: 1/ a lightweight indexing scheme, to identify 

sources relevant for a particular query based on semantic source metadata (i.e. 

occurring predicates, subject and object types), and 2/ a caching mechanism that 

locally stores frequently-used data. We evaluate different variants of each component, 

and discuss their respective advantages and disadvantages. We also compare the 

performance of the query service to that of the native mobile query engine.  

2. General approach 

As mentioned in the introduction, we focus on providing query access to the huge 

set of online RDF files and semantically annotated websites. Evidently, it is not 

possible to consider the entire dataset in existence. Instead, we focus on a selection of 

this data, as typically required by a certain type of mobile applications, such as 

semantic context-aware systems [4] or mobile social applications [5]. This querying 

scenario has its own set of challenges for efficient access. One challenge is to identify 

sources from this dataset that contain information relevant for a posed query, with a 

high degree of selectivity. This way, sources irrelevant for the current query can be 

excluded, keeping the final dataset to query smaller and manageable, and therefore 

                                                           
1 http://www.morganstanley.com/institutional/techresearch/pdfs/Internet_Trends_041210.pdf 
2 http://code.google.com/p/androjena/ 



the overall query execution time lower. To achieve this, we build and maintain an 

index containing metadata about datasources. A second challenge is that, once 

obtained, source data should be cached locally for efficient access and later re-use. 

The caching of data is paramount in our setting, because of the overhead of obtaining 

query-relevant data; every datasource that may contain some query-relevant 

information needs to be downloaded in its entirety. Naturally, the amount of cached 

data will be limited due to the space restrictions on mobile devices.  

Our approach consists of two phases: the indexing phase and the query phase. An 

overview of these two phases can be found in fig. 1. In the indexing phase, references 

to new online RDF sources are received from the application (a.1). In our evaluation 

(see section 5), this application is a context-aware component called SCOUT [4], 

which identifies datasources related to physical entities in the user’s vicinity (e.g. by 

reading URLs from RFID tags near the entities). The Source Manager downloads 

these sources, and extracts metadata on their content (a.2). Our approach focuses on 

semantic metadata, namely used predicates, subject and object types. This metadata is 

then added to our index, called the Source Index Model (SIM), along with the URL of 

its origin source (a.3). Finally, once the source has been indexed, it is passed to the 

cache component, which locally caches the source data (a.4).  

 

 

 

 

 

 

 

 

 

 
Fig. 1.  (a) Indexing phase                                                    (b) Query phase 

The query phase is triggered whenever the application poses a new query to the 

query service (b.1). Firstly, the Query Handler analyzes the query and extracts 

metadata, i.e. used predicates, subject and object types, from the query (b.2). This 

query metadata is passed to the SIM, which matches it to the extracted metadata of 

the indexed sources, and returns references to the sources containing query-relevant 

information (b.3). Based on these source references, the Source Manager then obtains 

the required source data (b.4),  ideally retrieved from local cache (b.5), or else by re-

downloading the corresponding online sources (b.6). Once all source data is obtained, 

it is combined in one dataset (b.7) on which the query is executed (b.8). After query 

execution, the results are returned (b.9) to the application. Finally, the cache is 

updated with the downloaded source data (b.10). In the following sections, we 

elaborate on the two major parts of our approach, namely indexing and selection of 

relevant of sources, and the local caching of source data. 

 

 



3. Indexing and selecting sources 

Our practical experience (comfirmed in our experiments, see section 5) shows that 

executing a query over large sets of datasources is problematic on a mobile device. 

For one, querying very large datasets slows down query execution time. Also, the 

entire dataset to query needs to be kept in memory for fast querying, leading to out-

of-memory exceptions for even relatively small amounts of sources (around 400 

sources with total size of 67Mb). As a result, we aim to keep the dataset to be queried 

(called the query dataset) as small as possible. We achieve this by keeping metadata 

from online datasources in the Source Index Model (SIM); posed queries are analyzed 

and matched to this source metadata, allowing us to rule out sources irrelevant to the 

query. Afterwards, the query is executed on the reduced dataset. 

Our indexing mechanism needs to comply with certain requirements, related to our 

mobile, volatile setting. Because we are dealing with mobile devices, we must firstly 

minimize the required storage space and computational effort for the index. 

Additionally, in our mobile setting, the query service may receive references to new 

datasources at any time (e.g. a context-aware system passing data related to the 

surroundings of the user), meaning the index must be updateable on-the-fly. 

Therefore, we require a lightweight index that is quick to construct and maintain, and 

requires minimal space (for optimal performance, the index should fit into volatile 

memory). At the same time, the index should still guarantee a high selectivity (in 

other words, filter large amounts of irrelevant sources), in order to reduce the query 

dataset. We elected for a compact index storing semantic metadata on datasources; 

namely, the found predicates together with their subject/object types3. This metadata 

can be efficiently obtained and does not require a lot of storage space (compared to 

other types of metadata, see related work), making it lightweight. Furthermore, 

predicates and subject/object type restrictions are often specified in queries, allowing 

for a high source selectivity (as also shown by our evaluation, see section 5). 

Therefore, it also complies with the second requirement.  

During our evaluation, we compared three variants of the SIM: the first variant 

(SIM1) stores the found predicates; SIM2 stores the predicates together with their 

subject types; and SIM3 keeps the found predicates together with their subject and 

object types. Note that although the two latter variants store additional metadata, they 

still support queries with unspecified subject and/or object types. In our evaluation 

section, we compare the different SIMs to study the trade-off between source 

selectivity on the one hand, and computational and storage overhead on the other.  

We can now make some steps in the two general phases of fig. 1 more concrete. In 

the first phase, the indexing phase, the required metadata is extracted using a 

predefined SPARQL extraction query (a.2). The metadata is then stored in one of the 

SIM variants, which are implemented using a collection of hashtables. In the query 

phase (see fig. 1b), the query is analyzed and the same kind of metadata is extracted 

from the query (b.2) using the SPARQL Parser library4. Finally, RDF triples are 

extracted from RDFa-annotated websites by using a ported version of java-rdfa5. 

                                                           
3 We currently consider resource types on a per-source level. 
4 http://sparql.sourceforge.net/ 
5 https://github.com/shellac/java-rdfa 



4. Caching of source data 

The local caching of source data occurs during the indexing phase, when the source 

data is passed to the cache after SIM metadata extraction (see fig. 1.a.4), and at the 

end of the query phase, where the cache may be updated with source data in case of a 

cache miss (see fig. 1.b.10). Depending on the popularity of the cached data (decided 

by the used replacement function), some of the cache data will be kept in-memory, 

while other data will be stored persistently or removed. Since the metadata of 

removed sources is kept in the SIM, these can still contribute to a posed query; 

however, they will need to be re-downloaded in case they are required. 

In a mobile setting, huge amounts of data can be aggregated after a while. 

Although it can be argued that modern mid-to high-range mobile devices have ample 

persistent native storage (e.g. the iPhone is available with 16 and 32 GB of storage), 

users are probably not keen on spending a large portion to store caching data. By 

applying a replacement (or removal) function, data is removed from the cache that is 

not likely to be required in the future. A lot of work has been done concerning 

replacement strategies specifically meant for location-aware systems (see related 

work). As our query service does not target one particular type of application, we 

currently rely on the generic Least Recently Used (LRU) replacement policy; further 

experimentation with other replacement policies is considered future work. 

As was the case for the SIM, the cache needs to comply with certain requirements. 

Firstly, in order to reduce the query dataset and thereby the overall execution time, a 

sufficiently fine-grained level of storage and retrieval is needed. Secondly, only a 

small amount of additional data (e.g. indices such as B+-trees, hashtables) should be 

kept; ideally, this data should fit in volatile memory (16MB on the Android platform). 

This is needed to avoid frequent swapping with persistent storage that causes 

performance loss. Thirdly, it must be possible to add data and update the cache in a 

quick and efficient way, as data needs to be added on-the-fly on mobile devices with 

limited computational capabilities. Finally, as for any cache, we must consider the 

validity of the data in our cache, and ensure data freshness. In the sections below, we 

discuss the cache organization and cache validity in more detail, and highlight how 

they comply with the aforementioned requirements. 

4.1. Cache organization 

The source data kept in the cache can be organized in different ways, influencing the 

efficiency and fine-grainedness of cached data retrieval, and the cache construction 

and update cost. A natural choice for cache organization is to organize the cached 

triples via their origin source (this organization is called source-cache). In this 

organization, a cache element (or cache unit) corresponds to a downloaded 

datasource. The cache contains a search index on the source URI of the cached 

sources, so specific sources can be quickly retrieved. This organization fulfills our 

second requirement (i.e. minimal additional space overhead) as only one index is kept 

with a relatively small amount of index entries. Also, the third requirement (i.e. 

efficient add and update) is met, as the source is simply stored as a single cache unit. 



However, this organization does not comply with the first requirement, as it does not 

allow for fine-grained selection of cached source data; it returns all triples from a 

cached source, instead of only the triples relevant for a given query. Although such 

coarse-grained retrieval is unavoidable when dealing with online RDF files or RDFa 

annotated webpages (i.e. they can only be downloaded as a whole), this can be 

improved upon when dealing with locally stored data. 

An alternative choice is to organize the triples according to their shared metadata 

(called meta-cache). This metadata, as was the case for the Source Index Model, 

includes predicate and subject/object types. For fast retrieval, indices are created on 

predicates, subject and object types. In this organization, a cache unit contains triples 

sharing the same metadata (e.g. certain predicate and subject type). This organization 

allows data to be obtained in a more fine-grained way, as only units with metadata 

matching the extracted query metadata are retrieved. As such, it complies with our 

first requirement, i.e. fine-grained storage and retrieval of source data. However, this 

comes with an additional computational overhead. Firstly, the metadata of the source 

triples needs to be extracted for each source; secondly, adding the extracted source 

data to the cache becomes more expensive, as several cache units may need to be 

updated for a single source (i.e. all units with metadata matching the found predicates, 

subject and object types). Furthermore, this organization requires three indices with 

considerable more index entries compared to the source-cache. Finally, each cache 

unit should also keep the origin source URIs of the triples it contains, to support 

validity checking (see following section) and to identify sources that need to be re-

downloaded, in case this unit is removed and referenced again in the future (i.e. cache 

miss). Because of these reasons, the fulfillment of the second requirement (i.e. 

minimal additional storage overhead) and third requirement (i.e. efficient add and 

update) is tentative. However, meta-cache still has a much lower overhead than the 

storage and computionally demanding indices traditionally employed to speed up 

access to RDF data on mobile devices (see related work). We tested both cache 

organizations in our evaluation, checking how this computational and storage 

overhead compares to the reduction in data to be retrieved, combined and queried. 

We can now again make some of the steps in the general two phases more 

concrete. For meta-cache, predefined SPARQL extraction queries are employed 

whenever new source data is added to the cache, in order to extract triples together 

with their metadata from downloaded sources. When retrieving data from meta-cache 

(see fig. 1.b.5,), the SPARQL Parser library is again employed to extract metadata 

from the query, to be matched to the metadata indices. In both source-cache and meta-

cache, the indices are implementated as hashtables. 

4.2. Cache validity 

Extensive invalidation strategies already exist to efficiently detect invalid data items 

in traditional client-server architectures and mobile settings. In our setting however, 

the cached data originates from online RDF files (and annotated websites) stored on 

general-purpose HTTP webservers, instead of dedicated servers. Therefore, we need 

to rely the cache support features of HTTP (typically used by proxy caches) to check 



the validity of cache items. We utilize both the server-specified expiration times (via 

the expires or Cache-Control: max-age header fields) and conditional requests for 

files (using the Last-Modified header field) to verify validity of cache units. 

To manage the validity of cached data, we need to keep information on the origin 

source of the cached information, as well as expiration information (i.e. expiration 

time, or last download time). In source-cache, where all data from a certain source is 

stored in a single cache unit, we keep this provenance and expiration information per 

cache unit. For meta-cache, where cache units contain triples from various sources, 

we also chose to store origin information per cache unit. To avoid duplicating 

expiration data, we keep a separate data-structure that stores the expiration 

information for each source. In case source data requires updating, the source is 

downloaded and re-indexed, replacing all outdated data from that source in the cache.  

5. Experiments 

Our experiments have been designed to evaluate the two major parts of our 

approach. For the first part, the three different SIM variants are compared. In this part, 

we store all downloaded datasources locally in a cache of unlimited size, to avoid 

cache interference. For the second part, we employ the best performing SIM variant 

when comparing the two cache organizations discussed in section 4.1, namely source-

cache (i.e. based on origin source) and meta-cache (i.e. based on metadata).  

We validate our solution in the application field of context-aware mobile 

applications using the SCOUT [4] framework. SCOUT gradually discovers physical 

entities in the user’s vicinity, and offers application developers a query-able view of 

the user’s physical environment by combining information from a variety of online 

RDF(S) sources describing these detected entities. To manage this data and provide 

efficient query access, SCOUT makes use of the developed query service. In our 

architecture, SCOUT fulfills the role of the application component (see fig. 1.a), 

gradually providing new source references to the Source manager over time. 

Both SCOUT and the developed query service are based on Android OS 2.2. We 

employ a fine-tuned version of the androjena library to access, manipulate and query 

RDF data on the mobile device. The experiments were performed on a Samsung 

Galaxy S with a 1 GHz processor and 512 MB RAM memory. A total number of 

2500 datasources is employed in the experiments6, with total size of 477Mb and 

average size of around 195 Kb. These sources were partly obtained from real-life 

datasets (e.g. IMDB data), and complemented with generated data, using random 

resource types and predicates from both selected well-known ontologies (e.g. geo, 

travel or SUMO) and from proprietary ontologies. In order to reflect a real-world 

situation, different properties and types reflecting the same concepts (e.g. absolute 

coordinates) were randomly used. The datasources were distributed across three 

different web servers with different response times. Finally, we extracted five types of 

queries from existing mobile SCOUT applications [3, 4] to evaluate the performance 

of the query service. We give two examples of these queries in listing 1.  

                                                           
6 The used dataset and queries can be found at http://wise.vub.ac.be/SCOUT/WISE2011/. 



 

 

 

 

Listing 1.  Two employed validation queries. 

5.1. Indexing and selecting sources 

Firstly, we measure the overhead in size and time for maintaining the SIM during the 

indexing phase, as the application passes source references to the Source Manager 

(see fig. 1.a.1). Table 1a shows the total size of the different SIM variants, for 

increasing portions of the total dataset (625-1250-2500 sources). The table also shows 

how this size compares to the total size of the indexed sources. The computational 

overhead to create the SIM is shown in table 1b, and includes the average times of 

downloading a source, extracting the required metadata, and updating the SIM.  

Table 1.  (a) Size overhead (Kb)    (b) Computational overhead (ms)  

 

 

Table 2a illustrates the selectivity of each SIM variant for our 5 sample queries, by 

showing the number of identified relevant sources. For brevity, we only show the 

results for the total dataset of 2500 sources. In table 2b, we show the corresponding 

overall query execution time over the collected set of datasources. This includes the 

times required for query analysis, SIM access, data collection, and query execution. 

Note that SIM1 fails with out-of-memory error for all but the first and third queries; in 

the case where no SIM is used (i.e. native query engine performance) the same error 

occurs for any query. Therefore, no entries are available for these cases. 

Table 2.  (a) Source selectivity (#sources)         (b) Query execution time (s)  

# sources&size SIM1 SIM2 SIM3 

625 

(119Mb) 

210 

(0,2%) 

412 

(0,3%) 

521 

(0,4%) 

1250 
(243Mb) 

416 
(0,2%) 

798 
(0,3%) 

991 
(0,4%) 

2500 

(477Mb) 

833 

(0,2%) 

1586 

(0,3%) 

1946 

(0,4%) 

  SIM1 SIM2 SIM3 

extract + add 38 140 298 

download 372 434 336 

total 410 574 634 

 SIM1 SIM2 SIM3 

Q1 263 46 6 

Q2 2025 326 326 

Q3 48 48 4 

Q4 1875 83 83 

Q5 2203 328 328 

 SIM1 SIM2 SIM3 no SIM 

Q1 112,0 14,3 1,9 / 

Q2 / 21,4 20,9 / 

Q3 8,4 8,3 0,7 / 

Q4 / 13,1 12,9 / 

Q5 / 34,1 33,6 / 

SELECT ?photo ?lat ?long  

WHERE {  

?statue rdf:type region:Statue .   

?statue perv-sp:latitude ?lat .   

?statue perv-sp:longitude ?long .   

?statue dc:description ?photo .   

?photo rdf:type dc-type:Image . } 

 

 

SELECT ?rest ?cuisine  

WHERE {  

?rest rdf:type region:Restaurant .   

?rest rest:typeOfCuisine ?cuisine . 

?cuisine rdf:type rest:ItalianCuisine . 

} 



5.2. Caching of source data 

Like for the SIM, we first measure the overhead of constructing and maintaining 

the cache during the indexing phase. For each of the tests, we allow the cache to use 

75% of the size of the total dataset as persistent storage space on the device. We also 

allow 1Mb of volatile memory space for storing frequently-used source data (this 

does not include extra data such as indices). This limited amount was chosen because 

Android applications only have 16Mb heap space available, and other components of 

the query service also consume this memory: for instance, SIM3 takes up about 2Mb 

for 2500 sources (which will grow as the number of sources increases), while 

androjena graph objects are also created in-memory. 

Table 3 shows the size (in Kb) of in-memory and persistent storage space used by 

the two different cache organizations, for increasing portions of the dataset (625-

1250-2500). We show both the size of in-memory source data and the total size of the 

in-memory cache, which includes additional data such as index data.  

Table 3.          (a) size overhead for source-cache (Kb)           (b) size overhead for meta-cache (Kb) 

# sources 
in-memory 

persistent 
in-memory 

persistent 
total source data total source data 

625 1076 1024 3083 258 136 3235 

1250 1130 1024 175955 1623 871 171894 
2500 1195 1024 365694 2781 1023 331431 

In table 4, we show the average computational overhead of adding new source data 

to the cache during the indexing phase. For  meta-cache, this includes extracting the 

metadata from the source, and updates to existing cache units. These two overheads 

do not occur in source-cache. For both cache types, overhead also comprises running 

the replacement function in case the cache becomes full.  

Table 4.    (a) time overhead for source-cache (ms)            (b) time overhead for meta-cache (ms) 

extract add update replacement extract add update replacement 

0 1 0 563 673 2 180 50 

Tables 5 and 6 contain the overall query execution times for the query phase. The 

following parts are distinguished: 1) query analysis, 2) cache access, 3) data 

assembly, and 4) query execution. Query analysis denotes the extraction of metadata 

from a query. Cache access denotes total access time; tables 7 and 8 show a more 

detailed view on the constituent parts. Data assembly represents the time needed to 

combine the retrieved data triples into a single RDF graph, on which the query will be 

executed. Here, the total number of returned triples is also shown, illustrating the fine-

grainedness of the data retrieval. Finally, we show the total amount of time required 

for query resolving (together with the number of query results in brackets).  

Table 5.  Query execution times for source-cache (ms) 

query query analysis cache access 
combine data 

query execution total 
# triples time 

Q1 195 2463 784 81 34 (6) 2773 

Q2 46 47383 5460 1541 1105 (409) 50075 

Q3 32 1068 550 35 17 (4) 1152 
Q4 31 28593 10076 985 37 (4) 29646 

Q5 40 61635 15898 1564 515 (214) 63754 



Table 6. Query execution times for meta-cache (ms) 

query query analysis cache access 
combine data 

query execution total 
# triples time 

Q1 29 3090 6 5 7 (6) 3131 
Q2 31 39789 1061 464 301 (409) 40585 

Q3 30 1654 4 1 10 (4) 1695 

Q4 15 17383 371 261 21 (4) 17680 
Q5 57 9276 5965 2908 123 (214) 12364 

Tables 7 and 8 show the times related to cache access and maintenance. Cache 

access comprises: 1) SIM access time, 2) time required to retrieve the cache units (the 

number of returned units is also shown in brackets), and 3) number of cache misses 

(the resulting amount of sources to be downloaded is shown in brackets), together 

with the retrieval times for missing cache data. Note that in case of meta-cache, the 

latter not only includes the download time but also the time required to extract the 

relevant triples. In case of source-cache, the SIM is employed to identify relevant 

sources (present in the cache or not); meta-cache does not employ the SIM for cache 

element identification. Cache maintenance comprises adding new source data and 

updating the cache (in case missing data was downloaded), and running the 

replacement strategy if space is needed. As cache maintenance occurs after query 

execution, it is not included in the cache access times shown in tables 5 and 6. 

Table 7. Cache access / update times for source-cache (ms) 

              Cache access Cache maintenance 

query SIM access cache retrieval 
cache miss 

add / update replacement 
# misses retrieval 

Q1 4 2087 (5) 1 (1) 372 0 11806 
Q2 127 25008 (254) 72 (72) 22248 0 31043 
Q3 1 1067 (4) 0 (0) 0 0 318 
Q4 7 17282 (59) 24 (24) 11304 1 24818 
Q5 75 61560 (328) 0 (0) 0 0 70455 

Table 8. Cache access / update times for meta-cache (ms) 

               Cache access Cache maintenance 

query SIM access cache retrieval cache miss add / update replacement 
# misses retrieval 

Q1 0 4 (0) 2 (6) 3086 10 0 
Q2 0 1994 (6) 4 (112) 37795 64 572 
Q3 0 2 (0) 1 (4) 1652 4 0 
Q4 0 477 (16) 21 (40) 16906 219 193 
Q5 
 

0 9276 (6) 0 (0) 0 0 6251 

5.3. Discussion 

First, we discuss the results for the identification and selection of sources. 

Regarding space overhead (see table 1a), we observe that any of the SIM variants 

stores only a very small fraction of the total dataset (the largest, SIM3, stores around 

0,4%), complying with the requirement for minimal storage space set in section 3. 

Nevertheless, it should be noted that space overhead amounts to around 2Mb for the 

largest SIM (SIM3) for 2500 sources. Considering Android applications have a max 



heap space of 16Mb (not exclusive for use by the SIM), a sufficiently larger amount 

of sources would require swapping parts of the SIM to persistent storage, decreasing 

performance. The computational overhead of extracting and adding data (see table 1b) 

is reasonable, complying with the requirement for minimal computational overhead. It 

can therefore be observed that, while the computational and storage overhead rises 

with the SIM complexity, this overhead appears to be acceptable (making the SIMs 

indeed lightweight). As expected, the selectivity of the SIM increases with the amount 

of metadata stored (see table 2a). The selectivity of SIM1 is so poor that an out-of-

memory error occurs when assembling the sources for three of the queries (see table 

2b); for no SIM (i.e. native query engine performance), an out-of-memory error 

already occurs for 400 sources. We thus observe that a considerable gain is made in 

query execution time for SIM2 and SIM3. The difference in selectivity between SIM2 

and SIM3 is only visible for queries 1 and 3. This is because these queries constrain 

the object types of most triple patterns, allowing SIM3 to be more selective. We may 

thus conclude that the best SIM depends on the posed queries and is application 

dependent. In our cache experiments, we opted to work with SIM3, as we found the 

potential increase in selectivity makes up for its (relatively small) overhead. 

We now elaborate on the results of caching downloaded source data. First, we 

consider the cache space and build times (see tables 3 and 4). The additional in-

memory storage, taken up by cache index data, is about 0,04% of the total source 

dataset size for source-cache, while meta-cache requires 0,36%. For meta-cache, this 

may again lead to memory issues for larger sets, requiring swapping to persistent 

storage with performance loss. We also observe that, as expected, the total cost of 

adding new sources is higher for meta-cache, as it requires triple metadata to be 

extracted. Also, a single source may require updating many units in meta-cache, 

leading to a higher update time. On the other hand, cache replacement is less costly 

for meta-cache, because cache units are more fine-grained and thus replacement (i.e. 

moving units to persistent storage, removing units) is more effective.  

With regards to query execution (see tables 5 and 6), our results show that meta-

cache retrieves data in a much more fine-grained way than source-cache (i.e. less 

amount of triples), leading to lower overall data combination and query execution 

times. Looking in more detail at the cache access times (see tables 7 and 8), we 

observe that in order to serve a given query, source-cache also requires more cache 

elements to be retrieved than meta-cache. Indeed, typically a large number of sources 

contain data relevant to posed queries (e.g. certain predicates). This leads to much 

higher cache retrieval times for source-cache, and also more cache misses on average. 

However, although the number of cache misses for meta-cache is smaller, the actual 

number of downloaded sources is much higher. When a cache unit is removed and 

later referenced again (cache miss), all sources containing the associated metadata 

need to be re-downloaded. In case this metadata is contained in a large number of 

sources (e.g. query 2 and 4), the associated source retrieval time becomes exceedingly 

high. For more complex queries (requiring more cache units), this higher cache miss 

overhead can be compensated by the much lower cache retrieval times (query 2 and 

4). Regarding cache maintenance, replacement times are again much higher for 

source-cache than for meta-cache. As larger, more coarse-grained cache units are 

retrieved and employed to serve a given query (becoming “recently used”), fitting 

these units into the available cache space takes more time. 



To conclude, meta-cache considerably outperforms source-cache for the three more 

complex queries due to the smaller granularity of retrieval, and is only slightly slower 

for the two simpler queries. In any case, the cache maintenance overhead is much 

smaller for meta-cache. This improved execution and cache maintenance time 

outweighs the extra overhead incurred during the indexing phase. However, cache 

misses present a problem for meta-cache and greatly reduce performance. More 

advanced and fine-tuned replacement policies could be investigated to avoid cache 

misses, or the available cache space may be increased. Also, the architecture could be 

extended to reduce the amount of downloaded sources (see future work). 

6. Related work 

Our solution for transparent, efficient querying of a large set of small, online RDF 

sources is based on two pillars: indexing and caching. Below, we elaborate on both. 

In other fields, indexing is a well-known technique to optimize data access. In the 

field of query distribution, metadata indices are employed to divide a query into 

subqueries and distribute them over datasources containing relevant data. Often, 

additional information to optimize the query distribution plan is also stored. For 

example, Quilitz et. al [7] use a service description containing information about 

found predicates, together with statistical information such as the amount of triples 

using a specific predicate and certain objects (e.g. starting with letters A to D). In [8], 

characteristics about the data provider are also kept, such as the data production rate. 

In [9], full-text indices are used to determine which peers contains particular triples. 

So-called source-index hierarchies are employed in [10], which enable the 

identification of query endpoints that can handle combinations of query triple patterns 

(or “paths”), to reduce the number of local joins. Although we share a common goal, 

namely identifying relevant datasources, these approaches focus on keeping index 

information to optimize query distribution. In the context of RDF stores, full-resource 

indices (i.e. indexing found s/p/o resources and potentially combinations thereof) are 

often employed in RDF stores, to speed up access to the RDF data (e.g. androjena, 

HexaStore [11], RDF On the Go [6]). However, as noted in [11] and similar to full-

text indices [9], such indices are very memory and computationally intensive, with 

high update and insertion costs. Therefore, the index structures from these fields do 

not comply with the requirement discussed in section 3; namely, that a source index in 

a mobile setting should be lightweight to construct and update, and compact in size. 

The goal of client-side caching is to exploit the capabilities of client devices, such 

as storage space and processing power, to increase performance and scalability of a 

system [12, 13]. Most existing caching approaches are based on client-server 

architectures, where all necessary data can be obtained from the server. In traditional 

data-shipping techniques, clients perform queries locally on data obtained from a 

server; the data can then be cached for later re-use [12]. In case of a cache miss, the 

missing tuples (or pages) are obtained by sending their identifiers to the server. In our 

setting, such caching cannot be directly applied, as no single server exists defining 

such unique identifiers. In query caching, query results are cached and re-used by 

future queries, by using query folding techniques [14]. When the cached query results 



are not sufficient to answer a new query, a remainder query is generated to obtain the 

missing data from the server in a fine-grained way. In our approach, there is no 

possibility to obtain specific non-cached data items. Instead, the corresponding full 

sources need to be downloaded, defeating the purpose of the remainder query. 

Comparable to query caching, we group triples in the cache according to the 

semantics of the cached data. However, instead of relying on posed queries to define 

these semantics, we exploit the inherent semantics of the cached data. 

Ample work has been put in the development of cache replacement functions fine-

tuned towards mobile environments. Unlike traditional replacement policies (e.g. 

relying on temporal locality), such functions utilize semantic locality, where general 

properties and relations of the data items are exploited. For instance, in [12], cached 

query results associated with physical locations furthest away from the location of the 

latest query are removed. In the FAR policy [15], cached units not located in the 

user’s movement direction and furthest away from the user are removed. As our 

query service is not targeted to one single application type (e.g. location-aware 

systems), we currently rely on the generic LRU strategy to replace cache units. Future 

work consists of investigating alternative replacement strategies (see next section). 

7. Conclusions and future work 

We have presented a query service for the efficient and transparent querying of 

large numbers of small online sources. In order to achieve this efficient access, we 

rely on 1/ indexing and selection of query-relevant sources, based on semantic source 

metadata, and 2/ caching of often-used downloaded source data. For each component 

we have realized different variants, taking into account the requirements that exist in a 

mobile, volatile setting. For the indexing component, our evaluation has shown that 

significant reduction in query execution time can be reached for SIM2 and SIM3. 

SIMs storing more meta-data perform better due to increased selectivity, but also 

cause increased overhead; therefore, a trade-off needs to be made. Regarding the 

caching component, we found that organizing the cached data around their metadata 

(i.e. predicate and type information) significantly increases the fine-grainedness of 

cached data retrieval and overall cache performance. At the same time however, 

cache misses present a serious overhead for this kind of cache organization.  

Future work consists of minimizing the effects of cache misses, by exploring more 

advanced replacement policies (e.g. location-aware) and investigating source-level 

replacement in meta-cache. Also, we aim to investigate the effectiveness of 

replacement policies in different mobile scenarios (potentially selecting suitable ones 

automatically). Finally, to deal with the limited storage of mobile devices, two-level 

indices that can be efficiently swapped to persistent storage should be investigated.  
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