
1

Web-for-Web:
 A Tool for Evolving Data-Driven Web Applications*.

Olga De Troyer, Jo De Greef, Peter Stuer
Vrije Universiteit Brussel

WISE Research group, Department of Computer Science
Pleinlaan 2

B-1050 Brussel, Belgium
Olga.DeTroyer@vub.ac.be, Jo.De.Greef@vub.ac.be, pstuer@vub.ac.be

Abstract
The Web enables us to place large collections of information, stored in databases all over the world, at the
disposal of people all over the world. In principle, it is not difficult to publish the information from a
database on the Web because the technology exists. However, it may be a time consuming effort to define
all the web pages needed for consulting and possible also for updating the information. If in addition the
underlying database tends to evolve in time, web pages have to be defined over and over again. In this
paper we describe a tool, Web-for-Web, that allows to build, in an easy and fast way, web applications for
consulting and maintaining information stored in a database and in addition allows to readily adapt those
web applications to changes to the database structure. To realize this, the tool makes use of Meta data,
XML and XSL.

1 Introduction
Next to using the Web for marketing purposes or e-commerce, the Web can also be used to open
innumerable collections of information to people all over the world. The availability of a
compiled collection of information about a certain domain on the Web would significantly
increase visibility and could advance research in this domain considerably. The TensiNet project
[TensiNet, 2001] is such an initiative. TensiNet is a European Thematic Network funded by the
EC within the 5th Framework Program; the work program is GROWTH (Promoting Competitive
and Sustainable Growth) [EC-GROWTH, 2002]. The purpose of the project is to advance the use
of Tensile Structures in architecture and urban planning. There was a need for this because the
Tensile Structure industry had a number of problems in Europe. There was insufficient transfer
of multi-disciplinary know-how between architects, engineers, the construction industry and
research institutes; basic knowledge about Tensile Structures was not widespread and common
reference data was unavailable; there were no uniform guidelines for design and construction of
these structures in Europe; and there were a number of unanswered scientific questions about the
material and the structural behavior of Tensile Structures.

Therefore, the purpose of TensiNet was to assemble, structure and analyze existing data and
integrate this expertise in a knowledge base accessible to all partners of the project and later on
also to a broader community. To disseminate the information in the knowledge base and to
facilitate the collection of information a web interface would be provided. Already before the

* This work was supported by the European Commission in the context of “TensiNet” a Thematic Network

in the 5th Framework Programme (GROWTH)

mailto:Olga.DeTroyer@vub.ac.be
mailto:Jo.De.Greef@vub.ac.be
mailto:pstuer@vub.ac.be

2

start of the project, it was clear that the structure of the database underlying the knowledge base
could not be defined in a single step. A lot of knowledge was based on intuition and the needed
information was only available in the heads of people. It would be a long and difficult elicitation
process. As a consequence, it was decided to build the database for maintaining the information
in an evolutionary way, meaning that the final version would evolve from a limited first version
by expansion and adjustment in a number of iterations. This approach was needed to support the
flexibility needed for the development of this knowledge base.

Because the structure of the database would evolve over time, it was clear that also the web
interface of this database had to evolve. Using a classical web-programming environment (such
as e.g. Microsoft Visual InterDev 6.0 [InterDev, 2002], Macromedia Dreamweaver Ultradev 4
[UltraDev, 2002]) would imply that each time the database structure changes or new tables are
added, the code for the web interface has to be changed as well or extended by hand. To avoid
this, we developed the Web-for-Web tool. This tool allows to describe the database and its web
interface at a Meta level and to generate the web pages at run time from this description. In this
way it is not only easy and very fast to develop the web application but also very easy to make
changes to the database or the web interface: only some changes at the Meta level are needed and
an updated web interface will be generated at run time. Web-for-Web dramatically reduces the
time and effort required to develop data-driven web applications and allows to readily adapting
them to real world needs. To realize this, Web-for-Web uses database technology in combination
with XML and XSL. The tool is bootstrapped, which means that the application for maintaining
the Meta level is also a web application, described and generated by the tool itself, hence the
name “Web-for-Web”. The tool is not limited to the TensiNet project. It is already used for other
projects as well.

The rest of this paper is structured as follows: In section 2 we give a general description of the
tool and describe its architecture. In section 3 we give more details about the Meta Database
underlying Web-for-Web. In sections 4, we describe the role of XML and XSL. The tool itself is
illustrated in section 5 by means of two applications. Finally, section 6 draws conclusions and
discusses further work.

2 Overview and Architecture of the Web-for-Web Tool
As already explained in the introduction, Web-for-Web allows building a web interface for a
database in an easy and flexible way. Web-for-Web actually has two types of users. First there is
the developer who uses Web-for-Web to specify the web interface needed for the database. In the
rest of this paper we will call this type of user: the designer. On the other hand, we have the
visitor or user of the web application who uses Web-for-Web indirectly because the pages he is
viewing are generated by Web-for-Web. We will refer to this type of user as visitor.

Web-for-Web uses an object oriented approach for displaying and manipulation the information
in the database. This means that the information is viewed as a collection of objects described by
and grouped into object classes. E.g. a possible object class for the TensiNet web application
would be “Project”. Attributes for Project could be: Name, Location, Owner, Year-of-
construction, Constructors-involved, …. Using Web-for-Web, the visitor of the web site can (in
principle) query, view, edit and delete instances of such an object class. New instances can be
created for an object class and an overview list of instances of an object class can be obtained.
Note however that the access to object instances and object classes can be restricted by access

3

rights (explained later on). If a visitor of the website has unlimited access, a possible way to start
off is with a web page showing the list of all object classes (see figure 1). The object classes are
given by means of their name and with each object class an Edit-button is associated. Clicking
on the name of such an object class gives a page with a list of all instances of that class.
(Clicking on the Edit button associated with such an object class will allow to add, delete or edit
instances of that object class.) Clicking on one of the object instances in the list of instances will
give a page with the values of the attributes of the selected object instance. Because an object
class may have many different attributes, the designer can opt to group attributes together. E.g.
Street, House-Number, ZIP-code, City and Country can be grouped as “Address”. This allows
displaying the information associated with an object instance in a more structured way (see
figure 2).

Figure 1: List of all Object Classes in the TensiNet website

Figure 2: Information about an object instance in the TensiNet Website

4

If the visitor has the rights to update information, appropriated buttons (for adding, deleting or
editing) will be available next to the information (which can be an attribute, an object instance or
an object class) and appropriated input pages will be generated (see figure 3 for such an input
screen).

Figure 3: Page of the TensiNet website to update a Project object instance

Next to the possibility to group attributes, the designers can also associate captions, hints and
help texts to attributes. Hints are displayed next to the attribute and can be used to give examples
of expected input or a short description of the meaning of the attribute to the visitor (see figure
3). Help text will be displayed if the visitor uses the help button associated with the attribute. The
designer can also define the order of displaying the attributes and indicate whether some
attributes have to be omitted. All this together defines a “view” on an object class. The designer
can define different views for a single object class. In this way it is possible to define a view for
viewing an instance of the object class, a view for updating an instance of this class and even a
view for printing the instance (as printing on paper may require a different format than viewing
information on a screen).

To protect the information from unauthorized use, the designer can associate access rights with
the information at different levels of granularity. Access rights can be associated to object
classes, object instances and individual attributes. Different access rights can be defined for
different groups of users.

Figure 4 gives an overview of the architecture of Web-for-Web. Web-for-Web uses a three-tier
structure: a data layer, a logic layer and a presentation layer. The information to be viewed and
manipulated through the web application is stored in a (relational) database. The Meta
information (information on how the data is structured in the database and how it must be
structured on the web-interface) is also maintained in a database, called the Meta-Database (see
section 3 for a discussion on the Meta Database). Currently Microsoft SQL Server [MsSQL,
2002] is used for this data layer, but in principle any (relational) DBMS could be used.

5

D
a

ta
b

as
e

M
e

ta
-d

at
ab

as
e

Data manipulation

Event-handler

XML document
XSLT parser

XSL document

HTML document
Browser

Figure 4: Architecture of Web-for-Web

For the logic layer, a server side scripting language (PHP [PHP, 2001]) is used. If the visitor of
the web application requests a page, the Event Handler will pass the request to the Data
Manipulation Module, which will extract the requested data from the Database using the Meta
information in the Meta Database. Instead of directly generating HTML code, the output of the
Data Manipulation Module is an XML document ([XML, 1997]) only containing the requested
data and its structure. In this way, presentation issues are separated from structure and logic.
How to display the information in the XML document on the web page (the presentation layer) is
described in an XSL document ([XSL, 2002]). Next, an XLST parser ([XSLT, 1999]) will
generate HTML for the XML document using the XSL document. This approach also has the
advantage that different XSL documents (i.e. different style formats) can be used for the same
XML document. Section 4 will discuss into more detail the role of XML and XSL in this tool.

For updating information in the database, the Event Handler passes the request together with the
information to the Data Manipulation Module, which will update the Database accordingly using
the Meta information in the Meta Database.

3 The Meta Database
In this section we will describe the structure and role of the Meta Database.
The Meta Database contains information about the data (in the database) needed to generate the
web interface and to update the database. The Meta Database actually contains three types of
Meta information:

• Information describing the structure of the data in the database;
• Information on how the data needs to be structured on the web pages;
• Information on how the data can be manipulated through the web interface.

6

Note that for the moment, the Meta database does not contain information on how the data
should be displayed on the web pages. As already explained this is captured by means of XSL
documents. In section 4 we explain why we have opted for this solution.

As explained in the previous section, we take an object-oriented approach to view and
manipulate the data in the Database. Therefore, the Meta Database describes the information in
the database from an object-oriented (OO) and conceptual point of view. The central concept in
the Meta Database is the object class. For each object class, the attributes are described and
possible subclasses and parent classes are given. We distinguish between value attributes (e.g.
number, string, text, URL) and object attributes, which in fact model relations between object
classes. Two examples of object classes for the TensiNet website are: Company and Project.
Some of the attributes for Project are: name, homepage, country of location, year of construction,
building owner. Name, homepage, country of location, and year of construction are value
attributes; building owner is an object attribute because the building owner of a project is a
company (which is represented as an object instance). Two of the subclasses for the object class
Company are Architect’s Firm and Engineering Firm. Company is called the parent class of
Architect’s Firm and Engineering Firm.

Next, this conceptual OO description of the type of data stored in the database is linked to the
actual structure of the database (multiple databases are possible). We suppose that the database is
a relational database because this type of database is the most popular one. In a relational
database, object classes are stored into tables, and the attributes correspond to columns in the
tables. This means that in the Meta Database, we capture for each object class, the name of the
corresponding table in corresponding database; and for each attribute, the name of the
corresponding column (s). For object attributes, also information is captured to be able to locate
the associated objects and their attributes in the database (i.e. the foreign key).

Next to this type of Meta information (describing the type of data and how it is structured in the
database), the Meta Database also contains information on how the data needs to be structured on
the web interface. As already explained, the web interface is object-oriented as well. Therefore,
the description how the data must be structured on the web pages is also associated with the
object classes. This means that with each attribute of an object class the following information
can be associated: a caption, a hint, a help text, and an order number. An example caption for the
attribute “building owner” of the object class Project is “Name of the client/building owner” (see
figure 3 – on this figure also examples of hints are shown). The order number is used to indicate
the order in which the attributes need to be displayed. Furthermore, the attributes of an object
class can be grouped into categories and these categories can be given names and also an order
(see figure 2 for the use of categories – two categories are shown: “Function” and “Material of
the cover”).

To allow to manipulate the data in the database, the Meta Database also contains information on
who is allowed to do what. This type of information is expressed in the form of access right on
groups of users. Again the access rights are not expressed at the relational level but at the OO
level. Access right can be defined for each object class, for individual attributes of an object
class, and even on the level of the individual object instances. This information is sufficient to
generate (later on) the appropriate pages. E.g. if a visitor has no update rights, no update buttons
or input pages will be generated (he only will be able to query the information); if a visitor only
has edit right but no delete or add right, only an edit button will be generated.

7

The fact that all information in the Meta Database is linked to the conceptual level (OO) has the
advantage that most of the tool is independent on how data is maintained and stored in a
relational database. E.g. suppose we want to adapt the tool in such a way that it can also build
web interfaces for data stored in an object-oriented database then we only have to adapt the part
of the Meta Database that describes how the object classes are mapped to the database structure.

4 The Role of XML and XSL
Because it was important that the tool could be used for more than one project, it was needed to
allow for different styles of presentations. Even within one project, it is possible that different
styles are needed for the same data. E.g. suppose you want to use different colors and fonts for
different types of users. We could have solved the problem by also storing information about
presentation styles into the Meta Database and let our PHP-application directly generate HTML.
However, this would have complicated the application. In addition, there was no direct reason
for doing this because this functionality was already available in the XSLT parsers. Thus, we
limited the functionality of the application to extracting and structuring the information needed
on a particular web page. To capture the extracted information and its structure it was clear that
XML was most appropriate. Therefore a DTD was defined. Again the structure defined by the
DTD is an object-oriented one (central element in the DTD is an object instance) and in addition
independent of the project under consideration.

Next, a set of XSL documents is used to express the particular presentation style needed. In
principle only one set of XSL documents needs to be defined for a project. A set of XSL
documents per project is used to obtain a maximum of flexibility. E.g. common elements such a
the header of the pages are defined in one XSL document, another XSL document is used for
define input pages, and still another XSL document for defining output pages. An existing XSLT
parser is used to generate HTML code. In principle it is also possible to store the information
contained in the XSL documents in the Meta Database (and thus also maintain presentation
information in the Meta Database). This would not change the functionality of the system, but it
would simplify the definition and maintenance of the presentation styles for people not
acquainted with XSL. Because of lack of time this has not yet been done.

Using XML and XSL has considerably simplified our application and as a consequence
shortened the implementation time. In addition, the tool is more flexible because presentation
styles can be changed without having to modify anything; only another XSL document is
needed.

5 Example Applications

In this section we will illustrate the use of the tool with two examples. The first one is the
TensiNet web application described in the introduction. Figures 1, 2 and 3 already illustrated
parts of the Web interface generated by Web-for-Web for this application. Figure 5 shows the
Web Interface for maintaining the Meta Database. The complete website of TensiNet (generated
with Web-for-Web) can be found on http://www.TensiNet.com. However notice that currently
most of the website is only accessible by the members of the project and therefore is protected by
means of a password.

http://www.TensiNet.com

8

Figure 5: Page for updating the Meta Database for the TensiNet project

The second application is the BEOND project. In this project a web application is developed to
allow lecturers to publish information about their courses on the web in a structured way and to
allow students to consult this information and submit deliverables for projects and courses
electronically. In this case, the structure of the database used for maintaining the information is
less sensitive to changes than in the TensiNet project. However, this is not a reason for not using
the tool. The main issue in this project was the language. Due to the fact that our university has a
large number of foreign students, it must be possible to either generate an English version or a
Dutch version (the local language) of a course web site. See figure 6 for an example page.

9

Figure 6: Page of the BEOND website

6 Conclusions and Future Research
Publishing information on the Web is said to be easy. However if lots of different types of
information need to be published and maintained through the Web, many different web pages
need to be developed. Although this is not a difficult task it may be a time consuming one. If in
addition the database used to maintain the information is evolving very much, the web pages
need to be adapted and new pages need to be added constantly. To reduce the time needed to
develop and maintain such data driven web applications, the Web-for-Web tool was developed.
The tool exploited the fact that both the way the data is structured in the database and the way
the data should be structured and manipulated on a web page can be described at a high level in a
so-called Meta Database. If information from the database needs to be displayed on a web page
it can be extracted from the database using the information in the Meta Database. The
information together with information how to structure it on the web page, is returned as an
XML document. Next an XSLT parser will generate HTML code for the page using an
appropriate XSL document. If the structure of the underlying database changes, it is only needed
to specify the changes in the Meta Database. No additional coding is needed. The implication of
the approach on performance is small. Most time is lost in checking the authorization rights. This
is due to the fine level of granularity that we allow for specifying access rights. However, the
performance is still very acceptable.

10

The Meta Database can be filled using a web interface, of course generated by the tool itself
(bootstrapping). In the current version of the tool, the database maintaining the data still needs to
be created in a classical manner (e.g. using SQL create table statements). However, it is possible
to generate the database from the description given in the Meta Database. Also updates to the
structure of the database can be derived from updates made to the Meta Database. Experience in
generating a relational database from a conceptual description is available in the group (see e.g.
[De Troyer, 1986], [De Troyer, 1989], and [De Troyer, 1993]) and we plan to do this in the
future. On the other hand, if the database already exists it is, in principle, possible to generate
parts of the Meta Information from the description available in the DBMS’s repository.
However, some reservation is needed here. Currently, the tool works under the assumption that
the database is built according to a number of rules. In a next version of the tool, we plan to
eliminate those restrictions.

References
 [De Troyer, 1986] De Troyer O., Meersman R., Transforming Conceptual Schema Semantics to

Relational Data Base Applications. In: Information Modeling and Data Base
Management, ed. H. Kangassalo, Springer Verlag 1986.

 [De Troyer, 1989] De Troyer O., RIDL*: A tool for the Computer-Assisted-Engineering of
Large Databases in the Presence of Integrity Constraints. In: Proceedings of the ACM-
SIGMOD "International Conference on Management of Data", eds. J. Clifford, B.
Lindsay, D. Maier, ACM Press, 1989 (pp. 418-430).

 [De Troyer, 1993] De Troyer O., On Data Schema Transformations. ISBN 90-9005913-X.
Ph.D. Thesis, 1993, pp.1-301.

[EC-GROWTH, 2002] CORDIS (2002), EC- 5th Framework Programme (GROWTH)
http://www.cordis.lu/growth/

[InterDev, 2002] Microsoft Coporation (2002), “Microsoft Visual InterDev”,
http://msdn.microsoft.com/vinterdev/default.asp

[MsSQL, 2002] Microsoft Coporation (2002), "Microsoft SQL Server",
http://www.microsoft.com/sql/default.asp

[PHP, 2001] The PHP Group (2001), "PHP: Hypertext Preprocessor", http://www.php.net/

[TensiNet, 2001] TensiNet (2001), “TensiNet”, http://www.TensiNet.com/

[UltraDev, 2002] Macromedia, “Macromedia Dreamweaver UltraDev 4”,
http://www.macromedia.com/software/ultradev/

[XML, 1997] W3C (1997), " Extensible Markup Language (XML)", http://www.w3.org/XML/

[XSL, 2002] W3C (2002), “The Extensible Stylesheet Language (XSL)”,
http://www.w3.org/Style/XSL/

[XSLT, 1999] W3C (1999), “XSL Transformations (XSLT)”, http://www.w3.org/TR/xslt

http://www.cordis.lu/growth/
http://msdn.microsoft.com/vinterdev/default.asp
http://www.microsoft.com/sql/default.asp
http://www.php.net/
http://www.TensiNet.com/
http://www.macromedia.com/software/ultradev/
http://www.w3.org/XML/
http://www.w3.org/Style/XSL/
http://www.w3.org/TR/xslt

