
Accessibility: A Web Engineering Approach

Peter Plessers1, Sven Casteleyn1, Yeliz Yesilada2, Olga De Troyer1, Robert Stevens2,
Simon Harper2, and Carole Goble2

1Vrije Universiteit Brussel
Pleinlaan 2

1050 Elsene – Brussel
Belgium

+32 2 629 37 54
{Peter.Plessers | Sven.Casteleyn | Olga.DeTroyer}@

vub.ac.be

2School of Computer Science
The University of Manchester

Oxford Road, Manchester
UK M13 9PL

+44 161 275 6160.
{yesilady | stevensr | harpers | cgoble} @

cs.man.ac.uk

ABSTRACT
Currently, the vast majority of web sites do not support
accessibility for visually impaired users. Usually, these users have
to rely on screen readers: applications that sequentially read the
content of a web page in audio. Unfortunately, screen readers are
not able to detect the meaning of the different page objects, and
thus the implicit semantic knowledge conveyed in the
presentation of the page is lost. One approach described in
literature to tackle this problem, is the Dante approach, which
allows semantic annotation of web pages to provide screen
readers with extra (semantic) knowledge to better facilitate the
audio presentation of a web page. Until now, such annotations
were done manually, and failed for dynamic pages. In this paper,
we combine the Dante approach with a web design method,
WSDM, to fully automate the generation of the semantic
annotation for visually impaired users. To do so, the semantic
knowledge gathered during the design process is exploited, and
the annotations are generated as a by-product of the design
process, requiring no extra effort from the designer.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]:
Hypertext/Hypermedia – architecture, user issues; K.4.2
[Computers and Society]: Social Issues – assistive technologies
for persons with disabilities.

General Terms
Design, Human Factors

Keywords
Accessibility, Visual Impairment, Web Engineering, Semantic
Web.

1. INTRODUCTION
The majority of resources on the Web primarily focus on good
visual presentation to implicitly help users navigate, understand,
and interact with the content. However, problems arise when
visually impaired users try to interact with such resources because
the implicit visual cues presented cannot be accessed and used.

Visually impaired users usually access the Web by using screen
readers (e.g., Jaws1). These applications render pages in audio and
allow either simple line based interaction or full reading of a
page, top to bottom; one word at a time. However, these screen
readers cannot ‘see’ the structure of a web page or the intended
meaning of the page objects. Consequently, no distinction
between relevant and irrelevant information can be made (e.g.,
tables used for formatting versus tables containing relevant data;
or images, such as bullets, used purely for presentation versus
images conveying relevant schematics). Moreover, the visual cues
used by (sighted) users to identify the semantics of the page
objects are lost. For example, due to the visual organization a
sighted user can (easily) detect a menu structure; a screen reader
can only detect a collection of links, thereby losing the meaning
of the concept menu. Even though some screen readers do access
the HTML source code, they still cannot discover the (implicitly
present) semantics of the different page objects. Most of the time
HTML source code represents the visual presentation of the page
rather than its logical structure.

Screen readers work satisfactorily as long as the pages are laid out
linearly. Unfortunately this is not often the case, although there
are guidelines to promote accessibility2, these guidelines do not
address the importance of navigation support [1].
The Dante approach is proposed to overcome these limitations.
Dante analyses Web pages to extract visual objects that support
navigation [23]. The identified objects are then annotated with
terms from an ontology, the Web Authoring for Accessibility
(WAfA)3 ontology, in order to make their roles explicit. This
markup is then used to transcode pages into a form that is easy to
travel. The WAfA ontology aims to encapsulate extensive
knowledge to make structural and navigational information about
Web pages explicit. Fundamentally, the WAfA ontology defines
concepts concerning how objects on a page are presented (their
structural properties) and used (the role they fulfil) to complete a
successful journey. This ontology is used to annotate Web pages
manually. These annotations make the implicit knowledge about
the role the page objects fulfil explicit, and allow screen readers
to improve their reading capabilities significantly [22].

1 See Jaws, http://www.freedomscientific.com/.
2 See WCAG 1.0, http://www.w3.org/TR/WAI-WEBCONTENT/.
3 Formerly known as the Travel Ontology [22].

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

One of the major drawbacks of this approach is the fact that the
annotations have to be specified manually. While this may be
feasible for small websites, the annotation task becomes too
laborious and the associated cost too high for larger websites.
The manual annotations also pose problems with dynamic pages,
where the amount of data shown on a web page is variable and the
layout may depend on the availability of certain data.
Furthermore, updates to the website, both in structure, content or
layout, possibly invalidate the annotations. Maintainability of the
manual annotation approach is thus problematic. Taking this into
account, together with the relatively short life span of a website,
companies in general will consider the cost/benefit ratio of
manual annotation too meager.

Despite these problems, we are convinced that Dante is a very
useful approach for providing accessibility for visually impaired
users. Accessibility for visually impaired users is a major issue,
particularly for official (governmental) websites, who cannot
deny any citizen access to official information and services. In
this paper, we present a web engineering-based approach to
support web accessibility, where the WAfA annotations needed to
assist visually impaired users are generated automatically (along
with the actual implementation of the website). The WAfA
annotations are generated from the design specifications collected
during the design process. It is important to highlight that this
does not require any additional effort from the designer. The
approach we present here is based on the web design method
WSDM [8, 9, 18]. The current generation phase of WSDM has
been adapted to support the generation of the WAfA annotations.
The result is that the modeling concepts already used in WSDM
are sufficient to generate the annotations for 70% of the concepts
defined in the WAfA ontology. This can be easily increased to
84% by slightly extending the current generation process. In this
paper we describe how the modeling concepts of WSDM can be
used to generate WAfA annotations in the actual implementation.

The proposed approach solves all disadvantages of the manual
annotations done in the Dante approach. Since the generation of
the annotations is completely automatic, there is no additional
cost. Furthermore, the maintenance problem is solved since
changes to a website are realised through a new iteration of the
web engineering process which results in the generation of a new
website implementation including the annotations. Finally,
typical problems with manual annotations for dynamic pages are
eliminated as our approach does not make a distinction between
static or dynamic websites.

The paper is structured as follows. Section 2 summarises the
Dante approach, and Section 3 presents an overview of WSDM.
In Section 4, the mapping between the WAfA concepts and
WSDM concepts is described. Section 5 presents an overview of
the implementation architecture along with an example. Section 6
highlights the advantages of our approach and discusses the main
outcomes. Section 7 describes and discusses some related works.
Finally, Section 8 provides some conclusions.

2. DANTE APPROACH
The Dante approach proposes a semi-automated tool that aims to
improve the navigation and movement support of Web pages for
visually impaired users. The main goal of Dante is to (i) analyse
Web pages to identify objects that support navigation and
movement; (ii) discover their roles; (iii) annotate them with
concepts from an ontology, WAfA ontology, to make their roles

explicit; and (iv) transcode4 pages by using these annotations so
that they can be easily accessed by using screen readers [10].
Dante uses a pipeline approach that is driven by the WAfA
ontology. The extensive knowledge encoded in the ontology
enables Dante to automatically transcode a Web page in a way
that the visual objects on that page can play their intended roles in
an audio presentation. The following sections first introduce the
WAfA ontology and then explain the two main components of
Dante: the annotation and transcoding components.

2.1 The WAfA Ontology
This ontology represents concepts and relationships that are
necessary for the modeling of the structural and navigational
organization of Web pages in a computable form. In Dante, this
ontology is used as a controlled vocabulary to drive the
transcodings. The WAfA ontology has three components5:

• Taxonomy: taxonomy of visual components that
constitute a Web page, e.g., Sidebar is-a Chunk, Header
is-a Chunk.

• Structural abstraction: the relationships between
components and their connectivity, e.g., Logo part-of
Header.

• Meta-knowledge: principles and sets of rules, e.g.,
Disjoint (Header, Footer) which means an object cannot
be a header and a footer at the same time.

The WAfA ontology consists of a number of sub-ontologies. The
two main sub-ontologies are:

1. Authoring concepts: encapsulate information about
how the objects are structured in a Web page to form
the overall structure of that page. These concepts
originate from traditional hypermedia [16], previous
work on transcoding [2], mark-up languages6, content
management systems, etc. The four higher-level
concepts in this part of the ontology are: Atom (e.g.,
Headline, Caption), Chunk (e.g, Header, Footer,
Sidebar), Node (represents a page) and Collection
(represents a site).

2. Mobility concepts: focus on how the objects are used
to navigate within and between Web pages. Depending
on the context of the navigation task, objects can have a
specific role (e.g, Cue, Obstacle) and depending on the
environment, objects can also play different roles (e.g.,
WayPoint, ReferencePoint, DecisionPoint).

The combination of these two sub-ontologies provides extensive
knowledge about pages that can be used to transcode them into a
more accessible form.

2.2 Dante: Annotating Web pages
In the current prototype of Dante, pages are manually annotated
with the COHSE7 annotator8 by using the authoring concepts
described above. After annotating pages with authoring concepts,
a set of mapping rules along with the underlying HTML source

4 See http://www.w3.org/1999/07/NOTE-annot-19990710/.
5 See http://augmented.man.ac.uk/ontologies/wafa.owl.
6 See http://www.docbook.org/.
7 See http://cohse.man.ac.uk/.
8 For available tools, see http://annotation.semanticweb.org/tools.

code and the ontology are used to map annotated authoring
concepts to mobility concepts. Therefore, the extended DOM in
Dante includes both authoring and mobility concepts that provide
enough knowledge to transcode pages into a more accessible
form.
The COHSE annotator is implemented as a Mozilla plug-in so
that an ontology can easily be loaded and used for annotating
pages. The COHSE annotator uses XPointer9 expressions to
identify a region of a document and annotations are held in an
external store. Although this provides us the flexibility to annotate
third party pages, it is a long and expensive process. Moreover, it
is not an easy task to capture the intention of a designer.
Therefore, the annotations cannot be as good as the ones that
could be done by the designer of the pages or that could be
generated using a design methodology. These third party
annotations can only be best-practices.

2.3 Dante: Transcoding Web Pages
Since the currently available screen readers cannot directly access
these kinds of annotations and are bound to the HTML source
code, Dante transcodes pages into a form so that screen readers
can easily and properly render them in audio. The transcoding
techniques focus on enhancing navigation support and presenting
identified objects in a way that they can fulfil their intended roles.
Some of the transcoding techniques are summarized as follows:

• Physical fragmentation of pages: Dante uses objects
annotated as “Chunk” to break a complex page into a
number of simpler and smaller pages and creates a table
of contents that provides links to those smaller pages. In
this way, users can easily get an overview of a page and
locate the information that they really want or need to
read. Therefore, they do not need to read an entire, long
and complex page to find what they are looking for.
This technique turns a complex page into a number of
simpler and more manageable pages.

• Enhancing intra-page movement: a skip link is a
popular accessibility feature. It is a link provided at the
top of the page to move to the main content or to skip
repeated objects in a page. Therefore Dante adds a skip
link either to move to the object annotated as a
“Headline” or to skip “Header” or “Sidebar” objects.

• Eliminating repetitions: Dante removes objects that are
annotated as “Header” and “Footer” from the page so
that users do not need to read them every time they
access the page. This technique provides a short and
concise version of the page. Dante also removes objects
annotated as “Advertisement”, so that the users are not
distracted by these objects.

• Alternative Views: Dante also provides different views
of a page. For example, Dante uses “LinkMenu”
annotations to present only link menus in the page. This
enables visually impaired users to scan pages as sighted
people do10. Similarly, only “Sidebar” objects can be
presented.

9 See http://www.w3.org/TR/xptr/.
10 See http://www.useit.com/alertbox/9710a.html.

These are some of the transcodings that Dante performs by using
the WAfA annotations11. These techniques can also be supported
by screen readers but unfortunately existing screen readers do not
have access to such kinds of annotations. In the meantime, tools
like Dante can play an intermediary role to enhance the
accessibility of Web pages for visually impaired users.
The annotation approach in Dante is different from existing
semantic annotation techniques as it annotates the role and
structure of the resources rather than their meaning by using an
ontology [22]. Therefore, it provides better support for visually
impaired users. Until now, the Dante annotations were done
manually, yet in this paper we will explain a technique to generate
the annotations automatically by WSDM.

3. WSDM
WSDM is a web site design method. It allows web sites and web
applications to be developed in a systematic way. Other web site
design methods exist in literature. The most representative ones
are WebML [7], OOHDM [19], Hera [10] and OOH [11].
Figure 1 shows an overview of the different phases of WSDM. In
this section, we briefly explain each phase by focusing on the
phases relevant to this paper: the implementation design and the
actual implementation. A detailed overview of all the phases of
WSDM can be found in [9].

Figure 1 - WSDM overview

In the first phase of WSDM, the mission statement of the
website, the purpose, subject and intended users are specified. By
doing so, WSDM ensures that the designer clearly establishes the
borders of the design.

During the audience modeling phase, the users identified in the
mission statement are taken as a starting point and classified into
different audience classes based on their information and

11 For more examples, see [20].

functional requirements. The audience classes form a hierarchy.
The root of the hierarchy is the visitor audience class. The
requirements all users share are associated with this class. Each
audience sub-class represents a group of users that has additional
requirements. During Audience Class Characterisation, the
characteristics of each audience class are specified.

The conceptual design phase consists of two subphases: task &
information modeling and navigational design. During task &
information modeling, the user requirements, which were
informally specified in the previous phase, are elaborated. For
each requirement, a task model is specified using hierarchical task
decomposition. WSDM uses the Concurrent Task Tree technique
[17] for its task modeling because it allows not only to
hierarchically decompose a task in subtasks but also to specify
temporal relationships between different subtasks. Next, for each
elementary task, an object chunk is created. Such a object chunk
formally describes the data or functionality needed by a particular
elementary task.
During navigational design, the conceptual structure of the
website is built. A navigational model consists of nodes,
grouping information and/or functionality (elementary tasks) that
logically belong together. Links between those nodes specify
navigation paths. WSDM provides a systematic method for
obtaining the navigation structure of a website: first, the audience
class hierarchy is one-to-one mapped onto a navigational model,
creating a navigation track for each audience class. Next, each
navigation track is further refined using the information in the
task models. Nodes are created for elementary tasks; navigation
links are used to reflect the temporal relationships between tasks
and the relevant object chunks are connected to the nodes.

The goal of the implementation design is to provide, for the
conceptual design, the necessary implementation aspects. The
implementation design consists of three subphases, which are
discussed in detail below.
The subject of the first subphase, the Site Structure Design, is to
decide how the nodes, defined in the navigation model, will be
grouped into pages. Note that in this phase we define abstract
pages; each abstract page possibly gives rise to multiple concrete
page instances in the actual implementation.
The goal of the next sub phase, the Presentation Design, is to
describe the layout (i.e., positioning & style) for all pages.
WSDM provides three different sets of modeling concepts to
describe the layout of a page. Each set provides a different level
of abstraction.

• Primitive presentation concepts: a basic set of building
blocks needed to layout a page. There are two kind of such
primitives: positioning elements and multimedia elements
(primitive data types: Audio, Email, Image, Integer, String
and Video).

• High-level presentation concepts: express more high-level
presentation concepts like lists, menus and sections, logos,
banners, breadcrumbs, etc. These concepts are defined on top
of the primitive presentation concepts.

• Template concepts: are defined on top of the primitive
presentation concepts and meant to define templates.
WSDM supports the most commonly found types of
templates. A template is defined as the combination of the
following elements: footer, header, right- and left-sidebar,
content-pane and editable region.

During the Template & Style design, the designer specifies
templates that will be used for different types of pages. Templates
define the general layout of a page. To specify the website style
(fonts, colours, graphics, etc), WSDM currently uses Style Sheets.
In the Page Design sub phase the designer describes where the
information on a page (defined in the object chunks) should be
positioned and how it should be laid out. It is also decided how
and where the links (defined in the navigational design) should be
presented. The template defined for the page is taken as a starting
point.

In the final phase, the actual implementation, all the information
collected so far is taken as input and a website in the chosen
implementation environment is automatically generated.

4. INTEGRATION OF DANTE
ANNOTATION IN WSDM
Having explained the Dante approach and WSDM, we are now
ready to clarify how the Dante annotation process can be
integrated in WSDM.
Our main goal is to generate the annotations for visually impaired
users automatically from the explicit conceptual knowledge
existing during the design process. Such conceptual knowledge is
captured during the design process by means of WSDM’s
modeling concepts. All WSDM modelling concepts used in the
different phases are described in an (OWL12) ontology. This
ontology is called the WSDM ontology13. To be able to generate
code that is annotated with concepts from the WAfA ontology, we
need to establish a relationship between the modeling concepts of
WSDM and the concepts in the WAfA. We need to establish a
link between the concepts in the WSDMOntology and those in the
WAfA ontology. Therefore, we have defined a set of rules that
map the WSDMOntology concepts onto the WAfAOntology
concepts. Using these mapping rules a transformation process can
be established that takes the conceptual design models as inputs
and in consequence generates a set of annotations. Here we
describe the mapping rules as well as the transformation process
that uses them.
The transformation process consists of two steps (see T6 and T7
in Figure 2). Their roles can be described as follows:

• T6: Authoring Annotation Transformation. In this
transformation, only the annotations for the authoring
concepts of the WAfA ontology are generated. This
transformation takes as inputs: the models made during the
conceptual design, navigational design and presentation
design. Information specified in these models is used to
generate the authoring annotation.

• T7: Mobility Annotation Transformation. This
transformation takes as inputs: the output of the previous
transformation (the authoring annotations) as well as the
design models. A derived set of mapping rules as defined in
the original Dante approach [22] is used to extend the
authoring annotations generated in the previous
transformation with mobility annotations.

Note that this two-step transformation resembles the original
annotation process of the Dante approach. The difference is that

12 See http://www.w3.org/2004/OWL/.
13 See http://wise.vub.ac.be/ontologies/WSDMOntology.owl.

the authoring annotation in the Dante framework is completed
manually and based on the HTML source code of the website.
Let us now consider the transformations T6 and T7 in more detail.

4.1 Authoring Annotation Transformation
In this transformation, the mapping rules between modeling
concepts defined in the WSDMOntology and authoring concepts
from the WAfA ontology are used. To describe these rules, we
will prefix the WSDM concepts with ‘wsdm’ and the WAfA
concepts with ‘wafa’ to avoid confusion. Note that both
ontologies were developed independently and therefore a number
of concepts exist in both ontologies with the same (or similar)
names but with different meanings. An example is the concepts
wsdm:ObjectChunk and wafa:Chunk. The former defines a tiny
conceptual schema used during information & functional
modeling, whereas the latter refers to several page objects
grouped together to form a coherent unit.
Due to space limitations, we cannot present all mapping rules.
Therefore, we only describe a number of representative examples,
though others can be described in a similar way. To describe the
mapping rules, we use the following notational convention: first,
the WAfA concept is given in bold, followed by its meaning (in
italic). Where needed an informal explanation of the mapping rule
is given and finally a formal definition using first-order predicate
logic is given.
For a website W, we define the set C as the set of all WSDM
modeling concepts and the set I as the set of all instances of these
concepts.
For some WAfA concepts, the mapping rules are straightforward
one-to-one mappings:

• wafa:Node: A single page in a website. Every
generated page can be annotated with this concept.
∀ i ∈ I: wsdm:Page14(i) wafa:Node(i)

• wafa:Figure: An image illustrating textual material.
∀ i ∈ I: wsdm:Figure(i) wafa:Figure(i)

• wafa:Footer: An area placed at the bottom of a page.
Typically contains information about the design,
company, copyright note, etc.
∀ i ∈ I: wsdm:Footer(i) wafa:Footer(i)

• wafa:Header: An area placed at the top of a page.
Typically contains a company logo, page title, etc.
∀ i ∈ I: wsdm:Header(i) wafa:Header(i)

• wafa:TableOfContent: A list of available sections and
a link to the beginning of each section.
∀ i ∈ I: wsdm:NavigationTableOfContent(i)

 wafa:TableOfContent(i)

• wafa:FigureCaption: A brief description
accompanying a figure.
∀ i ∈ I: wsdm:FigureCaption(i)
wafa:FigureCaption(i)

• wafa:Advertisement: A graphical advertisement
element.

14 The wsdm:Page concept refers to the abstract pages defined
during the Site Structure Design (see Section 3).

∀ i ∈ I: wsdm:Advertisement(i)
wafa:Advertisement(i)

For a number of WAfA concepts there is no direct corresponding
concept in the WSDMOntology, but nevertheless a mapping rule
can be defined:

• wafa:Chunk: Several page objects grouped together to
form a coherent unit. In WSDM, an object chunk
represents (a unit of) information that describes a single
requirement. The wsdm:Grid representing a
wsdm:ObjectChunk can be annotated as a
wafa:Chunk.15
∀ i ∈ I, ∃ x ∈ I: wsdm:Grid(i) ^
wsdm:representsChunk(i, x) ^
wsdm:ObjectChunk(x) wafa:Chunk(i)

• wafa:Homepage: A single page that represents the
homepage of a website. The annotation can be created
for a generated page that is the result of a wsdm:Page
that contains an instance of wsdm:Root. The
wsdm:Root concept is used in WSDM to indicate the
starting point of the navigation structure of a website.
∀ i ∈ I, ∃ x ∈ I: wsdm:Page(i) ^
wsdm:hasNode(i, x) ^ wsdm:Root(x)
wafa:Homepage(i)

• wafa:RunningFooter: A footer that is present on every
page or on a collection of pages. The annotation can
automatically be derived when there is an instance of a
wsdm:Footer concept defined in a template. This means
that the footer will be placed on every wsdm:Page based
on this template.
∀ i ∈ I, ∃ x ∈ I: wsdm:Footer(i) ^
wsdm:IndependentTemplateConcept(x) ^
wsdm:hasFooter(x, i)
wafa:RunningFooter(i)

• wafa:NavigationalList: A list of links. The annotation
can be generated for a wsdm:List where all list elements
have a wsdm:Link defined upon them.
∀ i ∈ I, ∃ y ∈ I: wsdm:List(i) ^ (∀ x ∈
I: wsdm:hasChild(a, x) ^
wsdm:ListItem(x) ^
wsdm:hasNavigationReference(x, y) ^

 wsdm:NavigationReference(y))
wafa:NavigationalList(i)

• wafa:WebDirectory: A list that provides links to
different websites in a well structured way. In WSDM,
this is represented by a wsdm:List where all list
elements (e.g., childs) have a wsdm:Link defined upon
them and the target of these wsdm:Links is a
wsdm:ExternalNode. The wsdm:ExternalNode concept
is used in WSDM to refer to web pages outside the
website under design.
∀ i ∈ I, ∃ x, y, z ∈ I: wsdm:List(i) ^
wsdm:hasChild(i, x) ^ wsdm:ListItem(x) ^
wsdm:hasNavigationReference(x, y) ^
wsdm:NavigationReference(y) ^

15 Note that this rule only covers the (general) wafa:Chunk

concept; more specialized subtypes are treated by specialized
mapping rules (e.g. wafa:RunningFooter, wafa:WebDirectory,
wafa:TitleBanner, etc).

wsdm:toNode(y, z) ^ wsdm:ExternalNode(z)
 wafa:WebDirectory(i)

• wafa:LinkMenu & wafa:DropDownLinkMenu: A
Linkmenu is a list meant to represent a menu. A
DropDownLinkMenu is a menu that appears below an
item when the user clicks on it. Both types of menu
correspond to a wsdm:Menu represented as a wsdm:List
in WSDM. The difference between the two types of
menus can be derived from the behaviour defined for
the nodes of a wsdm:List. If no additional behaviour is
defined, the menu can be annotated with LinkMenu. If
an instance of wsdm:Behaviour is defined with
wsdm:Event ‘onClick’ and wsdm:Action ‘dropDown’,
then the menu can be annotated with
DropDownLinkMenu .
∀ i, x ∈ I, ∃ y ∈ I: wsdm:Menu(i) ^
wsdm:representedBy(i, y) ^ wsdm:List(y)
^ ¬wsdm:hasBehavior(y, x)
wafa:LinkMenu(i)

∀ i ∈ I, ∃ x, y ∈ I: wsdm:Menu(i) ^
wsdm:representedBy(i, x) ^
wsdm:List(x) ^ wsdm:hasBehavior(x, y) ^
wsdm:Behavior(y) ^
wsdm:onEvent(y, 'onClick') ^
wsdm:doAction(y, 'dropDown')
wafa:DropDownLinkMenu(i)

• wafa:AdvertisementBanner: A banner that is used to
advertise a website, product or service. This annotation
can be generated for an instance of wsdm:Banner
containing an instance of wsdm:Advertisement.
∀ i ∈ I, ∃ x ∈ I: wsdm:Banner(i) ^
wsdm:Advertisement(x) ^ wsdm:hasChild(i,
x) wafa:AdvertisementBanner(i)

• wafa:SectionHeading: The heading of a particular
section. The annotation can be generated for the object
(string or image) that represents the title of a
wsdm:Section.
∀ i ∈ I, ∃ x ∈ I: (wsdm:String(i) ∨
wsdm:Image(i)) ^ wsdm:Section(x) ^
wsdm:hasTitle(x, i)
wafa:SectionHeading(i)

• wafa:Link: A link allows the user to navigate from one
page object to another web page or page object. In the
WSDM method, a link (defined during navigation
design) can be placed on any page object. Therefore, an
annotation for wafa:Link can be generated for every
WSDM instance that has a reference to a link defined.
∀ i ∈ I, ∃ x ∈ I:
wsdm:hasNavigationReference(i, x) ^
NavigationReference(x) wafa:Link(i)

• wafa:referentialLink: It provides a link between, on
one hand, an item of information and, on the other
hand, an elaboration or explanation of that same
information [16]. For example a page on a news
website showing a summary of the latest news articles.
A user can follow a link (e.g., ‘read more’) to show the
complete article. In WSDM, a wsdm:Link is always
defined between two nodes (wsdm:Node) where a
wsdm:Node contains one or more wsdm:ObjectChunks.
A wsdm:Link can be considered a wafa:ReferentialLink
when the information represented by the object chunks

of the source node is a subset of the information
represented by the object chunks of the target node.
∀ i ∈ I, ∃ x, y ∈ I: wsdm:Link(i) ^
wsdm:hasSource(i, x) ^
wsdm:hasTarget(i, y) ^ wsdm:Node(x) ^
wsdm:Node(y) ^
∀ u, v ∈ I: wsdm:hasChunk(x, u) ^
 wsdm:hasChunk(y, v) ^

(∀ a, b ∈ C: (wsdm:isComposedOf(u, a)
wsdm:isComposedOf(v, b)) ^
∃ c ∈ C: wsdm:isComposedOf(v, c) ^
¬wsdm:isComposedOf(u, c))

 wafa:referentialLink

• wafa:TitleBanner: A banner on a page showing the
page title. This is the same as a wsdm:Banner
containing a string with the same value as the title
specified in wsdm:Page.
∀ i ∈ I, ∃ x, y ∈ I: wsdm:Banner(i) ^
wsdm:hasChild(i, x) ^ wsdm:String(x) ^
wsdm:Page(y) ^ isAncestorOf(y, i) ^
wsdm:hasName(y, x) wafa:TitleBanner(i)

• wafa:Symbol: A set of special characters used to
separate one element from the others (e.g., in a menu
structure). Several subtypes of Symbol have been
defined in the WAfA ontology to represent a comma,
dash, triangle, vertical bar and copyright symbol. We
generate the annotation for the Symbol concept when it
concerns a wsdm:Separator that is represented as a
string. The different subtypes of Symbol can be derived
based on the content of the string.
∀ i ∈ I, ∃ x, y ∈ I:
wsdm:CustomSeparator(i) ^
wsdm:representedBy(i, x) ^
wsdm:String(x) wafa:Symbol(i)

4.2 Mobility Annotation Transformation
The Dante approach provides a set of mapping rules to extend the
authoring annotations with mobility concept annotations. This is
done using the existing authoring annotations and analysing the
underlying HTML source code. A disadvantage of this technique
is that it is implementation dependent.
As the authoring annotations generated automatically by WSDM,
are fully compatible with the manual annotations, we could
simply use the Dante algorithm to generate the mobility concept
annotations. However, as we have the design models available in
our approach, we consider it useful to define our own
transformation for generating the mobility concept annotation in
order to provide implementation independence (i.e., not
dependent on HTML as the original Dante approach).
Nevertheless, we can re-use the mapping rules provided by Dante,
adjusting them to interact with the design models instead of the
HTML code.
Consider for example the following mapping rule for mobility
annotation taken from [22]:

NavigationalList

↓

NavigationalList → DecisionPoint ^
NavigationPoint

TextLink → NavigationPoint ^ TravelMemory

NavigationalList ^ TextLink → DecisionPoint ^
NavigationPoint ^ TravelMemory

↓

DecisionPoint ^ NavigationPoint ^ TravelMemory

This rule applies to the objects annotated as a “NavigationalList”
where all the links in the list are text. This rule is rewritten for our
approach as follows:

∀ i ∈ I: wsdm:String(i) ∨
(∃ x, y ∈ C:
 wsdm:ObjectChunkReference(i) ^
 toProperty(i, x) ^ range(x, y) ^
 wsdm:String(y))
 Text(i)

∀ i ∈ I: wafa:NavigationalList(i) ^
(∀ x ∈ I, ∃ y ∈ I:
 (wsdm:hasChild(a, x) ^
 wsdm:ListItem(x) ^
 wsdm:hasChild(x, y) ^ Text(y))
 wafa:DecisionPoint(i) ^

wafa:NavigationPoint(i) ^
wafa:TravelMemory(i)

The bottom-half of the rule is a direct translation of the original
rule, applying to the objects annotated as a “NavigationalList”
where all wsdm:ListItems are text elements. The top-half of the
rule formally defines a text element.
Note that the new rule may seem more complex than the original
one, but in fact it is not. However, the original rule does not
explicitly specify how the HTML source code is referenced and
how properties are extracted from it, while we also formally
define the link with the WSDM design models and its content. In
this particular example, we formally define when an instance is
considered to be text; the original rule doesn’t explicitly specify
this.

5. ARCHITECTURE &
IMPLEMENTATION
To validate the approach, a prototype has been implemented. To
generate the actual implementation of a website, a transformation
pipeline is used. This pipeline takes the object chunks,
navigational model, site structure design, template design and
page design as inputs. It consists of five steps:

• High Level Transformation Mapping (T1): is responsible for
the transformation of the high level template and
presentation concepts into the basic set of primitive
presentation concepts. This transformation step makes the
subsequent transformations simpler.

• Model Integration (T2): integrates the navigation, page
structure, template & style and page design into one single
model. In principle, this transformation can be omitted, but
it (again) simplifies the following transformations.

• Implementation Mapping (T3): the implementation platform
is chosen (e.g., HTML, XHTML16, WML17, etc.), and the
integrated model derived by the previous transformations is
partially transformed towards the chosen platform.
References to data (i.e., references to object chunks) are not
yet processed. Note that generating a different

16 See http://www.w3.org/TR/xhtml1/.
17 See http://www.wapforum.org/.

implementation only requires substituting this
transformation (e.g., the other transformations are
implementation independent18).

• Data Source Mapping (T4): the references to attributes in the
object chunks are resolved and mapped to their data source.
This results into executable queries using the appropriated
querying formalism. This mapping can be performed fully
automatically, provided that the mapping from object
chunks to the data source is available.

• Query Execution (T5): finally, the queries are executed and
the actual pages can be generated by inserting the actual
data. When the query execution phase is performed offline,
a static website is created but when it is performed at
runtime, a dynamic site is the result.

Figure 2 schematically shows this transformation pipeline, along
with the transformations that were added to support semantic
annotation for the Dante approach (explained in Section 4).

Figure 2 - Transformation Pipeline

The current prototype is based completely on Semantic Web
technologies. The WSDMOntology, specified in OWL, is used to
create the different design models of WSDM as OWL instance
files. As described in Section 3, the WSDM object chunks are
also modeled using OWL and thus also give rise to OWL instance
files. These OWL specifications are taken as an input for the

18 Note that the data source mapping, described in the next bullet,

must, of course, be compatible with the chosen implementation
platform. However, it is decoupled from the Implementation
Mapping.

transformation pipeline described above. This pipeline is
implemented using XSLT19. Noteworthy is the data source
mapping, which takes as input the model generated by the
previous transformation (the implementation mapping) and
outputs a new transformation in which the queries to the (OWL)
object chunk instance files are specified using XPath20. Executing
this transformation, the OWL data sources (i.e., the object
chunks) are used to populate the website with actual data and the
actual implementation is output.
Currently, our prototype only supports the generation of (static)
HTML pages, but it can be easily extended to support other
implementation languages (e.g., XHTML, WML, etc.).
Also the annotation transformations described in Section 4 are
implemented using XSLT. The output is a set of XPointer
expressions, annotating the website with WAfA authoring
concepts.
For a better understanding of the transformation pipeline and the
semantic annotation generation for the Dante approach, consider
the transformation of a wsdm:Menu, represented as a wsdm:List.
To keep the example simple, we have omitted any object chunk
references. This has as consequence that the data source mapping
(T4) and query execution (T5) transformations are not applicable.
As the example only considers an isolated wsdm:Menu, the model
integration (T2) transformation is also not needed.
A transcript of the transformation pipeline for the example
follows:

(1) Input for transformation pipeline:
<wsdm:Menu rdf:id=“menu1”>
 <wsdm:MenuItem rdf:id=“menu1.menuItem1”>
 <wsdm:Label>some menu item</wsdm:Label>
 <wsdm:hasNavRef rdf:resource=”#nav_ref1”/>
 </wsdm:MenuItem>
 <wsdm:MenuItem id=“menu1.menuItem2”>
 ...
 </wsdm:MenuItem>
 <wsdm:representedBy rdf:resource=”#defaultList”/>
</wsdm:Menu>

(2) Result after T1:
<wsdm:grid rdf:id=“menu1”>
 <wsdm:hasChild>
 <wsdm:row rdf:id=“menu1.row1”>
 <wsdm:hasChild>
 <wsdm:cell rdf:id=“menu1.menuItem1”>
 <wsdm:hasChild>
 <wsdm:String>some menu item</wsdm:String>
 </wsdm:hasChild>
 <wsdm:hasNavRef rdf:resource=”#nav_ref1”/>
 </wsdm:cell>
 </wsdm:hasChild>
 </wsdm:row>
 </wsdm:hasChild>
 <wsdm:hasChild>...</wsdm:hasChild>
</wsdm:grid>

(3) Result after T3 (T2, T4 and T5 are omitted):
<table id=“menu1”>
 <tr id=”menu1.row1”>
 <td id=”menu1.menuItem1”>
 some menu item
 </td>
 </tr>

19 See http://www.w3.org/TR/xslt.
20 See http://www.w3.org/TR/xpath.

 <tr id=”menu1.row2”>...</tr>
</table>

(4) Result from T6:
http://augmented.man.ac.uk/ontologies/wafa.owl#lin
kMenu

http://www.example.com/index.html

#xpointer(id(“menu1”))

Note how the unique id’s, originating from the WSDMOntology
instances, are proliferated through the transformation pipeline and
reflected in the final code. This allows us to define the annotation
on a conceptual level (i.e., on the WSDMOntology instances), yet
effortlessly link the annotation with the actual implementation. In
our example, the table structure (3) carries the same ID as the
high-level presentation concept wsdm:Menu (1), thus denoting
that the table structure actually represents a menu.

6. RESULTS AND DISCUSSION
As discussed in [22], annotating web pages with the Dante
ontology greatly improves the accessibility of a website. The
approach presented in this paper provides the following
advantages, compared to the original Dante approach:

• Automatic: in contrast to the original Dante approach where
annotations done by hand, the WSDM annotation process is
fully automatic.

• No extra effort: the annotation is a side effect of the WSDM
design process, and thus requires no extra effort from the
designer.

• Robust: the content and/or layout of most web pages change
regularly so in the original Dante approach, this may
invalidate the performed annotations. In our approach,
changes to a website can be done on the conceptual level,
after which the implementation, and the annotations, are
effortlessly re-generated

• Implementation independent: as the annotations are
performed on a conceptual level and they are proliferated
throughout the WSDM implementation pipeline, the chosen
implementation platform (e.g., the chosen implementation
mapping) does not influence the annotation.

• Dynamic pages supported: the original Dante approach does
not deal well with dynamic pages. As the layout of a
dynamic page may be dependent on whether or not certain
data is available, annotations stored for that page could be
invalid. As the annotation is now done in combination with
the page generation, dynamic pages are correctly annotated.

An obvious disadvantage of our approach is that it cannot be
applied to existing sites. For these legacy sites, the original
manual annotation can be an acceptable compromise, while our
approach offers a more rigid and systematic solution towards the
future.
The results of our approach are very promising. In the WAfA
ontology, about 80 different authoring concepts are defined.
Currently, we are able to generate annotations for approximately
70% of them fully automatically without any additional effort
required from the designers. This percentage could be raised to
about 85% by further extending our approach. For example, we
could automatically generate a sitemap for a website by taking

into account the navigational design. Also form elements (e.g.,
text box, check box, etc.) are not yet taken into account.
Annotations for about 15% of the WAfA concepts are impossible
to be generated automatically without requiring an extra effort
from the designer. An example of such a concept is the WAfA
concept ‘Abstract’ defined as a summary of the main points of an
argument or theory. It would require an additional effort from the
designer to specify that a given data property defined in a certain
object chunk represents an ‘Abstract’. Table 1 gives an overview
of the results.

Table 1 - Overview of results

 WAfA
Concepts

Defined
mapping

rules
%

Current result 78 55 70,51 %

Best possible
result 78 66 84,62 %

7. RELATED WORK
Semantic annotation of web pages is a major research topic within
the semantic web community. Two main directions can be
distinguished, i.e. manual and automatic annotation approaches.
Manual annotation approaches (e.g. [13, 14]) allow users to define
annotations by hand and focus on easing the annotation process.
Automatic annotation approaches try to extract annotations
automatically using machine learning and natural language
techniques (e.g. [6, 12]). Most of these approaches focus on the
annotation of the actual content of a web page, and do not
specifically consider annotation support for visually impaired
users.
Some annotation approaches have been developed focusing
specifically on semantic annotations for visually impaired users.
Their intention is to transcode pages based on these annotations to
allow improved audio rendering. A simple, yet effective
approach consists of in- and excluding page fragments. In the
page clipping approach [15], a vocabulary for annotation that
includes only “keep” (content should be preserved) and “remove”
(content should be removed) statements is proposed. The pages
are then filtered based on these annotations.
More advanced approaches propose a more elaborated vocabulary
for annotation. This makes it possible to describe the structure of
a page and the role page objects fulfil in more detail, and
therefore enhance the transcoding possibilities. A similar
approach to Dante is described in [2]. Also [20] has defined an
approach based on transcoding HTML pages to VoiceXML. They
have defined an own annotation language called VXPL to indicate
the different structures of a web page. However, in both
approaches, the proposed vocabulary is less detailed than the
WAfA ontology and does not support the same deep
understanding and analysis of pages as the WAfA ontology does.
As in all these approaches the transcoding of pages is based on
annotations, an easy and efficient way to obtain these annotations
is crucial. Most approaches consider a manual annotation
approach which is a time consuming and expensive process. [21]
proposes an algorithm to overcome this problem. This algorithm
tries to use existing annotations for a page on other pages on that
site. Although, it is a promising approach, different annotations
are still required for different sites. Another attempt to automate
the annotation process is the automatic analysis of HTML pages

to identify coherent chunks of information where they are only
accessible visually [3, 4, 5]. The approach is mainly focusing on
certain types of pages with a certain set of rules. It is, however,
difficult to generate rules that are generic enough to apply to
different types of pages. They work well on small well-structured
web pages but generate almost unusable results for complex
pages.
In this paper we integrate the process of semantic annotation for
visually impaired users into a website design method, thereby
automating this process. To the best knowledge of the authors, the
integration of the annotation process in a web engineering
approach, as described in this paper, is not yet done.

8. CONCLUSIONS
In this paper, we have presented a web engineering approach to
provide accessibility support for visually impaired users. We
described how an existing design method, WSDM, can be
extended to automatically generate semantic annotations
describing support for mobility according to Dante, a stand-alone
approach to support web accessibility. WSDM has a conceptual
infra-structure that supports web design, instantiated in a series of
OWL ontologies. In the combined approach described here, a
mapping between the WSDM concepts and the Dante concepts
was made and implemented. Currently, +/- 70% of the Dante
concepts annotation can be generated automatically, without any
extra effort from the designer. This could be increased to 85% by
further extending the WSDM-Dante mapping rules and even
100% if the designer is prepared to do some extra effort.

Our annotation approach eliminates the problems of manual
annotations: the annotations are generated automatically; no
additional effort is required; dynamic pages are supported; and
changes to page content and layout do not invalidate the
annotations. The process of annotation to support accessibility
becomes an implicit part of the web design process. In our future
work, we plan to further extend the defined mapping rules to
achieve the best possible 84,62% automatic annotation (without
additional effort). Additionally, we could extend the
WSDMOntology with the missing concepts to support the full
WAfA ontology. However, it needs to be investigated to what
degree designers are willing to accept the extra effort required.
As a conclusion, this approach is unique in the web accessibility
field, as it integrates the requirements of visually impaired users
from the early stage of the web design process. Unfortunately at
present, the web accessibility is typically an afterthought and this
is demonstrated by the number of available evaluation and repair
tools for existing pages21. Our approach makes accessibility an
integral part of web design.

9. ACKNOWLEDGEMENTS
This research is partially performed in the context of the e-VRT
Advanced Media project (funded by the Flemish government)
which consists of a joint collaboration between VRT, VUB, UG,
and IMEC.

10. REFERENCES
[1] Access and inclusion for disabled people. Technical report,

Disability Rights Commission (DRC), 2004.

21 See http://www.w3.org/WAI/ER/existingtools.html.

[2] Asakawa, C., Takagi, H. Annotation-based transcoding for
nonvisual web access. In ASSETS’00, pages 172–179, 2000.

[3] Buyukkokten, O., Garcia-Molina, H., Paepcke, A. Accordion
summarization for end-game browsing on pdas and cellular
phones. In CHI 2001, pages 213–220, 2001.

[4] Chen, Y., Ma, W., Zhang, H. Detecting web page structure
for adaptive viewing on small form factor devices. In
Proceedings of the Twelfth International World Wide Web
Conference, 2003.

[5] Chen, J., Zhou, B., Shi, J., Zhang, H., Wu, Q. Function-
based object towards website adaptation. In Proceedings of
the Tenth International World Wide Web Conference, Hong
Kong, 2001.

[6] Ciravegna, F., Dingli, A., Petrelli, D., Wilks, Y. User-System
Cooperation in Document Annotation based on Information
Extraction. In 13th International Conference on Knowledge
Engineering and Knowledge Management (EKAW 02),
Spain, 2002.

[7] Ceri, S., Fraternali, P., Bongio, A. Web Modeling Language
(WebML): a modeling language for designing Web sites, In
Proceedings of the Ninth World Wide Web Conference,
2000.

[8] De Troyer, O., Leune, C. WSDM: A User-Centered Design
Method for Web Sites, In Proceedings of the Seventh
International World Wide Web Conference, pages 85–94,
1998.

[9] De Troyer, O., Casteleyn, S. Designing Localized Web Sites,
In Proceedings of the 5th International Conference on Web
Information Systems Engineering (WISE2004), pages 547–
560, 2004.

[10] Frasincar, F., Houben, G., Vdovjak, R. Specification
Framework for Engineering Adaptive Web Applications, In
Proceedings of the Eleventh International World Wide Web
Conference, 2002.

[11] Gómez, J., Cachero, C., Pastor, O. Extending an Object-
Oriented Conceptual Modelling Approach to Web
Application Design, In Proceedings of CAiSE'2000, LNCS
1789, Pages 79–93, Stockholm, 2000.

[12] Handschuh, S., Staab, S. Annotation for the Semantic Web,
OIS Press, 2003.

[13] Handschuh, S., Staab, S., Maedche, A. CREAM – Creating
Relational Metadata with a Component based, Ontology
Driven Framework. In Proceedings of K-Cap, Victoria,
Canada, 2001.

[14] Heflin, J., Hendler, J. Searching the web with SHOE.
Artificial Intelligence for Web Search. Papers from the
AAAI Workshop. WS-00-01, AAAI Press, pages 35–40,
2000.

[15] Hori, M., Ono, K., Koyanagi, T., Abel, M. Annotation by
transformation for the automatic generation. In Pervasive
2002, pages 267–281, 2002.

[16] Lowe, D., Hall, W. Hypermedia and the Web: An
Engineering Approach. John Wiley and Sons Ltd, 1998.

[17] Paterno, F. Model-Based Design and Evaluation of
Interactive Applications, eds. Ray, P., Thomas, P., Kuljis, J.,
Springer-Verlag Londen Berlin Heidelberg, ISBN 1-85233-
155-0, 2000.

[18] Plessers, P., De Troyer, O. Annotation for the Semantic Web
during Website Development, In Proceedings of the ICWE
2004 Conference, pages 349–353, 2004.

[19] Schwabe, D., Rossi, G., Barbosa, S. Systematic Hypermedia
Application Design with OOHDM, In Proceedings of ACM
Hypertext'96 Conference, pages 116–128, 1996.

[20] Shao, Z., Capra, R., Pérez-Quiñones, M. Transcoding HTML
to VoiceXML Using Annotation, In Proceedings of 15th
IEEE International Conference on Tools with Artificial
Intelligence (ICTAI'03) Sacramento, California, USA, 2003.

[21] Takagi, H., Asakawa, C., Fukuda, K., Maeda, J. Site-wide
annotation: Reconstructing existing pages to be accessible.
In ASSETS’02, pages 81–88, 2002.

[22] Yesilada, Y., Harper, S., Goble, G., Stevens, R. Screen
Readers Cannot See (Ontology Based Semantic Annotation
for Visually Impaired Web Travellers). In ICWE 2004
Proceedings, pages 445–458, 2004.

[23] Yesilada, Y., Stevens, R., Goble, C. A foundation for tool
based mobility support for visually impaired web users. In
Proceedings of the Twelfth International World Wide Web
Conference, pages 422–430, 2003.

