Vrije Universiteit Brussel

Faculty of Sciences and Bioengineering Sciences
Department of Computer Science

Interoperable and Discoverable
Indoor Positioning Systems

Author:
Maxim VAN DE WYNCKEL

Dissertation presented in fulfilment of the
requirements for the degree of Doctor of Sciences

Members of the Jury
Prof. em. Dr. Olga De Troyer Vrije Universiteit Brussel (Chair)
Prof. Dr. Elisa Gonzalez Boix Vrije Universiteit Brussel (Secretary)
Prof. Dr. Beat Signer Vrije Universiteit Brussel (Promoter)
Prof. Dr. Bart Jansen Vrije Universiteit Brussel
Prof. Dr. Pieter Colpaert Ghent University
Prof. Dr. Kris Luyten Hasselt University

VRIJE

‘VUB UNIVERSITEIT

BRUSSEL




Interoperable and Discoverable Indoor Positioning Systems
© 2025 Maxim Van de Wynckel

All rights reserved. No part of this publication may be produced in any form by
print, photoprint, microfilm, electronic or any other means without permission
from the author.

Publisher: Vrije Universiteit Brussel — WISE Lab

ISBN: 978-90-835689-0-4
NUR-code: 980









Absiract

In the early days of navigation, humans relied on visual landmarks such as moun-
tains, coastlines, and structures to determine their location and direction. With
the arrival of tools like compasses and sextants, navigation became more precise,
enhancing navigation and positioning. In the modern era, outdoor navigation relies
heavily on global satellite-based positioning systems such as GPS, allowing indi-
viduals to navigate around the globe, locate points of interest, and assist robots in
positioning themselves in both known and unknown environments.

While indoor positioning systems have been in development for decades, their
adoption has accelerated in recent years in complex environments like airports,
supermarkets, and warehouses. These systems are employed for tasks such as
resource tracking, automated order picking, and guiding users through complex
building layouts. Unlike traditional positioning systems, which rely on a fixed set
of techniques, indoor positioning or navigation systems often use diverse technolo-
gies and hardware, usually requiring proprietary software or intricate calibration to
function. This reliance on proprietary solutions creates several challenges. Users
are often required to install software for each specific location or building, fragment-
ing the user experience and raising concerns about privacy and data ownership. For
building owners, the high costs and complexity of developing and deploying these
systems limit broader adoption. Moreover, closed systems hinder interoperability,
making it difficult to integrate or share data across different platforms.

These challenges extend beyond positioning systems and reflect general issues
with user data, where closed applications restrict seamless data exchange from one
platform to another. One promising solution involves creating open frameworks
that enable seamless data interoperability, giving users greater control over their
information while reducing dependence on systems owned and managed by a
single organisation. Although regulatory initiatives within the European Union are
gradually enabling data interoperability, significant obstacles remain, particularly
in domains where data does not rely on existing standardisations, such as is the
case with indoor positioning systems.



II

This research focuses on enabling seamless data and knowledge exchange between
positioning systems, both indoor and outdoor. It addresses the limitations of cur-
rent approaches by proposing a framework that facilitates the integration, discovery,
and management of location data in a way that prioritises user control and inter-
operability. Central to this research is the development of improved vocabularies
that enhance machine understanding of location data, providing a foundation for
seamless communication between systems. Additionally, it explores techniques for
enabling positioning systems to discover one another without prior coordination,
thereby reducing the dependency on pre-established connections and broadening
their use and reuse in other use cases. The research also introduces strategies for
managing user data effectively, ensuring privacy and flexibility while supporting
seamless exchange across systems. These contributions collectively advance the
development of an open, interoperable ecosystem for both indoor and outdoor po-
sitioning systems, addressing key limitations of current approaches and paving the
way for a future where location data can be stored, shared, and accessed effortlessly
across a wide range of use cases and technologies.



Acknowledgements

When I first started my PhD, I already had many ideas I wanted to realise. In my
mind, I would have plenty of time to realise those dreams. It did not take long to
find out that with each completed idea, several new ones pop up. First of all, I want
to express my sincere gratitude to my supervisor Prof. Dr. Beat Signer. I first met
Beat a week before submitting my Master’s thesis. I left that first meeting with a
hundred new ideas that I still wanted to implement for my thesis. At that point, I
realised that the wise decision would be to start my new journey as a PhD student
at the Web & Information Systems Engineering (WISE) lab to continue exploring
those ideas. He helped to steer those ideas in the right direction and helped to
manage my ideas in a pragmatic approach that I will continue to use throughout
the rest of my career.

I would also like to thank the members of the jury: Prof. Dr. Kris Luyten,
Prof. Dr. Pieter Colpaert, Prof. Dr. Bart Jansen, Prof. Dr. Elisa Gonzalez Boix
and Prof. em. Dr. Olga De Troyer for their time, efforts and input. Their valuable
feedback and discussions helped improve the final version of this dissertation.

Next, the colleagues that I have met during this PhD — both within the lab, around
the VUB and at conferences, really helped to encourage me to continue with my
journey. I have met great people from various communities who helped me realise
which directions still required more research.

I was lucky that the VUB has its own diving club, which I immediately joined in
my first week. I want to thank my friends at the V.U.B. Diving Center for helping
me take my mind off things. Each training and each dive were a welcome break
from my research. Following, I also want to express my gratitude to my family
for their support throughout this journey. Their encouragement and understanding
made it easier for me to focus.

Finally, last but definitely not least, I would like to thank my wife, Emmelien, for
her support both at the start of my PhD and during. It was a long journey filled
with ups and downs, but she was always there to support me and keep me going.

III



v




Contents

1 Introduction

2

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1

2.2

23

24

Privacy and Transparency Problems . . . . . .. ... ... ...
Towards FAIR Positioning Systems . . . . . . .. ... ... ...
Problem Statement . . . . . . ... ... Lo,
Research Questions . . . . . .. .. ... ... ... .......
Objectives . . . . . . v v i e e
Methodology . . . . . . . ... L
Contributions . . . . . . .. . ...
Background and Related Work
Basic Terminology . . . ... ... ... ... ... .......
2.1.1 Positioning Systems and Services . . . . .. ... .. ..
2.1.2  Absolute and Relative Positions . . . . . ... ... ...
2.1.3 Coordinate Systems . . . . . . . . . . ...
2.1.4 Orientation . . . . ... ... ... ... ........
2.1.5 Velocity and Acceleration . . . . ... ... ... ....
2.1.6  Accuracy and Precision. . . . ... ... ... ......
Indoor Positioning Systems . . . . . . . ... ... .. ... ...
221 UseCases . . . . . o v v v v it e
2.2.2  Seamless Positioning . . . . .. ... ... oL
2.23 Indoor Landmarks . . .. ... ... ... ........
Positioning Techniques and Algorithms . . . . . . ... ... ..
2.3.1 RF-based Positioning . . . . . . ... ... ... .....
2.3.2 Fingerprinting . . . . . .. .. ... ...
2.3.3 Magnetic Positioning . . . . . . ... ... L.
234 NoiseFiltering . . . . ... ... ... 0.
2.3.5 Machine Learning . . . ... ... ... .........
23.6 Computer Vision . . . . . . . . .. ... ... ...
2377 DeadReckoning . ... ... ....... ... ...
238 SensorFusion. ... .......... ... ... ... .
Interoperability of Data and Services . . . . . .. ... ... ...
24.1 LocationData. .. ... ... ... ... ... ...,

— 00 O\ U W



VI

CONTENTS

2.5

2.6

An Open-Source Hybrid Positioning System
Methodology
Requirements
3.2.1 System Actors
3.2.2  Functional Requirements
3.2.3 Non-functional Requirements

3.1
32

33
34

3.5
3.6
3.7
3.8

39
3.10

3.11

3.12

Interoperable Positioning Systems
Methodology

4.1

2.4.2 Indoor Environments
2.4.3 Semantic Web
Privacy and Transparency of Positioning Systems
2.5.1 User Transparency
2.5.2  Personal Data Vaults
2.5.3 Regulations
Discovering Positioning Systems and Services
2.6.1 Global Discovery
2.6.2 Local Discovery
2.6.3 Open World Assumption

Architecture

Modularity

Performance

Data Structure
3.4.1 Orientation
3.4.2 Absolute Position
3.4.3 Relative Position
3.4.4 Data Object
3.4.5 Reference Space
3.4.6 Data Frame
Measurement Units
Serialisability
Graph-based Stream Processing
Data and Processing Services
3.8.1 Querying
3.8.2 Post-processing Data
3.8.3 User Actions
Location-based Service
3.10.1 Web-based Modules
3.11.1 Distributed Processing

3.11.2 Parallelism and Workers
3.11.3 Native Library Bindings
Discussion . . . ... ... .....



CONTENTS Vil
4.2  Positioning System Ontology . . . . . . .. .. ... ....... 117
421 OntologyDesign . . ... ... .. ... ......... 118

4.2.2 Observable Properties . . . ... ... .......... 120

4.2.3 Observations and Accuracy . . . . . . . ... ... ... 122

424 Positioning Algorithms and Techniques . . . . . ... .. 123

42.5 Common Algorithms and Systems . . . . ... ... ... 126

42.6 Demonstration . . ... .. ... ... ... ... 127

4.277 Implementation and Technical Evaluation . . . . . . . .. 130

428 Conclusion . . .. ... ... Lo 133

4.3 Object-Document Mapping for Semantic Data . . . . . . ... .. 134
43.1 Namespace Generation . . . . . . ... .......... 135

4.3.2 Class and Field Decorators . . . . ... ... ....... 135

433 ObjectChangelog . . . .. ... ... .......... 138

434 Serialisation . . . ... ... o 139

4.3.5 Deserialisation . . ... ... ... ... ... . ... 141

436 DataShapes. . . ... ... .. ... ... ........ 142

437 Querying . . . . . ... 142

438 Conclusion . . . ... ... ..o 146

4.4 User-centric Storage Using Solid . . . . . ... ... ....... 147
44.1 Architecture. . . . . .. ..o 147

442 Solid Pod Properties . . . ... .............. 150

443 Linked Data Event Streams . . . . . . . ... ... .... 150

444 Communication Broker. . . . . ... ... ... ..... 152

445 AdaptedSolution . . . . ... ... 152

4.4.6 Implementation in a Positioning System . . . . . ... .. 155

447 Conclusion . ... ... ... ... L. 156

5 Discovering Positioning Systems 159
5.1 Methodology . . . . ... ... .. 160
5.2 Semantic Bluetooth Low Energy Beacons . . . . ... ... ... 160
5.2.1 Architecture . . . . . . ... ... 162

5.2.2 Related Specifications . . . . ... ... ... ... ... 163

5.2.3  Advertisement Specification . . . . ... ... ... ... 167

5.2.4 Semantic Description . . . . . . ... ... L. 171

5.2.5 State and DiscoveryFlow . . . ... ... .. ... ... 173

5.2.6 ServiceRanking . ... ... ... ............ 175

5.2.7 Libraries and Application . . . ... .. ... ...... 175

528 Conclusion . . . ... ... .. 177

5.3 Linked DataHashTable . ... ... ... .. .......... 179
53.1 RelatedWork . . ... ... ... ... ... .. 180

532 Architecture . . . . . . . ... 181

5.3.3 HashingFunction . . . . .. ... ... .......... 183

5.34 StorageandLookup . ... ... .. ... ... ... 185



VIII

CONTENTS

535 Network Actions . . . .. ... ... ....

5.3.6 Implementation in a Positioning System

537 Conclusion . .. ... ............

6 Applications and Technical Evaluations

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Multi-Sensor Ball Tracking . . . . . . ... ... ..
6.1.1 InputControl . . ... ... ... ......
6.1.2  Visual Positioning . . . ... ........
6.1.3 Internal Sensors. . . . .. ... ... ....
6.1.4 Model Creation . . . . .. ... .......
6.1.5 BEvaluation .. ................
Robot Obstacle Detection . . . . . .. ... .....
6.2.1 Positioning Model and Custom Nodes . . . .
6.22 Conclusions . . . . ... ... ... .....
Indoor Positioning Server and Application . . . . . .
6.3.1 Dataset . .. ... ... .. ... ... .
6.32 TestDataPoints. . ... ... ........
6.3.3 Trajectories . . . . . ... ... ... ....
Collaborative Positioning Systems . . . . . . .. ..
6.4.1 Properties . . . .. ... ... ... ...,
6.4.2 Applications . .. ... ... ... .....
643 Querying . .. ... .. ... ... ...,
Fingerprint Accuracy Prediction Using CNN . . . . .
6.5.1 Training . ... ................
652 Testing . ...................
6.5.3 Future Work and Conclusions . . . . .. ..
Discoverable IoT Devices and Environments . . . . .
6.6.1 Dataset . ... ... ... ... . ..., .
6.6.2 Device and Environment Discovery . . . . .
Discoverable and Interoperable AR . . . . . . .. ..

6.7.1 Usage .. ... .. ... ... ......
6.7.2 Reference Frame . .. ... .. ... ....
Discussion . . . . . . . . . ... ...

7 Integrated Solution

7.1

7.2

User Analysis . . . . .. ... ... .. .......
711 EndUsers. . .................
7.1.2 BuildingOwners . . . ... ... ......
7.1.3 Developers and Technicians . . . . . . . ..
Requirements . . . . .. ... ... .. ... ...
7.2.1 Functional Requirements . . . . . . ... ..
7.2.2 Environment Requirements . . . . . . .. ..
7.2.3 DataRequirements . . . ... ... .....



CONTENTS X
T3 ACtOrS . . . L 238
T4 UseCases . . . . o v v v vt it i e 240

7.4.1 Navigation System . . . . . . . .. ... 240
7.4.2 Indoor Positioning System . . . . . ... ... ... 240
743 AssetTracking . . ... .. ... ............. 241
7.4.4 Collaborative Robots . . . . .. ... .. ... .. .... 241
745 AugmentedReality . . . . . ... ... oL 241
7.5 Architecture . . . . . ... oL 241
7.6 Linked Data Vocabulary . . . . ... ... .. .......... 245
7.6.1 Positioning Data Vocabulary . . . . ... ... ...... 245
7.6.2 Sensor Data Vocabulary . . . ... ............ 245
7.6.3 Positioning System Vocabulary . . . ... ... .. ... 246
7.6.4  Access Control Rights and Discovery Vocabulary . . . . . 246
7.6.5 Authentication and Consent . . . . . ... ... ... .. 246
7.7 Personal Data Vault . . . .. ... ... ... .. ... ... 247
7.77.1 DataStructure . . . . . . ... 247
7.8 Tracked Subject Discovery . . . .. ... ... ... ... .... 249
7.8.1 Userand SystemFlow . .. ... ............. 249
7.9 Distributed Registry . . . . . . . ... ... 252
7.10 Discussion . . . . .. ... 252

8 Discussion and Future Work 255
8.1 Discussion. . . . ... ... ... 256
82 FutureWork . . . . .. ... 259

Appendix A OpenHPS 263
Al UML . ... 263

A.1.1 DataObjects . . . ... ... ... ... ........ 263
A.1.2 SensorObjects . . . . ... ... ... ... ... 264
A.13 SensorValues . . ... ................... 264
A.1.4 Absolute and Relative Position . . . . . . ... ... ... 265
A1S Graph . . . ... 266
A1.6 Services . . . . ... 267
A17 Units . .. ... 268
A2 Dependencies . . . . . .. ... ... 268
A3 Examples . .. ... ... 269
A.3.1 Fiducal Markers as Reference Spaces . . . ... ... .. 269
A.3.2 Beacon Classification . . . . .. ... ... ........ 270
A3.3 Protocol Buffers . .. ... ... .. ... . ... ... 271
A34 DataOwnerinSolid ... ... .............. 273
A4 Garage Fingerprinting Dataset . . . . . .. .. ... ... .... 274
A4l TImpact . ... .. ... .. 274



CONTENTS

Appendix B POSO

B.1 Versionl.0 . ... .. ... ... .. ... ... . ...
B.2 Extensions. . . . . . . . . . ...

B.2.1 Common Positioning Systems and Algorithms

B.2.2 Crowdsourcing via Solid (WiP) . . ... .. ..
B23 FidMark. . ... ... ... ... ........

Appendix C SemBeacon

C.1 Specification 1.0 . . . .. ... ... ... ... ...,
C.2 ArduinoLibrary . . . ... ... ... ... .......
C3 Hardware . ... .. ... ... ... ... . ......
C31 PCB...... ... ... .. ... ...
C32 Schematic. . ...................
C.3.3 BillofMaterial . . . .. ... ..........
C4 Ontology . . ... .. . e

Appendix D Linked Data Hash Tree Specification

Appendix E Survey on the Privacy and Transparency

E.1 Questions . . . ... ... ... .. ... ... . ...,
E.1.1 General Awareness . . . . .. ... .......
E.1.2 PrivacyConcerns . . . . . . ... ... .....
E.1.3 Transparency of Applications and Systems . . .
E.1.4 Valuation of LocationData . . . . . . ... ...
E.1.5 Demographic Information . . ... .. ... ..
E.2 PseudonymisedResults . . . . . ... ... ... ...

Bibliography
Index

About the Author



Acronyms

NGSI-LD Next Generation Service Interfaces — Linked Data

A-GPS Assisted GPS

ACL Access-Control List

AoA Angle of Arrival

AoD Angle of Departure

AP Access Point

API Application Programming Interface
AR Augmented Reality

BLE Bluetooth Low Energy

CAGR Compound Annual Growth Rate
CDAE Collaborative Deep Denoising Autoencoder

CI Cell Identification

CNN Convolutional Neural Network
CORS Cross-Origin Resource Sharing
CRF Coordinate Reference Frame
CRS Coordinate Reference System
DGA Data Governance Act

DHT Distributed Hash Table

DMA Digital Markets Act

DNS Domain Name System

DTR Digital Twin Registry

ECEF Earth-centered Earth-fixed

EDPS European Data Protection Supervisor
ESWC Extended Semantic Web Conference
EU European Union

EWKT Extended Well-known Text Representation

XI



XII Acronyms
FAIR Findable, Accessible, Interoperable and Reusable
FOSDEM  Free and Open source Software Developers’

European Meeting
FPS Frames per Second
GCS Geodetic Coordinate System
GDPR General Data Protection Regulation
GLONASS Globalnaya Navigatsionnaya Sputnikovaya Sis-
tema
GML Geography Markup Language
GMLC Gateway Mobile Location Centre
GMS GeoMobility Server
GNSS Global Navigation Satellite System
GPS Global Positioning System
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
ILBS Infrastructure-providing LBS
IMDF Indoor Mapping Data Format
IMU Inertial Measurement Unit
IoT Internet of Things
IPIN Indoor Positioning and Indoor Navigation
IPS Indoor Positioning System
ISWC International Semantic Web Conference
J2ME Java 2 Micro Edition
JS JavaScript
JSON JavaScript Object Notation
JSON-LD  JSON for Linking Data
LAN Local Area Network
LBS Location-based Service
LDAP Lightweight Directory Access Protocol
LDES Linked Data Event Stream
LDF Linked Data Fragment
LDHT Linked Data Hash Table
LDN Linked Data Notifications
LDP Linked Data Platform
LDR Linked Data Resource



Acronyms

XIII

LiDAR
LIF
LOT
LPPM

MLP
MPC
MQTT
MTMCT

NAD

ODBC
ODM
O0GC
OoSM
OUPnP

pP2p
PDR
PDV
PII
POSO

QR
QUDT

RDF
REGEX
RF
RFID
ROS
RPC
RSS
RSSI

S3DB
SDK
SHACL
ShEx
SIT

Light Detection and Ranging

Location Interoperability Forum

Linked Open Terms

Location Privacy Protection Mechanism

Mobile Location Protocol

Mobile Positioning Center

Message Queuing Telemetry Transport
Multi-Target Multi-Camera Tracking

North American Datum

Open Database Connectivity
Object-Document Mapping
Open Geospatial Consortium
OpenStreetMap

Outdoor Universal Plug and Play

Peer-to-Peer

Pedestrian Dead Reckoning
Personal Data Vault

Personally Identifiable Information
Positioning System Ontology

Quick Response
Quantity, Unit, Dimension and Type

Resource Description Framework
Regular Expression

Radio Frequency

Radio Frequency Identification
Robot Operating System

Remote Procedure Call

Received Signal Strength
Received Signal Strength Indicator

Simple 3D Buildings
Software Development Kit
Shapes Constraint Language
Shape Expressions

Simple Indoor Tagging



X1V Acronyms

SLAM Simultaneous Localisation and Mapping

SLP Service Location Protocol

SMA Simple Moving Average

Solid Social Linked Data

SOSA Sensor, Observation, Sample and Actuator

SOTA State of the Art
SPARQL SPARQL Protocol and Query Language

SRSI Spatial Reference System Identifier
SSID Service Set Identifier
SSN Semantic Sensor Network

TDoA Time Difference of Arrival
ToA Time of Arrival
TOGAF  The Open Group Architecture Framework

UAC User Access Control

UPnP Universal Plug and Play
URI Uniform Resource Identifier
URL Uniform Resource Locator

UUID Universally Unique Identifier
UWB Ultra-wideband
UX User Experience

VR Virtual Reality
VSDS Vlaamse Smart Data Space

W3C World Wide Web Consortium
WAC Web Access Control

WebID Web Identifier

WGS World Geodetic System

WKT Well-known Text Representation
WLAN Wireless LAN

WoT Web of Things

WWWwW World Wide Web

XML Extensible Markup Language



Chapter 1

Infroduction

The problem with apps, and by this I mean native apps that must
be downloaded to your phone, is that they are just becoming too
much trouble to organize and maintain. It’s just not realistic to have
an app for every store you go to, every product you own and every
website you visit. This creates an ever increasing set that must be
curated, organized and culled. (...) If you were to walk into a store
and they proudly proclaimed on the door that they had an app, would
you immediately install it? What value/pain calculation would you
perform in your head before going through the trouble? (...) My point
is that if somehow the app magically appeared on your phone as you
walked in the door would you be more likely to try it?

— Scott Jenson (2011) [1]

I have probably entered thousands of buildings in my life. From what I assume,
most of those buildings did not have a system in place that could track me or
that allowed me to navigate inside—but I cannot be certain about this. Even
if complex buildings such as a hospital, airport, conference hall, supermarket or
university have a mobile application to track my location, I am not confident that I
would have the incentive to search for it and install it.

The quote by Scott Jenson, a UX designer who worked at Google and Apple, relates
to the issue of indoor positioning and navigation systems. If you were to walk into
a building and they advertise on the door that they have an application to help you
find your way, would you install it? More importantly, would you still remember
that there is an application available if you get lost within the building? On the flip
side, what motivates building owners to develop their own navigation applications
for visitors?



2 CHAPTER 1. INTRODUCTION

When navigating to a specific destination or tracking the location of our food
being delivered, we often use services that can track the position of the thing we
are tracking. Outdoors, these services primarily rely on the Global Positioning
System (GPS), which is a collection of satellites that help us to determine an
object’s position on the surface of the Earth. While satellite-based positioning
systems such as GPS are common, they are not the only technology available to
determine an object’s position. Inside a building, underground, or in a forest, we
have to rely on other technologies due to the inaccuracy of GPS signals when there
is no direct line of sight to satellites. Even outdoors, we often resort to other
techniques in use cases where a more accurate and reliable position is needed.

If we focus on use cases for tracking a position inside a building, we can listexamples
such as indoor navigation, asset tracking, and proximity marketing. To compute
this type of position, various technologies such as Bluetooth beacons, Wi-Fi, Ultra-
wideband (UWB), and Radio Frequency Identification (RFID) have been utilised
to replace satellite-based positioning systems. These technologies have different
advantages and limitations that must be considered when choosing the most suitable
solution for a particular use case. The systems which are deployed in an indoor
environment to track persons or objects are often called indoor positioning systems
(Definition 1). Research in the field of indoor positioning systems is still ongoing,
with a focus on improving the accuracy, scalability, and robustness of these systems
for widespread adoption in various industries. With indoor environments varying
from building to building, different technologies might perform better or worse
in specific environments, preventing the use of a single technology that applies to
all indoor environments. Furthermore, while satellite-based positioning systems
only require a fixed set of satellites to cover a large area, the same cannot be said
for indoor environments, which often require different hardware in each building,
making their implementation slow and expensive.

Definition 1: Indoor Positioning System

A positioning system that is used indoors to provide use cases such as indoor
position tracking or indoor navigation is defined as an indoor positioning
system (IPS) [2].

This lack of standardisation causes a spread of different technologies across build-
ings and positioning systems, causing each Indoor Positioning System (IPS) to be
an individual implementation or at least an implementation based on a framework
that defines the technologies and algorithms. In turn, this causes the spread of data
and knowledge over proprietary systems and applications. To keep this valuable
data relevant to the user or object that is being tracked, we need a solution that can
bridge the gap between individual positioning systems and between the user and
the positioning system.



1.1. PRIVACY AND TRANSPARENCY PROBLEMS 3

Moreover, users also own more devices that are capable of tracking them. Smart-
watches, augmented reality (AR) headsets and even self-driving cars are types of
devices that obtain a position. In turn, these devices collect tracking data of a single
user, yet the data is often fragmented across different services for those specific
devices. In addition to bridging the gap between positioning systems, we also need
to find a user-centric solution to manage the sources which produce this data.

Fragmentation can be addressed by standardisation [3]. However, due to the lack
of standardisation and lack of technologies that could potentially serve as a single
standard, this fragmentation must be solved by enabling the seamless exchange of
data. By doing so, building owners would no longer need to focus on the design
of mobile applications or tracking software, and could instead rely on existing
solutions that can be integrated with their setup. This would not only significantly
reduce costs but also enable users to decide which solutions they use for tracking,
allowing smaller businesses to reach a broader audience.

1.1 Privacy and Transparency Problems

One major concern with the tracking of users relates to the privacy implications of
this data. In the first month of 2025 alone, multiple cases of leaked location data
were reported, ranging from mobile applications leaking accurate GPS data! to the
location of parked electric cars?.

Health and/or medical information = | \ ——
Home address =~ ——] \ | |
Photos =~ \ | |
Location data }—‘:: 1
E-mail messages +———| \ ——

Private calendar information }—‘:I:I—<

Phone number ] \ —

Web browsing activity ~— +————————] \ —
E-mail address =~ © 1 T

Social media profile data f :|:|
1 2 3 4 5 6 7 8 9 10

Figure 1.1: Ranking of personal data according to our survey

In aresearch study that we conducted in 2025 (see Appendix E and [4]), we have let
users rank different types of personal data in order of importance. Figure 1.1 illus-
trates these results, showing users consider location data the fourth most important
type of data for users. A home address is considered the second most important

thttps://www.theverge.com/2025/1/13/24342694/
gravy-analytics-location-data-broker-breach-hack-disclosed

2https://www.theverge.com/2024/12/30/24332181/
volkswagen-data-leak-exposed-location-evs


https://www.theverge.com/2025/1/13/24342694/gravy-analytics-location-data-broker-breach-hack-disclosed
https://www.theverge.com/2025/1/13/24342694/gravy-analytics-location-data-broker-breach-hack-disclosed
https://www.theverge.com/2024/12/30/24332181/volkswagen-data-leak-exposed-location-evs
https://www.theverge.com/2024/12/30/24332181/volkswagen-data-leak-exposed-location-evs

4 CHAPTER 1. INTRODUCTION

type of personal data for users, which is inferable from a user’s (or parked car’s)
location. These results align with earlier work where users indicated that location
data is a valuable type of data [5, 6].

On the other side of the valuation of location data, companies also value this data
to obtain knowledge about the behaviour or expected behaviour of customers [7, 8].
Having the location data spread over multiple closed databases and companies not
only prevents users from managing and accessing their own location data but also
requires the creation of proprietary applications to access these databases.

Probably yes ® L J

Might or might not

Control Over Location Data

Probably not
Definitely not o ( o o
Not at all familiar Slightly familiar Somewhat familiar Very familiar Extremely familiar

Familiarity with Location Data Tracking

Figure 1.2: Correlation between the familiarity with location data tracking and
user-perceived control of location data

In our study, most participants indicated they feel they do not have enough control
over their location data. In Figure 1.2, we see a clear correlation between the
expertise of the participant and their perception of how much control they have.
Participants who indicated that they do not have enough control, indicated that they
feel violated when services can obtain this personal information. They do not want
to share data without explicit consent, and generally are unaware of how this data
is used and how it will prevent services from operating when disabling location
sharing. Several participants who were familiar with location tracking concepts
indicated that they take measures to prevent tracking, often resorting to different
privacy-aware operating systems or applications.

Privacy policies are
easy to understand

| feel informed about
how my location data is shared

%
S
P

Strongly Somewhat Neither agree Somewhat Strongly
disagree disagree nor disagree agree agree

Apps clearly explain
why they need my location data

AAA

Figure 1.3: Transparency of applications and systems about location data usage



1.2. TOWARDS FAIR POSITIONING SYSTEMS 5

Legislations in Europe, such as the General Data Protection Regulation (GDPR) [9]
or the Data Governance Act (DGA) [10] aim to protect personal data and ensure
that individuals are informed and have control over how their information is used
and shared. Privacy policies aim to provide insight into what data is processed
and how it is used. Still, as illustrated in Figure 1.3, the majority of users find
these privacy policies difficult to understand and do not feel informed about how
their location data is used. What is more, only 50.6% of our participants reported
that they read a privacy policy when installing an application. In total, we had
58 participants, 89.7% of these participants were from the European Union.

1.2 Towards FAIR Positioning Systems

Market studies [11, 12, 13] estimate the current indoor positioning and indoor nav-
igation market around 20 billion USD with a compound annual growth rate (CAGR)
growth between 21.4% and 37.6% in the next five years. More buildings will de-
ploy indoor positioning or navigation applications to some extent, either to provide
navigation assistance to visitors, positioning autonomous robots, AR applications,
or to collect data on foot traffic patterns for business optimisation.

In 2016, the FAIR guiding principles were published [ 14] to promote the findability,
accessibility, interoperability, and reusability of research data. Ever since, these
principles have found their way to other domains, including Global Navigation
Satellite Systems (GNSS) [15]. For indoor positioning systems, the data and
systems themselves remain unFAIR. With data sovereignty such as the Digital
Markets Act (DMA) [16] in mind, the field of indoor positioning systems should
be prepared to offer interoperable and discoverable indoor positioning systems to
adhere to these regulations.

Definition 2. Interoperability

Interoperability is the ability of computer systems or programs to seamlessly
exchange information in a way that can be accessed, read and understood
by other systems [17, 18].

Interoperability, which forms part of the FAIR principles, is the ability of a com-
puter system or program to seamlessly exchange information in a way that can be
accessed, read and interpreted by other systems [17, 18]. In our context of interop-
erable positioning systems, it entails the ability for different systems, services and
applications to work together seamlessly without requiring individual positioning
systems to interface with one another. In a perfect scenario, if each positioning sys-
tem handled data in a way that enables the seamless exchange of this data, it would
allow users to use a single navigation application for outdoors, indoors or other



6 CHAPTER 1. INTRODUCTION

environments that track a location. Furthermore, users would have more control
over how data produced by one system is reused in another system or application.

Definition 3: Discoverability

Discoverability or findability of a service is the ability for users to find and
retrieve information on how to interface with a service.

At the beginning of this introduction, we presented a quote from Scott Jenson. It
was written at the time when he pitched the concept of the Physical Web. The
idea of the Physical Web was that a single application, in this case, a web browser,
would be able to discover and interact with businesses, devices and people within
proximity. One of the challenges we wish to solve is how users can discover or find
positioning systems within an environment. This discoverability plays an important
role when working with interoperable systems. One can have as many systems and
applications that work together with the same data, but if users cannot discover the
availability of this data or services, they ultimately become useless.

1.3 Problem Statement

Unlike outdoor positioning systems, Indoor Positioning Systems (IPSs) do not rely
on a single standardisation of the technologies used to implement such a system.
ISO standards such as ISO 17438:2024 [19, 20, 21] and ISO 18305:2016 [22]
define the basic data models and technologies of current IPSs. However, with rapid
advances in the domain, these individual standardisations are also rapidly outdated
to serve as a single standard for each positioning system.

Surveys and other related work also acknowledge this issue of non-standardised
IPSs. In [23], the authors indicate a “Lack of Standard and Interoperability” as
one of the main challenges in the development of indoor positioning systems. They
emphasise the problem of the lack of standards in the used technologies, since there
are currently no technologies that would serve as a general standard for different
indoor environments and use cases. Deng et al. mention “In different industrial
applications, most companies will adopt the specialised standards common in that
industry, resulting in a waste of resources that impedes sharing and interoperab-
ility” [24]. In their work, they indicate that some standardisations exist for indoor
positioning services, but they are often focused on particular goals and require
complementary unstandardised work that impedes overall interoperability. Similar
to Deng et al., Furfari et al. [25, 26] also indicate that the most important issue
of indoor positioning systems is the lack of methods for integrating and enabling
cooperation between such systems. They highlight the need for standardisation
in both the discovery and communication of these systems, but agree that in the
current industry, one single all-encompassing standardisation does not exist.



1.3. PROBLEM STATEMENT 7

Every actor adopts its own solution in terms of positioning technologies
and data processing and, more importantly, such systems are not
designed to cooperate. As a result, we expect that the market for
indoor systems will become quickly fragmented and characterized by
incompatible solutions.

— Furfari et al. (2021) [26]

Lack of standardisation and interoperability results in a fragmentation of user data
across services and proprietary applications. This is not only true for indoor
systems, but any non-interoperable or non-standardised system [27]. Due to the
vast amount of building-specific implementations, users are forced to find and use
specific services and applications for navigating in a particular building, but how
will they find these services?

During our research, while addressing the lack of interoperability, we noticed that
the design of an interoperable system does not immediately solve market fragment-
ation. Similar to related issues of data and service fragmentation [28], the discovery
of interoperable systems is a needed step towards solving this fragmentation. Ul-
timately, these problems stem from the unFAIR IPSs currently in use, where data
is not accessible, applications are not reusable and the systems themselves are not
findable.

Based on the list of problems from the aforementioned related work, our own
observations in the domain and similar general issues of data fragmentation in
different domains, we derived the following three main problems to be addressed
in our research:

Problem 1 Lack of standardisation and interoperability between indoor
positioning systems
In line with related work [24, 25, 23], we agree that the lack of
technology standardisation is one of the main reasons why indoor
positioning systems are often designed as proprietary solutions man-
aged by a single organisation. This results in a lack of interoper-
ability between such systems, as their underlying technologies and
implementations vary significantly.

Problem 2  Lack of access to the data produced and consumed by indoor
positioning systems and applications
Continuing from Problem 1, the lack of data interoperability results
in the fragmentation of user data across different services. Services
that want to (re)use data currently have no access to this data unless
specific interfaces are developed.



8 CHAPTER 1. INTRODUCTION

Problem 3  Fragmented and non-reusable indoor positioning systems and
applications
Due to the lack of interoperability (Problem 1) and the lack of ac-
cess to data (Problem 2), indoor positioning systems are fragmented
across multiple services and applications. As a user, it is challen-
ging to navigate different buildings with different indoor positioning
systems, as each system may require a separate app or device for
navigation. This lack of cross-building indoor positioning systems
hinders the collaboration between IPSs and the reusability of indoor
positioning technologies.

1.4 Research Questions

Whenever we combine multiple technologies for positioning, we define the po-
sitioning system as an integrated or hybrid positioning system as described in
Definition 4. Such a system takes input data from one or more positioning tech-
niques and outputs certain data that can be used for further processing. Indoor
positioning systems are often hybrid systems that are tailored to an indoor environ-
ment. In our research, we consider hybrid positioning systems as the general type
of positioning system we want to support, since they are broad enough to be used
in different use cases.

Definition 4: Hybrid Positioning System

A hybrid or integrated positioning system is a positioning system that in-
tegrates multiple positioning technologies and techniques to overcome the
limitations of individual systems and enhance overall positioning perform-
ance [29].

One of the first challenges in designing interoperable systems is to ensure the
semantic interoperability of the data used by such systems. In the case of a
hybrid positioning system, this includes the data that the system requires from
various sources, as well as the data it produces. With hybrid systems being
capable of combining various techniques, we need to generalise the data of a
hybrid positioning system so that we can generalise indoor positioning systems.
Based on the previously identified problems, we formulated the following research
questions to guide our research:

RQ1 How can we represent hybrid positioning systems?
We want to achieve interoperable indoor positioning systems that are future-
proof in the landscape of unstandardised technologies. In order to achieve
this, we first need to represent the concept of positioning systems, and more
specifically, hybrid positioning systems that combine multiple technologies.



1.4. RESEARCH QUESTIONS 9

RQ2

Representing a hybrid positioning system involves a generic data and pro-
cessing representation of how such a system works and is constructed. At
the same time, we also need to generalise and define the data that these pos-
itioning systems require and produce. By representing a hybrid positioning
system rather than an indoor system, we ensure that our question is broad
enough to cover a wide range of use cases, technologies and implementations.

The representation refers to the way data is stored and processed within
a single system, while interoperability (as detailed later in RQ2) focuses
on how different systems can seamlessly exchange information. The data
representation we aim to obtain by answering this research question can be
tailored to a single system, but it must be capable of representing different
systems, algorithms, technologies and use cases. Next, we can enable the
data exchange by utilising this representation.

RQ1.1 How can we generalise the input of a positioning system?
For a positioning system to be able to compute data, the input data
needs to be in a known format and structure. Various existing tech-
nologies have their own data format. We need to generalise the input
of the data in a scalable structure that can be applied to a wide range
of technologies.

RQ1.2 How can we generalise the output of a positioning system?
After processing the input data, a positioning system provides some
output data. While we can assume that this most likely includes a
position, it can also include other data, such as orientation, velocity
or even a map of the environment. The output needs to be generalised
in a way that makes it clear what the output can contain after being
processed by a wide range of different techniques or algorithms. We
want to generalise the structure, granularity and type of this data
so, together with RQ1.1, we can represent a complete positioning
system. In RQ2, we will make use of this data representation to
enable the exchange between systems.

How can we create interoperable positioning systems?

Interoperability was described as the ability to read, understand and access
data across different systems (Definition 2). With RQ1 and its sub-questions,
we investigate a data representation to be used within a single system. When
creating interoperable positioning systems, we aim to develop systems that
allow data to be exchanged between systems without losing any context. If
we look a bit further at processing interoperability [30], we also want to be
able to understand how this data is processed. In RQ1, we generalise indoor
positioning systems by representing hybrid systems, but do not focus on the
seamless data exchange between systems.



10 CHAPTER 1. INTRODUCTION

RQ2.1 How can we enable access to the data of a positioning system?
Enabling access to the data of a positioning system is not as easy
as making the information publicly available. Positioning systems
work with sensitive user data, which should only be accessible by
applications the user trusts. In this research question, we will invest-
igate the possibilities for users to enable access to their data, allowing
them to decide which positioning systems or applications can access
and update their location data.

RQ2.2 How do we avoid ambiguity and enable semantic reasoning on
the data of a positioning system?
To satisfy the ability to understand the data, semantic reasoning
should be possible on the positioning data. Semantic reasoning is the
ability of a system to infer information that is not explicitly defined
within the data [31]. Such inference is necessary when working with
data of unknown origin. In this research question, we will investigate
how we can provide processing interoperability so that other systems
are aware of how a positioning system processes information. This,
in turn, can provide additional context on the quality of the data
produced by such a system.

As an interoperable system, one can have access to read data and the
semantic knowledge to understand the data. However, understanding
goes beyond being able to interpret information. In an interoperable
system, the interpretation of the data needs to be unambiguous for
two systems to interpret the data in the same way.

RQ3 How can we discover positioning systems?

Creating interoperable positioning systems that can be accessed is important.
However, when users and services are unaware of the existence of these
systems, they become useless. Discovery is a broad term that encompasses
the process of finding and identifying positioning systems that are available
for use. To answer this research question, we will explore methods and
technologies that enable the discovery of positioning systems to ensure that
users and services are aware of their existence and capabilities.

RQ3.1 How can we ensure interoperability in the discovery of a posi-
tioning system?
Discovering a system or service often requires intricate and tailored
procedures. We want to ensure the accessibility and readability of a
system during this discovery. However, we aim to prevent the use of
discovery protocols in interoperable systems that require additional
hardware beyond existing infrastructure.



1.5. OBJECTIVES 11

RQ3.2 How do we discover a positioning system in a physical environ-

ment?

The discovery can happen using a centralised service or an intercon-
nected decentralised network. However, when we want to discover a
service bound to a geographical space, we also want to discover this
service within the physical world. Taking research question RQ3.1
into account, in this research question, we focus on the physical
discovery of online services.

1.5 Objectives

Based on the research questions outlined in the previous section, we defined the
following five objectives to answer these research questions. These objectives
guided our research and enabled us to come up with a solution for the three main
problems with indoor positioning systems mentioned earlier.

Objective 1

Objective 2

Objective 3

Investigate positioning systems and generalise the data and pro-
cessing flow of such systems to align with a wide range of use
cases

Our first objective is to address RQ1 by investigating different pos-
itioning systems, frameworks and technologies. Based on this, we
aim to create a data and processing representation of hybrid posi-
tioning systems that aligns with various use cases and technologies.

Design a solution to enable the semantic description of the gen-
eralised parts of a positioning system and its data

In the previous objective, we design a generalised data and pro-
cessing flow representation for positioning systems. In Definition 2,
we defined interoperability as the ability for computer systems to
exchange information in a way that can be read and understood.
To enable interoperability, we need to semantically describe the
positioning system, its processing flow and the data it produces to
provide other systems with enough context to reason about the data
(as defined with RQ2.2).

Investigate and design a solution for discovering and enabling
access to the data produced by a positioning system

With the previous objective, we aim to provide a solution to create
semantically described positioning systems and their data. The
discovery of the data produced by such a system, as well as the
access to this data, must still be addressed. With this objective, we
plan to answer RQ2.1.



12 CHAPTER 1. INTRODUCTION

Objective 4 Investigate how to enable users to discover the existence of in-
door positioning systems and how to interface with them
In the current landscape of fragmented indoor positioning applica-
tions, implementing various use cases or developing implementa-
tions results in duplicated efforts. We require a solution that enables
users to discover indoor positioning systems. Users should be able
to find the systems available to them and understand how to interact
with them without requiring prior knowledge of these systems.

With this objective, we address RQ3. In addition, it also addresses
RQ2.1, as the discovery of interfacing with systems helps with the
access of data produced by such systems.

Objective 5 Evaluate the feasibility of integrating interoperability and dis-
covery in indoor positioning systems
Finally, our last objective is to determine the feasibility of enabling
the interoperability and discoverability of an IPS. With this object-
ive, we want to go beyond theoretical interoperability and actually
investigate whether this interoperability and discoverability can be
achieved for current and future systems. In addition, we want to
investigate whether we can combine discoverability and interoper-
ability in a unified solution.

1.6 Methodology

In the previous sections, we presented the research questions that we will pursue to
answer in this dissertation. This section will outline the general methodology we
took to address these questions and validate our solution.

Our initial goal was to solve the main problem of fragmented indoor positioning
systems due to the lack of a single standardisation, as clarified in Problem 1. Based
on this problem, we determined that our first step would be to define a general
representation of an indoor positioning system that covers different standardisation
and current implementations. As these systems have many different implement-
ations depending on the use case and used technologies, we investigated hybrid
positioning systems beyond the state of the art (SOTA) of current indoor position-
ing systems (IPSs). The problems, research questions and objectives grew from
this initial representation of a positioning system. While investigating the land-
scape and networking with researchers and developers, we also learned who would
benefit from our solution.

Based on this preliminary research, we defined the actors and requirements of a
hybrid positioning system. Using these requirements and actors, we then started
with the design of a data-centric framework for representing the flow of positioning



1.6. METHODOLOGY 13

systems and the data they produce (RQ1). Our focus with this framework was to
design a data and processing representation of hybrid positioning systems rather
than focusing on the development or end-user authoring of such systems. The
framework was made open-source to enable feedback from peers. In addition,
we used the framework from 2020 until 2025 in the course Next Generation User
Interfaces and partly in the course Web Technologies to obtain feedback on its docu-
mentation and ease of use. Various proof-of-concept applications and systems were
created as technical evaluations since 2019 to validate that our data and processing
representation was generic enough to cover a wide range of use cases, techno-
logies and implementations. These technical evaluations, detailed in Chapter 6,
range from indoor positioning systems to augmented reality applications and form
a basis for validating our data-centric framework. More details on the design and
implementation methodology of this framework are given in Section 3.1.

At that point, we defined a framework that enables the processing and data rep-
resentation of hybrid positioning systems. However, to solve Problem 1, we also
needed to provide a method for enabling the seamless data exchange of such sys-
tems as defined in Objective 2. With the framework we designed in Chapter 3, we
represented what a hybrid positioning system looks like. For answering RQ2, we
We created an ontology for describing a wide range of positioning systems. Our
methodology in this design was based on our representation of hybrid systems,
ISO standards and commonly used terminologies. We validated this ontology
through our previously designed framework and, in addition, also created several
proof of concepts that use this ontology in Chapter 6. To ensure our ontology was
extensible enough for future use cases, we expanded the ontology to other use cases
and implementations beyond what we originally envisioned. The methodology of
interoperable positioning systems is further detailed in Section 4.1.

Interoperability also entails that systems are capable of accessing data. In the
context of positioning systems, we want to access data produced by such a system
as stated in RQ2.1. This need for access to data stems from one of the requirements
of interoperability in general, but also from the growing need of users to provide
them with more control over their data. Our methodology for designing user-
centric storage of data was based on our overarching research question for creating
interoperable positioning systems along with current State of the Art (SOTA) on
similar issues with users data.

Having user-centric storage of data not only provides users with the needed control
over their data, but it also facilitates positioning systems to discover the data of
users, as users explicitly have to grant access to this data. During the design of
user-centric storage, we realised that this will not solve the fragmentation of indoor
positioning systems due to users not being able to discover the existence of IPSs.
We addressed RQ3 by proposing a solution that uses existing technologies within
an IPS to discover the IPS itself. This way, we do not introduce new technologies,



14 CHAPTER 1. INTRODUCTION

but instead leverage the technologies that are being discovered to help with the
discovery. To answer this research question, we based ourselves on the current
SOTA on indoor positioning techniques as well as commonly used specifications.

While local discovery was our primary goal for discovering spatially bound indoor
positioning systems, global discovery was still an open problem. Some of the indoor
positioning systems use cases we have investigated in Section 2.2.1 presented
the need for an alternative solution that does not rely solely on local discovery
methods. This global discovery problem addresses the issue of how users can
discover available indoor positioning systems in unfamiliar environments or when
travelling to new locations. Our solution to this problem leverages our answers to
the previous research questions to provide a distributed solution.

Finally, our methodology included the investigation and design of how to combine
interoperability and discoverability into a solution that can be adopted by future
indoor positioning systems.

1.7 Contributions

During our research on the interoperability and discoverability of positioning sys-
tems, various publications, tools, specifications, datasets, and other artefacts were
created. One of our main contributions is the OpenHPS framework, which is
used throughout all technical evaluations and prototypes of positioning systems.
OpenHPS is the backbone of our research, providing both a standardised platform
for testing and comparing different positioning technologies as well as a validation
of the generalisation of positioning systems and their data.

Open-source Hybrid Positioning System @ OpenHPS

OpenHPS is an open-source framework for designing and developing hybrid
positioning systems. It is developed in TypeScript and consists of over
25 modules that expand OpenHPS with positioning algorithms and sensor
input. OpenHPS can run on smartphones, servers and web browsers. It
is designed to support a wide range of use cases and is not tailored to one
specific type of positioning system, platform or technology.

To aid in our research towards hybrid positioning systems and the data they pro-
duce, we developed a modular framework designed to be generic enough to create
various positioning systems. We presented OpenHPS at the Indoor Positioning and
Indoor Navigation (IPIN) conference in 2021, the Free and Open source Software
Developers’ European Meeting (FOSDEM) in 2022 and at the Belgian JavaScript
Conference (BeJS) in 2023. OpenHPS is used for all subsequent research and pro-
totypes and was used to validate our research questions RQ1, RQ1.1 and RQ1.2.



1.7. CONTRIBUTIONS 15

OpenHPS, as a framework, comprises a conceptual design representation of a hy-
brid positioning system, the data it produces and the implementation of this design.
With this contribution, we provided a standard data structure that could serve as
the basis for a future generic standardisation of hybrid or indoor positioning sys-
tems. Our framework implementation is aimed towards making the representation
tangible and usable, in order to validate its integration into existing and future
deployments.

Relevant Publications:

* Maxim Van de Wynckel and Beat Signer. OpenHPS: An Open Source Hybrid
Positioning System. Technical Report WISE-2020-01, Vrije Universiteit
Brussel, 2020. doi: 10.48550/ARXIV.2101.05198

* Maxim Van de Wynckel and Beat Signer. Indoor Positioning Using the
OpenHPS Framework. In Proceedings of the 11th International Conference
on Indoor Positioning and Indoor Navigation (IPIN 2021), 2021. doi: 10.
1109/IPIN51156.2021.9662569

* Maxim Van de Wynckel and Beat Signer. OpenHPS: A Modular Framework
to Facilitate the Development of FAIR Positioning Systems. Journal of Open
Source Software, 10(110):8113, June 2025. doi: 10.21105/joss.08113

* Dataset: Maxim Van de Wynckel and Beat Signer. OpenHPS: Single Floor
Fingerprinting and Trajectory Dataset, May 2021. doi: 10.5281/zenodo.
4744380

* Dataset: Benjamin Vermunicht, Maxim Van de Wynckel, and Beat Signer.
802.11 Managemement Frames From a Public Location, June 2023. doi: 10.
5281/zenodo. 8003771
Used for analysing the input and output data in @openhps/rf

* Dataset: Nathan Hoebeke, Maxim Van de Wynckel, and Beat Signer. Object
Tracking on a Monopoly Game Board, June 2023. doi: 10.5281/zenodo.
7990434
Used for analysing the input and output data in @openhps/video

* Dataset: Maxim Van de Wynckel. Garage Positioning Dataset, 2025.
doi: 10.34740/KAGGLE/DS/6654647

* Dataset: Maxim Van de Wynckel and Beat Signer. Sphero Dead Reckoning
and CV Tracking Dataset, 2025. doi: 10.34740/KAGGLE/DS/6760212


https://doi.org/10.48550/ARXIV.2101.05198
10.48550/ARXIV.2101.05198
https://doi.org/10.1109/IPIN51156.2021.9662569
10.1109/IPIN51156.2021.9662569
https://doi.org/10.1109/IPIN51156.2021.9662569
10.1109/IPIN51156.2021.9662569
https://doi.org/10.21105/joss.08113
10.21105/joss.08113
https://doi.org/10.5281/zenodo.4744380
10.5281/zenodo.4744380
https://doi.org/10.5281/zenodo.4744380
10.5281/zenodo.4744380
https://doi.org/10.5281/zenodo.8003771
10.5281/zenodo.8003771
https://doi.org/10.5281/zenodo.8003771
10.5281/zenodo.8003771
https://doi.org/10.5281/zenodo.7990434
10.5281/zenodo.7990434
https://doi.org/10.5281/zenodo.7990434
10.5281/zenodo.7990434
https://doi.org/10.34740/KAGGLE/DS/6654647
10.34740/KAGGLE/DS/6654647
https://doi.org/10.34740/KAGGLE/DS/6760212
10.34740/KAGGLE/DS/6760212

16 CHAPTER 1. INTRODUCTION

Positioning System Ontology PQSO

The Positioning System Ontology (POSO) describes positioning systems,
their algorithms and the data they produce using RDF. POSO is designed to
facilitate interoperability between positioning systems by defining a com-
mon vocabulary for describing the data and processing pipeline of this data.

We presented POSO at the International Semantic Web Conference (ISWC) in 2022
and its implementation within OpenHPS for serialising and deserialising data pro-
duced and consumed by positioning systems. In 2024, we extended POSO with
our fiducial marker ontology called FidMark, which was presented at the Exten-
ded Semantic Web Conference (ESWC). With this extension, we demonstrated the
importance and possibility of creating interoperability in augmented reality envir-
onments while simultaneously evaluating the extendability of the POSO ontology.

With POSO, we provide an extensible solution to answer research question RQ?2.
POSO builds upon the conceptual representation of a positioning system that
we defined with OpenHPS. Using the data structure and pipeline we defined for
OpenHPS, together with existing terminologies and standardisations, we provide
an ontology that describes this representation.

Relevant Publications:

e Maxim Van de Wynckel and Beat Signer. POSO: A Generic Position-
ing System Ontology. In Proceedings of the 21st International Semantic
Web Conference (ISWC 2022), Virtual conference, 2022. doi: 10.1007/
978-3-031-19433-7_14

e Maxim Van de Wynckel, Isaac Valadez, and Beat Signer. FidMark: A Fi-
ducial Marker Ontology for Semantically Describing Visual Markers. In
Proceedings of The Semantic Web (ESWC 2024), 2024. doi: 10.1007/
978-3-031-60635-9_14

* Maxim Van de Wynckel and Beat Signer. Discoverable and Interoperable
Augmented Reality Environments Through Solid Pods. In Proceedings of
the 2nd Solid Symposium (SoSy 2024), volume 3947, May 2024. URL
https://ceur-ws.org/Vol-3947/short2.pdf


https://doi.org/10.1007/978-3-031-19433-7_14
10.1007/978-3-031-19433-7_14
https://doi.org/10.1007/978-3-031-19433-7_14
10.1007/978-3-031-19433-7_14
https://doi.org/10.1007/978-3-031-60635-9_14
10.1007/978-3-031-60635-9_14
https://doi.org/10.1007/978-3-031-60635-9_14
10.1007/978-3-031-60635-9_14
https://ceur-ws.org/Vol-3947/short2.pdf

1.7. CONTRIBUTIONS 17

RDF Object-Document Mapping

We investigated and designed a solution for automatically mapping ob-
jects to RDF. Our implementation was designed as a module for OpenHPS
(@openhps/rdf). This document mapper is flexible and can be configured
to perform RDF mappings without changing the existing object-oriented
design.

To aid in designing interoperable positioning systems, we investigated how to
seamlessly map positioning systems and their data from the OpenHPS framework
to Resource Description Framework (RDF) using the POSO ontology. This contri-
bution helped us validate the POSO ontology’s genericity by mapping it to concepts
of our generic OpenHPS framework.

Our solution was to design an object-document mapping tool that allows serial-
isation and deserialisation of the existing OpenHPS classes and objects to RDF.
Existing solutions often require the manipulation of classes to be mapped to RDF. In
contrast to this existing work, our solution does not require any modifications to the
classes themselves. This contribution serves as an implementation that bridges the
gap between our ontology and the practical implementation of OpenHPS. However,
it also provides novel solutions to help bridging this gap.

While our implementation was built on top of OpenHPS, the offered solution for
extensible serialisation to RDF and to query data by providing MongoDB queries
is generic enough to be utilised in other use cases.

7

User-centric Positioning System Storage Using Solid

Using POSO, OpenHPS and our RDF object-document mapper, we created
a Solid-based positioning system that describes a positioning system and
the data it contains. This data is stored in personal data vaults managed by
the user. We treat data such as a position or orientation as an observable
property that is linked to a user’s Web Identifier. Based on access rights,
applications can observe the properties of a user that are stored within Solid.

Our initial solution for decentralising location data was presented at IPIN 2022.
Based on the feedback we received for this initial version, we modified our solution
by optimising the structuring of the data within a personal data vault such as a Solid
Pod. We presented other use cases of decentralised location data at the Solid Sym-
posium, where we proposed two methods for utilising Solid as a communication
broker for data modifications.

This contribution serves as a conceptual architecture that uses personal data vaults
for enabling user-centric storage of data obtained or used by positioning systems.



18 CHAPTER 1. INTRODUCTION

However, to validate that this architecture is feasible, we have implemented it on top
of the Solid project, where we defined new concepts for enabling this architecture
within Solid.

Relevant Publications:

* Maxim Van de Wynckel and Beat Signer. A Solid-based Architecture for
Decentralised Interoperable Location Data. In Proceedings of the 12th
International Conference on Indoor Positioning and Indoor Navigation
(IPIN 2022), CEUR Workshop Proceedings, volume 3248, 2022. URL
https://ceur-ws.org/Vol-3248/paperll.pdf

e Maxim Van de Wynckel and Beat Signer. Discoverable and Interoperable
Augmented Reality Environments Through Solid Pods. In Proceedings of
the 2nd Solid Symposium (SoSy 2024), volume 3947, May 2024. URL
https://ceur-ws.org/Vol-3947/short2.pdf

* Yoshi Malaise, Maxim Van de Wynckel, and Beat Signer. Towards Dis-
tributed Intelligent Tutoring Systems Based on User-owned Progress and
Performance Data. In Proceedings of the 2nd Solid Symposium (SoSy
2024), volume 3947, May 2024. URL https://ceur-ws.org/Vol-3947/
short3.pdf This paper was used to investigate a different approach to use
Solid as a communication method for triggering actions

Semantic Beacons Eiem Beacon

The SemBeacon specification is a semantic beacon solution for advert-
ising semantic data about geospatial environments and physical things.
It is based on the Bluetooth Low Energy specifications, AltBeacon and
Eddystone-URL, and is also backwards compatible with libraries or scan-
ners that already scan for these existing specifications. The SemBeacon
specification includes an ontology alignment with POSO to ensure seamless
integration with existing positioning systems and data processing pipelines.

SemBeacon is our solution for enabling the local discovery of positioning systems.
While SemBeacon is primarily an implementation for discovering services and
physical objects, its design is problem-oriented by reusing the technologies which
are being discovered to aid in the discovery. This way, we created a solution that
preserves the interoperability as much as possible.

We first demonstrated the use of SemBeacon to discover and describe physical
things at the international Internet of Things (IoT) conference in 2023. We then
continued the development of the specification so it could be used in subsequent
research. We developed and published an Android application and Arduino library
to bring SemBeacon to as many users as possible. In addition, we extended a


https://ceur-ws.org/Vol-3248/paper11.pdf
https://ceur-ws.org/Vol-3947/short2.pdf
https://ceur-ws.org/Vol-3947/short3.pdf
https://ceur-ws.org/Vol-3947/short3.pdf

1.7. CONTRIBUTIONS 19

popular Android Bluetooth scanning library to scan for and emulate SemBeacon
to promote its adoption among developers.

Finally, using SemBeacon, POSO and OpenHPS, we have explored the ability to
combine these three projects to create discoverable digital twins of environments,
positioning systems and reference spaces. Using FidMark together with our other
research, we concluded our research with two papers towards discoverable and in-
teroperable augmented reality environments within Solid Pods, which we presented
as a poster at the 2nd Solid Symposium in 2024. We also presented the use of
SemBeacons for discovering indoor environments at FOSDEM 2025.

Relevant Publications:

¢ Maxim Van de Wynckel and Beat Signer. SemBeacon: A Semantic Proximity
Beacon Solution for Discovering and Detecting the Position of Physical
Things. In Proceedings of the 13th International Conference on the Internet
of Things (loT 2023), 2023. doi: 10.1145/3627050.3627060

* Maxim Van de Wynckel and Beat Signer. Discoverable and Interoperable
Augmented Reality Environments Through Solid Pods. In Proceedings of
the 2nd Solid Symposium (SoSy 2024), volume 3947, May 2024. URL
https://ceur-ws.org/Vol-3947/short2.pdf

Linked Data Hash Tables

We designed a new specification called Linked Data Hash Tables (LDHT)
that utilises linked data to create an Distributed Hash Table (DHT). It enables
a global distributed collection of data. Data retrieval uses the Semantic
Web to traverse the nodes in the distributed network. LDHT is a generic
global discovery method that we use to distribute knowledge about indoor
positioning systems.

SemBeacon aids in the local discovery of positioning systems by leveraging the
signal propagation properties of Bluetooth Low Energy to receive information about
positioning systems within proximity of these beacons. However, this requires
additional infrastructure for broadcasting information. Linked Data Hash Tables
is a specification that leverages the Linked Data Notifications protocol to create a
distributed collection of URIs linked to geographical boundaries. We utilise this
to provide a global discovery of positioning systems.

Atthe time of writing, the work on LDHT has not yet been published in an academic
paper. However, the design is influenced by our use of Solid as a communication
broker with actions that can be sent to each Pod [42, 44].


https://doi.org/10.1145/3627050.3627060
10.1145/3627050.3627060
https://ceur-ws.org/Vol-3947/short2.pdf

20 CHAPTER 1. INTRODUCTION

Integrated Solution

Our integrated solution combines SemBeacon, POSO, our decentralisation
with Solid and linked data hash tables into an architecture for designing
interoperable and discoverable indoor positioning systems.

\. J

Using all our combined contributions, we designed an architectural system for
building future interoperable and discoverable indoor positioning systems. This
integrated solution uses Solid personal data vaults to store properties of location,
orientation and other data. This data is described using the POSO ontology and
constructed by the OpenHPS framework. Our integrated solution represents a con-
ceptual blueprint for designing Interoperable and Discoverable Indoor Positioning
Systems. We utilise our implementations to detail our vision of this blueprint, but
the conceptual architecture can be applied using different discovery methods and
data storage providers.

Other than the contributions listed in this section, we also contributed several
smaller software utilities that were separated from our SemBeacon contribution to
facilitate future researchers in their research efforts involving linked data. These
include a standalone server for shortening URISs in a way that supports SPARQL en-
gines to access the data and a standalone linked data HTTP proxy server that aims to
provide a CORS-compliant proxy for accessing the Semantic Web. These software
utilities will not be further discussed but are available on GitHub3-4.

Relevant Publications:

* Maxim Van de Wynckel and Beat Signer. Survey on the Privacy and Trans-
parency of Location Data, May 2025. doi: 10.5281/zenodo. 15564050
Survey used to position the problem and assess the motivation for user-centric
storage.

Finally, in Appendix E, we provide the results of a survey we conducted in 2025
to assess users’ perspectives towards the privacy and transparency of location data.
With this survey, we wanted to determine how our integrated solution can be
improved in the future. Part of the aggregated results of this survey were discussed
in our introduction. Note that in the subsequent chapters, we have reused some
content from our previously published papers that have been mentioned under the
contributions in this section, specifications, blog posts and documentation from
*_ openhps.org and sembeacon.org.

3https://github.com/SemBeacon/shortener
4https://github.com/SemBeacon/proxy


https://doi.org/10.5281/zenodo.15564050
10.5281/zenodo.15564050
https://github.com/SemBeacon/shortener
https://github.com/SemBeacon/proxy

You can’t really know where you are going
until you know where you have been.

— Maya Angelou

Chapter 2

Background and Related Work

Designing an interoperable and discoverable positioning system or service is a
challenging problem due to the broad domain it has to cover. A positioning sys-
tem is a collection of various technologies and algorithms designed to work in
pre-specified conditions, such as specific environments or using calibrated hard-
ware. Creating interoperability for these positioning systems would first require
the seamless exchange of the data that these systems consume and produce and
the semantic description of the processing steps of this data to enable reasoning
on the produced data and its quality. Furthermore, while we can often assume that
positioning systems aim to determine a location on Earth, this is not always the
case. Often, such a system only aims to provide a location for the environment it
is responsible for, which can be a single floor of a building or even something as
small as a physical game board.

The discovery of positioning systems is the ability to find or learn about the ex-
istence of positioning systems in an environment. This can involve discovering
the technologies and techniques these systems use, their capabilities, data require-
ments and how they can be accessed and utilised. However, this discovery also
encompasses the discovery of data belonging to a particular person or object that is
being tracked by such a system, so that seamless data exchange can happen between
different systems.

In this chapter, we delve deeper into the background of positioning systems, the
interoperability between these systems, how we can achieve the discovery of such
systems and the entities whose position is being determined. We focus on existing
standardisations, research efforts and challenges that closely relate to the research
questions we are trying to answer. All of the background in this chapter is used
throughout the dissertation, either to compare the state of the art (SOTA), or to
investigate the requirements of our individual solutions.

21



22 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1 Basic Terminology

Before we discuss the concepts of interoperable and discoverable indoor positioning
systems, we need to establish a solid understanding of some basic terminology used
throughout the dissertation. In this section, we primarily focus on the different
available positioning systems, the fundamental data that a positioning system should
be able to provide, and the naming conventions of this data. In later sections, we
delve deeper into system- and algorithm-specific terminology and their implications
on indoor positioning systems.

2.1.1 Positioning Systems and Services

Whenever we want to determine the position or orientation of a person or object,
we require sensors and software to retrieve this information. A positioning system
is a system or mechanism that can determine the position of one or multiple
objects based on some sensor data. Multiple positioning systems might track the
same object either individually or simultaneously. These multiple systems can
work independently from each other or combine information from other systems
to provide an output.

The ISO 19116:2019 standard [46], which defines geographic positioning services,
distinguishes between five main types of positioning systems:

* Satellite positioning system: A positioning system using satellites in geo-
stationary orbit around the Earth. These types of positioning systems are
also referred to as Global Navigation Satellite Systems (GNSS). Examples
include the GPS, Galileo or GLONASS [47].

* Integrated positioning system: An integrated or hybrid positioning system
(as detailed in Definition 4) can be used outdoors, indoors or in any other
space and contains a combination of two or more technologies. It describes
any system that combines multiple technologies, regardless of whether they
also fit in one of the other positioning systems within the ISO 19116:2019
standard. Assisted GPS (A-GPS) [48] is an integrated positioning system
that combines GPS with other techniques such as dead reckoning or cell
tower, making this a combination of a satellite positioning system and an
inertial positioning system.

* Optical positioning system: A positioning system that uses optical sensors
to determine a position. This includes positioning systems where objects
are tracked externally (e.g., Multi-Target Multi-Camera Tracking [49]), sys-
tems where the tracked object is the optical sensor observing the environ-
ment (e.g., Visual Simultaneous Localisation and Mapping [50]) or fiducial
marker trackers [51, 52].



2.1. BASIC TERMINOLOGY 23

* Inertial positioning system: An inertial positioning system calculates the
position based on its movement, measured through inertial measurement
sensors and an initial reference point [53]. The basic concept of these types
of positioning systems is further detailed in Section 2.3.7.

* Linear positioning system: A linear positioning system calculates its po-
sition along a linear axis, such as an odometer [46] tracking the linear
movement.

Since the ISO 19116:2019 standard only considers geographical positioning sys-
tems, we also consider the terminology of indoor positioning systems as an
additional variant, based on the indoor navigation system concept defined in
ISO 17438-4:2019 [21]. An indoor positioning system covers all systems and
techniques that are deployed indoors as opposed to outdoor positioning, where
often satellite positioning is used [54]. Indoor positioning systems are tailored to
the building in which they are deployed and the use case they tend to solve.

This type of positioning system can be projected to a geographical coordinate,
but in use cases where the positioning is only required relative to the indoor
environment — this is not always the case. In such systems, Cartesian coordinates
relative to the building or floor determine the position rather than projecting these
coordinates to geographical coordinates. Furthermore, while indoor environments
are often fixed, this is not always the case, as seen on cruise ships that contain
a complex indoor environment but should not always be mapped to geographical
coordinates.

In general, our solution and research in this dissertation is based on a wide variety
of positioning systems, technologies, algorithms and use cases. However, with our
goal of designing interoperable positioning systems, we focus on the background
information for indoor positioning systems, as these are the types of systems that
do not provide standardisation and often utilise proprietary databases owned by a
building owner. We consider an indoor positioning system as a type of hybrid or
integrated positioning system due to these types of systems often not relying on a
single technology.

Hybrid Positioning Systems

Every technique used to determine a position has its advantages and disadvantages.
Some techniques require significant infrastructure changes, while others require
a lot of processing power. Moreover, not every technique works perfectly in all
environmental conditions, preventing the use of a single technology to determine
a position. To solve this issue, hybrid positioning combines multiple systems or
sensors to provide more reliable output. The hybrid positioning system terminology
covers a wide range of use cases and therefore offers a good reason for further
research to identify a common data representation of such systems.



24 CHAPTER 2. BACKGROUND AND RELATED WORK

One of the common tactics of hybrid positioning systems is the fusion of sensor
data to improve the overall accuracy and reliability of the positioning system. The
use of sensor fusion mitigates the limitations of individual sensors and enhances
the overall system performance.

Another hybrid technique that is similar to sensor fusion is data reasoning, also
called inference-based positioning. This technique leverages contextual informa-
tion to precisely determine a sensor’s output. This method not only utilises sensor
data but also combines it with other positioning techniques and high-level data
to enhance the accuracy and reliability of the final output. By considering vari-
ous factors such as environmental conditions, historical data, and signal strength,
inference-based positioning can provide a more comprehensive and robust posi-
tioning solution.

sl

Figure 2.1: Employee using a badge to enter a secured area

A basic example of data reasoning for position estimation is an employee who
is tracked inside a building using a non-trivial set of positioning techniques. The
employee has a personal badge to gain access to closed-off areas within the company.
Other than traditional tracking methods which aim to determine a general location
in a building, when the employee uses their badge to gain access to a specific room,
their location can be more accurately inferred to be at the location where the badge
scanner is located. As shown in Figure 2.1, these badges are often personal (e.g., a
staff card) and can therefore be used to assume that at the time when they are used,
the user is entering an environment.

Various research studies concerning the fusion of sensor data to predict a more
accurate position exist. SignalSLAM [55] represents an example of a hybrid



2.1. BASIC TERMINOLOGY 25

system that uses signals of various positioning methods such as GPS, Wi-Fi and
Bluetooth to map the surroundings. Chen et al. [56] have shown how a smartphone
can combine sensor data of Wi-Fi access point positioning and pedestrian dead
reckoning. This combination of dead reckoning with another positioning method
is a common combination used by many hybrid systems.

In the research by Bekkelien and Deriaz [57], a framework called Global Positioning
Module (GPM) had been presented for in- and outdoor positioning. GPM provides
a uniform interface to different positions providers. These providers are fused
in a kernel that selects the position based on provided criteria (e.g., precision,
accuracy or detection probability). Their approach offers a clear methodology on
how these criteria can contribute to the selection or fusion of different technologies.
However, the position providers and kernels are implemented on a high level of
abstraction, providing no room for developers to choose different algorithms or
fusion techniques.

Ficco and Russo [58] presented a technology-independent hybrid positioning mid-
dleware called HyLocSys. Position estimators, representing different technologies,
provide positions when a user performs a pull of their current position. Sensor
fusion combines these estimated positions into a final response. The middleware is
based on the JSR-179 specification [59], which is a framework for mobile devices
to obtain a location. This framework enables pull requests for a location to accept
criteria such as the preferred response time and expected accuracy. Other than
many frameworks that only provide geographical positions, HyLL.ocSys provides
geometric, symbolic, as well as hybrid location models. Symbolic locations rep-
resent abstract places such as buildings, floors and rooms that are positioned relative
to each other. A hybrid location can convert this symbolic location to a geometric
position. Note that the paper does not discuss positioning technologies such as dead
reckoning or SLAM that require periodic updates to keep an up-to-date position.

Scholl et al. [60] propose a system that uses a Light Detection and Ranging (LiDAR)
scanner to determine the fingerprinting position. Using this technique, a more
precise positioning technique is used to aid in the calibration of another technique.
The Robot Operating System (ROS) [61] is a structured communication layer
that can be used to create autonomous robots. It focuses on the integration of
various robotics aspects such as positioning, computing and hardware interfacing.
ROS provides the concept of peer-connected nodes that perform computational
tasks. These nodes represent interchangeable software modules that help to build
a pipeline from sensory data to an output action. For positions and orientations,
ROS uses the pose concept, which contains both the position and orientation of a
robot. In full body tracking of users, this pose terminology is also used [62] as it is
also considered a non-technical terminology for indicating the posture of a person.

With hybrid positioning covering a wide variety of use cases and technologies,
it offers a stable foundation to generalise the types of positioning systems that



26 CHAPTER 2. BACKGROUND AND RELATED WORK

could be implemented. In our dissertation, we first focused on generalising hybrid
positioning systems with the development of our OpenHPS framework.

Location-based Services

A location-based service (LBS) is an abstraction of the underlying positioning
system with its implemented techniques that offer third-party applications a service
to retrieve the position of a person or object [63]. An example of a LBS is the
Geolocation API implemented in most modern web browsers [64]. This API
offers an application interface to retrieve a position or watch for changes in the
position. However, depending on the available hardware, the underlying technology
varies from Wi-Fi positioning to GPS or even IP-address-based location estimation.
However, developers can request a high-accuracy result or maximum cache age if
the hardware permits this. The resulting positions of the Geolocation API are
geographical coordinates complying with the WGS-84 standard [65].

JSR-179 and the improved JSR-293 [59] specifications are Java 2 Micro Edi-
tion (J2ME) modules that provide developers with an API to obtain the location
and orientation of a mobile device. Included in the API is a storage interface
for landmarks, which can be used by RF-based positioning techniques to store
fixed landmarks for positioning techniques such as multilateration. The specifica-
tion represents locations as timestamped coordinates with an orientation, accuracy,
speed and information about the used positioning method [66]. When requesting
a location, criteria such as the desired accuracy, power consumption and response
timeout can be provided.

With this dissertation, we want to focus more on the interoperability of the under-
lying technologies rather than abstractions such as LBSs. While we still consider
location-based services when providing a solution to our research questions, we do
not aim to provide interoperability between these high-level services.

However, as we will point out at the end of this dissertation, future work should
also specifically focus on the interoperability of location-based services. Providing
interoperable indoor positioning systems is one key challenge that we address in
this dissertation, but without an abstraction layer that manages and controls this,
the full potential of an interoperable system cannot be realised.

2.1.2 Absolute and Relative Positions

Multiple definitions exist to indicate where a spatial object is located. Positioning
systems distinguish between relative and absolute positions [2, 54]. An absolute
position represents a fixed position in a specified space while relative positions in-
dicate the position relative to another object or reference space. Absolute positions
indicate a position on a specified coordinate system, such as latitude and longitude
in GPS. In contrast, relative positions are more dynamic and can change depending



2.1. BASIC TERMINOLOGY 27

on the reference point. Hybrid positioning systems can utilise both absolute and
relative positioning techniques to enhance the accuracy and reliability of the over-
all system. Figure 2.2 illustrates the difference between an absolute and relative
position. A boat may have an absolute position at a specific coordinate, but can
also have a relative position to a lighthouse.

-_—
— e

My relative position to
My absolute position is the lighthouse is 150m

51.54989, 3.69393 at a 45 deg angle

A A

Figure 2.2: Absolute and relative position of a boat

The position terminology is often used as opposed to location or pose. Pose is a term
that is often used when defining a position and orientation in a three-dimensional
space and is often used in robotics [67] or when describing the movement of
a person [68]. A pose is a combination of the position and orientation of an
object. In real-world applications such as the Robot Operating System (ROS) [61],
it indicates a position and orientation within 3D space. Not every positioning
system might operate within three dimensions, so the pose terminology might not
be appropriate as a generic terminology. Location is described by the English
Oxford Dictionary as “a place where something happens or exists; the position
of something”. Since a place denotes a larger area where something happens or
exists, we decided on the position terminology.

2.1.3 Coordinate Systems

A coordinate reference frame (CRF), coordinate reference system (CRS) or other
defined as “a frame of reference” is a standard way of specifying the coordinates
of points in space. It provides a set of axes that define the position of a point or
an object, which can be used to specify its location. Different applications may
require different coordinate reference frames depending on the desired level of
accuracy and the specific needs of the system. For example, in the field of robotics,
a Cartesian coordinate system is often used to define the position of a robot in a
2D or 3D space. Other applications, such as satellite position systems, may use
spherical coordinate systems to represent positions on the Earth’s surface. The
choice of coordinate reference frame depends on the specific requirements of the
application and the nature of the spatial object being measured.

Another terminology that is often used to describe a position within a certain frame
of reference is a local- and global reference space. In a local reference space, the



28 CHAPTER 2. BACKGROUND AND RELATED WORK

positioning system may define its own coordinate system, its own origin and its own
rotation without being earth-bound. Positions within a local reference frame can
optionally be mapped to a global reference space which maps the local coordinates
to an existing coordinate reference frame. An example of such a reference space is
a system that can track relative movements but has no knowledge about its absolute
position. A virtual reality (VR) headset may be able to track its movement and
orientation relative to the start of the VR session but often does not have knowledge
about its absolute position.

In our efforts to design interoperable positioning systems, we must consider the
different coordinate systems and reference spaces that may be used in various
applications. Whenever expressing location data, we should provide context about
the coordinate system used to express this location.

2.1.4 Oirientation

In the context of positioning systems, orientation refers to the direction in which
an object is facing or aligned. Depending on the type of system, this orientation
can be expressed with a three-dimensional vector or a simple angle.

Figure 2.3: Visual explanation of Euler angles [69]

Orientation is an important aspect of a positioning system. It not only offers the
final state of direction after a rotation of an object or person, but is also required by
many positioning algorithms to determine a position. In a geographical context,
the terminology bearing, heading, course or azimuth is used as a one-dimensional
value [70]. To offer a more generic terminology of a two- or three-dimensional
position, mathematical concepts can be used to describe an orientation.

The commonly used mathematical definitions of orientation are Euler Angles, Axis
Angles, Quaternions and rotation matrices [71]. Each mathematical definition has
its advantages for a positioning system. Euler angles offer a well-known semantic



2.1. BASIC TERMINOLOGY 29

description of a 3D rotation using only three values as shown in Figure 2.3, while
still allowing the single use of yaw for expressing the heading in a 2D scenario.
In robotics, quaternions are chosen since they avoid gimbal locks, as well as for
their analytic properties. Rotation matrices are commonly used to easily combine
a rotation matrix with a position matrix that contains the scale and translation of
an object within a space.

2.1.5 Velocity and Acceleration

Velocity consists of angular and linear velocity. Linear velocity is the velocity
along one or more axes relative to the current orientation while angular velocity
is the velocity around the position. When working with this type of data, the
timestamp of when this information was created is crucial to accurately compute a
location and orientation.

Acceleration on the other hand is the rate of change of velocity, both linear and
angular. It measures how quickly the velocity of an object is changing over time.
Like velocity, acceleration can be in different directions and is also dependent on
the timestamp of when the data was collected.

Active positioning systems make use of an object’s velocity to determine a position
and orientation based on its momentum. This procedure, called dead reckoning,
uses an entity’s last known location together with its angular and linear velocity to
determine the new position and orientation at a later timestamp [72].

2.1.6 Accuracy and Precision

Accuracy and precision are vital concepts in hybrid positioning systems as they can
be used to determine the relevance of a particular algorithm or system. Accuracy
refers to how close a measured value is to the true value, while precision relates to the
consistency and repeatability of the measurements. When computing information
in a positioning system, accuracy describes how closely the calculated position
matches the actual ground-truth position, while precision indicates the level of
detail or granularity in the measurements.

When we are developing positioning systems, the accuracy indicates how close
the computed position is to the actual position of the object or person that is
being tracked. Precision, on the other hand, is related to the level of detail in the
location measurements and how consistently these location measurements can be
reproduced over time. Figure 2.4 illustrates the difference between accuracy and
precision using four examples. Mathematically, accuracy can be defined as the
absolute value of the difference between the measured value and the true value,
while precision refers to the scatter of measured values around the mean. In a
positioning system, high accuracy with high precision is the desired outcome, as it



30 CHAPTER 2. BACKGROUND AND RELATED WORK

X x X

(a) High accuracy with high (b) High accuracy with low pre-
precision cision

X

5 x(
XX

(c) Low accuracy with high pre- (d) Low accuracy with low pre-
cision cision

Figure 2.4: Accuracy and precision

indicates that the calculated positions are not only close to the actual positions but
also consistently reproducible.

Interoperable positioning systems that exchange data should give assurances on
the data’s accuracy and precision to ensure that the information being shared is
reliable and consistent across different systems. This is important for applications
such as collaborative robotics, autonomous vehicles, and augmented reality, where
multiple devices and sensors need to work together seamlessly. Part of our research
efforts is to ensure that this knowledge can be exchanged.

2.2 Indoor Positioning Systems

Outdoors, we can rely on satellite positioning systems such as GPS to help determine
a position; inside a building, we cannot rely on this technique due to the obstacles
between the satellites and the receiver within a building. Hybrid positioning is often
used within these environments to handle this limitation. In indoor environments,



2.2. INDOOR POSITIONING SYSTEMS 31

positioning systems face additional challenges such as multi-path effects [ 73], signal
interference [74] or even blind spots within an environment where users cannot be
tracked. These challenges require the use of different positioning techniques that
are specifically tailored for indoor environments.

These positioning techniques may include Wi-Fi-based positioning, Bluetooth Low
Energy (BLE) beacons, ultrasound positioning, infrared positioning, and computer
vision-based approaches. Each of these techniques has its strengths and limitations,
making it essential to choose the most suitable technique based on the specific
requirements of the indoor positioning application and the building environment.

" o: Kate Spade NewYork

1 min (109 feet)

Figure 2.6: Two indoor positioning systems developed by IndoorAtlas!

Figure 2.6 showcases two indoor positioning systems developed by IndoorAtlas,
a company that develops and deploys indoor positioning and navigation systems.
IndoorAtlas provides customers with a platform as a service with a well-established
Software Development Kit (SDK) for combining Wi-Fi, GPS, Bluetooth beacons,
dead reckoning and even geomagnetic positioning [75, 76]. While the latter method
is less ideal in steel-reinforced buildings [77], it still offers a useful addition for
creating an indoor positioning system where geomagnetic positioning might be
combined with other positioning methods.

GoodMaps? is a company that provides indoor mapping services for buildings.
They perform a visual LiDAR scan of a building after which they create a 2D floor-
plan. During the online phase, the features detected through this scan are used to
determine a user’s location.

If we look at more open platforms and frameworks, LearnLoc [77] is a smartphone
positioning framework that uses the k-nearest neighbours fingerprint algorithm in
combination with various sensor data available on a smartphone to provide power-
efficient indoor positioning. The consideration of power efficiency is a common

thttps://www.indooratlas.com
2https://goodmaps.com


https://www.indooratlas.com
https://goodmaps.com

32 CHAPTER 2. BACKGROUND AND RELATED WORK

requirement in mobile positioning systems, which this platform tries to address.
Other than achieving the most accurate position, these types of location-based
services (LBSs) use sensor fusion to prevent the continuous use of precise sensors
such as cameras or GPS.

One of the things most indoor positioning systems have in common is the need
to either perform a major calibration step by scanning or collecting fingerprints,
or to install hardware within a building. Both of these approaches have their
pros and cons, but are generally considered costly or sensitive to environmental
changes. When these systems additionally require their own tailored application,
they become even more expensive and difficult to set up. Interoperable indoor
positioning systems can help to alleviate these challenges by providing standardised
approaches that can work across different platforms and devices, reducing costs
and simplifying the setup process for indoor positioning systems.

2.2.1 Use Cases

Indoor positioning systems are not free or effortless to deploy. Indoor navigation
applications require the development of a custom application, the mapping of the
indoor environment and the purchase and installation of specialised hardware such
as beacons or RFID tags [78]. Therefore, indoor positioning systems are often
not primarily deployed to simply enhance user experience but are rather used
to optimise business processes. However, once an indoor positioning system is
deployed, it can offer a wide variety of other use cases, including the enhancement
of user experience.

Figure 2.7 illustrates the main domains and building types where indoor positioning
systems can or could be used. In this section, we further detail these use cases
to provide additional context on how an indoor positioning system is used. By
understanding these use cases, we can determine the requirements of such systems
and how they are deployed.

Airports

Airports are large and often unfamiliar to travellers. Some airports have multiple
terminals that take a significant amount of time to reach. Indoor positioning systems
can help passengers navigate through the airport efficiently. A personal navigation
indoor navigation system helps passengers locate their check-in desk, terminal and
gate within the airport. It can also help them locate the location of their luggage
when reaching their destination.

Security systems at an airport already leverage surveillance cameras to track specific
passengers. Currently, there is no transparency towards the users regarding how
they are being tracked, and their use is limited to security purposes. However,



2.2. INDOOR POSITIONING SYSTEMS

33

Airport

y’ { Q Confer

ences/
Events

1

Personal navigation -
Passenger locator - 1
Luggage locator -+

Museums

Location-based context
Visitor navigation
Augmented reality

Hospitals

Visitor navigation
Asset tracking
Crowd management

- Navigation and routing
r- Attendance statistics
‘- Person-to-person navigation

Campus }

i~ Student navigation
- Room occupation
- Attendance statistics

Indoor
Positioning

‘ i Transportation

Systems

r- Underground tracking

- Hub navigation

-- Crowd management

‘ Office

|

Retail
& Malls

Asset/resource tracking
Security and access control
Co-working spaces

Room occupation

Implicit actions

«

- Order picking

- Asset tracking

- Location-based advertising
- Customer navigation

Customer dwelling

Figure 2.7: Indoor positioning system use cases

with an indoor positioning system in place, airports could potentially request user
consent to let staff track a specific passenger.

Museums

Museums are a popular use case for indoor positioning systems because enhan-
cing user experience is part of the business goals of museums. Visitors can use
their smartphones to access interactive maps that guide them through the exhib-
its, providing additional location-based information and context about each arte-
fact [79]. Indoor positioning can also help museum staff track visitor flow, gather
data on popular exhibits, and improve crowd management.

Museums also aim to engage visitors by creating interactive exhibits. Augmen-
ted reality is a technology that can help with this interaction. However, these
AR applications also require an indoor positioning system to correctly augment
information on physical exhibits [80].



34 CHAPTER 2. BACKGROUND AND RELATED WORK

Conferences and Events

Conferences are often crowded events with multiple stands, multiple rooms for
presentations, and various activities happening simultaneously. Indoor positioning
systems are already being deployed in large conference halls to facilitate navigation.
However, these systems are often temporary deployments that require a single-use
application.

In addition to simple navigation purposes, person-to-person navigation is a type
of navigation where users have to navigate to another person. In a conference or
meetup, this type of navigation can be used to find specific speakers or participants
within the venue. This can enhance networking opportunities and streamline the
process of finding and connecting with individuals in a crowded event space.

For organisers, indoor tracking can provide insightful analytics on popular stands,
busy walkways, and peak times during the event. This data can help better organise
future conferences and meetups to improve the attendees’ experience.

Campus

On a university campus, indoor positioning systems can be used to assist students
and visitors in navigating the complex network of buildings and facilities. A campus
often spans multiple buildings, meaning students need to go from one building to
the next.

Next to user experience, an indoor positioning system can help to determine if rooms
are available or use attendance information in combination with other contexts
(e.g., air quality sensors) to automatically determine if different rooms should be
assigned to courses with many attendees.

Transportation

In outdoor environments, transportation can easily be tracked using GPS. While it is
not necessary for an indoor environment, underground transportation also requires
tracking, which is not feasible using GPS signals. Furthermore, transportation hubs,
such as stations, are often large and complex, making it difficult for passengers to
navigate efficiently.

Figure 2.8 shows the floor plan of Tokyo Station, Japan. A station with 28 platforms,
multiple entrances and multiple floors to get to the platform. For a visitor, it is
already a challenge to navigate to the destination, but the complex environment also
makes it difficult for a person to know exactly where they are and which entrance
they took.



2.2. INDOOR POSITIONING SYSTEMS 35

Figure 2.8: Tokyo station multi-level floor plan (source Kotsu Shimbunsha)

Hospitals

Hospitals are complex environments that are often also visited by people with
accessibility issues. These environments often provide a route that can be followed
to their destination. However, for people with a visual impairment, reading these
numbers or following these colours is difficult. Furthermore, these routes are often
not optimised for efficiency, causing patients to sometimes get lost or have delays
in reaching their destination. Indoor positioning systems can provide turn-by-turn
navigation for patients, visitors, and staff within a hospital, improving efficiency
and reducing stress [81].

Apart from improving visitor/patient experience, hospitals also have movable assets
such as EKG machines that are moved from department to department depending
on where they are needed most [82]. Asset tracking can help manage where these
assets are located, to ensure that these portable devices are not lost or misplaced.
This can save time for staff who would otherwise have to search for these devices,
as well as improve patient care by ensuring that necessary equipment is readily
available when needed.

Retail Stores and Malls

Out of all use cases, retail stores and large malls are currently one of the main
businesses that implement indoor positioning or indoor tracking solutions [83, 84].
In warehouses, use cases range from asset tracking to automatic order picking



36 CHAPTER 2. BACKGROUND AND RELATED WORK

using robots. For retail stores, it can be used to determine how long customers
spend in certain areas or to provide location-based advertisements on their phones.
Figure 2.9 showcases a robot? that helps employees perform order picking. These
robots need to navigate within a warehouse to the correct locations where these
orders should be picked.

Figure 2.9: Assisted order picking robot from Zeal Robotics

From a user’s perspective, some of these use cases are not necessarily seen as
beneficial, as they may invade their privacy or feel like an intrusion into their
personal space. However, from a business perspective, the data collected from these
systems can provide valuable insights into customer behaviour and preferences,
which can be utilised to improve marketing strategies and optimise the layout of
the store for a better shopping experience.

In large malls or even on cruise ships with multiple shops, indoor positioning sys-
tems can help visitors navigate through the complex layout of the space, find specific
stores or amenities, and allow them to receive personalised recommendations based
on their preferences. This can enhance the overall shopping experience for visitors,
leading to increased customer satisfaction and potentially higher revenue.

3https://www.zealrobotics.com


https://www.zealrobotics.com

2.2. INDOOR POSITIONING SYSTEMS 37

Office Environments

After the COVID-19 pandemic, more companies started to investigate smart co-
working spaces. These co-working spaces are flexible workplaces where employees
are not assigned a fixed desk but rather expected to work at a flex desk. The
idea behind this concept is that employees do not always work on-premises, and
therefore, companies should not be constrained by fixed desk assignments.

Managing co-working spaces requires a robust registration system to determine
which rooms or desks are available. Meanwhile, since employees no longer have a
fixed desk, it becomes more difficult to have face-to-face meetings with co-workers.
An indoor positioning system can help with person-to-person navigation as well as
the automatic detection of which rooms or desks are available.

Similar to hospital environments, office environments can also benefit from asset
or resource tracking. Portable equipment that moves from one office to another
should be easily tracked, especially in shared workspaces. Flexible workspaces also
entail that employees are not familiar with the nearby equipment, such as printers.
Resource tracking can help them find the location of the closest printer.

Figure 2.10: Sony Nimway wall panel

Figure 2.10 showcases a Sony Nimway [85] wall panel. Nimway is a smart
office solution that handles employee tracking, resource allocation, last-minute
bookings and office navigation. It offers executives and office managers insights
into employee attendance, desk utilisation and occupancy.



38 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.2 Seamless Positioning

Positioning systems are often tailored towards a specific environment or use case.
An indoor positioning system is designed to work indoors using a variety of al-
gorithms, while an outdoor positioning system is used in the open air. With
seamless positioning, we want to create a seamless transition from one positioning
system to another [86]. This seamless transition ensures that users can have a
continuous and uninterrupted positioning as they move between different indoor
and outdoor environments, as illustrated in Figure 2.11.

Indoor Positioning

§

Satellite Positioning

S

Seamless Positioning

Figure 2.11: Tllustration of seamless positioning between satellite positioning and
indoor positioning

One of the main challenges to achieve this is the handover of the tracking from one
positioning system to another. In a use case where a user walks from one building
to another, the handover happens between the indoor positioning systems from the
two buildings and optionally also an outdoor positioning system that tracks the user
in between the two buildings [87].

The concept of creating seamless positioning systems is related to hybrid and inter-
operable systems due to the requirement to link from one to the other. To provide a
seamless transition, both positioning systems must operate with interoperable data
to correctly identify the same tracked object.

2.2.3 Indoor Landmarks

Indoor positioning systems can utilise a wide range of techniques within an in-
door environment. One of the common methods to compute a position or location
indoors is the use of visual, acoustic or electromagnetic landmarks. These land-
marks prevent the need for a complicated setup and are less prone to changes in the
environment as opposed to other techniques that utilise the existing infrastructure.
However, they also require prior knowledge of the locations of these landmarks,
which often results in the use of a database that is inaccessible to other systems.



2.2. INDOOR POSITIONING SYSTEMS 39

Ever since the release of Bluetooth Low Energy (BLE), BLE beacons have been
one of the more prominently used techniques for indoor positioning [88]. For their
use in indoor positioning systems, they are often installed as small battery-powered
devices in rooms, hallways or other key areas [89] but can also be embedded in smart
devices [90]. During the installation, the beacon’s physical location in the building
is linked to its advertised identifier. Despite the advances in indoor positioning
techniques that require no changes to the infrastructure, Bluetooth beacons are
still among the most popular options for implementing indoor positioning systems
due to their compatibility with various smartphone operating systems. Bluetooth
beacons send out an RF-signal that can be used to determine the distance to each
of these beacon landmarks.

One of the simplest positioning techniques using beacons is cell identification
(see Section 2.3). With this technique, the proximity to a single beacon or a group
of beacons is used to determine the receiver’s position [54]. We assume that the
beacons with the strongest signal strength are the closest. When multiple beacons
are in range, multilateration can be used to compute the absolute position based
on three or more beacons. In the context of positioning systems, the known fixed
location of beacons is used to determine the location of a user scanning for these
beacons.

In the Bluetooth Core Specification version 5.1, a new method for location tracking
was introduced using the angle of arrival (AoA) or angle of departure (AoD) [91].
The specification added the ability for devices to generate data that could help
receivers determine the angle of the signal. Advertisement data and the received
signal strengths from the transmitted data can still be used to combine the angle
with a distance approximation, offering better location tracking. Regardless of the
used technique, Bluetooth-enabled devices are capable of computing their relative
location between one or more beacons but require knowledge of the location of
these beacons in order to compute their absolute location within a building.

An alternative to this setup is a positioning system that uses Bluetooth receivers
with a fixed location. These receivers scan for moving beacons [92] while the
transmitter is a moving beacon with an unknown location. Nevertheless, the same
positioning techniques can be applied.

Modern phones have started to support Ultra-wideband (UWB). Other than BLE,
UWRB beacons provide more accurate positioning due to their higher precision in
distance measurement. Ultra-wideband technology operates by transmitting short
pulses at very high frequencies, allowing for accurate time-of-flight measurements.
This enables UWB beacons to determine the distance between the transmitter
and receiver with high precision, making them suitable for applications requiring
centimetre-level accuracy, such as asset tracking or navigation in complex indoor
environments.



40 CHAPTER 2. BACKGROUND AND RELATED WORK

2.3 Positioning Techniques and Algorithms

Different technologies and algorithms are used to calculate a position or combine
multiple positioning methods. We provide an overview of some of these prominent
techniques to later allow us to determine a generalised method to represent the input
and output data of these algorithms, as defined in RQ1.1 and RQ1.2. A positioning
technique consists of sensor data and an algorithm that processes this data using
various techniques.

In this section, we focus on the most common positioning techniques and al-
gorithms that are used in positioning systems, or more specifically, indoor pos-
itioning systems. While the techniques and algorithms discussed in this section
are not exhaustive, they represent the foundational methods used in the field of
indoor positioning and are primarily detailed to provide us with the different types
of data that should be considered. Moreover, by investigating different techniques
and algorithms, we can also consider the overlap of data and processing.

2.3.1 RF-based Positioning

Radio Frequency (RF)-based positioning techniques rely on the use of electromag-
netic waves to estimate an object’s position. This can include technologies such as
Wi-Fi-based positioning, Bluetooth Low Energy (BLE) beacons, Ultra-wideband
beacons or even cell towers. When these technologies transmit and receive inform-
ation, the receiver can obtain additional information such as the Received Signal
Strength (RSS) , representing the signal strength (indicated in dBm) received by
the receiving antenna.

& User
(((.))) (((0))) () Transmitter/Receiver
A

in range

m ((x)) Transmitter/Receiver

out of range

Figure 2.12: Radio Frequency Cell Identification

The most basic method of RF-based positioning is Cell Identification (CI) . This
method involves dividing the area into cells as depicted in Figure 2.12, each with
its unique identifier. The position of the object is then estimated based on the cell
it is currently in. The estimation of the cell is based on the strength of the signal
compared to the signal of other transmitters. Cell identification is often used in
combination with other positioning techniques, as it can provide a general area
before other techniques pinpoint a more precise position.



2.3. POSITIONING TECHNIQUES AND ALGORITHMS 41

((x)) O User

N A
O PN ((('))) () Transmitter/Receiver
((R)) \y m A fﬁ Received signal

strength indicator

Figure 2.13: Radio Frequency Received Signal Strength Indicator

An extension to Cl-based positioning is RSS-based positioning. Unlike tradi-
tional Cl-based positioning where only the strongest signal strength is used, this
technique estimates the position of an object based on the strength of the signal
received from multiple transmitters, as illustrated in Figure 2.13. By comparing
the signal strengths from different transmitters, the position of the object can be
calculated using multilateration or trilateration. RSS-based positioning is more
accurate than Cl-based positioning but requires more complex algorithms to pro-
cess the received signals and estimate the position accurately. The received signal
strength is subjective to noise from the environment, multi-path effects, and signal
interference, which can affect the accuracy of the position estimation.

()
( ‘ )\@\ & User
& @ ((R)) ((2)) Transmitter/Receiver
((2))/®/ /@ Timed transmission

Figure 2.14: Radio Frequency Time of Arrival and Time Difference of Arrival

To solve the issues of signal strength noise, Time of Arrival (ToA) and Time
Difference of Arrival (TDoA) techniques can be used. These techniques estimate
the position of an object based on the time it takes for the signal to travel from
the transmitter to the receiver, as shown in Figure 2.14. By measuring the time
difference of arrival from multiple transmitters with a known position, an object’s
position can be calculated accurately. This type of RF-based positioning does
not suffer from signal interference making it a more reliable method for indoor
positioning applications. However, it requires precise time synchronisation between
the transmitters and receiver to accurately calculate the time of arrival. Additionally,
the accuracy of ToA and TDoA techniques can still be affected by factors such as
signal reflections, obstacles in the environment and clock drift [93].



42 CHAPTER 2. BACKGROUND AND RELATED WORK

O User

O A x ()
Y m ((R)) Transmitter/Receiver

(((‘ X | :" Angle of reception

Figure 2.15: Radio Frequency Angle of Arrival

In TDoA, ToA and RSS-based techniques, the distance or estimated distance was
used to determine a position. Alternatively, the angle of an incoming signal can
be used to determine from what angle it was transmitted. Figure 2.15 depicts the
concept of radio frequency Angle of Arrival (AoA) , showing how the angle of
arrival of radio frequency signals can be used to determine the position of an object.
This technique is commonly referred to as triangulation where the position of an
object is based on the angle at which the signal arrives at different antennas. Unlike
trilateration or multilateration, which uses the (approximated) distances between
transmitters, triangulation uses the angles in which the signals arrive to determine
the location. By combining data from multiple antennas, a more accurate position
estimate can be obtained. A variant of AoA is Angle of Departure (AoD) where
the transmitter can encode information to determine from which angle it was sent.
While these techniques can obtain an accurate position, it does require multiple
antennas for each transmitter or receiver to determine the angle.

2.3.2 Fingerprinting

Fingerprinting, as the name suggests, is the creation of a unique fingerprint at each
location in the environment. Imagine being blindfolded in a building and hearing
sounds from various machines. You hear the copy machine in the distance, the
humming of an air conditioner overhead and a co-worker chatting. All of these
sounds combined provide a unique fingerprint that can be associated with a location.
In the offline stage of a fingerprinting algorithm, fingerprints are associated with a
location and stored in a database. During the online stage, the database is used to
determine to location based on sounds that are heard or other sensor data.

Machines can create these fingerprints as well. Like in the example above, they can
be based on sounds or even ambient background noise [94], but they can also be cre-
ated from data humans cannot detect, such as RF signals or magnetic interference.
While with multilateration we only need information about the position of the used
RF landmarks, fingerprinting requires a calibration for all possible positions in the
tracking area [95]. A fingerprint of the sensor data at a given provided position is



2.3. POSITIONING TECHNIQUES AND ALGORITHMS 43

created during the offline stage. Later, these stored fingerprints are used during the
online stage to reverse the sensor data into a position.

Fingerprinting can be performed on a variety of sensor data types, including RSS,
ToA, TDoA, and AoA data. Each type of sensor data provides unique information
that can be used to create fingerprints. For example, RSS data can be used to create a
fingerprint map based on signal strength measurements at different locations within
the tracking area while ToA and TDoA data can be used to create fingerprints based
on the time it takes for signals to travel between transmitters and receivers.

) n

AP 1=-30 dB AP 1=-35dB

AP 2=-40 dB AP 2=-45dB

AP 3=-80 dB f:::\\\ AP 3=-75dB f:-‘i&\

i i
W W

AP 1=-41 dB AP 1=-46 dB
AP 2=-38 dB AP 2=-49
AP 3=-79 dB 3 AP 3=-77 dB

) )
AP 1=-39 dB AP 1=-53 dB

AP 2=-37 dB S /P 2=-39 dB
AP 3=-90 dB AP 3=-83 dB

Figure 2.16: Fingerprinting of three access points with an unknown location

During the online stage, the sensor data collected in real time is compared to
the stored fingerprints to determine the most likely position of the object. The
matching process can be based on various algorithms such as nearest neighbour,
k-nearest neighbour [96], machine learning algorithms like support vector ma-
chines or neural networks [97]. Despite the computational complexity involved in
fingerprinting-based positioning, it offers high accuracy and robustness in indoor
environments where traditional positioning techniques may not perform well due
to signal variability.

Figure 2.16 illustrates the fingerprinting of an indoor environment with a limited
amount of features. Features are the most noticeable characteristics of the sensor
data that are used to create the fingerprints. In the example, we have three access
points with an unknown location and multiple fingerprints that recorded the signal
strengths of these three access points. In the online stage of the positioning system,
the signal strengths are compared to the fingerprints. Based on the fingerprinting



44 CHAPTER 2. BACKGROUND AND RELATED WORK

algorithm, a location is chosen from the fingerprint that most closely matches the
signal strengths or multiple fingerprints are combined to interpolate a location in
between the recorded fingerprints.

2.3.3 Magnetic Positioning

Magnetic positioning, also called geomagnetic positioning, is a positioning tech-
nique that uses the disruptions of the magnetic field within a building to fingerprint
locations [75, 76]. The earth has a magnetic field that can be influenced by various
factors such as building materials, electrical equipment, and structural components.
These factors can create unique magnetic signatures at different locations within a
building, which can be captured and used for positioning.

In the offline stage of magnetic positioning, magnetic field measurements are taken
at various locations within a building and stored as fingerprints in a database.
During the online stage, real-time magnetic field measurements are compared to
the stored fingerprints to determine the current location of an object.

60

50

o o F40

r 30

]
Geomagnetic Intensity (uT)

20

10

Figure 2.17: Geomagnetic intensity of our office building with cubic interpolation



2.3. POSITIONING TECHNIQUES AND ALGORITHMS 45

Figure 2.17 shows the geomagnetic fingerprint of our office building with a
dataset we recorded in 2021 [35]. This geomagnetic intensity is visualised as
JmagX? + mag¥? + magZ? where magX, magy, magZ represent the magnetic
intensity measured on three axes in u7". Similar to fingerprinting, a set of features
(i.e, a small trajectory) can be matched against the geomagnetic fingerprint of a
building or floor.

Sensor data from a magnetometer is susceptible to hard iron and soft iron effects.
Hard iron effects interfere with magnetic fields that cause a constant offset in the
readings, such as other metallic objects near the magnetometer. Soft iron effects
distort the magnetic field in a non-uniform manner. These effects need to be
corrected for accurate magnetic positioning through calibration of the sensor [98].
This type of technique demonstrates the need for user actions in positioning systems.
When designing a conceptual framework for processing sensor data, we should
consider the need for calibration and user actions.

2.3.4 Noise Filtering

Positioning techniques often have to process inaccurate sensor data to obtain a
position. Techniques such as RF-based positioning, as shown in Figure 2.18,
use signal strengths that can fluctuate depending on the distance. To solve these
inaccuracies, sensor data should be filtered, which can be done through different
noise filters. Similar to dead reckoning, a noise filter often requires knowledge of
previous sensor readings and positions to predict the next result.

RSSI noise at 1 meter RSSI noise at 8 meters

00|

i

m
® 1 » ® 1 |
\ ! ANl

SRR S el
IV H‘V“‘/ A
V

RSSI
RSSI

T T T T T T T T
0 50 100 150 0 50 100 150

BLE scan readings BLE scan readings

Figure 2.18: RSSI noise (in dBm) at 1 metre and 8 metres [99]

Noise filtering is one of the main requirements of our hybrid positioning system.
The reason why we want to combine multiple technologies or algorithms is to
reduce errors and noise filtering is the key component in realising this error reduc-



46 CHAPTER 2. BACKGROUND AND RELATED WORK

tion of positioning data. Note that individual positioning methods such as object
recognition or dead reckoning may want to perform different types of noise filtering
algorithms tailored to their data.

We also consider noise filtering algorithms that consist of a calibration phase, such
as the calibration of a magnetometer as detailed in Section 2.3.3. These algorithms
require user interaction and the storage of calibration data that must be used at a
later stage.

2.3.5 Machine Learning

This type of algorithm includes several machine learning algorithms that can be
of aid during calibration as well as positioning. These algorithms require training
during the offline stage with the results being deployed during the online stage.

CDAE-decoder

Deconvolution
Deconvolution  _laver

Deconvolution ~_layer
layer
=3 =
R
N N~
BT G Convolution
S lai Convolution RSSI
- layer | -
|:|/ 2% ol cooi ) =
= ayer lay
I~ o = N
§ - \X
| > —
I:l ,4/
\§> .
L . = = | — 1
RSSI,, : =1 — —
s = —
] — T -
O . Output 1
—
—
O] - - T
=
S— — Output 2
= >
Dropout
- D\ e Pooling —
7 Convolution layer
layer : .
CDAE-encoder Convolution Daisc laya Danse layer

—
Flaten:2D—1D Dropout
L laya

layer

ONN

Figure 2.19: CCpos [97] Wi-Fi RSSI fingerprinting neural network model

Figure 2.19 shows the neural network model of CCpos [97]. Other than regular
fingerprinting techniques introduced in Section 2.3.2, the model trains itself to
find patterns and features within the RSSI fingerprints. Training is done using an
autoencoder. Such a model trains the input data of the encoder to be equal to the
decoder output. The dimensions of the middle part of the autoencoder become
smaller to force the encoder part to extract the useful features that can then be
decoded by the decoder. Once the main model is trained, the decoder is removed,
and the model is trained using the encoder to match RSSI readings to a position.



2.3. POSITIONING TECHNIQUES AND ALGORITHMS 47

2.3.6 Computer Vision

Visual positioning techniques use image sensors to determine the position of the
object the sensor is attached to (e.g., Visual SLAM [50]) or the position of objects
in its field of view. Such visual positioning methods have to be able to detect
and track objects between multiple frames, camera angles or positions. The visual
SLAM technique, as shown in Figure 2.20, creates a 3D model of the environment
using images captured by the camera. By analysing the visual data and optional
depth information, the system can determine the spatial relation between visual
features while mapping the complete environment.

Figure 2.20: Visual SLAM 3D model of a part of the hallway in our office

Alternatively, visual positioning techniques can also identify and track the position
of objects. With Multi-Target Multi-Camera Tracking (MTMCT) [49] the tracked
object is moving within the field of view of one or more image sensors.

2.3.7 Dead Reckoning

Dead reckoning calculates the current position based on the previous known po-
sition and the velocity or acceleration that is applied to that position [72, 100].
While the accuracy of dead reckoning is not ideal, it can be used to improve other
positioning techniques such as GPS.

Variations on dead reckoning exist that compute the raw movement information
to a higher level of abstraction, such as Pedestrian Dead Reckoning (PDR) which
specifically focuses on tracking a pedestrian’s movements. PDR uses sensors
like accelerometers and gyroscopes to estimate step counts and direction changes,
providing a more detailed positioning approach compared to regular dead reckon-



48 CHAPTER 2. BACKGROUND AND RELATED WORK

ing. Figure 2.21 illustrates a basic example of dead reckoning starting from an
initial point at timestamp 0. Based on the speed and orientation, the next data
points can be calculated.

Dead reckoning is not limited to accelerometer data. Variations exist such as visual-
or geomagnetic dead reckoning. Visual dead reckoning detects movement from
one video frame to the other [101] while geomagnetic dead reckoning uses changes
in the magnetic field to determine movement.

2.3.8 Sensor Fusion

Positioning algorithms can range from simple multilateration to fingerprinting or
even artificial intelligence. In hybrid positioning systems, sensor fusion combines
data from multiple data streams to improve the accuracy and latency of a positioning
system. By integrating data from different data streams such as GPS, IMU, LiDAR,
and cameras, the system can compensate for the limitations and errors of individual
Sensors.

Sensor fusion can occur at a low or high level [102]. Raw sensor data, such as
IMU sensors or the relative signal strength from a transmitter, can be fused in noise
filtering algorithms. On a high level, calculated or provided positions (i.e., by third-
party positioning systems) with a certain predicted accuracy can be combined using
linear regression, heuristic weighted averages or any decision fusion algorithm.

Figure 2.22 illustrates the use of a weighted sensor fusion algorithm to combine
Wi-Fi fingerprinting, RSSI multilateration and cell identification using Bluetooth
Low Energy signals and finally also dead reckoning. Dead reckoning on itself is
an imprecise technique but offers a continuous estimation of a moving object’s
position. By combining this dead reckoning with other sensors, we can create a
more accurate and reliable trajectory.

Low-level Sensor Fusion

Low-level sensor fusion involves the integration of raw sensor data to filter out noise
and improve the quality of the measurements. This type of fusion is commonly used

Figure 2.21: Dead reckoning demonstration



2.3. POSITIONING TECHNIQUES AND ALGORITHMS 49

(\\ ‘y’/-‘

‘” W | =e- Sensor fusion

\ l‘:. —eo- WLAN & BLE Cell-ID
- Expected trajectory
A Trajectory start

.LI

Figure 2.22: Sensor fusion of a trajectory (blue) based on WLAN, BLE and
IMU data

in inertial measurement units (IMUs) where data from accelerometers, gyroscopes,
and magnetometers are combined to accurately track the position and orientation
of an object in real-time.

Noise filtering algorithms such as Kalman filters or complementary filters [103]
are often used to fuse data from multiple sensors and compensate for any drift or
errors that may arise during measurement.

High-level Sensor Fusion

Unlike low-level sensor fusion, high-level sensor fusion involves the fusion of two
or more computed results from individual algorithms or sensors. Decision fusion
algorithms are a type of high-level sensor fusion, where the goal is to combine
multiple sources of information by deciding or weighing the importance of each
information source.

Recent research on indoor and outdoor positioning systems makes use of artificial
intelligence to process sensor data [97, 104, 105]. These types of systems often
implement a complex neural network that uses training data to learn how to process
data in the online phase of a positioning system. While deep Kalman filters [106]
can be used to perform sensor fusion, it is often difficult to perform sensor fusion of
unknown data that is already processed by Al-based data processors. One solution
for this issue is to treat these processors as processors that provide a high-level
output with a certain precision and accuracy.



50 CHAPTER 2. BACKGROUND AND RELATED WORK

2.4 Interoperability of Data and Services

In this dissertation, we aim to design interoperable positioning systems. Interop-
erability is defined as the ability to access, read and understand data from multiple
data sources [107, 17, 18]. When software developers create applications that
should be interoperable, the data that is processed by these applications must be
made available to other third-party services (i.e., accessibility). Next, third-party
applications should be able to read this data in a common file format or standardisa-
tion. Finally, after being able to access and read the data, third-party applications
should be able to understand the meaning of the data in a way that is indifferent
to what the producer of this data intended. Accessibility and readability are often
referred to as syntactic interoperability while the understanding of the data is often
explained as semantic interoperability [30].

In addition to syntactic and semantic interoperability, processing interoperabil-
ity [108] describes how semantic data is processed in a system. It is also referred
to as pragmatic [109] or behavioural interoperability [110] and provides a system
with more context on how data was, or will be processed. With our aim to design
interoperable positioning systems, we will focus on achieving all three aspects of
interoperability: syntactic, semantic, and processing.

Interoperability of positioning systems is not a new concept. Global Navigation
Satellite Systems (GNSS) such as Galileo are designed to be interoperable with the
widely used GPS standard via RF signals. Likewise, interoperability of location-
based services (LBSs) has been considered since the early days of ubiquitous
LBSs [111]. Specifications and standards included in OpenLS by the Open Geo-
spatial Consortium (OGC) have contributed to the development of LBSs. OpenLS
is an open location service architecture that defines how OpenLS-compatible ap-
plications should interface with a server to retrieve information [112]. Despite the
standards using common data structures, there is still a lot of freedom that breaks
interoperability between systems. In addition, an LBS only aims to retrieve basic
location data; a positioning system can contain much more information that is not
included within the OpenLS standards.

Figure 2.23 illustrates the architecture of an OpenLS implementation. The Geo-
Mobility Server (GMS) illustrated in blue at the bottom implements the OpenL.S
core services, which include but are not limited to geocoding services and rout-
ing. The GMS can communicate with Gateway Mobile Location Centre (GMLC)
and Mobile Positioning Center (MPC) services through a Location Interoperability
Forum (LIF) API. This API is built on top of the Mobile Location Protocol (MLP)
and provides a common protocol for positioning and location retrieval. The ser-
vice platform depicted in the centre handles the authentication, provisioning and
context management when communicating with the GMS. The architecture does
not require OpenL.S and GMS servers to be decentralised. In addition, requests



2.4. INTEROPERABILITY OF DATA AND SERVICES 51

still rely on interfaces that are not fully defined in the standard. Efforts have been
made to design a GMS server using the Semantic Web [113]. However, in these
scenarios, one often has multiple of these services for tracking only one particular
entity.

Portal

Rasponse]| Front-end Functions _ .
-session -Load i Requests passing to 3rd parties
icati routing
Request .

LBS Support Functions Location-Based
- Billing, roaming, privacy Services
Realm

Parlay / OSA ™
Parliy 1/ OSA

Service Platform

Service suites

>

Service mgmnt functions
- Provisioning - Personalization
- Authentication - Context mgmnt

3rd-Party
LIF API OpenLS Interfaces (w/ Clients on M Content &

I
- GMSs
GeoMobility Server (GMS)

<Position Request| [l '| ocation OpenLS Apicéirs Requests for 3r-party content
content i =
OpenLS Interfaces OpenLS =
x__ o :

OpenLsS Core Services

OGC Interfaces

0OvT=ToOr=2e

Figure 2.23: OpenLS architecture [112]

The work of Furfari et al. [26] proposes a design architecture for enabling the
discovery and interoperability of Location-based Services (LBSs). In this design,
they propose a standardised agreement of the discovery of such systems and their
capabilities, the workflow description and agreement on the user interface. Their
design goal closely relates to our aim towards interoperable and discoverable in-
door positioning systems. In earlier work, Furfari et al. [25] provide a taxonomy
for standardising indoor positioning systems. In this taxonomy, they define how
interoperability of location-based services should be defined in order to promote
the integration and collaboration of indoor location-based services. However, they
provide no implementation or solution to this interoperability. In their prototype
that provides discovery and interoperability [26], they provide a protocol that uses
Open Database Connectivity (ODBC) drivers to interface with different systems.

While the solution does not solve the fragmentation of user data across different
services, it does solve the interfacing problem of accessing data from these systems.
However, interfacing with the positioning service relies on standardised functions
that map these functions to ODBC drivers. These functions are never defined



52 CHAPTER 2. BACKGROUND AND RELATED WORK

and are based on common use cases and ISO 18305:2016 [22], which does not
standardise the data exchange.

Creating interoperable applications requires the definition of context and standards
for data exchange, such as using common data formats like JSON or XML. Addi-
tionally, implementing standardised interfaces and APIs can facilitate the seamless
integration of different services and data sources. By promoting interoperability,
developers can ensure that their applications can easily communicate and share
information with other systems, enhancing the overall functionality and efficiency
of services such as location-based services. Furthermore, interoperability can lead
to the development of more robust and modular applications that can adapt to a
wide range of scenarios and user requirements.

2.4.1 Location Data

The interoperability of location data is critical for the seamless functioning of
independently running hybrid positioning systems. Different positioning technolo-
gies often use different formats and protocols to represent data, including location
information. In order to effectively combine these technologies into a single posi-
tioning solution, it is important to have a standardised format for representing and
exchanging this data.

Efforts to ensure interoperability of location data are not new. Standardisations
such as the World Geodetic System (WGS) began to be used in the late 1950s to
ensure a common reference system for location data across different applications
and services using the WGS-84 standard [65]. Other standardisations such as
Earth-centered Earth-fixed (ECEF) [114] or the North American Datum (NAD)
also offer a fixed frame of reference that can be used to express the location data.
On a low level, this generally means that location data can simply be expressed
as two-dimensional or three-dimensional coordinates in a well-described frame of
reference. Without a frame of reference, the coordinates are simply meaningless
numbers.

Standardisation and reference frames ensure semantic interoperability, but they
do not solve syntactic interoperability, since coordinates and the used reference
frames can be expressed in different ways. One approach to achieve syntactic
interoperability in location data is through the use of standardised data formats
such as GeoJSON [115]. This format provides a common structure for representing
geographical data in JSON format, allowing different positioning technologies to
easily exchange and interpret location information. Figure 2.24 shows several
different geometries that can be expressed in GeoJSON, such as points, lines, and
polygons.

Well-known Text Representation (WKT) is a markup language to write a vector
geometry such as a point, line or polygon [116]. The format was defined by the



2.4. INTEROPERABILITY OF DATA AND SERVICES 53

Point LineString Polygon
MultiPoint MultilineString MultiPolygon

o)

o\ e

Figure 2.24: Different vector geometries available in GeoJSON

Open Geospatial Consortium (OGC) and has since become a widely used standard
for representing geometries in a human-readable way. WKT only provides a
markup language for geometries but does not allow specifying the reference system
that is used. The format is extended with variations such as the Extended Well-
known Text Representation (EWKT) which adds a textual Spatial Reference System
Identifier (SRSI) before the existing WKT format [70].

Similar to WKT is the Geography Markup Language (GML) format which is also
created by the OGC. GML is a richer format that allows for the representation of
complex geographical features and their relationships using the XML syntax. By
default, it offers XML attributes to specify the spatial reference system [117].

2.4.2 Indoor Environments

Indoor positioning systems often require knowledge of the environments in which
they are deployed. In the case of positioning techniques such as trilateration,
triangulation or cell identification this information is the location of access points
and beacons. However, with more complex positioning techniques or navigation
systems, a more detailed description of the indoor layout is required.

The environment data that needs to be discovered for a positioning system can be
referred to as a digital twin [118]. A digital twin can provide additional context
about its physical counterpart, enabling systems to reason more about the available
data and interactions possible with a physical object. The World Wide Web Consor-
tium (W3C) describes the concept of the Web of Things (WoT') , combining virtual



54 CHAPTER 2. BACKGROUND AND RELATED WORK

and physical Things connected through the Web. A digital twin of an environment
can be modelled as a virtual 3D environment as shown in Figure 2.25 or a semantic
description of the geometry of the environment [119]. In the context of designing
interoperable positioning systems, a digital twin of the environment can be used
to more accurately interpret sensor values (e.g., by analysing obstructions) or to
provide more context to the user on their position in navigation applications.

avi

Figure 2.25: Example of the digital twin of an environment

Many indoor map formats and specifications exist that each tailor to a specific use
case. Indoor Mapping Data Format (IMDF) [120] is a mapping format developed
by Apple Inc. based on GeoJSON. It adds additional data to the GeoJSON features
to specify the type of feature and associated data. IMDF is supported by Apple
Maps and Google Maps. The format offers a basic representation of indoor spaces
that can be expanded with additional details such as doors or relationships between
features. In addition to IMDF, there are other open data specifications such as
OGC’s IndoorGML [121], which specifically focus on the layered representation of
indoor environments, including the topological layer as well as the Wi-Fi coverage
in an indoor environment.

OpenStreetMap uses its own tagging schemes called the Simple Indoor Tag-
ging (SIT) scheme and Simple 3D Buildings (S3DB). These tagging schemes
offer a simplistic representation of an indoor environment, and are, as the name
suggests, meant to simply define an indoor environment rather than provide detailed
information about it. The Simple Indoor Tagging (SIT) scheme focuses on basic
indoor features such as rooms, corridors, entrances, and exits, while the Simple
3D Buildings (S3DB) scheme provides information about the outside 3D layout.
While the schemes are open, they are not extensible, making it impossible to
provide more context beyond the simple tags.

While these standardisations offer a data format for representing indoor environ-
ments, the data of these environments is often service-centric, making it difficult to
integrate with other systems or applications. In this dissertation, we primarily focus
on the essential indoor geospatial data necessary to facilitate the interoperability of



2.4. INTEROPERABILITY OF DATA AND SERVICES 55

indoor positioning systems. However, future work can also benefit from enhancing
the interoperability of indoor environments to facilitate indoor navigation, which
also requires output to users.

2.4.3 Semantic Web

One of the common solutions to enable the accessibility and readability of data
in interoperable applications is to make this information available on the Web.
Information can be published using various interfaces such as RESTful APIs [122],
SOAP [123] or linked data [124]. While RESTful APIs and SOAP typically expose
data through predefined endpoints and formats tailored to specific applications,
Linked Data follows Semantic Web principles, using standardised Web technologies
(e.g., URIs, RDF, and HTTP) to interlink and describe data in a machine-readable
way, thereby enabling automatic data integration and discovery across diverse
sources.

Linked data creates a web of information over the World Wide Web (WWW) that
allows everyone to define new concepts by referencing other concepts found on the
Web. A machine that understands linked data can traverse and make connections
between different sources of information, leading to a more interconnected and
comprehensive understanding of the data.

One of the key strengths of linked data is its ability to link multiple standardisations
and data formats together. With positioning systems containing various types of
data, ranging from environments, location data, and the algorithms surrounding
it— interoperable positioning systems benefit from using linked data to describe
this knowledge. Standardisations such as WKT, GML, and GeoJSON have found
their way to linked data representations and are commonly used when expressing
location data. While many efforts have been made to enable the interoperability of
geographical location data, a framework for ensuring both syntactic and semantic
interoperability across different positioning systems still needs to be developed.

The Semantic Web and linked data are concepts that are formally introduced by the
founder of the web, Tim Berners-Lee [124] in the late 1990s. Linked data is the
collection of data and vocabularies connected over the World Wide Web (WWW),
where new concepts are described by utilising existing vocabularies located on
the Web. This creates an interconnected web of linked data that can be accessed,
queried and expanded.

Information on the Semantic Web can be expanded by adding new vocabularies
or knowledge graphs to the Web. This interconnected network of data allows for
more comprehensive and meaningful information retrieval, enabling computers to
not only access data but also understand its meaning, relationships and additional
context.



56 CHAPTER 2. BACKGROUND AND RELATED WORK

In our goal to design interoperable positioning systems, linked data is used for
its ability to generalise concepts while making these concepts and data publicly
available via the Web. This provides both semantic interoperability by leveraging
the use of vocabularies, and syntactic interoperability by enabling the exchange of
data through the HTTP protocol.

One of the potential drawbacks of semantic data is the overhead involved in de-
scribing information. When a system has a prior understanding of the expected
data, it can leverage this knowledge to compress the information into the bare es-
sentials — this is essentially how compression algorithms work. However, when a
system does not know the data, the data itself should contain information about its
purpose. In our OpenHPS framework, introduced later in Chapter 3, we developed
a communication layer that uses protocol buffers to convert data to binary informa-
tion. Without knowledge about the format of this data, it is not useful for any other
system. With semantic data, we want to prevent the need for prior knowledge by
handling self-describing data. While this ensures that each system understands the
information, it does create additional overhead of information that has to be stored.

Linked data is structured interlinked data. It is often represented as Resource
Description Framework (RDF) graph data, which is comprised of triples consisting
of a subject, predicate and object. A predicate creates a directional relationship
between a subject and an object. The object can be a subject itself when it has
predicates linking to other objects.

example:thesis dcterms:creator—— | example:maximvdw

Figure 2.26: Subject and object connected via a predicate

Figure 2.26 illustrates an example that shows a subject (indicated in red) for repres-
enting this thesis document. The object (indicated in green) describes the author of
the thesis. Both the subject and object are connected using the directional predicate
dcterms:creator which describes the object as the creator of the subject using
the public Dublin Core vocabulary [125].

Named concepts or terminologies such as the subject, object and predicate in
the example of Figure 2.26 are named (i.e., identified) using a uniform resource
identifier (URI). When this named concept is accessible via the Web using its URI,
we can follow this URI to obtain more information. In our example, these URIs
are denoted using a prefix (i.e., example: and dcterms:).

Objects can also consist of literals, in which case they cannot be used as a subject
in another triple. In Figure 2.27, we expanded on our previous example with an
atomic value indicating the title of the thesis and the name of example :maximvdw.



2.4. INTEROPERABILITY OF DATA AND SERVICES 57

example:thesis dcterms:creatol

example:maximvdw

dcterms:title foaf:name

{ "My Thesis"@en } ['Maxim Van de Wynckel"}

Figure 2.27: Subject and object connected via a predicate

Together, sets of triples create a graph of linked data consisting of nodes and
directional relations between these nodes. Atomic values are either strings with a
language tag (i.e., a tag that indicates in what language the value is) or strings with
a data type that indicates the type of literal.

Linked data documents on the Web contain a collection of triples within the same
base URI. A base URI directs to the document, while a resource URI directs to a
specific subject within a document. Preferably, these documents and resources can
be fetched over the Web by accessing their URL.

example: <https://phd.maximvdw.be/mythesis.ttl#>

1 example:terms dcterms:creator
— example:maximvdw .

1 example:maximvdw foaf:name "Maxim Van de
— Wynckel"@en .

mythesis.ttl e

Figure 2.28: Linked data document containing triples

Figure 2.28 illustrates a linked data document with multiple triples. This linked data
document contains triples representing different subjects, predicates, and objects
within the same base URI. Each triple forms a relationship between the subject and
object, creating a network of interconnected information. By following the URIs of
these resources, additional data can be retrieved and further expand the knowledge
graph.



N S

[ N T

58 CHAPTER 2. BACKGROUND AND RELATED WORK

Querying of Linked Data

Similar to relational databases, linked data can also be queried to retrieve informa-
tion [126]. The difference between querying a single relational database compared
to querying a graph database is the ability to query other data sources the graph
connects to. When querying linked data, each semantic concept can have its own
URI that optionally can be accessed via the Web. When this is the case, querying
can use link traversal [127] that queries over multiple resources spread over the
Web, allowing systems to theoretically query the entire semantic part of the World
Wide Web.

SELECT ?subject WHERE {
?subject dcterms:creator ?person .
?person foaf:name "Maxim Van de Wynckel" .

Listing 2.1: Example SPARQL query that returns the URIs of all subjects created
by the person named “Maxim Van de Wynckel”.

Listing 2.1 demonstrates an example of a query executed over linked data that will
return all the resource URIs of documents created by a person named “Maxim
Van de Wynckel” using the dcterms: creator predicate. Such a query is called
a SPARQL Protocol and Query Language (SPARQL) query and is executed on a
graph of triples. While link traversal allows for querying over distributed semantic
data, it also introduces challenges related to data consistency, availability and
scalability. As the size and complexity of linked data graphs increase, the efficiency
and effectiveness of query processing become more crucial [127].

SPARQL queries can include functions that are executed over the atomic val-
ues in the graph. These functions can be used to perform operations such as
string manipulation or mathematical calculations. By leveraging these functions,
SPARQL queries can be customised to retrieve specific information and perform
advanced data analytics on linked data graphs.

SELECT ?feature ?7geom ?dist WHERE {

7?feature ex:hasGeometry ?geometry .
BIND(geof:distance(?geom, ex:Maxim, uom:metre) AS ?dist) .
FILTER(?dist < 500)

}

Listing 2.2: Example SPARQL query that finds all geometry features within
500 metres of Maxim.



2.4. INTEROPERABILITY OF DATA AND SERVICES 59

The query engine that processes SPARQL queries can be extended to support
additional functions. In the case of positioning systems, GeoSPARQL [128] might,
for instance, extend the SPARQL engine with additional functions that perform
spatial operations.

Listing 2.2 showcases a GeoSPARQL extension for calculating the distance between
two geometries and filters the result to only list all geometries within 500 metres.
The function geof:distance is a custom function added by the GeoSPARQL
extension that calculates the distance within the SPARQL engine and is not present
in SPARQL by default. By executing this query on a collection of geometric
features spread over various knowledge bases, the SPARQL engine can retrieve all
appropriate features.

Data Shapes

Having a vocabulary to describe data is one of the requirements to ensure data
interoperability between systems. However, another important requirement is
that the data is structured in a way that makes sense for the used vocabularies
and applications. The Shapes Constraint Language (SHACL) and Shape Expres-
sions (ShEx) [129] are two specification languages that represent data shapes. A
data shape expresses the constraints that data graphs must conform to. These
constraints define the structure, type, and cardinality of the information so data
represented with vocabularies follows certain conventions. For example, when
working with geographical coordinates, the latitude and longitude can be expressed
as numbers. However, this number can only range between -90 and 90 for latitude
and -180 to 180 for longitude. By defining a data shape using SHACL or ShEx,
data can be validated to ensure it complies with these constraints before being used
in applications or shared with other systems. These data shapes can aid developers
in following certain conventions when representing their data, as well as providing
other applications with a blueprint of how a certain application stores the data it
produces. Similar to the data itself, these data shapes are described with RDF as
well.

Vocabularies

An interoperable positioning system needs to offer interoperability for the input
and output data, as well as a description of how this data is processed. In Chapter 2
we detailed how a hybrid positioning system uses high- and low-level sensor fusion
to combine information data from multiple technologies and sources. To enable
process interoperability on the data of a positioning system, these interoperable
applications need to reason on the quality and origin of the data. Process interop-
erability entails that the processes used to manipulate data are interoperable in a
way that describes them in detail, so another system could take over the process.



[ I R . I N VO SR

60 CHAPTER 2. BACKGROUND AND RELATED WORK

The Semantic Sensor Network (SSN) ontology, together with the Sensor, Obser-
vation, Sample and Actuator (SOSA) ontology [130, 131], are two ontologies that
allow us to describe individual observations and the systems and procedures that
were involved in obtaining these observations. Both ontologies and the various
available extensions allow us to describe complex sensor networks.

:temp a sosa:ObservableProperty ;
sosa:isObservedBy :temp-sensor .

:temp-1 a sosa:Obseration ;
sosa:hasResult [ a qudt:QuantityValue ;
qudt:numericValue 30 ; qudt:unit qudt-unit:DegC ];
sosa:observedProperty :temp ;
sosa:resultTime "2025-03-10T06:45:00.000Z"" "xsd:dateTime .

Listing 2.3: Observations of the SOSA ontology

Listing 2.3 demonstrates an example observable property of a temperature sensor
with observation(s) for this property with a result. Each observation can have
contextual information, such as the time it was observed and other information.

Al-based positioning systems such as CCpos [97] or CNNLoc [104] are often
considered black-box implementations due to the sometimes unpredictable and un-
explainable way in which output data is computed through deep neural networks.
However, the mere fact that these can be explained also entails that they can be
semantically described as individual data processors in an interoperable system.
Semantic ontologies such as the Neural Network Ontology [132] can help to de-
scribe the models that a positioning system uses to compute the information, while
ontologies such as our positioning system ontology [40] can describe common
artificial intelligence models used for positioning systems.

2.5 Privacy and Transparency of
Positioning Systems

When working with location data, the privacy of user data is one of the most
important aspects to consider. Smartphone operating systems such as iOS and
Android already offer a lot of transparency when applications request a location
or sensor data that can be used to infer a location [133]. However, when working
with proprietary positioning systems that either perform inside-out or outside-in
tracking, users are often not aware of which data is retrieved and how this is
processed.



2.5. PRIVACY AND TRANSPARENCY OF POSITIONING SYSTEMS 61

Privacy covers various privacy concerns. Furfari et al. [26] discuss five main
categories of privacy concerns related to location-based services. These include the
notice and consent of users. Before a system commences the tracking, collection or
sharing of location data, the user should be made aware and agree to this collection
or sharing of information. The purpose of the data collection should be made clear
to the user, ensuring transparency and trust in the system that is accountable for the
data. Finally, users should have the ability to access and control their own location
data, including the possibility of preventing a positioning system from accessing
this data in the future.

Ensuring the privacy of location data when provided to third-party applications or
services has multiple variations, each with its advantages and disadvantages. In
most cases, the privacy of the location data is provided for location-based services
that provide a high-level computed version of the location.

Location Privacy Protection Mechanisms (LPPMs) are a set of algorithms or mech-
anisms that attempt to protect the privacy of location data. They offer a set of
lossless and lossy techniques to manipulate the data. Jiang et al. [134] identify
three main categories of LPPMs that can be found in most public location-based
services:

* Obfuscation-based: These types of mechanisms ensure privacy by ma-
nipulating the accuracy, precision and correctness of data outputted by a
positioning system or a location-based service. This type of mechanism
alters the raw location data in such a way that the actual location of the user
is still preserved, but with added noise or distortion to protect the user’s pri-
vacy. A simple example of an obfuscation-based LPPM in indoor positioning
systems is the edge processing of a position to determine the general area
(e.g., room) within an indoor environment, without exposing the accurate
position within this area. This allows an application to determine that a user
was in a certain office for a certain time, but not the movement of the user
within this office.

* Cryptography-based: While obfuscation manipulates the data to ensure
privacy, this is often not feasible depending on the use case and almost
always causes a loss of information. Cryptography algorithms ensure that
no data is lost but can only be accessed by authorised parties. This can be
done by completely encrypting the data so that only trusted and authorised
parties can access it, or by manipulating the location data in a way that it can
still be processed without revealing the exact location.

* Transparency-based: Unlike obfuscation or cryptography, this type of
mechanism does not rely on algorithms but instead relies on establishing
a clear privacy policy and consent with the user who is being tracked. It can
also include the possibility for users to see the data that is being collected.



62 CHAPTER 2. BACKGROUND AND RELATED WORK

Jiang et al. [134] also consider a fourth category, which they call Cooperation
and Caching-based mechanism, where the communication of location-based data
is reduced. Similar to obfuscation-based mechanisms, this also includes a loss of
information.

While obfuscation, cryptography and transparency are considered feasible tech-
niques to ensure privacy, they often come at the cost of the usefulness of the data.
In the scope of our solution towards interoperable positioning systems, we did
not implement any specific LPPMs in our positioning systems. However, we did
consider the possibility for data to be manipulated by other services to comply with
these LPPMs.

In 2025, we surveyed how users perceive the privacy and transparency of location
data. Our aim with this survey was to determine the importance of location data
amid various recent cases where location data was found to be sold or leaked.
Based on the results, available in Appendix E, we discovered that users prefer not
to share location data unless required. However, the majority of users do not read
the privacy policies, which are in place to provide transparency on the type of
tracking.

2.5.1 User Transparency

Privacy and security are important to consider when working with sensitive data,
as is the case with location data. Current positioning systems often have a black
box implementation of the processing and storage of this data, which makes those
systems responsible for the security and privacy of the user data.

In the interest of providing transparency to the owner of the data, the user whose
location data is being stored should have access to this data and have full control
over who can access it. One possible solution to enable transparency is the use of
personal data vaults that provide control and transparency to the user.

2.5.2 Personal Data Vaults

Personal data vaults are secure storage spaces that are maintained by the person
to whom the data belongs [135]. Third-party users, services or applications that
want to store information about a person can request access to read or write to the
personal data vault [43]. With many businesses such as Google relying on location
data for data sourcing information about a user, personal data vaults ideally would
force companies to switch to different business models [136]. Users using personal
data vaults can still decide to share information with these companies in exchange
for money or incentive features such as disk space.

In Figure 2.29, we can see the comparison between the current business scenario,
where user data is stored and managed by each connected service individually, and



2.5. PRIVACY AND TRANSPARENCY OF POSITIONING SYSTEMS 63

. Service C ./ \. Service D .’

(a) Current business scenario where user (b) Personal data vault scenario where data
data is stored and managed by each connec- is managed by the user and access is
ted service individually. provided to the services.

Figure 2.29: Current business scenario and personal data vault scenario of user
data (adapted from [136])

the personal data vault scenario, where data is managed by the user and access
is provided to the services. This shift towards personal data vaults can lead to a
more user-centric approach to data management, giving individuals more control
over their data and potentially disrupting the existing data sourcing practices of
companies relying on this data.

Personal data vaults require users to grant access to allow third-party services to
access data within the personal data vault. User Access Control (UAC) is a method
for users to manage access to their data and resources within a system [137]. In
the context of location data privacy and security, User Access Control plays a
crucial role in giving users the ability to control who can access their location
data and for what purposes. By implementing User Access Control mechanisms,
users can determine which applications or services have permission to access their
location as well as the precision of the location, thereby enhancing their privacy and
security. This control empowers users to make informed decisions about sharing
their location data and ensures that their sensitive information is not misused.

One of the main benefits of personal data vaults is their ability to offer transparency
on the data that is available within the data vault [138]. Users can access all their
data and even review or revoke access rights to data that was previously granted to
third-party services.

The Solid Project

In 2016, the W3C Solid Community Group led by Tim Berners-Lee introduced
the Social Linked Data (Solid) [139] project, a platform for decentralised social



64 CHAPTER 2. BACKGROUND AND RELATED WORK

applications based on linked data (see Section 2.4.3). Solid stores a user’s data and
information in a secure data vault storage formerly called a Pod that is independent
of the applications that create, edit or process the data. Users can choose the
Pod provider and control the access rights of applications for certain subsets of
their data vault. Stored data can range from binary media files, such as photos or
documents, to structured linked data that is described by documented vocabularies
and specifications.

Solid Pod Resource
o o
r 1 r B
http://mypod.solidweb.org/ position.ttl
. profile/
L B card L
Container { q properties/

onsition.ttl .
Q orientation.ttl
Q velocity.ttl

Figure 2.30: Basic Solid Pod structure

The Solid specification covers various aspects such as user authentication, vocab-
ularies, and the protocol. Figure 2.30 illustrates the basic structure of data in-
side a Solid Pod. A user creates a Solid Pod at a specific URI (in the example
http://mypod.solidweb.org). Inside a Solid Pod there are multiple resources
that can contain linked data. To hierarchically structure resources, containers can
be used, which can contain multiple individual resources. Each container and
resource can have its own access control rights that define who can read or modify
the data contained within those containers or resources.

The owner(s) of a Solid Pod are identified using a web identifier that uniquely defines
the user or organisation who owns the data within the pod. These identifiers and
their use cases for access control are detailed in this section.

A Web Identifier (WebID) is a URI that uniquely identifies an agent such as a
person, organisation, project or application [140]. Solid Pods are identified by
unique web identifiers that follow the conventions of the HTTP/HTTPS protocol.
These identifiers serve as the location where the user’s data is stored and managed
within the Solid ecosystem. For example, the web identifier of the person “Maxim
Van de Wynckel” (i.e., https://maximvdw.be/profile/card#me) points to the
profile location of his Solid Pod.



2.5. PRIVACY AND TRANSPARENCY OF POSITIONING SYSTEMS 65

One of the main features of Solid is its ability to provide access control to users
or agents. Access rights can be configured per container or resource and can
provide read, write, append and control rights for other users and groups. Users are
identified by their WebID, while groups are a collection of users with their WebID.

* Read: Users or groups with read access can read all triples within a re-
source or container. In its current form, access rights cannot be specified for
individual triples within a resource.

* Write: Having write access to a resource or container enables the user or
group to edit and delete triples.

* Append: If we want a user to only be able to append or add new information,
the append permission can be granted that allows the addition of triples but
not the deletion.

* Control: Finally, control rights enable users to modify the access control
rights for resources or containers.

In Solid, these access control rights are often grouped in roles such as poster,
editor, visitor, owner and submitter. To authenticate applications to access a Solid
storage, Solid uses open authentication [141], which is an authentication technique
that sends an HTTP request to the Solid provider. After this request, the user is
prompted to sign in, after which the Solid provider will send a request to the system
that requested authentication. This final request contains an access token and an
optional refresh token that is valid for a certain amount of time. These tokens can
be used to perform actions on the Solid personal data vault.

Solid applications are web or mobile applications that are developed to interact
with a user’s Solid Pod. These applications can request permission from the user
to access specific data or perform actions on their behalf within the Pod. Solid
applications use the data stored in the Pod to provide personalised services to the
user. For example, a Solid calendar application might access the user’s calendar
data stored in the Pod to display upcoming events and reminders. In our use case,
a Solid application could be a positioning system or application that uses stored
location data to visualise this to the user.

Blockchain-based Data Vaults

Blockchain is a digital ledger that is distributed among multiple smaller nodes in
a network. Blockchain technology ensures the immutability and transparency of
transactions by storing data in a decentralised and secure manner [142]. Unlike
the Solid project, blockchain enables users and third-party services to verify the
integrity of information. While Solid provides full control to users over the data
that is stored within their Pod, a blockchain-based personal data vault keeps a
record of changes and may optionally require that each change must be approved



66 CHAPTER 2. BACKGROUND AND RELATED WORK

by a majority of nodes [143] to be valid. This makes blockchain more reliable for
storing personal information that requires trust, such as certifications, contracts or
other personal data that may need to be shared with third-party services.

In Solid, this level of trust currently does not exist. However, when needed, a
blockchain layer can be added on top of Solid or any other personal data vault to
enhance security and trust in the data stored within the vault. By incorporating
blockchain technology into personal data vaults, users and third-party applications
can have a higher level of assurance that their data is immutable and verifiable.

2.5.3 Regulations

Regulations such as the General Data Protection Regulation (GDPR) [9] exist to
protect the privacy and personal data of individuals within the European Union. The
GDPR imposes strict regulations on collecting, storing, processing, and sharing
personal data. Any application that deals with interoperable data, or location data
in general, must adhere to the guidelines set by the GDPR to ensure the privacy
and security of users’ information. Another part of the GDPR is the right to data
portability, which grants users the right to move their data to another provider or
at least retrieve all the data that is kept. When answering our research questions,
we will take this into account to design an interoperable positioning system that
enables this data portability.

The Data Governance Act (DGA) [10] provides a regulation framework for enabling
data sharing between different public sectors. Despite having a focus on the public
sector, it also has an impact on the private sector, such as companies generating
location data of users. Part of the DGA is to enable interaction and data sharing
between the public and private sectors. With the increasing development of smart
cities, it is not unthinkable that these smart cities may deploy indoor positioning
systems for various use cases [144].

Nowadays, we rely on big players to keep track of our current location. These
companies have access to a vast amount of personal location data, which raises
concerns about privacy and data security. Companies such as Google used to track
the locations of users in their Timeline product. However, to adhere to regulations,
Google started to move the data from their cloud storage to local devices the user
owns starting from 20244-5. While this ensures they are not liable for this data, it
also limits the availability and accessibility of the data by other services or even
other devices. Furthermore, the processed information is still collected by Google
according to their privacy policy [7].

4https://support.google.com/maps/answer/141698187hl=en
Shttps://www.nytimes.com/interactive/2019/04/13/us/
google-location-tracking-police.html


https://support.google.com/maps/answer/14169818?hl=en
https://www.nytimes.com/interactive/2019/04/13/us/google-location-tracking-police.html
https://www.nytimes.com/interactive/2019/04/13/us/google-location-tracking-police.html

2.6. DISCOVERING POSITIONING SYSTEMS AND SERVICES 67

While we understand accessibility of interoperable applications to be the ability to
access data from other services, this accessibility does not have to be public. This
data can be encrypted or anonymised before being shared between applications
to ensure the privacy of users and their data. If data sharing is required for the
functionality of the application, access rights can be configured between applica-
tions. However, interoperability dictates that applications should be aware of the
existence of the data— or the possibility of its existence and the steps that should
be taken to access this data when available.

2.6 Discovering Positioning Systems
and Services

Having a positioning system or location-based service (LBS) that can provide
application interfaces and web services that provide location data is a useful first
step towards interoperability. However, if users or applications are not aware of
their existence, these services will remain unused and undiscovered. Discovering
services and sensors is the act of finding and retrieving knowledge without prior
knowledge of their availability. Itis a well-known problem in the domain of internet
of things (IoT) where applications and home automation services discover devices.

On the Web, in database systems and even in physical data stores, the discovery
of data is often achieved by querying and indexing data. In the early days of
the World Wide Web, the limited number of available websites was indexed by
hand on centralised websites®. This created a web of information that could be
traversed to find what you were looking for. As the number of websites increased,
search engines that indexed all the available websites became essential for users
to navigate the vast amount of data available online. Nowadays, when you want
to visit a website to find information, you either know of its existence (i.e., its
URL), you use a search engine that indexed the website beforehand or you happen
to stumble upon a page of the website because it was referenced by another website
(i.e., following links).

In the early 2000s, Hewlett Packard’s CoolTown™ project [145] introduced the
semantic description of people, places and objects. The semantic locations in-
troduced as part of HP CoolTown were represented as URIs that were encoded
within barcodes, physical locations using a trusted service or CoolTown beacons
as shown in Figure 2.31. These CoolTown beacons were battery-powered infrared
transmitters that could broadcast a uniform resource identifier (URI) pointing to an
XML resource with semantic data every three seconds [146].

Shttps://www.w3.org/History/19921103-hypertext/hypertext/DataSources/WWW/
Servers.html


https://www.w3.org/History/19921103-hypertext/hypertext/DataSources/WWW/Servers.html
https://www.w3.org/History/19921103-hypertext/hypertext/DataSources/WWW/Servers.html

68 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.31: Hewlett Packard CoolTown project beacon [145]

Various related works focused on semantic location-based services [147, 148,
149] with a primary focus on navigation and environment description. However,
they do not offer a method to advertise the availability of this location-based
service in a physical environment or details on how applications should determine
a location within these environments. Due to this limitation, applications require
prior knowledge to discover environments and smart devices. Mathew et al [150]
discussed several methods such as application interfaces, knowledge servers or open
ontologies. Still, these methods only support the discovery of semantic descriptors
of devices on the Web rather than in the physical world.

Update

Reportedost 3 hours ago,plessecall.

(a) Beacon attached to a dog linking to aweb (b) Beacon attached to a voting screen link-
page with information about the owner®. ing to an interactive web page to vote“.

“https://youtu.be/-Y77cUI_z30 “https://youtu.be/0SDIrRk3YC8
Figure 2.32: Physical Web examples created by Google Ltd.
Google started the Physical Web projectin 2014 to enable seamless interactions with

physical things and locations [151, 152]. It was based on Eddystone-URL beacons
to broadcast URLs for physical objects. Compatible smartphones would receive


https://youtu.be/-Y77cUI_z30
https://youtu.be/0SDJrRk3YC8

2.6. DISCOVERING POSITIONING SYSTEMS AND SERVICES 69

a notification when they were near a physical thing broadcasting a URL, and the
broadcasted URLs enabled direct user interaction without the need for additional
applications. Eddystone-URL was based on the UriBeacon [153] specification,
which was a project led by Scott Jenson, the UX designer who made the quote
in the introduction of this dissertation. Reading through his blog posts around
that time gives us insight into the vision behind the Physical Web project and the
potential it held for seamless user experiences.

Figure 2.32 illustrates two examples of web pages advertised on the Physical Web.
On the left, a beacon is attached to a dog that links to information about the owner.
When the dog is lost, the owner can update the website to provide information about
how to get in contact with the owner. On the right, a beacon advertises an interactive
panel linking to a web page where users can vote. Despite the advancements in the
Physical Web project, there were still challenges in the discovery of services and
sensors in various environments. The focus has primarily been on broadcasting
URLs for users to discover and interact with services, and not the interaction and
discovery of two systems.

Similar to the discovery of data, the discovery of services is the process of find-
ing relevant services for a particular goal. In a decentralised environment, the
traditional methods of discovering services may not be applicable. Centralised
discovery services, such as online directories or registries, may not be feasible or
effective in a decentralised system where there is no central authority.

Conceptual Situation Spaces is a method that helps in finding semantic web services
by matching those services with real-world contextual information and character-
istics [154]. This is a method of context-aware data discovery [155] where a
service is described with a semantic layer of information. While this enables the
querying, reasoning and understanding of which services are linked to a physical
environment, it does not solve our issue of decentralisation.

In other related work [26], two main types of data and service discovery are
considered: global discovery and local discovery. Local discovery assumes the
data can be discovered near the source, while global discovery assumes the data
can be discovered across a wider network or system. In the context of discovering
services in a decentralised environment, global discovery may involve a more
distributed approach where services can be discovered across multiple nodes or
devices.

2.6.1 Global Discovery

Global service discovery is a context-aware service discovery that does not know
the general location of the service [156]. This type of discovery can be closely
compared with Domain Name System (DNS), which offers a way to discover the
IP address of a URL on the Web. A DNS server offers a hierarchical discovery



70 CHAPTER 2. BACKGROUND AND RELATED WORK

method to resolve domain names. A local DNS server will attempt to resolve the
name in a local network. In contrast, country-level or global DNS servers take over
the resolution when the underlying layer does not know a particular URL. One of
the common issues with such discovery methods is the requirement to know the
server(s) that can resolve this information.

Many implementations such as Service Location Protocol (SLP), Universal Plug
and Play (UPnP) or even Lightweight Directory Access Protocol (LDAP) exist
that attempt to solve the issue of global service and data discovery [157]. These
implementations provide a way for services to advertise their presence in a network,
allowing clients to discover and interact with them. However, these solutions are
often limited to specific types of networks or require prior knowledge of the network
structure.

In a decentralised system with an open-world assumption, global service discovery
becomes a challenging task due to the lack of a centralised authority or registry.
Peer-to-peer networks, blockchain technologies, and distributed ledgers offer poten-
tial solutions for global data and service discovery in decentralised systems [158].
Peer-to-peer networks often make use of a Distributed Hash Table (DHT). This
table provides key-value pairs with the key being the hash of the data and the value
being a set of peers that offer this data. Such distributed discovery relies on one
or more centralised registries as the initial point of contact for bootstrapping the
network and discovering other peers.

With digital twins, we assume that the virtual object is digitally available and can
be discovered using computational techniques such as querying, accessing a URL
or network discovery protocols. However, when we want to discover digital twins
that are not located on the local network or when no knowledge is available on the
data, different techniques need to be used.

A Digital Twin Registry (DTR) is a centralised database that stores information
about digital twins [159], including their attributes, relationships, and metadata.
The centralised registry serves as a central repository for information about different
digital twins. By accessing this registry, users and applications can easily discover
the availability of digital twins.

AnyPlace is an open indoor information service [ 160] and indoor navigation service
that allows users to crowdsource building information via a centralised server.
AnyPlace offers tools to facilitate crowdsourcing from known and unknown data
producers via their API. While the server is no longer active, the project source
code is publicly available for building owners who want to host their own version.

With our aim for interoperability, centralising the DTR for all positioning systems
and environments would defeat the purpose of achieving interoperability. Instead,
we propose to decentralise a digital twin registry, enabling each positioning system
to provide its own digital twins that it is responsible for. This approach ensures that



2.6. DISCOVERING POSITIONING SYSTEMS AND SERVICES 71

each system maintains control over its information while still enabling discovery
by users and applications.

Fog Computing

Outdoor Universal Plug and Play (OUPnP) [161] is an outdoor UPnP protocol [162]
that enables the discovery of services and points of interest through fog computing.
Other than cloud computing, where data is processed on servers, fog computing
works with an additional /ocal layer that processes information. Only when the
local layer is not able to process the data, it is sent to a cloud service.

A

Cloud Computing

“ U:m Fog Computing
/ ' i \ Edge Computing

Figure 2.33: Cloud-, Fog- and Edge-computing

Data

Fog computing has many similarities to edge-computing [163], which is a term
used to describe the processing of information on small IoT devices in order to
limit data communication and reduce latency. However, unlike processing the
data locally on IoT devices, fog computing introduces a smaller layer in-between
edge- and cloud computing, covering several devices belonging to the same spatial
group. Figure 2.33 illustrates how data is generated by edge devices. Edge
computing indicates that this data is processed “on the edge” at these devices,
while fog and cloud computing introduce additional processing layers that require
the transmission of this data to these layers.

Tiberkak et al. [161] introduce their OUPnP solution with local fog servers that
cover a certain geospatial area. These servers can be used to discover devices
within a geospatial area. When devices are not covered by the local fog server, they
can communicate with a cloud service for further processing. This approach allows
for more efficient discovery of physical things and digital twins within a specific
geographical region, reducing the reliance on cloud services for every interaction.



T B N S S

S

72 CHAPTER 2. BACKGROUND AND RELATED WORK

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX poso: <http://purl.org/poso/>
SELECT 7?system
WHERE {
?system a poso:PositioningSystem .
?system geo:hasGeometry ?geometry .
FILTER(geo:sfWithin(
?geometry, "POLYGON((...))" "geo:wktLiteral))
}

Listing 2.4: GeoSPARQL example query for positioning systems within a geo-
graphical boundary

Geospatial Querying

Geospatial querying is the retrieval of information from a database using geograph-
ical spatial boundaries as retrieval conditions [164]. When geospatial querying is
performed on a global knowledge base, it can be used to query digital twins or
positioning systems based on a rough geospatial boundary where the user is loc-
ated. Unlike regular queries that compare information in the database with the
query conditions, a geospatial query can provide the computation of distances and
geospatial boundaries.

Databases such as MongoDB [165] or PostgreSQL [166] that support geospatial
data already exist in positioning systems. However, these databases are often
centralised and not accessible to third parties. This means that they require au-
thentication to fetch or publish new information. If new geospatial data becomes
available, it is up to the owner of the centralised database to add this information.
To discover positioning systems or services, a decentralised solution needs to be
available that would enable us to perform these types of geospatial queries without
relying on a single database.

When we look at the Semantic Web as detailed in Section 2.4.3, GeoSPARQL is an
existing vocabulary and extension to SPARQL endpoints (see Section 2.4.3) that
enables geospatial querying over linked data [128, 167]. Apart from introducing
a vocabulary to describe the location and boundaries of physical environments,
this SPARQL extension introduces additional functions that can be used in queries
to calculate if a position lies within a bounding box or to calculate the distance
between two or more geographical coordinates.

Listing 2.4 demonstrates the GeoSPARQL extension that adds a vocabulary to
describe geometries, while also adding SPARQL functions such as sfWithin to
determine whether a geometry is within another geometry. In the example query,
we query for all positioning systems (expressed with POSO [40]) within a specified



2.6. DISCOVERING POSITIONING SYSTEMS AND SERVICES 73

geometric boundary. While GeoSPARQL offers a method to query geospatial data,
it does not handle the decentralisation aspect and has to be executed on a certain
knowledge graph to retrieve information.

2.6.2 Local Discovery

Local discovery is a technique that enables applications to discover nearby services
based on their proximity to these services. Other than global discovery, this type
of discovery does not rely on the knowledge of servers that can aid in the discovery
of services or data.

A QR code can be considered a type of local discovery where users register at a
location while simultaneously providing information about the service that is being
used to check in a user. An example of this type of discovery was used in one of
our proof of concept applications towards decentralised positioning systems (see
Section 6.4). In this proof of concept, we placed QR codes at the entrance of
rooms. If these QR codes were scanned by the application that was created for this
purpose, it would lead to a URL providing linked data about the environment. If
another application scanned the QR code, it would redirect to the Web application
that could then interpret the data in a similar way as the application.

As detailed earlier in this section, Google started the Physical Web project in 2014
to enable seamless interactions with physical things and locations [151, 152]. Part
of the design philosophy of the physical web was the issue of IoT devices requiring
proprietary applications for simple interactions. As this is not scalable with users
not wanting to install applications, the physical web tried to act as a proximity DNS
for finding nearby services. Interaction with these devices and services was always
aimed towards user interaction through user web applications.

The physical web was implemented in the Android operating system as notifications
that alerted the user when they were near an Eddystone-URL beacon. Due to an
abuse of these notifications for proximity marketing [168], Google removed nearby
notifications of Eddystone-URL beacons in 20187.

Furfari et al. [26] propose an Infrastructure-providing LBS (ILBS). They developed
a local and global search for finding location-based services. A local search
uses Eddystone-URL beacons, similar to the Physical Web, to discover nearby
positioning systems. Applications that adhere to this local discovery will be able
to retrieve meta information from these URLs about these location-based services
through JSON data. On the other hand, global discovery requires a centralised
server for querying information about various location-based services.

7https://android-developers.googleblog.com/2018/10/
discontinuing-support-for-android.html


https://android-developers.googleblog.com/2018/10/discontinuing-support-for-android.html
https://android-developers.googleblog.com/2018/10/discontinuing-support-for-android.html

74 CHAPTER 2. BACKGROUND AND RELATED WORK

2.6.3 Open World Assumption

“Querying” is a concept used in informatics to describe the retrieval of information
from a database or system through a set of constraints. It is a method of discovering
information since the exact source or location of the data within the database is
unknown. In a closed-world assumption, we assume that if the data cannot be
found in the database that we are querying, and the query returns no results, then
the information does not exist.

In an open-world assumption, we assume that the information we are querying
for may indeed not be available in the current knowledge base, but could still exist
outside the knowledge base. This is in contrast to a closed world assumption, where
information not explicitly stated to be true is considered false. In the context of the
discovery of positioning systems, we must also consider an open-world assumption.
Just because we do not know of the existence of such a system, we cannot assume
that there is no other knowledge base that contains information about it.

With the solution that we propose in this dissertation, we keep this assumption in
mind. Interoperability between data sources will be as important as the interoper-
ability of the data itself. Allowing data sources to connect and share information
will enhance the expansion of knowledge that can be queried. Furthermore, the
discovery method that we will design will have to work with incomplete data and
the assumption that, while we are striving towards a single application that can
interact with every positioning system, this will not always be achievable.



There’s no sense in being precise when you
don’t even know what you’re talking about.

— John von Neumann

Chapter 3

An Open-Source Hybrid
Positioning System

Once we are using a single sensor that can determine a location or position, we
consider the sensor to be part of a positioning system. A single sensor can often
provide inaccurate results and may even be unable to produce an output in certain
environmental conditions.

Most modern positioning systems, including the Global Positioning System (GPS),
combine various technologies to compute a more accurate position. On a high level,
hybrid positioning systems use the independent computed data from two or more
technologies and combine it using high-level sensor fusion. This can range from a
simple weighted average depending on which technology is the most accurate —to
a more elaborate reasoning of the data based on the current conditions.

On a low level, fusion algorithms merge the raw sensor data to minimise the
noise and errors of the data. A simple example of such a fusion algorithm is
a complementary filter. It is commonly employed in sensor fusion applications,
such as in navigation systems or robotics, to improve the accuracy and reliability
of measurements. In the context of dead reckoning where we use acceleration
to determine the drift in position, let us consider a scenario where you have two
sensors measuring acceleration: one is an accelerometer, which is accurate in the
short term but prone to drift over time, and the other is a gyroscope, which is good
for measuring short-term changes but susceptible to noise. A complementary filter
can be used to combine the strengths of both sensors. The low-level complementary
filter combines these two measurements in a way that preserves the accuracy of the
gyroscope in the short term and the stability of the accelerometer in the long term.

In addition, with indoor positioning techniques sometimes failing to determine
a position in certain areas [33], the quote by mathematician John von Neu-
mann (1903-1957) that “There’s no sense in being precise when you don’t even

75



76 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

know what you’re talking about” appropriately applies to these systems. Hybrid
positioning systems offer a solution by first establishing a reliable, if less precise,
estimate of location before attempting to refine it further. In many cases, it is more
effective to prioritise certainty in location, even if the updates are slower, rather than
striving for high precision without a stable foundation. After all, precise tracking is
meaningless if the system cannot first ensure the general accuracy of the location.

Interoperability of positioning systems, as defined as part of our main research
question, cannot be achieved by semantically representing a single use case of a
positioning system implementation. To clearly define how a positioning system
operates and computes data, we need a generalised method to represent such
a system and its data. As introduced in Definition 4, a hybrid or integrated
positioning system combines multiple technologies and algorithms through sensor
fusion. This makes a hybrid system generic enough to account for a multitude of
variations, setups and scenarios.

In this chapter, we propose our solution to represent a general positioning system, or
more specifically, a hybrid positioning system as defined in research question RQ1.
The foundation of this generalised solution relies on the OpenHPS framework
that was first released in 2020 and peer-reviewed at the Indoor Positioning and
Indoor Navigation (IPIN) conference in 2021. OpenHPS is an open-source hybrid
positioning system framework written in TypeScript! that allows developers to
create and prototype positioning systems using a graph-based stream processing
approach. We presented the framework at the IPIN conference in 2021, the Free and
Open source Software Developers’ European Meeting (FOSDEM) in 2022 and the
Belgian JavaScript Conference (BeJS) in 2023. All prototypes and solutions related
to this dissertation are built with the framework to demonstrate its effectiveness in
generalising a variety of different use cases and processed data.

With this framework, we aim to target developers who wish to design a wide range
of positioning systems and know the algorithms needed to achieve this. We also
target researchers who want to design their own positioning techniques, without
having to start from scratch. Future work may target a wider audience, such as non-
technical end users or developers who want to implement systems with minimal
development effort.

3.1 Methodology

The conceptual design of OpenHPS began in 2019 alongside the initiation of this
research. Originally, we wanted to tackle the interoperability of indoor positioning
systems by designing a framework that could become a new standardisation within
the industry. However, we quickly recognised that this approach was too ambitious

Thttps://www.typescriptlang.org


https://www.typescriptlang.org

3.2. REQUIREMENTS 77

and decided to narrow our focus to designing a data structure and processing
pipeline that could represent a wide range of positioning systems. By doing so, we
could offer a positioning model or representation that can be applied to different
frameworks and future techniques.

Our methodology for designing OpenHPS draws inspiration from software archi-
tecture principles such as reusability, modularity and loose coupling, particularly
from The Open Group Architecture Framework (TOGAF) [169]. We mainly based
ourselves on the data and processing requirements of various positioning techniques
and common sensors used to achieve this type of positioning. The main focus of an
indoor positioning system framework is to handle location data, orientation data,
velocity or acceleration, sensor fusion and the accuracy of the data. This type of in-
formation can always be generalised in a hybrid positioning system to some extent.
Our requirements, outlined in Section 3.2, are therefore based on the requirements
of a generalised hybrid positioning system.

To validate our design decisions, we open-sourced the software to obtain continu-
ous feedback. OpenHPS was used for over five years in an exercise session of the
course Next Generation User Interfaces by Master students of the Computer Sci-
ence programme. In addition, the geospatial functionalities were used in exercise
sessions for the course Web Technologies by Computer Science Bachelor students.
We used the feedback and observations from these exercise sessions to improve the
framework’s convention over configuration and also to improve its documentation.
During the five years of usage, we gained insights from industry players and have
slowly started to apply these changes to the framework itself.

The primary validation of our design decisions lies within its data structure. We
deliberately split the framework into multiple modules, each with its repository.
This ensures that each module is modular and loosely coupled with other modules.
We created several mobile applications, proof of concept positioning systems and
experiments to validate that different use cases and data requirements were feasible
within our framework. Our main proof of concept applications developed with
OpenHPS can be found in Chapter 6.

3.2 Requirements

Based on existing positioning methods and algorithms discussed in Section 2.3, the
following framework requirements have been derived. When defining these actors
and requirements, we focused on functional requirements for representing a hybrid
positioning system and the data it produces and consumes. We start by specifying
the actors of our system and motivating the use of a processing network where each
node of the graph topology might represent one of these actors.



78 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

Our system actors were defined at the beginning of the project through an analysis
of existing positioning systems and frameworks. The terminology we used to name
these actors is based on their goal. In Section 4.2, we validated these actors by
semantically assigning each actor to part of a system. Finally, in Section 7.3, we
settled on the final actors in our integrated solution.

The initial requirements, presented in our technical report of 2020 [32], were based
on the actors and drafted based on our investigation of existing work, validated
and discussed with group members of our research lab. In 2021, these require-
ments were peer reviewed and further refined based on feedback received at the
IPIN conference.

During the development, some requirements were added or modified based on
obstacles or shortcomings we encountered while implementing or testing the
framework. OpenHPS consists of more than 400 unit and integration tests across
all modules? that ensure that the framework satisfies these functional and non-
functional requirements during its 5-year development lifecycle. These tests range
from integration tests of third-party libraries, performance tests to ensure that work-
ers are consistent, and functional unit tests. Tests were automatically performed
for each commit and automatically propagated to all modules in the first few years
of development to ensure consistency across modules. The complete framework,
including modules enabling interoperability, discoverability, and unit tests, was
peer reviewed for the Journal of Open Source Software in 2025 [34].

3.2.1 System Actors

After investigating different existing positioning techniques and systems defined by
the ISO 18305:2016 [22], ISO 19116:2019 standard [46], we defined four actors in
positioning systems, which we mapped in OpenHPS:

* Tracked actor: This is an actor that can be tracked during the online posi-
tioning stage. In indoor positioning, it might represent the user or object that
is being tracked in an environment. Data that is processed in the network
should have a reliable type and content. We process DataObjects encapsu-
lated in DataFrames (see Section 3.4.6), providing a defined scope on how
generic parts of our network should handle information.

A tracked actor can implicitly track another actor as well. In the case of
a smartphone that is tracked by an external system, one might track the
smartphone as a method to track the user who carries the phone.

» Tracking actor: This actor is responsible for tracking a tracked actor. It can
be identical to the tracked actor (e.g., a user’s smartphone) or some separate
technology, such as a camera tracking the movement of a user. A tracking

2https://github.com/OpenHPS/openhps-core/tree/master/test/specs


https://github.com/OpenHPS/openhps-core/tree/master/test/specs

3.2. REQUIREMENTS 79

actor has the highest priority in our processing model, and slow consumers
or computing actors must not result in outdated sensor information. Rather,
developers should be allowed to control what happens with any potential
overflow of information that cannot be processed timely.

» Calibration actor: Some positioning methods require calibration or setup
before they can be used. Unlike the tracked actor, the purpose of a calibration
actor is to train and calibrate how a tracking actor will be used during the
system’s online stage. While we can assume that in some cases the calibration
actor is the tracking actor, this is not always the case.

To provide an example, a technician who uses a smartphone to set up an
indoor positioning system is considered a calibration actor. This calibration
actor will not utilise sensor data to obtain a location but will instead use this
data for the set-up or training of the system.

* Computing actor: The computing actor is responsible for providing the final
position output. It combines the data generated by one or multiple tracking
actors and processes the data by using specific positioning algorithms to
provide the absolute position of tracked actors.

A smartphone that calculates its location locally on the phone is a calibration
actor. If the smartphone itself produces information that can aid in the
tracking, it is also a tracking actor. A smartphone that calculates its location

These four actors represent the four main components within OpenHPS. By dis-
tinguishing between the tracked and tracking actor, the system can support the
tracking of persons or objects that do not actively participate in the positioning pro-
cess. Note that our four actors can also be mapped to layers and design principles
in the location stack [170]. Furthermore, computing actors represent an important
component of the framework, as they are responsible for the processing and fusion
of sensor data from multiple sensors. Based on these actors, we have defined the
data structure and processing flow within OpenHPS to offer a general solution that
can be applied to any type of positioning system.

3.2.2 Functional Requirements

In the following, we list the minimal functional requirements for our OpenHPS
framework. These requirements are based on the actors as well as a broad range of
positioning techniques such as fingerprinting, dead reckoning, and satellite-based
positioning — as well as applications and other frameworks such as WebXR [171]
or OpenVSLAM [50], and the requirements of those frameworks.

* Offline stage positioning: Our framework should support the collection,
calibration and set-up of a positioning system. Results from this offline stage
can be used in the online stage.



80

CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

Online stage positioning: To perform hybrid positioning or sensor fusion,
multiple (processed) sources need to be combined by using different al-
gorithms. Our framework should support the processing of this data, as well
as access to previously stored information such as the calibrated data from
the offline stage.

Third-party frameworks: Our framework needs to support third-party
high-level positioning systems. These external systems might provide their
own calculated position of a tracked actor that needs to be fused with the
position determined by our framework. In addition, the identification of this
tracked actor might differ between frameworks.

Environment mapping: With the requirement to support positioning meth-
ods such as SLAM and VSLAM, the system not only offers the possibility
to output an absolute position but might also create an environment map.
Our solution should be capable of handling, storing and using this map to its
advantage.

Decentralisation: Our positioning framework should be able to combine the
four different actors introduced in the previous section based on remote hard-
ware. This requires the framework to work decentralised without requiring
any centralised sensor fusion, which can be achieved by allowing multiple
computing actors to work independently. However, developers should still
be given the option to centralise certain parts of the system if needed.

Monotonicity: Partial information from a source should result in a partial
output. In the context of a positioning system, this means that a computing
actor does not need the sensor data of all positioning methods to determine
a position. This requirement also helps in the decentralisation and parallel-
isation of the framework.

Serialisability: All data processed and used by positioning systems created
with our framework should be serialisable and deserialisable to other data
formats. This ensures that the data produced by one positioning system
can easily be transformed to another positioning system, which requires a
different data format.

3.2.3 Non-functional Requirements

The following non-functional requirements contributed to the final decision about
the software language used for OpenHPS. These non-functional requirements are
primarily based on common industry practices regarding positioning systems.

* Availability: Our solution has to be available on various platforms ranging

from servers to embedded systems, also supporting the decentralisation func-
tional requirement. Having the platform available in multiple environments



3.2. REQUIREMENTS 81

will increase the system’s accessibility and usability. Furthermore, if the
system were to only work on one particular platform (i.e., a smartphone), it
would be considered too domain-specific to one set of use cases.

* Performance and latency: Throughput is an important criterion when pro-
cessing streaming data. Input data, such as video and audio streams, needs
to be processed in real-time. The latency also indicates how long it takes
for data to be used in computations. As our goal is to achieve an accurate
current position, outdated sensor data is not relevant.

While performance is important for the correct functioning of a positioning
system, our primary focus, as indicated by our functional requirements, is on
the data representation.

* Modularity: The framework should be modular with both a low-level API
and modules that can be added and removed based on the available sensors
and concrete use cases. Developers should remain in control of the types of
algorithms and the flow of data from producer to consumer. Modularity is
one of the main non-functional requirements of our framework, as we want
to provide an extensible solution that can align our framework with future
use cases that we did not foresee in our initial design.

* Configurability: The framework should allow developers to easily configure
its components, data flow, and execution logic based on specific use cases,
without modifying the core codebase. This includes support for declarative or
programmatic configuration of sensors, algorithms, and deployment options.

When designing our framework, we also considered where our four actors would
be implemented. Positioning systems are typically implemented in a distributed
fashion, with different components running on various devices. The tracking actor,
for example, might be implemented on a smartphone or a camera system, while
the computing actor could be implemented on a centralised server or edge devices.
Our decision to use TypeScript was based on its versatility to be used in server-side,
web, mobile and embedded devices. This enables us not to limit our framework to
specific platforms, which would negate the generalisation of such a framework.

One of the main challenges in designing a framework for real-time processing of
data is ensuring the timely delivery and processing of sensor data. Meanwhile, as
stated in our requirements, we wanted to design a modular framework that can be
deployed on various platforms. The main problem we wanted to solve in this work
is the lack of interoperability between (indoor) positioning systems (Problem 1).
Within this problem, the main focus is on generality to help with the representation
of the system. Therefore, our framework is data-centric in design [172]. We
optimise performance in our framework to the extent that we can validate our
data-centric approach with viable proof of concepts.



82 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

3.3 Architecture

Based on our requirements, we designed OpenHPS as a processing network that
pushes or pulls data along a set of modular nodes that manipulate this data. Each
node computes more information and passes it along in the network.

The data structure that is transmitted through our processing network will be
detailed in Section 3.4. In general, it consists of an envelope that contains objects
of information. To keep persistence between envelopes, services are added to the
processing network that stores processed information when it reaches the end of
the pipeline and retrieves previously stored information from these services when
an envelope is created.

DA T S A
. v ! Sea
e AN / R
"' ‘\ ‘I’ \\
\ s
----> Process | ! Process r----3
‘\ l’ ‘\ I‘
N
< ll \‘ . PRd

L
Service A Service B Service C
Map User Data Calibration
Store Store Store

Figure 3.1: Example positioning system architecture in OpenHPS

Figure 3.1 illustrates the architecture of our OpenHPS framework. A graph of
nodes is created to create a processing flow [173] from source to sink. A source
node provides data, such as raw sensor information and processes this information
step by step in each processing node.

The example positioning model in Figure 3.1 also shows three services, one for
storing geospatial data, one of storing user data and finally a service for storing
calibration data created during the set-up of the system. Every node in this graph
has access to store or retrieve information from these services.



W =

3.4. DATA STRUCTURE 83

3.4 Data Structure

To address research questions RQ1.1 and RQ1.2, we have to define a common data
structure that can be applied to a broad range of (hybrid) systems and technologies.
We decided on two main data structures, (1) a data object that can represent any
spatial data, whether it is a person, a smartphone, a room or a sensor and (2) a data
frame which acts as an envelope to contain multiple data objects. Unprocessed
values, such as raw sensor data, will pertain to one or more of these data objects.
We include this raw sensor data together with all relevant objects within a data
frame. In this section, we go into more detail on these two data structures.

As a framework to design and develop positioning systems, the position data itself
is an important aspect of the framework. Similar to other related work [2, 54], we
provide an absolute and relative position.

3.4.1 Oirientation

Indicating the orientation of an object depends on the context in which it is used.
If one were to ask in what direction someone is looking, they might indicate a
specific angle in degrees, such as 45 degrees relative to the north. However, as this
only indicates an orientation in two dimensions, it may not be sufficient in three
dimensions.

Orientations in OpenHPS are extensible by design, allowing developers to represent
them using different mathematical representations. However, internally in nodes
of official modules, they will always be converted to quaternions due to their
mathematical stability. Orientations can be created from Euler angles, axis angles,
rotation matrices, bearings or any other implementation that can be expressed to
quaternions.

const orientation = Orientation.fromEuler({
x: 0, y: 0, z: 45, order: 'ZYX', unit: AngleUnit.DEGREE
DK

Listing 3.1: Creation of an Orientation from Euler angles

Listing 3.1 demonstrates how an orientation can be created from Euler angles.
Developers can decide on the order of the Euler angles as well as the unit in which
they provide the orientation.

3.4.2 Absolute Position

As detailed in Section 2.1, an absolute position is a position with a fixed coordinate
in a specified frame of reference. A position is a snapshot of the current position,



1

w

84 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

orientation and velocity of a data object. This makes a position very similar to a
pose of an object, without specifically relying on the terminology.

Our decision to include orientation and velocity in a position was based on the
fact that velocity and orientation influence a position itself. An orientation is also
dependent on the position and its reference frame. Similarly, a velocity indicates
the momentum of an object in motion. This momentum is relative to the object’s
current position and orientation and is thus also dependent on the reference frame.

Multiple implementations of absolute positions are included in the core compon-
ent of OpenHPS, ranging from Cartesian 2D and 3D positions to geographical
positions. Each absolute position can contain the following information:

Timestamp: All observational data, like positions, have a timestamp associated
that indicates when the position was recorded. Since a position is a snapshot of the
current

Unit: Regardless of whether the absolute position is a 2D, 3D or geographical
position, a unit is required that specifies the value of the coordinates. In the
case of a geographical position, this unit is replaced by the Geodetic Coordinate
System (GCS).

Accuracy: The accuracy of the position is expressed in two or three dimensions,
depending on the specified type of position. It is not a required property, but
it can be set by the processing algorithms to provide additional context to other
processing or fusion algorithms.

Orientation: An orientation can be created from Euler angles, axis angles, qua-
ternions or rotation matrices and indicates the orientation of the object.

Velocity: The velocity of an object consists of the linear and angular velocity. It
indicates the momentum of the object at the given timestamp.

Reference space UID: An absolute position is a fixed position on a frame of
reference. Reference spaces are considered a type of data object and are identified
with a unique identifier. Each position object has the UID of the reference space
that is used. This links to a data object that contains more information about the
space, including but not limited to the transformation to a global reference space.

const position = new GeographicalPosition(50.8205, 4.3921, 53,
— GCS.WGS84)
.setOrientation(Orientation.fromBearing(180))
.setAccuracy(new Accuracy2D(5, 5, LengthUnit.METER));

Listing 3.2: Creation of an absolute position with orientation and accuracy



3.4. DATA STRUCTURE 85

Listing 3.2 demonstrates how a geographical position object can be constructed
with a specified latitude, longitude, height and GCS. Orientation and accuracy are
also included in the creation of the absolute position object. The orientation is
set using a bearing of 180 degrees, while the accuracy is set to a 2D accuracy of
5 metres for the latitude and longitude.

Each instance of an absolute position has several utilities available to manipulate
or access the data. These utilities can range from calculating the distance between
two absolute positions to transforming the position from one reference space to
another. These utilities provide flexibility and convenience in working with absolute
positions within the framework.

3.4.3 Relative Position

While an absolute position indicates a relative position in a predetermined refer-
ence space, a relative position is a position relative to another object. Relative
positions are commonly used in tracking scenarios where the position of an object
is constantly changing with respect to a reference point or another object. Similar
to an absolute position, each relative position has a timestamp, accuracy and unit.
Various types of relative positions exist within the framework:

RelativeDistance: When the distance to another object is known, there is a
relative distance between one object and another.

RelativeOrientation: A relative orientation is an Euler, axis angle, quaternion
or relative bearing to another object with respect to the orientation of the absolute
position and orientation of the object.

RelativelLinearVelocity and RelativeAngularVelocity: The relative lin-
ear and angular velocity indicate the velocity of the other object with respect to the
orientation of the absolute position and orientation of the project

RelativeRSSI: Included in the @openhps/rf module, the relative RSSI indicates
the received signal strength of an RF transmitter. This relative RSSI can be
converted to an estimated relative distance.

Relative2DPosition and Relative3DPosition: An object that is positioned
relative to another object is located at a certain Cartesian position relative to the
other object. In most cases, sensors are not able to output the 2D or 3D coordinate
relative to the reference point. However, when enough information is present, the
relative 2D position and 3D position can be calculated.

Multiple relative positions can exist relative to the same object. As an example, a
relative distance and relative angle can be combined to pinpoint the exact position
relative to another object.



1
2
3

86 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

3.4.4 Data Object

A data object represents anything relevant to the positioning system. It can be the
tracked object, the tracking object or a landmark needed for the relative position-
ing. Data objects can have a spatial and hierarchical relationship to one another.
Examples of a data object can be a person, a smartphone of this person and even
individual sensors within a smartphone. Our decision to choose one data object for
multiple types of spatial actors was made because an object can be considered a
generic representation of multiple actors. A smartphone, for example, can be both
a tracking actor and a computing actor. Each object contains the following main
attributes:

Unique identifier: Data objects are uniquely identified, either by a supplied iden-
tifier or a random UID. Optionally, a developer can provide a more user-friendly
display name. However, the storage of data objects always uses the identifier.

Absolute position: Data objects store their last known absolute position. The
stored position is always relative to the global reference space introduced later
in Section 3.4.5. The relevance of this last known position can be determined
using its timestamp, and developers can request a transformed position in their own
reference space. A position is always accompanied by the orientation of the data
object. Data objects are not required to have an absolute position if it is not relevant
for the positioning.

Relative positions: These are relative positions to other reference objects. Each
object can have multiple types of positions relative to different objects. This allows
a data object to have a relative distance, angle and velocity to the same object.
Relative positions act as the spatial relation to objects, which can be fixed or
dynamic.

Parent object: A dataobject can specify its parent. This can be useful for indicating
that individual sensor objects belong to the same tracked actor or that objects are
spatially inside another object. When the position of a smartphone is known, we
can use this position to infer the position of the user who owns the phone.

Depending on what the data object represents, it can be extended to store the
information needed for its representation. In Listing 3.3, we create a basic data
object of a user who is uniquely identified by their e-mail address. During the
creation of this object, we set the current position to a geographical coordinate.

const object = new DataObject("mvdewync@vub.be");
object.displayName = "Maxim Van de Wynckel";
object.setPosition(new GeographicalPosition(50.82075, 4.39234));

Listing 3.3: Creation of a DataObject



[ N N

3.4. DATA STRUCTURE 87

Developers can decide what they use as an identifier for an object. In the case
of an authenticated user, it makes sense to identify the object as the user itself,
while anonymous users can be identified with data objects using a hardware serial
number or similar.

3.4.5 Reference Space

A reference space is a type of data object that represents a space which can be
used for determining an absolute position. Using these reference spaces, absolute
positions created in a different space can easily be identified and transformed into
the global reference space created when building a model.

const refSpace = new ReferenceSpace(model.referenceSpace)
.unit(LengthUnit.CENTIMETER)
.translation(10, 10, 0)
.scale(1, 1, 0)
.rotation(®, 0, 0, AngleUnit.RADIANS);

Listing 3.4: Creation of a ReferenceSpace

Listing 3.4 shows the creation of a reference space relative to the global space
represented by model .referenceSpace. This reference space has an origin off-
set. Absolute positions set when providing this reference space will automatically
transform to the origin of the global space.

A reference space can transform the position, velocity and orientation by providing
a translation of the position with an origin offset; rotate the position, orientation and
angular velocity; scale the position and linear velocity; transform the perspective
or inverse perspective of the position and finally unit conversion to convert the unit
of the position a reference unit. Reference spaces can be created to model a wide
range of scenarios:

e Third-party positioning systems: Frameworks such as the WebXR [171]
API manage their origin and orientation based on the underlying hardware.
The output of such third-party frameworks is high-level positions that should
be aligned with the other positioning methods.

* Sensor placement: Developers can model a reference space for sensors that
have a static offset or rotation (e.g., a motion sensor that is placed upside
down).

* Calibrated reference space: Some sensors require a calibration (either
automatic or by manual user input). A goal of OpenHPS is to easily persist
this type of calibration.



88 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

* Map storage: As a data object, a reference space can be extended to store
environment map information as outlined in our functional requirements.

In Listing 3.5, we set the current position of a data object to (5, 5,5) using the
previously created reference space shown in Listing 3.4. Internally, the stored
position of myOb ject will be the transformed position with coordinates (-5, -5, 5).

myObject.setPosition(new Absolute3DPosition(5, 5, 5), refSpace);

Listing 3.5: Setting the object position in a reference space

As these spaces are data objects, they are uniquely identified and can have a
parent object or space. This parent allows for abstract reference spaces such as
rooms, floors and buildings. These types of abstractions allow us to use different
positioning methods per floor that are stored in a global reference space representing
a building.

In our @openhps/geospatial3 module, we expanded upon this data type with
the concept of a symbolic space. Symbolic spaces represent a high-level API ex-
tension of reference spaces aimed at indoor environments. They add the following
capabilities on top of reference spaces:

» Spatial hierarchy: Spatial hierarchy is already supported in reference spaces
using the parent identifier inherited from regular data objects. However,
symbolic spaces add boundaries that can be used to indicate whether an
object is inside a space.

* Graph connectivity: The ability to connect spaces such as rooms, hallways,
staircases and floors to support navigation applications or improve position
estimation.

* Geocoding: Symbolic spaces can be converted to an absolute position in the
global reference space. Similarly, an absolute position can be converted to
the most likely symbolic space through reverse geocoding.

* Semantics: Symbolic spaces also introduce semantics to reference specific
types of spaces, allowing developers to define the purpose or use of a partic-
ular space.

* GeoJSON export: Spaces might be exported to GeoJSON [174] features,
aiding the storage and query capabilities in MongoDB or other data services.

Symbolic spaces can be treated as symbolic locations [175, 176, 58] with the ability
to be converted to absolute positions. By using the terminology of symbolic space

3https://openhps.org/docs/geospatial/


https://openhps.org/docs/geospatial/

N - Y R N U SR

3.4. DATA STRUCTURE 89

as opposed to other terminologies, we offer a general environment that can also
apply to a reference space such as a table.

const building = new Building("PL9")
.setBounds ({
topLeft: new GeographicalPosition(50.8203, 4.3922),
width: 46.275, height: 37.27, rotation: -34.04
b
const floor = new Floor("PL9.3")
.setBuilding(building) .setFloorNumber(3);
const office = new Room("PL9.3.58")
.setFloor (floor) .setBounds ([
new Absolute2DPosition(4.75, 31.25),
new Absolute2DPosition(8.35, 37.02),

D

const object = new DataObject("myuser");
// Set the position relative to the floor space
object.setPosition(

new Absolute2DPosition(6.55, 34.135, LengthUnit.METER)
), floor);
// Get the position relative to the global reference space
office.getPosition(); // (lat: 50.8204, lng: 4.3922)
// Get the position relative to the floor
office.getPosition(floor); // (6.55, 34.135)

Listing 3.6: Symbolic space creation and usage

Listing 3.6 shows the creation and usage of three symbolic spaces. Boundaries
can be specified through different methods. In this example, the boundaries of a
building are defined via the top left corner, the width and height of the building
in metres, as well as the building’s orientation (angle) relative to grid north. For
the boundaries of the floor and a specific office room, we provided two boundary
points that create a rectangular symbolic space. Alternatively, polygonal shapes
can be used to define the boundaries.

Figure 3.2 illustrates how the symbolic spaces created in Listing 3.6 show up on
the map when exported to GeoJSON. OpenHPS also enables developers to parse
symbolic spaces from GeoJSON data. However, apart from providing additional
context and reference frame transformations, these symbolic spaces are currently
not used by any positioning algorithms included within the framework.

3.4.6 Data Frame

Data that is pushed through the positioning model is represented within data frames,
generated or pushed by a source node. They act as the envelope of data that is sent



90 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

\

-

s Room
Il Corridor

Zone
I Floor

(C) Openstreethap contr ioutors

Figure 3.2: GeoJSON representation of a floor with rooms

through a process network. In a way, they are momentary snapshots of information
that are processed step by step. This encapsulation of information ensures that
the origin of data can be determined through a collection of metadata. The data
contained in these frames includes (but is not limited to) the following attributes:

source DataObject source source AP1
CameraObject DataObject RFReceiverObject DataObject
Detected
uid: "camera”, objr~* - uid: "imusensor”, uid: "wifiscanner, uid: "AP1",
position: { DataObject position: { No additional objects relativePositions: [ position: {
x:2,y:5,z:3 x:0,y:0, { x:0,y: AP2
1 Detected linearVelocity: { obj: "API1", } DataObject
projection: ..., DataObject St x:1,y:0 distance: 5
width: 1280, } } i uid: "AP2",
height: 1024 Detected } obj: "AP2", position: {
object distance: 8 x:15,y:3
Image l Acceleration l l Sensor Frequency l 1 !

Figure 3.3: DataFrame examples

Unique identifier: Each frame generated by a source is uniquely identified. This
ensures that frames which are being processed by multiple processing nodes in
parallel can be merged at a later stage in the stream.

Timestamp: Required for determining when the data was created or obtained.
When working with multiple sources that capture data of the same tracked actor,
the timestamps will be used to merge the data frames. A timestamp is kept for
the creation of each data frame by the source. This timestamp can also be used
for time-based calculations, such as applying velocity to a position. Using this
timestamp instead of the system time results in a more deterministic output.

Source data object: This is the data object that obtained the sensory data (e.g., the
camera object or RF receiver). It is not always the object that is being tracked, but
it can be required in order to determine the position of other objects. Similar to



3.4. DATA STRUCTURE 91

the timestamp and identifier, the source data object can be used to specify certain
criteria on how data frames or positions should be merged.

Data objects: Data objects include everything that is of relevance to the positioning
(e.g., the tracking and tracked actor). This also includes reference spaces needed
for the positioning as pointed out later in Section 3.4.5. By grouping the data
objects in the same data frame, nodes do not have to access any services to get this
relevant information.

Raw sensor data: Raw unprocessed sensor data that is captured by the source node
is included within a data frame. As an example, in the case of a camera generating
a stream of video frames, the individual frames are included within the data frame
itself.

To demonstrate the content of data frames, Figure 3.3 depicts three situations where
data is contained in frames. The first example shows a data frame created by a
camera source. This camera object has a certain position and a projection matrix.
Linked to the data frame is a single image (i.e., video frame) captured by this
source. During the processing of the image, objects can be detected and added
to this frame before being pushed further downstream. In the second example,
we show data obtained by an accelerometer. The source object has a velocity
and position, and the frame itself contains the current acceleration and sensor
frequency. This information can be used by a processing node to add acceleration
to the existing velocity. In our third and final example, we show a data frame
created by a Wi-Fi scanner. The scanner (source) has two relative distances to
access point (AP). The information, mainly the position of these access points, is
included in the frame.

Node #1 Node #2 Node #3 Node #4
SourceNode ProcessingNode ProcessingNode SinkNode

i push(data) i i i
E resolve push push(data’) : :
E E resolve push push(data") E
1 |< _______________ T

E emit error E< emit error E reject push

Figure 3.4: Error handling in push() request



© o N o R W N =

S

92 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

3.5 Measurement Units

Unlike many other positioning frameworks that offer geographical positioning,
OpenHPS aims to support a wide range of use cases ranging from small-scale to
celestial positioning. To enable this wide range of use cases, we allow developers to
provide a unit for all measurements within data frames, objects or sensor data. We
enable this by adding a unit system consisting of a Unit and DerivedUnit object.
A derived unit is derived from multiple units with a specific power and offset.
Math.js [177] offers a similar unit system with the possibility to automatically
evaluate and convert units by providing a textual formula. While this allows for the
easy creation of derived units, it is not necessary for our framework and is more
difficult to expand.

const second = new TimeUnit('second', {
baseName: 'time', // Unit for 'time'
aliases: ['s', 'sec', 'seconds'], // Alias for "second"
prefixes: 'decimal', // Supports decimal prefixes

9K
const millisecond = second.specifier(UnitPrefix.MILLI);
const minute = new TimeUnit('minute', {

baseName: 'time', aliases: ['m', 'min', 'minutes'],
definitions: [{ magnitude: 60, unit: 's' }], // 60 x 1 sec

s

Listing 3.7: Unit creation

Listing 3.7 shows the creation of a base unit second for time. During its creation,
the developer can specify aliases for the unit and similar to Math.js, a unit can have
a set of unit prefixes. This allows using “millisecond, microsecond or nanosecond”
without specifically creating individual units for these specifiers. Note that aliases
can be provided to optionally allow the units to be converted to string evaluators of
other mathematical modules.

When creating a new unit, the developer should specify the base unit. The time
unit “minute” example in Listing 3.7 is done by creating a definition for converting
minutes to seconds (using a magnitude of 60 for the existing time unit “second”).

To use a unit that is derived from other base units, a DerivedUnit can be created
as shown in Listing 3.8. The developer provides the name of the unit and adds
the units that are contained in the derived unit (line 4) along with their magnitude.
Variants on derived units can be created by swapping a unit (lines 5 and 8).

One of the design philosophies of our framework is not to force developers to
use specific units when representing data. Depending on the type of positioning
system, different units may be needed. For example, when working on a positioning



= = N B NS U R R

- o

3.6. SERIALISABILITY 93

const radSecond = new DerivedUnit('radian per second', {
baseName: 'angularvelocity',
aliases: ['rad/s', 'radians per second'],

}) .addUnit(AngleUnit.RADIAN, 1).addUnit(TimeUnit.SECOND, -1);

const degreeSecond = radSecond.swap([AngleUnit.DEGREE], {
baseName: 'angularvelocity', name: 'degree per second',
aliases: ['deg/s', 'degrees per second'] 1});

const degreeMinute = radSecond.swap(
[AngleUnit.DEGREE, TimeUnit.MINUTE], {
baseName: 'angularvelocity', name: 'degree per minute',
aliases: ['deg/min', 'degrees per minute'] });

Listing 3.8: Derived unit creation

system for detecting objects on a table, different units are used than in a system
for tracking cars on the road. Throughout the framework, every value can have its
own unit. Processing nodes can normalise these values to the same unit to perform
calculations.

3.6 Serialisability

In our non-functional requirements of Section 3.2.3, we indicated that part of our
decision to choose TypeScript as the programming language for our framework was
its ability to be used on different platforms. Positioning systems often consist of
decentralised parts that each compute and process data independently. Therefore,
it is crucial that all data, such as data objects and frames, can be communicated
between these platforms.

All data represented within OpenHPS, whether it is a data object, frame or a
single sensor measurement, is serialisable and deserialisable. OpenHPS offers a
custom implementation of the TypedJSON library#. This library offers decorators
to developers that can be added to classes and members to provide metadata about
the serialisation and deserialisation of JSON.

Decorators in TypeScript are functions of classes, fields and methods that are
executed when a class loads. In TypedJSON, these functions enrich the underlying
prototype of a class with metadata about the fields it should serialise, and how this
serialisation or deserialisation should be performed. Appendix A.3.1 illustrates a
custom data object class with decorators for the class and members.

We have extended TypedJSON to better support polymorphism and also to facilitate
the expansion of the serialiser and deserialiser logic in other modules. Addition-

4https://github.com/JohnWeisz/Typed]SON/


https://github.com/JohnWeisz/TypedJSON/

o T - N o N

94 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

ally, we modified the decorators to allow developers to provide more metadata
concerning the data types of fields. This additional metadata enables us to create
schemas at runtime for databases or communication methods that require a fixed
schema.

TypedJSON already provides serialisation and deserialisation of TypeScript ob-
jects. However, during the implementation of our requirements, we experienced
difficulties in achieving a modular framework with extensible data. Our primary
change to TypedJSON was to create an overarching layer that captures the creation
of metadata using decorators. This provides us with the necessary control to extend
data objects in different modules or to serialise to different data formats such as
RDF.

{
"createdTimestamp":1606501972983302,

"uid":"8865727c-7c98-4a8d-a33¢c-506d2650e59d",
"position":{
"x":-4.0709, "y":55.5913, "unit":{ "name":"centimeter" },
"timestamp":1606502001594449,
"velocity":{
"linear":{
"x":-0.2760, "y":0.3606, "z":0.0132
}, "angular":{
"x":-3.9937, "y":0.2311, "z":-0.5070
}
1

"orientation": {
"x":-0.0975, "y":0.1538, "z":0.0426, "w":0.9823

}1
"referenceSpaceUID":"5582d63d-c7af-4624-9fed-6ce0d9036£62",

"accuracyUnit":{ "name":"meter" },

"__type":"Absolute2DPosition"
}, "relativePositions":[], "__type": "DataObject"

Listing 3.9: Serialised DataObject

Listing 3.9 shows a serialised data object. The main DataObject and position have
a __type key that defines the object type. Definitions of a unit are not included in
the serialisation and its complete name is used to indicate the unit. This means that
a custom unit should be available in all processes that are required to deserialise
the unit.

With this serialisability, we want to ensure that all data can be easily transferred
between nodes, whether it is the transmission of data between two different systems
or between processes on the same machine. The serialisability of data on the same



3.7. GRAPH-BASED STREAM PROCESSING 95

machine is used to enable the multithreading of positioning systems developed with
OpenHPS (see Section 3.11).

Legend
Serialisation
(:) i MQTTSinkNode MQTT MQTTSourceNode
Deserialisation
Broker
push() E push()
JavaScript JS Object

(JS) Object

Figure 3.5: Transmission of data from a sink to a source using an MQTT broker

Internally in a graph, JavaScript objects of DataFrames are pushed from one
node to the other. Figure 3.5 illustrates how data can be transferred from the
sink of one graph to the source of another using Message Queuing Telemetry
Transport (MQTT). On the left in the figure is a MQTTSinkNode that receives a
JavaScript object. To transfer this object via MQTT, it is first serialised, after which
it is sent to the MQTT server. On the right of the figure, an MQTTSourceNode
actively subscribes to changes on the MQTT server. Whenever new data is available,
this JSON data is deserialised before pushing it as a JavaScript object to the next
node in the graph. The serialised JSON representation is used internally within
the framework and is not interoperable by default. However, in Section 4.3, we
expanded the serialisation of data to RDF and JSON for Linking Data (JSON-LD).
This ensures that the data can be easily integrated with other systems that support
RDF data.

3.7 Graph-based Stream Processing

To support the presented functional and non-functional requirements, we decided
to build on a stream-based positioning system that takes various types of input data
and processes this data to get the desired output. Data that is transmitted between
nodes is encapsulated in so-called data frames that can contain sensory data as well
as one or more data objects the sensor data applies to, and are described in detail
in Section 3.4.

For the design of our process network, several existing stream- and layer-based
frameworks such as Akka Streams [178], Apache Kafka [179] or TensorFlow [180]
have been investigated. Since each node needs to be configured individually, the
decision was made to investigate flow-based frameworks where each component of
the stream network is added individually.



96 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

Unlike low-level data stream frameworks, OpenHPS focuses on data that is helpful
for positioning. We offer a higher-level API for creating the network and data that
is handled by the system. Concepts such as edges or ports that are often found
in stream-based programming languages are abstracted and not directly accessible
by developers. However, unlike other hybrid frameworks [75, 57], the stream
processing is extensible enough to allow developers to modify the positioning
methods along with the used algorithms.

We start by discussing our process network design that uses a graph topology
similar to other stream frameworks. Next, we present the data frames, objects and
positional data that are being handled by the network. Each node can be designed
to accept both push and pull requests. Similar to reactive streams [181], push and
pull actions are promise-based and can be executed asynchronously. If a node that
receives a pull request cannot respond with a data frame itself, it will forward the
pull request to its incoming node(s).

Different to a traditional pull that returns a response, we use the push terminology to
indicate a response for a given pull. This behaviour and terminology are similar to
Akka Streams [178], but unlike reactive streams, where data can only be provided
when there is a demand, there is no back pressure built into the stream itself. Using
the push terminology for a pull response removes the ambiguity of a response
arriving after an already existing push in the pipeline. It also enforces the design
goal of producers having the highest priority, even if a producer only generates
information when requested.

A regular node has a unique identifier and push/pull functionality for data frames.
Each node can have 0. .. n inlets or outlets. Our system consists of the following
three subtypes of the regular node:

A SourceNode provides a specific data type. This can either be a push or pull
node that pushes data frames when they are available (e.g., a camera recording at a
fixed frame rate) or creates a new data frame when the downstream node asks for it
via a pull request (e.g., triggering a Bluetooth scan). The source node merges data
objects in the data frame with those that were previously stored via data services.
This merging behaviour prevents the need for feedback loops to gain knowledge on
previously calculated positioning data.

ProcessingNode is a higher-level interface of a regular node. It provides an
abstraction of the push and pull functionality to simplify the creation of a processing
function of either data frames or individual data objects. This allows developers to
focus on the processing aspect, rather than having to distinguish between push and
pull actions. The processing node can be related as a computing actor as defined
in our requirements.

An output node or SinkNode accepts a specific data type as an output frame.
Unlike processing nodes, this type of node will not push data to other nodes. Upon



3.7. GRAPH-BASED STREAM PROCESSING 97

receiving a data frame, the data objects will be stored using a compatible data
service. Once saved, an event is sent upstream to indicate that the processing of
this frame and its contained objects is completed.

Extensions of these nodes, allowing for specific data flow shapes and common
position processing nodes, are provided in our core component. Similar to existing
streaming or pipelining frameworks, the graph can contain data flow shapes that
manipulate the flow of data frames. Examples of such shapes include, but are not
limited to, balance nodes, data frame chunking, debouncing and merging of data
objects and their processed positions.

Processing nodes can perform any algorithm that is relevant for calculating a
position or other related data. Modern positioning techniques often utilise deep
neural networks to train and process information. We developed the @openhps/tf
module that adds TensorFlow [180] models as services or individual nodes. A
neural network in itself is a graph, which is abstracted in OpenHPS as a graph
within a graph with some additional logic that transforms the input and output data
to neurons in a neural network.

=

ST

RS
o

3
e

]

e

—=
=2

==
A_Q

Figure 3.6: Illustration of a neural network within an OpenHPS processing node

Figure 3.6 illustrates this example by visualising a neural network with the pro-
cessing node of the positioning model. Our @openhps/tf handles the wrapping
of the neural network model to transform DataFrame’s and DataObject’s to input
neurons that aim to process this input data to a result. This result is merged with
the data frame before being pushed to the next node in the graph.

In Figure 3.7, data is being pushed by an active source node. Processing nodes
will process the data and push the modified frame to their output nodes. Push and
pull actions are promise-based and resolved whenever the node finishes processing
the frame. This allows for non-blocking asynchronous requests. The resolved push
promise (indicated in green) indicates that the processing of the push is finished.
However, it does not provide knowledge on whether or not the frame is processed
by the complete network. To indicate this, sink nodes that receive a frame will



98 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

emit a completed event that includes the data frame identifier and list of persisted
object identifiers.

Node #1 Node #2 Node #3 Node #4
SourceNode ProcessingNode ProcessingNode SinkNode

E push(data) E E E
E resolve push push(data’) E E
E E resolve push push(data") E
: S :

E E E resolve push

: : A :
E completed data" E< completed data" E< completed data" E

Figure 3.7: Data being pushed by a source node through the model

With the swim lane shown in Figure 3.8, the data is not automatically pushed by
the source node. A downstream node, such as a sink, will send a pull () request
to its input nodes. If these nodes cannot provide a frame of their own, the pull ()
request is forwarded to their respective input nodes. If the source has data available,
a response to this pull is provided asynchronously. As mentioned at the beginning
of this section, a pull () response will use the same invocation as a push(). In
that case, the pull promise is resolved right after the source sends this push, as
indicated by the blue resolve chain in Figure 3.8.

Node #1 Node #2 Node #3 Node #4
SourceNode ProcessingNode ProcessingNode SinkNode

i pull i pull E pull E

() '€ () » () .

push(data) ' ' '

: resolve pull resolve pull >E resolve pull :

i _ resolve push push(data') : '

: . resolve push push(data") :
: : i resolve push

I I S ;

:< completed data" 1 _ completed data" :< completed data"

Figure 3.8: Data being pushed by a source node after receiving a pull request



16

18
19
20
21

3.7. GRAPH-BASED STREAM PROCESSING 99

As promises are resolved after the data frame is processed by a node, upstream
nodes in the process chain cannot determine whether data has been processed
successfully. Figure 3.4 shows a push() request that throws an error at the sink
node (e.g., failure to store). An error event is triggered on a previous node(s). By
default, these nodes will chain the error to upstream nodes. However, each node
can act upon this error in its own implementation.

Nodes are implemented by developers on a high level of abstraction compared to
other stream processing frameworks. Developers cannot push or pull from specific
incoming or outgoing edges. Listing 3.10 shows two custom source nodes. The
pull-based source node on lines 1 to 7 implements the onPull () function that is
called whenever the source receives a pull () request. This function expects a
promise of a data frame. Internally, the extended source node class will push this
data frame as shown in Figure 3.8. With the push-based source (lines 9 to 22),
the onPull () is unused. Instead, a timer is created that pushes a new data frame
every 1000 milliseconds. A similar abstraction exists for sink nodes with the
onPush () function.

export class PullBasedSource extends SourceNode<DataFrame> {
public onPull(): Promise<DataFrame> {
return new Promise((resolve) => {
resolve(new DataFrame(this.source));
s
}
}
export class PushBasedSource extends SourceNode<DataFrame> {
constructor(source: DataObject) {
super(source) ;
this.on('build', O => {
setInterval (this._generate.bind(this), 1000);
B
}
private _generate(): void {
this.push(new DataFrame(this.source))
}
public onPull(): Promise<DataFrame> {
return Promise.resolve(undefined);
}
}

Listing 3.10: Push- and pull-based SourceNode classes

Similar to sources and sinks, processing nodes are abstracted. Any pull () requests
to these nodes are automatically forwarded to the incoming nodes, as these process



100 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

nodes do not generate new data frames. Developers are expected to implement a
process () function manipulating a frame or individual objects within a frame.

3.8 Data and Processing Services

Each positioning model can have multiple services. A service can be accessed by
all nodes in that model to perform certain general actions, ranging from commu-
nication services that handle the data between remote nodes, to data services that
store data frames, objects or other relevant information.

In the given example of Figure 3.1, three services are added for the storage of map,
user data and room information. In our implementation, sink nodes always store
data objects contained in received data frames. However, every node can fetch or
insert new data into available services. This persistence allows for the storage of
landmark objects, similar to the JISR-179 specification [66]. At the same time, these
services can be used as an interface to fetch the latest position without requiring a
specific implementation in the sink.

A data service serialises and stores information. By default, our core API offers
data services for storing the processed objects and their last known position. This
can also be used as a persistent storage for landmarks used in the positioning.
Additionally, node-specific data about DataObjects can be stored. This can be
useful for intermediate calculations by noise filtering algorithms or sensor fusion
techniques. Historical position data or trajectories of DataObjects may also
be useful for utilising historical information to more accurately determine a new
position. Drivers can be implemented for storing this information in specialised
databases such as MobilityDB [182].

Normal services in our framework include, but are not limited to a time service that
allows developers to synchronise the time between multiple machines, and a worker
service that acts as a (remote) proxy for data services. More advanced services, such
as a fingerprinting service, handle the processing of information between the online
stage and offline stage of a positioning system. The TimeService enables basic
clock synchronisation between (distributed) nodes. While this service currently
does not tackle latency issues in a distributed context, it is extensible to support
this in the future.

The positioning model can be created by using a builder pattern as illustrated in
Listing 3.11. This builder creates the immutable properties of the model, including
data services and the flow of data from source to sink. Models can have multiple
flow shapes, each with one or more sources, processing nodes and sinks.

Listing 3.12 shows examples of how a service can be retrieved from the model.
Nodes can retrieve a data service by providing either the class of an object, an



N

W =

3.8. DATA AND PROCESSING SERVICES 101

ModelBuilder.create()

.addService(/* ... */)
.addShape (GraphBuilder.create()

grom(/* ... */).via(/F ... */).to(/F ... %))
.build() .then((model: Model) => { /* ... */ });

Listing 3.11: Creation of a positioning model using OpenHPS

object instance or the class name of the object. This allows the use of different data
services for different types of DataObjects.

this.model. findDataService(DataObject); // Find by object class
const myObject = new DataObject("Maxim");
this.model.findDataService(myObject); // Find by object
this.model.findDataService("RFDataObject"); // Find by name

Listing 3.12: Retrieving a data service from a model

3.8.1 Querying

Data services support querying to retrieve specific data frames or objects. Querying
data in OpenHPS uses the MongoDB syntax [166] for writing queries, which makes
use of the properties in the data to select the appropriate data.

{ displayName: "Maxim" }
{ "position.x": { $gt: 10, $1t: 20 }}
{ $or: [{ displayName: "Beat" }, { displayName: "Maxim" }] }

Listing 3.13: MongoDB query syntax examples

Listing 3.13 illustrates three examples of MongoDB queries. In the first example,
a data object is selected based on its display name. In the second example, data
objects are selected where the X-value of the position is greater than 10 and less
than 20. Finally, the third example selects data objects that either have the value
“Maxim” or “Beat” for the display name.

This query syntax is used throughout the whole framework regardless of whether
MongoDB is used as the driver for storing the data. The default in-memory
driver of OpenHPS will interpret the MongoDB query syntax to retrieve the ap-
propriate objects in memory, while other drivers, such as our linked data module
(@openhps/rdf), which is further detailed in Section 4.3, transform the queries to
other query languages such as SPARQL.



102 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

3.8.2 Post-processing Data

Data services can be used to persist information such as data frames and objects.
The data of these objects is often processed by nodes within the processing graph.
However, in some cases, the data processing requires a large set of other relevant
information that is not present within a data frame. In Section 2.3.2 of our back-
ground chapter, we detailed how fingerprinting uses an online and offline stage.
During the offline stage, fingerprints are collected and processed, while the on-
line stage uses these processed fingerprints to determine a position. While our
primary goal is to store data, this data requires processing using the complete set
of information (i.e., fingerprints).

Fingerprint

Node

S —
— - - Fingerprint
Storage X

Offline
Stage

Fingerprint
Node

Online
Stage

Figure 3.9: Fingerprinting service used in the offline and online stage

To solve this issue, a processing service is introduced that processes the data
before storing it using an appropriate data service. Figure 3.9 illustrates how
two processing graphs each have a fingerprint node. In the offline stage, this
node extracts the features from the data frame (e.g., RSSI readings) along with the
recorded location where these features were captured. These features are sent to the
FingerprintService, which collects the data and processes it into a fingerprint
database. During the online stage, the same service is used by a specific fingerprint
algorithm to retrieve the processed fingerprints. An elaborate example of this
fingerprinting service is available in Section 6.3.

3.8.3 User Actions

User actions are often steps that cannot be easily integrated into the existing un-
managed pipeline of sensor data. In OpenHPS, individual procedures or nodes do
not affect the speed at which the source node provides data. Often, users need to
calibrate sensors by performing actions that could block the flow of data. In our



3.9. LOCATION-BASED SERVICE 103

unmanaged pipeline, this would drastically slow down the processing unless the
developer implements nodes to circumvent this blockage.

\ /
S v 1 ( v p
storage| . Calibration ::>
- => Service

Figure 3.10: User action service to calibrate a sensor

Our solution to these user actions, as illustrated in Figure 3.10, is a calibration
node and calibration service that serve the purpose of both the offline stage and
online stage in a positioning system. When calibration data for a particular sensor
(i.e., SensorDataObject) is present in the service, the calibration node can per-
form the necessary processing of the raw sensor data before pushing the data to
the next node. An application that implements the positioning system can use the
service to request the user to calibrate a specific sensor. Depending on the sensor,
the user will have to perform a set of actions that store calibration data for this
sensor. Other similar services exist for use cases such as user authentication.

3.9 Location-based Service

To provide developers with an easy way to access the location data of users and
objects, a location-based service (LBS) provides a simple application interface to
retrieve the current position and a method to watch for changes in a position. In a
stream processing network, it is more difficult to keep track of the changing location
of objects due to the process centric approach rather than a data centric approach
which is usually used in location-based services.

In OpenHPS, we create a service that works independently from the process network
to offer developers a LBS interface that interacts with the process network behind
the scenes. This service provides an interface similar to the Geolocation API [64].
Figure 3.11a illustrates the retrieval of the current position of an object through
the persisted data service or by pulling the graph. When no up-to-date position
is available for a particular object, the pull triggers an update of this information.
Setting the current position of an object involves updating the persisted data service,
as shown in Figure 3.11b. Watching for changes in the position of an object



104 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

getCurrentPosition("me",
{maxAge: 3600})

S — S ——

A '
~ .

setCurrentPosition("me", ...)

(a) Retrieve the position through the (b) Set or update the current position
cache or by pulling the sink of an object by modifying the cache
watchPosition("me", ...) watchPosition("me",

{ maximumAge: Infinity })

—_ S —

(c) Watch for changes in the position (d) Watch for changes in the posi-
by monitoring the cache or by pulling tion by monitoring the cache when the
the graph maximum age is not important

Figure 3.11: Common LBS functionalities implemented in OpenHPS

can be done by monitoring the data service or pulling the graph when the data
becomes outdated, as depicted in Figure 3.11c. In cases where the maximum age is
irrelevant, monitoring the cache may be sufficient without requiring a pull, as shown
in Figure 3.11d. These functionalities of the LBS service in a stream processing
network provide developers with an easy way to interact with the network without
manually pulling the graph to retrieve information.

3.10 Modularity

One of the non-functional requirements of the OpenHPS framework is its modu-
larity. Due to the genericness of the framework, domain-specific functionalities



3.10. MODULARITY 105

such as processing nodes for specific positioning techniques can easily cause a
large and unmaintainable library. To solve this, we have split OpenHPS into a
core component (@openhps/core) and various additional modules that provide
more functionalities to the framework, such as additional data storage methods,
algorithms or interfaces with hardware.

Abstractions
(e.g., location-based services)

A
\ 4

Data Storage

¥ 4 (e.g., MongoDB)
Communication Positioning Techniques |
(e.g., socket connection) (e.g., fingerprinting) v
A 4 A 4 A 4

Core Component

Figure 3.12: OpenHPS module stack

Figure 3.12 shows the module stack with the core component and additional mod-
ules linking to the core. Our four main module types are communication modules,
which enable different methods to transmit information from one node of the graph
to the other. This way, developers can create client-server applications that transmit
information or create load-balancing graphs that distribute workload over multiple
servers. The second type of modules is the positioning techniques and algorithms.
Our core component contains various built-in features such as multilateration al-
gorithms, but does not provide specific algorithms to create fingerprints or calculate
a distance from RSSI. Next, we have the abstraction layers that mainly facilitate the
use of the functionalities of the core module. This can be a location-based service
that provides easy-to-use events or abstractions, such as the geospatial module that
provides concepts for buildings, floors and rooms.

All the prominent modules that were created and released during our research
are listed in Figure 3.13. In addition to the four module categories, we also
created several miscellaneous modules to interface with other platforms such
as Web APIs or hybrid mobile frameworks such as Cordova’, React Native®,
NativeScript” and Capacitor®. Apart from the modules listed above, we also de-
veloped OpenHPS modules that were released as part of other projects. These
modules include @sembeacon/openhps® and @fidmark/openhpsO.

Shttps://cordova.apache.org

Shttps://reactnative.dev

7https://nativescript.org

8https://capacitorjs.com
https://github.com/SemBeacon/openhps
Ohttps://github.com/OpenHPS/FidMark/tree/main/openhps


https://cordova.apache.org
https://reactnative.dev
https://nativescript.org
https://capacitorjs.com
https://github.com/SemBeacon/openhps
https://github.com/OpenHPS/FidMark/tree/main/openhps

106 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

Data Storage Abstractions Positionlng Techniques
o e
N

[ @openhps/csv { @openhps/mongodb } {@openhps/geospatlal} @openhps/video } @openhps/opencv

[@openhps/localstorage { @openhps/rdf J

K
[ @openhps/dht }

-[ @openhps/solid J @openhps/rf J

-
[ @openhps/imu } { @openhps/openvslam }
{ { @openhps/tf J

[ Qopenhps/core ] @Ope"hPS/flﬂgerPrlntlng] [ @openhps/matlab

Miscellaneous

Communication
e e

-

T T
] [
[ 1
1 1
1 [l
1 1
1 1
1 1
1 \

\

5
[ @openhps/protobuf J [ @openhps/mqtt J {@openhps/natwescmpt} { @openhps/web* }
1 1

N

[ @openhps/kafka J [ @openhps/socket {@openhps/react natlveJ {@openhps/capamtor*

Qopenhps/rest [ @openhps/cordovax ] [ @openhps/sphero ]

Figure 3.13: OpenHPS modules

Various implementations of positioning systems rely on server-side and client-side
processing of sensor information. We developed a prototype where the server
computes the position based on transmitted sensor data and data stored on the
server. The client performs edge computing to enable more accurate position
estimates while waiting for the server to compute the data.

OpenHPS as a framework itself is written in TypeScript, which requires a JavaScript
engine. However, we created several modules, such as an MQTT module or
Apache Kafka module'?, which allow low-power hardware such as an ESP32 or
Arduino to communicate with other processing nodes using the MQTT protocol.
Using the serialisability of data, we can easily support communication between
these low-power devices and more powerful servers or computation nodes. This
allows for distributed processing and data exchange between different types of
hardware.

3.10.1 Web-based Modules

Sensor data is one of the primary sources of information for positioning systems.
In OpenHPS, we developed modules for interfacing with the sensor data of various
platforms. However, with our aim for interoperability, creating new modules for
every platform is not sustainable in the long run. The W3C community is slowly
providing more and more access to sensor data via web applications. However, due

Uhttps://openhps.org/docs/mqtt/
2https://openhps.org/docs/kafka/


https://openhps.org/docs/mqtt/
https://openhps.org/docs/kafka/

3.10. MODULARITY 107

to privacy concerns, this access is often limited and aims to mitigate the possibility
for these sensors to be inadvertently used for tracking users!3.

Despite these limitations, our platform-specific modules focus on interfacing with
Web APIs, providing additional contextual information in platforms capable of
retrieving more information from sensors. Our web-bluetooth module uses the
Web Bluetooth Scanning specification [183], this specification offers scanning for
Bluetooth (Low Energy) devices. Discovered devices are uniquely identified using
an internal identifier to ensure that these discovered devices cannot be identified
across browsers or devices.

Figure 3.14: WebXR access to the computed depth data in OpenHPS

To access location data on the device, we provide a module which uses the
Geolocation API. This is a Web API that provides access to the position, regardless
of the technologies used to obtain this position [64]. The implementation of this API
may return GPS location data if this is available in the platform, but may also provide
location data based on the IP address. The module provides an active or passive
source node that retrieves all the available information from the Geolocation API.
More low-level sensor data can be obtained using @openhps/web-sensors, which
enables developers to access the gyroscope, accelerometer and magnetometer.

Bhttps://www.w3.0rg/TR/generic-sensor/#location-tracking


https://www.w3.org/TR/generic-sensor/#location-tracking

108 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

Modules such as @openhps/webrtc facilitate access to the camera feed and en-
riches the data with additional context needed to perform visual positioning. Fi-
nally, with @penhps/webxr, we facilitate access to raw data from the WebXR API.
WebXR offers web developers the opportunity to develop AR or VR applications
on the Web [171]. However, this data can also be utilised to develop positioning
systems. Figure 3.14 demonstrates an example of OpenHPS where raw access to
the depth data is provided. This information can be leveraged to perform visual
dead reckoning.

All the Web modules are available in the monorepo. Other modules, such as the
Capacitor]JS module, expand on these modules to enrich the data with additional
context, such as the MAC addresses of scanned Bluetooth devices.

Figure 3.15: Robot running OpenHPS with a socket server that provides an end-
point for the source node and sink node for the camera output (integration test of
the socket module in 2020)

By developing modules such as a REST server and client, and a socket connection
for OpenHPS, we also facilitated communication between the browser and web
server. Figure 3.15 illustrates an example of a robot with a source node that listens
for socket connections. In the browser, users can easily connect to this server to
broadcast data or movement instructions. This robot also has a sink node for the
camera output and the estimation of its position based on dead reckoning.

3.11 Performance

While OpenHPS mainly focuses on the prototyping of positioning systems and
the general abstraction of data and the systems themselves, we also focus on the
performance of using the framework in real-world applications. Performance was
evaluated in benchmark tests comparing the optimisations with regular processing
methods of OpenHPS.

For the conceptual design of interoperable and discoverable indoor positioning
systems, the performance of one system is less crucial. However, to validate that

Bhttps://github.com/OpenHPS/openhps-web


https://github.com/OpenHPS/openhps-web

3.11. PERFORMANCE 109

our processing pipeline represents a real-world scenario, as well as to validate that
the use of OpenHPS is viable for creating proof of concepts, we still consider
the performance of the framework to a certain extent. We developed OpenHPS in
TypeScript to enable cross-platform deployment of the system. This cross-platform
compatibility also comes at the cost of decreased performance, which is a balance
we have to find for the sake of portability.

3.11.1 Distributed Processing

Using our communication modules, such as MQTT, we can easily support distrib-
uted processing between different hardware nodes. By offloading computation to
multiple nodes, we can improve the overall performance of the system. This is
especially useful in scenarios where real-time processing is required and a single
node may not have enough resources to handle the load.

By default, as mentioned in Section 3.6, OpenHPS uses JSON to serialise trans-
mitted data. Modules such as @openhps/protobuf®® offer optimisations using
Protocol Buffers [184] to reduce the size of serialised data. This module analyses
all serialisable objects and data to produce a custom protocol that addresses objects
and fields using as few bytes as possible. This ensures that data can be transmitted
efficiently, but it requires both nodes to have prior knowledge of the generated
protocol. More details on the module are given in Appendix A.3.3.

3.11.2 Parallelism and Workers

Individual nodes or parts of the graph can be configured to run in parallel. De-
pending on the deployment, we use Web Workers [185] in the browser, and worker
threads with Node.js. The workers process data in the graph in a separate JavaScript
instance. Data frames, represented as JavaScript (JS) objects, are first serialised to
JSON before sending them to a worker. In the worker, they are deserialised to a
JavaScript object and processed by the processing nodes or graph that the worker
is responsible for. After the worker is finished, the output data frame is serialised
back to JSON and sent to the main thread, where it is deserialised before being
pushed to the next node in the graph.

Figure 3.16 illustrates the internal workings of a WorkerNode with a pool of
workers. A WorkerNode is a node within a graph on the main thread that spawns
and manages a pool of workers to parallelise one or more chained processing nodes.
Each worker in the pool performs the same task (i.e., one defined processing node
or graph). The processing of a data frame is performed by the first available worker
in the pool, and is only performed by that one worker. As depicted in Figure 3.16,
a data frame is pushed as a JS object to a WorkerNode. The node first serialises
the data to JSON in the main thread before sending this JSON data to an available

https://github.com/OpenHPS/openhps-protobuf


https://github.com/OpenHPS/openhps-protobuf

110 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

Legend
WorkerNode

Serialisation

O Deserialisation

@ ............. . Processing

\ Node
JavaScript \ Worker #N
(JS) Object ~ N T T - — === ——— -~

ﬁ push()

Figure 3.16: WorkerNode serialisation and deserialisation steps

worker. A worker has to deserialise the data (indicated as the red circle) before
processing it, and serialising and transmitting it back to the main thread. In the
main thread, the node will deserialise the data before pushing the JS object to the
next node in the graph. Workers have access to the services on the main thread for
nodes that require synchronisation. However, this feature was not included in the
benchmark detailed below.

We acknowledge that these two stages, in which data is serialised and deserialised
twice, result in overhead when processing data over multiple workers. Our decision
to rely on this serialisation is to ensure that nodes developed in the OpenHPS
framework are compatible throughout the framework, regardless of whether they
are used within a worker. To satisfy this, we must ensure that the data that is being
processed does not lose any context (i.e., types) when transmitted to a worker.

As a simple demonstration of our worker node, we created a processing node that
generates 5000 prime numbers for every received frame. This task was chosen for
its processing time and is not relevant for a positioning system. Each run of the
task will generate the same set of numbers, and the task is therefore not distributed
among nodes, and no synchronisation is needed between workers. This test was
conducted in the first alpha version of OpenHPS in 2020 using an Intel i7-6700HQ
laptop CPU with 8 logical cores, running Node.js 14.10. These 5000 prime
numbers can be generated 237.03 times per second without the overhead of data
frames, objects and services. The data frames that we push contain a source
object, position and velocity to simulate the amount of data normally serialised
and communicated between the main process and workers. However, the contained
data does not affect the time it takes to execute the task.

Each data frame was populated with dummy data objects, positions and orientations
to simulate real-world conditions. The benchmark aims to showcase that the
processing of multiple consecutive frames can be parallelised over multiple nodes.
Such a scenario occurs when processing data from multiple users who need to
be tracked independently from each other, which is one of OpenHPS’ strengths
compared to frameworks such as ROS [61] that only track one robot/object. Since



3.11. PERFORMANCE 111

the data has to be serialised and deserialised on the main thread, this becomes
the bottleneck in the processing of frames, as indicated by the non-linear speed-
up. Table 3.1 shows the results of our benchmark with one worker assigned to
each logical CPU core. Performance is measured in frames per second (FPS)
represented by the amount of processed data frames received by the sink of our
model. For each individual worker, we indicate the speed-up compared to the
sequential implementation. The overhead shown with a single worker is due to
the serialisation and deserialisation of data, an operation that is not required when
pushing in a sequential network.

A warm-up initiated each test to prepare the spawned web workers (i.e, nodes).
For each test, 100 frames were created and pushed through the worker node. Tests
were conducted 100 times (each with a warm-up) to determine the average frames
per second. The standard deviation is the error (in frames per second) of those
100 runs.

#workers (#w) | FPS | Deviation | Speed-up
Sequential 229.04 1.19% -
1 200.74 0.67% 0.88
2 389.44 0.56% 1.70
3 512.42 0.92% 2.24
4 616.29 1.15% 2.69
5 671.00 0.59% 2.93
6 746.07 0.67% 3.26
7 801.32 0.90% 3.50
8 822.47 0.69% 3.59

Table 3.1: WorkerNode benchmark

Newer versions of OpenHPS offer serialisation optimisations which may affect the
performance benchmarks. In Table 3.1, we can observe a clear trend of increasing
performance as more worker nodes are utilised. The speed-up values indicate the
improvement in computation speed compared to the sequential implementation. It
is important to note that the overhead introduced by serialisation and deserialisation
is also reflected in the results, as seen in the drop in FPS when moving from
sequential processing to using a single worker.

In 2025, we performed the benchmark again, this time with a second task that has
increased complexity. Our aim with this new benchmark was to showcase that the
serialisation and deserialisation in the main thread is the bottleneck that prevents
linear speed-up. The tests were performed on an AMD Ryzen 9 5900X with 12
cores. Similar to the previous test, 100 frames were pushed, with each run being
executed 100 times. Our speed-up results are shown in Figure 3.17 with our data
being showcased in Tables 3.2 and 3.3. From our results, we can observe that



112 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM

5
Q.
e Test
b 5000
Q3
8 —e— 10000

1 2 3 4 5 6 7 8 9 10 11 12
# Workers

Figure 3.17: Speed-up of two different tests (5000 and 10 000 prime numbers)

as the task becomes more complex (generating 10 000 prime numbers for each
frame instead of 5000), the speed-up becomes more linear with the serialisation
and deserialisation in the main thread having a more minimal impact on the total
duration. From the results in Table 3.3, it can be observed that the speed-up does
not increase linearly with the number of workers. This is most likely due to the
remaining bottleneck of the WorkerNode that still has to serialise and deserialise
the data in the main thread, regardless of the throughput of the workers.

#w FPS Deviation | Speed-up #w FPS Deviation | Speed-up

Seq. | 654.33 0.19% - Seq. | 223.52 0.48% -
1 98.05 6.53% 0.15 1 81.44 2.18% 0.36
2 330.19 2.68% 0.50 2 232.76 2.25% 1.04
3 685.68 1.06% 1.05 3 379.16 1.30% 1.70
4 1042.68 0.42% 1.59 4 530.38 0.72% 2.37
5 1400.12 0.34% 2.14 5 691.02 0.39% 3.09
6 1758.73 0.09% 2.69 6 851.18 0.20% 3.81
7 2052.77 0.11% 3.14 7 1004.25 0.17% 4.49
8 2291.66 0.10% 3.50 8 1160.47 0.14% 5.19
9 2498.52 0.11% 3.82 9 1288.46 0.18% 5.76
10 2670.44 0.14% 4.08 10 1398.37 0.18% 6.26
11 | 2796.87 0.15% 4.27 11 1492.94 0.17% 6.68
12 | 2878.37 0.17% 4.40 12 | 1520.57 0.36% 6.80

Table 3.2: Benchmark for 5000 prime Table 3.3: Benchmark for 10 000
numbers per frame prime numbers per frame



3.12. DISCUSSION 113

3.11.3 Native Library Bindings

Algorithms that require a lot of computational power, such as computer vision
algorithms, already have a lot of libraries available that focus on performance. In
OpenHPS, we provide native bindings to these libraries, allowing developers to
easily integrate them into their positioning systems without sacrificing perform-
ance. In the case of our @openhps/opencv module, which adds bindings to the
OpenCV library [186], we only include a memory pointer to images within the
data frames that are pushed through our process network.

3.12 Discussion

In this chapter, we presented OpenHPS, an open-source framework for developing
hybrid positioning systems. We started by defining the framework requirements in
Section 3.2, where we also introduced our system actors: a tracked actor, tracking
actor, calibration actor and computing actor. Two of our main requirements were
for positioning systems developed with OpenHPS to run in de decentralised context
and for OpenHPS not to be designed for one specific platform.

Using the requirements and actors, we created a data structure that can be applied to
various positioning systems. This data structure transfers data through a processing
network represented as a graph. Our implementation of this data structure and graph
representation was made in a TypeScript framework. Due to the serialisability of
the data structure, we can ensure that parts of the processing network can run
distributed over multiple workers, both local as well as remote. This ensures
that the framework is scalable and can run on different types of hardware setups.
TypeScript also enables us to develop positioning systems that work on the Web,
on smartphones, on servers or even on embedded devices.

We conducted a benchmark to evaluate the performance of our framework with
different numbers of worker nodes assigned to each logical CPU core. The res-
ults showed a clear trend of increasing performance as more worker nodes were
utilised. The speed-up values indicated the improvement in computation speed
compared to the sequential implementation. However, we also observed overhead
introduced by serialisation and deserialisation of data, which impacted the per-
formance, especially when moving from sequential processing to using a single
worker.

Note that in Chapter 6, we provide several examples and use cases where OpenHPS
is used in combination with other contributions discussed in the dissertation. Fur-
thermore, we utilised the results of the data structure defined with OpenHPS to
further define a generic data structure of positioning systems in an ontology, which
is detailed in Chapter 4.



114 CHAPTER 3. AN OPEN-SOURCE HYBRID POSITIONING SYSTEM




Data is a precious thing and will last longer
than the systems themselves.

— Tim Berners-Lee

Chapter 4

Interoperable Positioning Systems

Interoperability of data is defined as data that can be accessed, read and above all un-
derstood by data processors other than the one that generated the data [107, 17, 18].
It is a concept introduced in the early days of computing [187]. Back in the
early 1960s, interoperability was more broadly defined as a means to enable com-
puters to work together, which was an issue with the first network-connected data-
bases that each required their own protocols to extract or insert data. Over the
years, interoperability has evolved to encompass various levels and types of data
exchange between systems, including syntactic, semantic and process interoper-
ability [30, 108, 109, 110]. Syntactic interoperability ensures that data can be
exchanged and interpreted correctly between systems, while semantic interoperab-
ility focuses on ensuring that the exchanged data is understood in the same way by
different systems without ambiguity. Process interoperability goes a step further
by ensuring that the processes involved in handling the data are also compatible
and both syntactically and semantically interoperable. These different levels of
interoperability are essential for the seamless exchange of positioning data.

Forcing interoperability on applications, including services and systems such as
indoor positioning systems, helps to preserve the data these systems produce. The
quote from the founder of the Web, Tim Berners-Lee, at the beginning of this chapter
fits well with this goal, since the data these systems produce is more valuable than
the systems that produced them. With artificial intelligence and machine learning
becoming more prevalent in the field of indoor positioning systems, the need
to collect and understand data needed for training the next generation of indoor
positioning systems becomes the next challenge.

115



116 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

Definition 5: Interoperable Positioning System

We define an interoperable positioning system as a hybrid or integrated
positioning system that can consume and produce data in a way that enables
other systems and services to access, read and understand this same data
without ambiguity.

In the context of positioning, we define interoperable positioning systems in Defin-
ition 5 as systems that produce data (e.g., a position or orientation) that can be
accessed by other positioning systems and can be read and understood by those
systems. In addition to creating interoperable data, these systems should also be
able to describe themselves to provide more context on how the data that they
provide is computed or processed. Knowing the system that generated the data
enables semantic reasoning about the quality or usefulness of the data.

Designing interoperability for positioning systems allows any positioning system
to make use of data from other technologies. This entails that interoperable po-
sitioning systems should also be considered hybrid systems, as the underlying
technologies may come from one or more data sources and may combine different
algorithms.

4.1 Methodology

Our methodology for designing interoperable positioning systems is based on the
requirements defined in Chapter 3. In these requirements, we specified that a
generic, or more specifically, hybrid positioning system should run on various
platforms and support a wide range of algorithms. Using these requirements and
our preliminary research detailed in Section 2.4.3, we have chosen to design our
interoperable positioning systems using the Semantic Web. The Semantic Web,
or more specifically linked data, offers a way to represent and exchange data in
a standardised and interoperable manner. By using ontologies and vocabularies
to define the meaning of data elements, we can ensure that data produced by a
positioning system can be easily understood and utilised by other systems. Further-
more, by leveraging existing semantic technologies such as RDF and SPARQL,
we can enable seamless integration and querying of data from different sources
without implementing new proprietary protocols.

To enable this, we have split our design for interoperable positioning systems into
three contributions: (contribution 1) a generic positioning system ontology for
describing different positioning technologies and data, (contribution 2) a serialisa-
tion framework for mapping our generic OpenHPS framework to RDF data, and
(contribution 3) a solution for enabling transparent data exchange using personal
data vaults.



4.2. POSITIONING SYSTEM ONTOLOGY 117

Our design of a generic positioning system ontology is similar to the Linked Open
Terms (LOT) methodology [188]. However, the LOT methodology design for
ontologies was only published after we started with our ontology design. The
terminologies and generic concepts we defined are based on existing specifications
and were already investigated in research question RQ1, previously discussed in
Chapter 3. Our solution for decentralised data exchange (contribution 3) was chosen
based on our preliminary investigation. In this investigation, we explored various
solutions such as OpenLS [112] and SemanticLLBS [113], which offer decentralised
location-based services. However, these solutions were service-centric and did not
fully meet our requirements for transparent data exchange between interoperable
positioning systems. Thus, we propose using decentralised personal data vaults as a
solution to enable user-centric interoperable positioning systems. Our serialisation
framework in (contribution 2) is meant to provide a mapping of the already defined
input and output data of hybrid positioning systems to our generic positioning
system ontology (contribution 1). This mapping also offers validation of the
completeness of our ontology.

We also validated our ontology through ontology alignments and extensions. Align-
ments enabled us to verify whether our ontology can be integrated with existing
and commonly used ontologies available on the Semantic Web, while the exten-
sions allowed us to verify that our generic positioning system ontology was generic
enough to enable extensions. Our solution for user-centric, interoperable position-
ing systems was validated through a proof-of-concept application that incorporates
three different types of implementations. This proof of concept is further detailed
in Section 6.4.

4.2 Positioning System Ontology

With research question RQ2, our goal is to design interoperable positioning systems.
In Definition 2, we defined an interoperable positioning system as a hybrid or
integrated positioning system that enables other systems and services to access,
read and understand this same data without ambiguity. To achieve this goal and
to aid with the interoperability of positioning data and the processes involved
in computing this data, we designed the Positioning System Ontology (POSO)
along with several extensions that add additional semantic terminology to describe
different types of positioning systems and techniques.

In Figure 4.1, we provide a general overview of a positioning system and related
components. A positioning system is deployed at a particular location or area that
is meant to be covered. This can be a building, an area outdoors or even a location
on a game board that does not have to be mapped to any geographical boundaries.
Each positioning system uses a set of algorithms and technologies to help compute
a position. Finally, with positioning systems modelled based on POSO, we aim to



118 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

_eE T

Deployment Positioning Algorithms &
e System Technologies
f A
1

_ 1

Tracked in Properties obtained

a deployed system using technologies
|

\
\ |
S
<. 0@ —
Reference Tracked Entity
System Entities Properties

Figure 4.1: Basic structure of a positioning system that tracks entities

track the position, orientation and other properties of one or more entities. These
properties can be anything that is of relevance to the system and are obtained
using the techniques implemented by the positioning system. Spatial properties
of a tracked entity are located within the deployment using an optionally defined
reference system.

4.2.1 Ontology Design

We first searched for existing ontologies that could potentially serve as a basis for
describing positioning systems. We used academic research as well as the Linked
Open Vocabularies (LOV) [189] in combination with common terminologies.

Based on our investigation of existing ontologies, we designed POSO with the
Semantic Sensor Network (SSN) as a top-level ontology [130] together with the
Sensor, Observation, Sample and Actuator (SOSA) ontology [131]. Combined,
SOSA and SSN provide an ontology for linking sensors, actuators, observations,
samplers (i.e., a device to transform a sample) and the systems needed to process
this sensor data into an output.

Our design decision to use SOSA and SSN was based on their generality to rep-
resent systems and the flow of information within such systems. In general, po-
sitioning services are often part of a larger system as a whole. SSN offers the
ability to describe a positioning system and utilise this description as a subsystem



4.2. POSITIONING SYSTEM ONTOLOGY 119

(ssn:hasSubSystem). Likewise, hybrid or integrated positioning systems that
perform fusion of multiple smaller (positioning) systems can utilise the design of
SSN to identify the subsystems that are being integrated. Furthermore, the popular-
ity and widespread use of SSN and SOSA makes it a suitable choice for achieving
interoperability among different positioning systems. Finally, the ontology is co-
edited by the Open Geospatial Consortium (OGC), making it a potential candidate
for future alignment with existing geospatial standardisations.

Deployment

Procedure E Observ%x?m/ﬂgruarr‘un/Samnlr'ng
H ~
H
E isObservedBy observes
I [(sensor Jemmmmmmom e »{ ObservableProperty
H
»  usedProcedure i madeBySensor! ]
| '
= -;>_>;_: 7 _ .~ "observedProperty

- .
~ /
~. s madeObservation
Y]

X

Resuilt, =T
xsd:dateTime [¢-----------===--1 Observation At ettt FeatureOflnterest
resultTime .-~ isFeature OfinterestOf hasFeatureOfinterest
'
. . -7 T\\\sResu\tOf
time:TemporalEntity [4--~ 1
phenomenonTime 1 AN

1 \\\
hasSimpleResult L hasResult

rdfs:Literal Tl ->

Figure 4.2: Main SOSA classes [190]

Figure 4.2 illustrates the main classes of the SOSA ontology from an observation
perspective. Observations of information are made by sensors that observe certain
properties. These observations may be obtained using a set of procedures which
are part of a system.

To validate that SOSA was extensible enough to accommodate the description
of a positioning system, we first designed a proof of concept using SOSA in
Section 6.4. In this proof of concept, we demonstrated how we could leverage
SOSA for describing a positioning system.

SOSA and SSN provide a stable core ontology that could enable the modelling of a
positioning system with its deployment, the used sensors, procedures, entities and as
well as the observable properties of those entities. However, as these ontologies are
meant to be used as core ontologies, they do not offer any semantics for expressing
the accuracy of individual observations, the different types of algorithms that are
relevant for positioning or how the results should be represented to be interoperable.

Our POSO ontology has been designed with the common data requirements of
various positioning system technologies [54, 2], datasets [191, 192, 193] and frame-
works [33, 160, 61] in mind to cover all types of systems without over-complicating
the modelling of the data. In Sections 6.4, 6.6, 6.7 we provide several proof of
concept implementations that demonstrate the use of POSO in various scenarios.



120 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

ssn:System

1
g R

ssn:Sampler sosa:Sensor sosa:Procedure sosa:0bservableProperty

— — — —

) 8 — O

Figure 4.3: Example mapping of a positioning system to SSN and SOSA

Figure 4.3 illustrates how we map a generic positioning system to the SSN and
SOSA ontologies. In the illustration, a system is a broad concept that can describe
anything from a positioning system to a thermostat. To ensure that a positioning
system is more specifically described, the POSO ontology acts as an intermediary
layer that connects the specifics of a positioning system to the more generalised
concepts provided by SSN and SOSA. The complete system is represented by all the
samplers, sensors and procedures that output computed data. This computed data
is defined as observable properties and is detailed in Section 4.2.2. The procedures
depicted as sosa:Procedure(s) in Figure 4.3 will be discussed in Section 4.2.4.

4.2.2 Observable Properties

With our POSO ontology, we aim to support concepts for defining a generic posi-
tion, orientation, velocity, acceleration and the sampling of this data. We extended
the sosa:0bservableProperty to express different types of position, orienta-
tion, velocity and acceleration. For expressing observation-based sensor data, we
use the SOSA ontology together with the QUDT ontology for expressing Units
of Measure, Quantity Kinds, Dimensions and Data Types [194]. Each observable
property defined in POSO can also be used as a result within a SOSA observation,
with a set of predicates that express the result. This enables expressing a fixed pos-
ition of a feature of interest as shown later in Listing 4.6. The proposed vocabulary
should support the following three main goals:

* Sensor fusion: High- and low-level sensor fusion should be possible based
on the data [102]. High-level fusion, also called decision-level fusion, con-
sists of merging processed data from multiple sources, while low-level sensor
fusion is the use of multiple sources of raw sensor data. Both fusion levels
require additional knowledge of how the data has been obtained and its qual-
ity. In the context of high-level fusion in a positioning system, the additional



4.2. POSITIONING SYSTEM ONTOLOGY 121

semantics include the accuracy as well as the techniques used to obtain the
data. Using this knowledge, other systems can prioritise the observations to
be used.

» Historical data: Positioning systems make use of previous information to
predict future movement [195]. These predictions can be used to improve
the calculation of the next position. To support this technique, historical
positioning data should be available.

* Granularity: The position of an entity should be offered with varying ranges
of granularity without causing conflicts with the decision-level sensor fusion.
This enables use cases where observations of a minimum or maximum
accuracy can be separated in a different triple store, further enabling access
control to these individual stores.

In addition, we want observable properties to be extensible in the future. This
enables other vocabularies to extend these properties with additional details specific
to their domain, while still maintaining compatibility with POSO. By defining a
set of common observable properties that cover a wide range of positioning data,
we ensure that different systems can easily integrate and communicate with each
other. In the following sections, we will delve into the implementation of POSO
and the different types of observable property classes we provide.

Absolute and Relative Positioning

When working with absolute positions in a geographical coordinate system, we
make use of GeoSPARQL’s geographical position representation by the Open
Geospatial Consortium (OGC), which supports GeoJSON, Well-known Text Rep-
resentation (WKT), Geography Markup Language (GML) and other representa-
tions [117, 70]. However, for absolute positions that should not be expressed as
geometric coordinates, we use the QUDT ontology [194] to express Cartesian
coordinates. POSO provides the concepts of :xAxisValue, :yAxisValue and
:zAxisValue to express a qudt:QuantityValue in two or three dimensions.

Despite using simple Cartesian coordinates for a non-geographic position, a ref-
erence frame is still required to indicate how the Cartesian coordinates relate to
each other. Similar to a reference frame in a geographical context, the reference
frame allows the 2D or 3D position to be converted to other reference spaces such
as a geographical context while still enabling the use of a positioning system that is
only meant to operate in a specific context (i.e., an engineering reference frame as
defined in ISO 19111 [196]). Defining a reference system is already well covered
in GeoSPARQL [167]. To define the reference system of a sosa:Result, the
:hasSRS or :hasCRS properties can be used.



122 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

For expressing a location that is covering a less specific, larger 2D or 3D area,
we still request the use of an absolute position, but provide the ability to indicate
the accuracy as either a one-dimensional (i.e., distance) or polygonal coverage.
Accuracy may be used by processing algorithms to determine the reliability of the
data and make informed decisions based on it.

Orientation

As detailed in Section 2.1, orientation is an important aspect of a positioning
system. It not only offers the final state of direction after a rotation of an object or
person, but is also required by many positioning algorithms to determine a position.

As we aim to create a generic ontology, we have chosen to support any concept
that can identify the orientation around three axes. POSO provides three ex-
tensions of the :Orientation class, including an EulerOrientation class,
AxisAngleOrientationandQuaternionOrientation. For Euler orientations,
we provide the concept of pitch, roll and yaw as well as the order in which the Euler
orientations should be applied. In addition to Tait-Bryan Euler angles, we provide
concepts to describe proper Euler angles [197].

Velocity and Acceleration

Active positioning systems make use of an object’s velocity to determine a position
and orientation based on its momentum. This procedure, called dead reckoning,
uses an entity’s last known location together with its angular and linear velocity
to determine the new position and orientation at a later timestamp. POSO adds
the concept of :Velocity with :LinearVelocity and :AngularVelocity as
subclasses, as well as the momentary acceleration that is often returned by a
common inertial measurement unit (IMU).

4.2.3 Observations and Accuracy

Individual observations and different levels of granularity can be expressed for all
properties. SSN-Systems [198], an extension of the SSN ontology, supports the
description of a system’s properties, capabilities and conditions. While this enables
the semantic description of the potential properties (i.e., accuracy, precision and
operating environment) of a positioning system, it does not provide information
on the individual observations. For a positioning system, the spatial accuracy can
vary depending on the implemented procedure, the amount of sensor data, as well
as the accuracy of that data.

The accuracy of any observation can be expressed via :hasAccuracy, a sub-
property of ssns:qualityOfObservation! that can be applied to an observa-

Issns: is the prefix for SSN-Systems [198]



4.2. POSITIONING SYSTEM ONTOLOGY 123

tion or individual result. Alternatively, for expressing the accuracy of spatial
data (i.e., absolute or relative position), the ogc:hasSpatialAccuracy from the
GeoSPARQL 1.1 draft [128] can be used to express a QUDT quantity value. Fur-
ther, to express the aimed accuracy of an observable property, the ssns:Accuracy
class can be used to indicate that the accuracy applies to the position.

Creating an observation for every calculated position provides context on historical
data that can be used. The semantics of trajectories, such as segmentation, map
matching and additional post-processing context [199] lie beyond the scope of
our positioning system ontology. However, as each observation is a momentary
timestamped result, they indirectly support the modelling of a trajectory space and
time path [200]. Despite being able to infer trajectories from a list of observations,
the overhead of describing these individual observations is significant. Future work
should analyse how we can better represent trajectories in RDF.

4.2.4 Positioning Algorithms and Techniques

The SOSA ontology describes a sosa:Procedure as a workflow, protocol, plan,
algorithm or computational method to make an observation, sample or change the
state of the world2. In a positioning system, we identify a procedure as a workflow
that processes sensor data to an intermediate result or observation.

A positioning system can use a broad range of techniques to calculate a posi-
tion. While it might perform generic processing on raw sensor data, semantically
describing the main techniques that are involved in the processing improves the
reasoning that can be performed on the sampled data as well as its priority for
decision-level sensor fusion. To illustrate this, we provide the example of an indoor
positioning system (IPS) that uses simple QR codes for room check-ins and an IPS
at the same location site that uses Bluetooth beacons. Without knowledge of the
techniques used to determine a position, the accuracy of the position at a given
time cannot be determined reliably. While the Bluetooth positioning provides a
continuous output with varying accuracy, the QR scanning only provides a very
high accuracy position when it is scanned, as the person will be near the code to
scan it.

Figure 4.4 illustrates the main classes in the POSO v1.1 ontology, consisting of
positioning techniques, observable properties and the different systems. Our initial
implementation can be found in Appendix B.1. In POSO, we subdivide a procedure
over multiple different main categories that are based on the work of Liu et. al [54]
and Gu et. al [2]:

* Cell identification: This covers all techniques that detect the position of an
object when it is close to an object with a known position. Existing solutions

2https://www.w3.org/TR/vocab-ssn/#SOSAProcedure


https://www.w3.org/TR/vocab-ssn/#SOSAProcedure

124

CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

- ; — | :
:'D rdfs:subClassOf ~ ‘---- poso:Orientation ! ! ,,,,, poso:Multilateration

sosa:FeatureOfInterest heee- | poso:SatellitePositioningSystem

ssn:System ssn:implements sosa:Procedure
!
:r --------- ! poso:LocationBasedService :r---{ poso:RadioPropagation ‘
|
H H
b ‘ poso:PositioningSystem ‘ :""‘ poso: SensorFusion ‘
H
: i
H P ! . q
:----‘{ poso: IndoorPositioningSystem ‘ :---{ poso:CalibrationProcedure

------ poso:IntegratedPositioningSystem poso:PositioningTechnique

E,,,,,,‘ poso:OpticalPositioningSystem ‘ ; ****

' -

:E- -------------- | poso: TrackedFeature ‘ ; I -----
--------------- ‘ poso:Landmark ‘ -

E ----- ‘ poso: InertialPositioningSystem

sosa:Result sosa:ObservableProperty E :r-» poso: VisualOdometry

b i H--| poso:agneticodometry
H :. ----- poso:RelativePosition e--- poso:Angulation
E - poso:AbsolutePosition f :.---- poso:Triangulation
t----|  poso:Velocity : Leees poso:Beamforming
' Angular and H
H Linear |
E poso:Lateration

<http://purl.org/poso/> E ----- poso:EulerOrientation E temnn- poso:Trilateration

ssn <http://www.w3.org/ns/ssn/> :r---- poso:AxisAngleOrientation fmmmne- poso: SLAM
sosa <http://www.w3.org/ns/sosa/> '-=--- poso:QuaternionOrientation teee- poso: VSLAM

Figure 4.4: Main POSO ontology classes

range from radio frequency proximity to implicit positioning, such as the act
of scanning a QR code at a known fixed location.

Dead reckoning: The movement of an object can be used to determine its
drift in space. This technique, called dead reckoning, can be a positioning
system on its own, identified as an inertial positioning system [46], but can
also form part of another technology such as Assisted GPS [48]. A subclass
of dead reckoning is odometry, which is a set of techniques that use sensor
data to detect the change in position. This can be sensor data from motion
sensors, visual observations or other environmental data such as magnetic
interference [201].

Fingerprinting: Scene analysis techniques such as fingerprinting, where
sensor data is matched to a grid of positions and can be used during the



4.2. POSITIONING SYSTEM ONTOLOGY 125

setup of the positioning system. Each scene analysis at a position is called
a fingerprint and is used during the online tracking stage to determine a
position. The sensor data will be matched to the fingerprint that most
closely resembles this data. POSO expresses a fingerprint as a subclass of
sosa:FeatureOfInterest under the term :Fingerprint that requires to
have a position to qualify as a fingerprint. This allows positioning systems
that make use of this scene analysis to semantically describe the system’s
setup.

* Simultaneous localisation and mapping: In simultaneous localisation and
mapping (SLAM), a sensor determines features that are tracked during move-
ment. By tracking these features, it can determine the drift while simul-
taneously using the features to construct a map of the environment [202].
SLAM can be subdivided into Visual SLAM [50] where image sensors are
used to track features as opposed to LiDAR sensors.

* Angulation: Angulation covers all angle-based positioning techniques such
as triangulation, which describes positioning techniques that use angles to
determine a position between two or more landmarks with a known position.

* Lateration: Lateration covers all distance-based positioning techniques such
as multilateration, which involves determining the position of an object by
measuring or approximating the distance from the object to multiple fixed
points with known positions and trilateration. Other than multilateration,
trilateration specifically uses three (for 2D) or four (for 3D) relative distances.

* Sensor fusion: To specify how multiple positioning systems or sensors are
used together, a sensor fusion procedure category defines procedures where
observations from multiple different (sub)systems are merged. This fusion
technique can further make use of additional available context.

A visual example usage of the POSO ontology is given in Figure 4.5 where a tracked
feature (:me) has a velocity, orientation and position as observable properties. A
single observation of a position has a specific result and is made by a certain
positioning system, in this case :0fficePositioning, which is a type of indoor
positioning system with a geographical coordinate reference system.

In the FidMark ontology [41], we extended the available algorithms and categories
to include pose estimation algorithms which are commonly used in computer
vision and robotics. As illustrated in Figure 4.6, we classify these pose estimation
algorithms as sub-classes of positioning techniques, while other algorithms, such as
marker detection, are sub-classes of generic procedures. Appendix B.2.3 provides
more information on other classes and properties in FidMark that are aligned with
the POSO ontology. Additionally, Appendix A.3.1 provides an example of the
FidMark ontology in the OpenHPS framework.



126 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

‘ poso:TrackedFeature ‘ :me/velocity rdfxype———i{ poso:LinearVelocity ‘

rdf: type

poso:hasVelocity
poso: hasOrientationrdF:type%{
poso:hasPosition

sosa:hasFeatureOfInterest

——— rdmype

sosa:observedProperty’

poso:Orientation ‘

poso:AbsolutePosition ‘

poso: hasAccuracy

sosazhasResult :me/position/accuracy rdf : type ssns:Accuracy
poso:madeBySystem
. T 1
sosa:Observation ! _: ' rdf : type
|
|

rdf: type

:0fficePositioning rdf : type I poso: IndoorPositioningSystem

p0so: hasSRS ( http://www.opengis.net/def/crs/0GC/1.3/CRS84

Figure 4.5: POSO example usage

4.2.5 Common Algorithms and Systems

The poso-common alignment module provides individual common positioning
algorithms, systems and data used in positioning systems categorised under the
classes defined in POSO. It describes seven satellite positioning systems [47];
known platforms such as IndoorAtlas3, AnyPlace [160], Robot Operating Sys-
tem (ROS) [61] and our own OpenHPS framework along with individual algorithms
for common positioning techniques. With the provided poso-common alignment
module, we want to offer a foundation of algorithms and techniques that can easily

3https://www.indooratlas.com

[poso:PositioningTechnique]

fidmark:PnPPoseComputation
rdfs:subClassOf "Perspective-n-Point (PnP) pose computation”
ssn:Output

rdfs:subClassOf

fidmark:PoseOutput

Figure 4.6: Pose computation procedures in the FidMark ontology

A

fidmark:AP3PPoseComputation
"Algebraic Perspective-Three-Point (AP3P) pose computation”

fidmark: IPPEPoseComputation
"Infinitesimal Plane-Based Pose Estimation (IPPE)"

3ndingsey:uss
10SSeTIgns :s4pd

IR



https://www.indooratlas.com

© N ;R W N =

= 2

4.2. POSITIONING SYSTEM ONTOLOGY 127

be used to describe complete positioning systems. Future work should focus on
expanding these algorithms, along with more detailed descriptions of their input
and output shapes. In a hybrid or integrated positioning system, the use of these
common algorithms can provide insights into what observations to use in the fusion
process.

4.2.6 Demonstration

To demonstrate the use of POSO to semantically model multiple positioning sys-
tems, we provide an example of a campus positioning system for the indoor as well
as outdoor tracking of students. Our fictional setup consists of three individual
systems: an outdoor positioning system using GPS, an indoor positioning system
using Wi-Fi fingerprinting and a hybrid position system that makes use of the indoor
and outdoor tracking subsystems by using a high-level sensor fusion technique.

@prefix poso: <http://purl.org/poso/> .

@prefix poso-common: <http://purl.org/poso/common/> .
@prefix ssn: <http://www.w3.org/ns/ssn/> .

@prefix sosa: <http://www.w3.org/ns/sosa/> .

@prefix dbr: <http://dbpedia.org/resource/> .

@prefix ogc: <http://www.opengis.net/ont/geosparql#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix qudt: <http://qudt.org/schema/qudt/> .
@prefix unit: <http://qudt.org/vocab/unit/> .
@prefix ssns: <http://www.w3.org/ns/ssn/systems/> .
@prefix schema: <http://schema.org/> .

Listing 4.1: Prefixes used in the demonstration examples

We start by semantically describing the technical setup of the fictional deployment
of the three positioning systems on our campus. Additional domain-specific onto-
logies such as IndoorGML [149] can be used to describe the physical context of
these deployments. Throughout our examples, we make use of the prefixes defined
in Listing 4.1.

In Listing 4.2 we create an outdoor campus positioning system that uses GPS.
Indoors, we deploy a system that uses k-NN fingerprinting for Wi-Fi access points.
For the integrated positioning system on lines 14 to 17 that uses both the outdoor and
indoor system, we add the two individual systems as subsystems with an additional
procedure on how the high-level fusion of these two systems is performed.

The entity that is being tracked by the campus positioning system is configured in
Listing 4.3. Each feature of interest, which we identify as our tracked feature, has
multiple observable properties. A property predicate such as the :hasPosition
on line 3 can be used multiple times to represent a position with different levels of



T B N S S

—
S

11

15
16
17

o L - N o N

s

128 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

dbr:Some_Unversity a ssn:Deployment .
<deployment/building_a> a poso:IndoorDeployment, ogc:Feature ;
rdfs:label "Building A"@en ;
ogc:hasGeometry [ a ogc:Geometry ;
ogc:asWKT "..."" "ogc:wktLiteral ]
<system/OPS> a poso:LocationBasedService ;
rdfs:label "Outdoor campus positioning"@en ;
ssn:hasSubSystem poso-common:GPS ;
ssn:hasDeployment dbr:Some_University .
<system/IPS> a poso:IndoorPositioningSystem ;
rdfs:label "Indoor campus positioning"@en ;
ssn:hasDeployment <deployment/building_a> ;
ssn:implements poso-common:KNNFingerprinting .
<system/CampusPositioning> a poso:IntegratedPositioningSystem ;
rdfs:label "Hybrid campus positioning system'"@en ;
ssn:hasSubSystem <system/OPS>, <system/IPS> ;
ssn:implements poso-common:WeightedAccuracyFusion .

Listing 4.2: Positioning system setup

granularity. In linked data front ends with data access control, such as Solid [139],
these levels of granularity can control who is able to access a property with a certain
accuracy. By specifying the accuracy of these properties along with possible other
semantic information, the information can be used in queries to determine which
property offers the required accuracy.

Further, in Listing 4.4 we show an observation created by the outdoor positioning
system. The GPS provides a latitude and longitude that we output using the
OGC GeoSPARQL 1.1 ontology [128] as a well-known text representation (WKT)
representation on lines 9 to 11.

<me> a poso:TrackedFeature, foaf:Person ;
foaf:name "John Doe"@en ;
poso:hasPosition <me/position>, <me/approxposition> ;
poso:hasOrientation <me/orientation> .
<me/position> a poso:AbsolutePosition ;
rdfs:comment "Absolute position of John Doe"@en ;
poso:hasAccuracy <me/position/accuracy> .
<me/position/accuracy> a ssns:Accuracy ;
schema:maxValue "25.0"" "xsd:float ;
schema:unitCode unit:CentilM .

Listing 4.3: Example setup of a tracked person and their properties



4.2. POSITIONING SYSTEM ONTOLOGY 129

<position/1654350300000> a sosa:Observation ;
sosa:hasFeatureOfInterest <me> ;
sosa:observedProperty <me/position> ;
sosa:resultTime "2022-06-04T15:55:00"" "xsd:dateTimeStamp ;
poso:usedSystem <system/OPS> ;
sosa:hasResult [ a ogc:Geometry ;
ogc:hasSpatialAccuracy [ a qudt:QuantityValue ;
qudt:unit unit:CentiM; qudt:numericValue "9"" “xsd:float];

ogc:asWKT """
<http://www.opengis.net/def/crs/0GC/1.3/CRS84>
Point(4.888028 50.31397)"""""ogc:wktLiteral ;

ogc:dimension 2 ]

Listing 4.4: Example observation of the outdoor positioning system

Indoors, our system outputs an absolute Cartesian 3D position as illustrated in
Listing 4.5. We identify that the 3D position is made inside a specific deployment
on line 8, which contains information about its geometry and the reference system
used to convert the coordinates to a common reference frame used by the cam-
pus positioning system. The technique used to obtain the result is defined using
sosa:usedProcedure while the system where this technique is used is defined
based on :usedSystem.

In the previous example listings, we have shown how a positioning system might
model the observations of an absolute position. With the example introduced
later in Listing 4.6, we outline how a relative distance to a wireless access point
(named wap_1) from our TrackedFeature canbe expressed. Similar to an absolute
position, we can have multiple observations of the relative distance. POSO requires
the :isRelativeTo predicate on a relative position to indicate the feature of
interest that the position is relative to. In Figure 4.7, we illustrate how a virtual
object is positioned relative to a fiducial marker. The marker itself can be positioned
relative to a known coordinate reference system or relative to other objects such as
a room or building.

“— | — | —

poso:isRelativeTo poso:isRelativeTo poso:isRelativeTo

O i 5 9

Figure 4.7: Relative positioning of virtual objects and markers



130 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

<position/1647513000000> a sosa:Observation ;
sosa:hasFeatureOfInterest <me> ;
sosa:observedProperty <me/position> ;
sosa:resultTime "2022-03-17T11:30:00"" "xsd:dateTimeStamp ;
sosa:usedProcedure poso-common:KNNFingerprinting ;
poso:usedSystem <system/IPS> ;
sosa:hasResult [ a poso:AbsolutePosition ;
poso:inDeployment <deployment/building_a> ;
poso:hasAccuracy [ a ssns:Accuracy ;
schema:maxValue "25.0"" "xsd:float ;
schema:unitCode unit:CentiM ] ;
poso:xAxisValue [ a qudt:QuantityValue ;
qudt:unit unit:M ; qudt:numericValue "5"""xsd:double ] ;
poso:yAxisValue [ a qudt:QuantityValue ;
qudt:unit unit:M ; qudt:numericValue "6""“xsd:double ] ;
poso:zAxisValue [ a qudt:QuantityValue ;
qudt:unit unit:M ; qudt:numericValue "3.5"" "xsd:double]].

Listing 4.5: Example observation of the indoor positioning system

Each observable property can also be used to express a fixed result that does not
consist of multiple observations. On lines 1 to 5 of Listing 4.6, we utilise this ability
to express a fixed result to define the fixed position of a landmark rather than creating
a single observation where the position is defined as a result. On lines 10 to 19,
we have one observation of this observable relative distance obtained using our
indoor positioning system. The result is expressed as a distance using a path loss
algorithm and the raw signal strength is expressed in decibel-milliwatts (dBm).

To provide a single output for the campus positioning system, we can use the
observations from the indoor and outdoor positioning systems shown in Listing 4.5
and Listing 4.4 to compute a fused output based on the weighted accuracy fusion
procedure that our campus positioning system implements in Listing 4.2. Using
the knowledge about the accuracy, the systems that produced the results and the
indoor positioning system deployments, we can perform a fusion with more context
than only the self-reported accuracy of each individual subsystem.

4.2.7 Implementation and Technical Evaluation

To test whether our semantic description is feasible to describe a positioning system
and its data, we implemented the description in OpenHPS using the @openhps/rdf
module. This module enables the serialisation and deserialisation of data objects,
data frames and other data created and used by a positioning system. In addition,
we can also serialise and deserialise positioning models.



© o N ;R W =

4.2. POSITIONING SYSTEM ONTOLOGY 131

<landmark/wap_1> a poso:Landmark ;
rdfs:1label "Wireless Access Point 1"@en ;
poso:hasPosition [ a poso:AbsolutePosition ;
poso:hasAccuracy [ ... ] ; poso:xAxisValue [ ... ] ;
poso:yAxisValue [ ... ] ; poso:zAxisValue [ ... ] ]
<me/position/relative/wap_1> a poso:RelativeDistance ;
ssn:isPropertyOf <me> ; # Relative distance from <me> ...
poso:isRelativeTo <landmark/wap_1> ; # to <landmark/wap_1>
rdfs:comment "Relative position of John Doe to WAP_1"@en .
<position/relative/wap_1/1646891100000> a sosa:Observation ;
sosa:hasFeatureOfInterest <me>, <landmark/wap_1> ;
sosa:observedProperty <me/position/relative/wap_1> ;
sosa:resultTime "2022-03-10T06:45:00"" "xsd:dateTimeStamp ;
poso:madeBySystem <system/IPS> ;
sosa:usedProcedure poso-common:LDPL; # Log-distance path loss
sosa:hasResult [ a qudt:QuantityValue ;
qudt:unit unit:Meter ; qudt:value "3.7"""xsd:double ] ;
sosa:hasResult [ a qudt:QuantityValue ;
qudt:unit unit:DeciB_M ; qudt:value "-82"""xsd:integer ]

Listing 4.6: Example observation of a relative position

All data types defined earlier in Chapter 3 are mapped to the POSO ontology
using our Object-Document Mapping (ODM) solution. This enabled us to have
a one-to-one mapping of all objects created in OpenHPS to RDF data. However,
because the vocabulary is meant to describe positioning systems and their data
generically, some adaptations and terminology changes to POSO were necessary
to fit our OpenHPS framework.

While OpenHPS primarily uses the POSO ontology for describing the processing
of data and systems themselves, other concepts from SOSA and SSN were re-
used. These two ontologies provide a solid basis for describing features of in-
terest, sensors and other relevant data. Other ontologies such as M3-lite [203],
QUDT [194], Schema.org [204] among many others were used in the mapping. In
our RDF module, we provide our vision of mapping concepts from OpenHPS to
RDF. However, due to the extensibility of the framework and serialisation of data
within this framework, any extension can override this mapping.

Figure 4.8 shows a positioning system, and a single data frame with objects mapped
to the SOSA, SSN and POSO ontologies. Similar to the positioning system rep-
resentation illustrated in Figure 4.3, the positioning system consisting of sensors,
algorithms and output data can be represented as a graph network.



132 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

poso:PositioningSystem sosa:0Observation
o S NS
6 A
ssn:Sampler sosa:Sensor poso:PositioningTechnique sosa:0ObservableProperty

- ?ﬁjﬂ@) ® =

AP2
LDataObject
?JE q @ poso:Position \\J
@ sosa:FeatureOfInterest

Figure 4.8: Mapping of OpenHPS concepts (sensors, graph nodes and data) to the
SOSA, SSN and POSO ontologies

Graph Nodes and Edges

A main design choice in OpenHPS was the graph-based processing through nodes
and edges. The OpenHPS framework uses source nodes, sink nodes and pro-
cessing nodes. In POSO, source, sink and processing nodes are mapped to
sosa:Procedures. These procedures describe the input, output and processing
itself, allowing the chaining of procedures similar to the graph-based processing of
OpenHPS. Edges in OpenHPS are mapped to the relations for the input and output
of each procedure.

In the case of source nodes, the sosa:Procedure is the act of producing data,
while on processing nodes it is the sosa:Procedure of manipulating the data.
That is, the sensor producing data is a procedure that has its intrinsic functionalities,
such as the throughput and output type.

Built-in OpenHPS nodes are described online using the procedure types defined
in POSO. This provides additional context beyond simply specifying a particular
algorithm used to process information. This description is automatically generated
using our RDF module. As an example, the multilateration procedure that is
used in OpenHPS is described and identified using the following URI: https:
//openhps.org/terms/procedure/MultilaterationNode.ttl. By using
these URIs, third parties do not only know that a :Multilateration algorithm
was used, but also which implementation; in this case, the implementation of the
OpenHPS framework.

Data Objects

As detailed in Chapter 3, all spatial objects in OpenHPS are considered data
objects. A data object can represent a person, a smartphone owned by a person
or even an environment. In POSO, each of these objects can be mapped to a


https://openhps.org/terms/procedure/MultilaterationNode.ttl
https://openhps.org/terms/procedure/MultilaterationNode.ttl

4.2. POSITIONING SYSTEM ONTOLOGY 133

sosa:FeatureOfInterest with an optional ogc:SpatialObject type from
the GeoSPARQL vocabulary.

In the case of spatial objects with an enclosing object, the ogc: sfWithin predicate
is used to indicate that an object is within another object. Enclosing objects are
often used to indicate that a sensor is part of a smartphone, or to indicate that an
environment is within another environment, in which case both are spatial objects.

Data Frames

Data frames were described in Section 3.4.6 as momentary snapshots of informa-
tion. POSO does not offer the concept of data frames in its vocabulary but treats
all information within a data frame as an sosa:Observation. In practice, this
entails that all data within a data frame is now treated as individual observations of
a set of data objects. No information is lost in this way.

4.2.8 Conclusion

In this section, we introduced our generic positioning system ontology, POSO, to
describe concepts relevant to a positioning system. These concepts include the
different observable properties that can be obtained by a positioning system, the
different categories of systems and the different algorithms and techniques these
systems can implement to handle positioning. Our generic positioning system
ontology not only focuses on common geospatial and geographical concepts that are
already described in various existing vocabularies but also offers a novel vocabulary
for describing generic data produced by a positioning system. We expanded the SSN
and SOSA ontologies by providing common procedures and observable properties.
By further presenting the poso-common module, we illustrated how POSO can
be expanded with a set of common algorithms, existing systems and platforms.
Finally, we illustrated the usage of POSO with a scenario containing two positioning
systems and a hybrid positioning system using a high-level fusion technique. In
this demonstration, we have shown how each positioning system might be modelled
using POSO and how observational data can be expressed.

Future work will focus on adding additional positioning techniques and algorithm
procedures, further describing the input and output that each procedure provides.
By using known input and output RDF shapes that are used in different positioning
systems, we can further classify a positioning system’s technologies and the output
they provide. While we already offer procedures for obtaining map information
(i.e., Simultaneous Localisation and Mapping), our vocabulary is not aimed at
describing geospatial data.



134 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

4.3 Object-Document Mapping for
Semantic Data

In the previous section, we have detailed our POSO ontology for describing po-
sitioning systems. This ontology was partly based on the OpenHPS framework,
which defines the pipeline and data structure of a wide range of positioning systems.
To validate that we can describe all concepts from OpenHPS with POSO and other
ontologies, we needed an extensible solution on top of OpenHPS to handle this

mapping.

Object-Document Mapping (ODM) is a tool for developers to automatically map
objects and fields to document storage [205]. To easily utilise linked data in our
OpenHPS framework, we developed an ODM solution on top of our framework
to bridge the gap between research questions RQ1.1 and RQ1.2 (that generalise
the input and output of a positioning system) to research question RQ2 (that aims
to answer the interoperability of a positioning system). To create and design an
interoperable positioning system, defined as a system with generalised input and
output data, we needed a generalised method to easily map this input and output
data to an interoperable format.

Our OpenHPS framework already offers the serialisation of objects to JSON data
using a modified TypeJSON implementation. The modification we made to
TypedJSON, detailed in Section 3.6, enabled us to offer modular serialisation to data
formats other than JSON. We have expanded OpenHPS with the @openhps/rdf+
module, enabling the serialisation and deserialisation of objects to RDF data. In
addition, we provide a service driver in OpenHPS that enables the querying of these
RDF resources by writing queries in MongoDB? format, similar to the queries used
to query JSON data. This enables developers to easily implement complex queries
on semantic data stored in RDF format without modifying the queries.

The ODM solution we developed is tailored to the OpenHPS framework with
existing mappings to our own ontologies we have developed for aiding in the
mapping of positioning systems and the data they produce. In the future, this
solution can be decoupled from OpenHPS to provide developers with a generic
tool.

Frameworks such as Soukai [206] (with the Solid driver), Linked Data Objects [207]
and KOMMA [208] offer serialisation and deserialisation of objects to Solid Pods,
but do not handle the (SPARQL) querying of data and are not feasible to deserialise
polymorphic data or RDF structures that do not follow the same of the serialisa-
tion. These limitations hinder the ability to easily interact with semantic data in a
meaningful and interoperable way.

4https://openhps.org/docs/rdf/
Shttps://www.mongodb.com/docs/manual /tutorial /query-documents/


https://openhps.org/docs/rdf/
https://www.mongodb.com/docs/manual/tutorial/query-documents/

4.3. OBJECT-DOCUMENT MAPPING FOR SEMANTIC DATA 135

Our tool consists of three main stages: (stage 1) manual mapping of objects and
fields to RDF, (stage 2) automatic serialisation of objects using the mapping and
(stage 3) the construction of queries using the mapping. To aid in the mapping, we
provide variables for URIs of classes, properties and individuals from popular
ontologies relevant to positioning systems. These variables are automatically
generated and are further detailed in Section 4.3.1.

Next, we provide developers with decorators which provide metadata at runtime
about classes, fields and methods. This metadata provides our ODM solution with
information on how to serialise or deserialise classes and fields to RDF. Using
the metadata provided by developers using the decorators, we keep a changelog of
changes made to objects at runtime. Our solution uses this changelog to serialise
and deserialise data objects and data frames in OpenHPS to RDF.

Last but not least, while serialisation and deserialisation are the primary goals
of our object document mapper, OpenHPS requires the ability to query serialised
data. Therefore, we integrated a solution that converts a traditional query from
any OpenHPS data object service to a SPARQL query. This querying is further
detailed in Section 4.3.7 along with several examples.

4.3.1 Namespace Generation

Based on the rdf-namespaces tool by Tunru [209], @openhps/rdf comes with
a utility to fetch ontologies and vocabularies from local and online sources and
generates variables to easily use RDF types, predicates and individuals without
manually specifying the URISs.

Listing 4.7 shows a code snippet of such TypeScript vocabulary generated auto-
matically for one of our own ontologies using a modified version of the tool by
Tunru [209]. This provides developers with easy-to-use variables for RDF types or
predicates, while also providing developers with documentation about the purpose
of these types or predicates.

4.3.2 Class and Field Decorators

Similar to other ODM solutions, our object document mapping solution to RDF
makes use of class and field decorators. These decorators provide metadata to
classes, fields or methods at runtime. At runtime, these decorators create a variable
within the prototype of the class in which they are used, containing information
about all the fields and their serialisation options, as well as information about any
class that extends upon this class.

Figure 4.9 illustrates access to the prototype in JavaScript. The prototype of a
Person class can be obtained using Person.prototype. This prototype object



T R N S S

136 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

type IriString = “${'http' | 'https'}://${string}";
type OwlObjectProperty = IriString;

/e
* angle

* Quantitative angle result value for axis-angle ...
* http://purl.org/poso/angle

*/

export const angle: OwlObjectProperty =

— ‘'http://purl.org/poso/angle’;

* y-axis value

* Quantitative result value along the Y-axis ...
* http://purl.org/poso/yAxisValue

7‘:/

export const yAxisValue: OwlObjectProperty =

— 'http://purl.org/poso/yAxisValue';

Listing 4.7: Snippet from an automatically generated TypeScript vocabulary of the
POSO ontology based on the rdf-namespaces tool [209]

contains a unique variable that links to a metadata object containing information
needed for the serialisation and deserialisation of instances of the Person class.

In OpenHPS, we provide two main decorators: (1) aSerializableObject decor-
ator to describe an object that can have multiple instances (i.e., individuals in RDF)
and (2) a SerializableMember decorator to describe the predicates of these in-
dividuals. The latter has several sub-types for indicating an array, set or map of
elements. Behind the scenes, these decorators extend the existing decorators used
by the TypedJSON framework, with additions for better handling of option inher-
itance. In addition, we also add an extra rdf option to configure RDF-specific
serialisation and deserialisation information.

Listing 4.8 provides a basic example of a Person object that contains a first
name and family name as variables. The class is decorated to be mapped to a
foaf:Person type in RDF. As an example, we provide a custom serializer
function that sets the URI to the combination of the first name and family name of
the person, separated with an underscore.

Member Decorators

Each data member in a class that should be serialised to RDF can have a decorator to
indicate the serialisation method and properties. First and foremost, this includes

Shttps://stackoverflow.com/q/572897/


https://stackoverflow.com/q/572897/

1
2
3
4
5
6
7
8
9

10
11

4.3. OBJECT-DOCUMENT MAPPING FOR SEMANTIC DATA 137

Object.prototype /)‘ JsonObjectMetadata E

__typedJsonJsonObjectMetadataInformation__

Object.getPrototype0f()

.prototype
Function.prototype Person.prototype
Object.getPrototype0f() .constructor Object.getPrototypeOf()
Person new Person()

Figure 4.9: JavaScript class prototype and TypedJSON metadata®

the predicate URI(s) that can be used for serialisation and deserialisation. For
deserialisation, we also provide the option to either define a custom deserializer
function or a SPARQL query that is executed on the connected triples of the current
subject.

As an example, Listing 4.9 shows the data members of the Person object (i.e, the
first name and last name) being decorated to specify the predicates for serialisation
to RDF. Using these member decorators, developers can easily define how each
data member should be represented in RDF. By default, only the first predicate is
used for serialisation to prevent redundant information. However, other than during

@SerializableObject({
rdf: {
type: foaf.Person,
serializer: (obj: Person, baseUri?: string) => {
return { value: ~“${obj.firstName}_${obj.familyName}" }
}
}
B
export class Person extends DataObject {
// ...
}

Listing 4.8: Person object decorated with RDF serialisation options



138 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

@SerializableObject(
/] ...
)
export class Person extends DataObject {
@SerializableMember ({
rdf: { predicate: [foaf.givenname, foaf.firstName] },
b
firstName: string;
@SerializableMember ({
rdf: { predicate: [foaf.surname, foaf.familyName] },
b
lastName: string;
}

Listing 4.9: Person object data members decorated to provide RDF serialisation
and deserialisation

the serialisation, when multiple predicates are defined, they will all be considered
during the deserialisation process.

4.3.3 Object Change Log

Similar to the implementation of the Solid client by Inrupt?, a change log has to be
maintained that keeps track of all triples that are deleted, modified or added. In a
relational database or document storage, a change log is only required to keep track
of the updated attributes and rows. However, in a graph structure, changes need
to be explicitly monitored and managed to be able to delete the triples that were

modified.
dcterms:title | My Thesis"@
example:thesis > "Modified"@en

Figure 4.10: Detecting changes in triple ibhects

Figure 4.10 illustrates the importance of monitoring changes in RDF. When the
name of an object is updated from ‘“My Thesis” to “Modified”, the change in-
cludes two triple changes: (1) the triple example:thesis dcterms:title "My
Thesis"@en . should be removed, (2) a new triple should be created that links
example:thesis to the new title. Similarly, changes to a predicate require the
deletion and addition of triples to ensure that the RDF graph accurately reflects
the updated information. By maintaining an object change log, developers can
efficiently track and manage these changes in RDF data.

"https://github.com/inrupt/solid-client-js


https://github.com/inrupt/solid-client-js

4.3. OBJECT-DOCUMENT MAPPING FOR SEMANTIC DATA 139

Unlike Inrupt’s Solid client, which keeps track of changes by explicitly indicating
the addition and removal of predicates, our solution keeps an internal change log
within each class itself. When manipulating the fields within these classes, these
changes are added to our internal changelog8.

4.3.4 Serialisation

Serialisation of objects to RDF is relatively straightforward. The decorators ensure
that the object properties are directly mapped to RDF in the shape that the developer
foresees in their application. Custom serialisation functions can be defined on
objects and properties to modify the output, but in general, the JavaScript variables
with type definitions from TypeScript are mapped to objects, literals and blank
nodes.

Compared to other frameworks such as the Solid driver in Soukai [206], Linked Data
Objects (LDO) [207] and KOMMA [208], our solution offers a more simplified
approach to serialising data. In LDO, developers have to explicitly define which
fields and objects should be serialised to which predicates, which offers a lot
of flexibility but can be time-consuming and error-prone. Soukai is a generic
ODM library that is not specific to linked data. One of the engines that enables
Soukai to directly store data in a Solid pod requires developers to define model
schemas. Other than our tool, these stored models are specific to Soukai and do
not work by annotating existing fields and objects with decorators. Models have to
follow the exact schema for them to be deserialised.

Finally, KOMMA is a Java framework for serialising data to RDF. Similar to our
framework, it works by annotating classes and fields using decorators. However, it
does not support querying the data or deserialising data based on queries. Further-
more, it only offers one-to-one serialisation of classes to RDF and does not tackle
more advanced serialisation where the data of objects may need to be transformed.

Object Types

Similar to the serialisation of member types, classes can be decorated using a
@SerializableObject decorator where one or more RDF types can be assigned.
While member decorators indicate the predicates used to link a subject to an object,
the class decorators indicate the rdf: type used to serialise an instance of a class.
During the deserialisation, all these types will be considered for deserialisation.
However, only the first type is used for serialisation to prevent a class from being
serialised to a lot of redundant subclasses of each other.

Inheritance of classes, as depicted in Figure 4.11, entails the extension of classes.
Each of these classes can have a set of RDF types that are used during serialisation.

8In JavaScript this is accomplished by wrapping these models in a proxy catching each method
invocation and field access



140 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

sosa:Procedure poso:PositioningTechnique poso:Multilateration
class ProcessingNode class MultilaterationNode
class Procedure .
extends Procedure extends ProcessingNode

Figure 4.11: Inheritance of classes with RDF types

Data Types
The following variable types are mapped:

* String: A string in RDF contains a language tag to indicate the language
of the string. Serialisation options enable developers to indicate if a string
variable is represented in a specific language.

* Boolean: Mapping of boolean variables does not involve any additional
complexity. Boolean variables are directly mapped to RDF literals with the
appropriate data type.

* Number: In JavaScript (and TypeScript), all numeric values are represen-
ted as a simple number. They can contain an integer or decimal number.
However, in RDF, number types need to be distinguished. A TypeScript
number is serialised in RDF to a double literal by default, which can be
used to contain both integers as well as decimal numbers. Developers can
specify the precision of the number in the member decorator to modify this
default behaviour. This allows developers to explicitly indicate if a number
represents an integer, float or any other available numeric type.

* Date: A date object is converted to an xsd:date or xsd:dateTime de-
pending on the serialisation options.

* Array, Set and Map: In TypeScript, field members are explicitly typed to be
either atomic values, arrays, sets or maps. When serialising to RDF, cardin-
ality is not enforced through types. In other words, in RDF, a simple name of
a person could exist multiple times for one subject by having multiple triples
with a foaf:name predicate. Instead, data shapes and OWL constraints can
be used to indicate how many values a property can have.

Predicates

Members that are decorated with predicates will be used to indicate the relationship
between the subject and other objects or atomic values. Multiple predicates can be
defined for a single field. Similar to the RDF type, only the first predicate is used



4.3. OBJECT-DOCUMENT MAPPING FOR SEMANTIC DATA 141

to serialise the data. However, all predicates will be considered when attempting
to deserialise the data.

4.3.5 Deserialisation

One of the challenges in object-document mapping for RDF data is the deserial-
isation from RDF data to objects due to the complex and open structure of linked
data. To solve this issue, our deserialisation solution combines the rdf: type(s) of
individuals together with the available predicates an individual has.

Object Type Mapping

Initialising the deserialised object requires the deserialisation of the type of the
object. Internally, a dictionary is kept that tracks which TypeScript classes are
serialised to which RDF types. Developers can manually add new records to this
dictionary based on their requirements, enabling them to specify additional types
for deserialisation.

1. A selection of TypeScript classes is created based on the rdf: type(s) of the
individual

2. When more than one possible class is found, a positive weight is assigned
to each possible TypeScript class that contains an expected predicate that
would have been added during the serialisation. A negative weight is added
for each predicate that is not expected and will not be deserialised

3. Based on the weights, the deserialisation algorithm selects the class with
the highest overall weight as the most likely match for the individual being
deserialised

Data Members

After determining the type of class, we can fetch the data members that should be
deserialised. For each data member of a class, the deserialisation process involves
matching the predicates in the RDF data to the properties of the object. This is done
based on the decorators assigned to the properties during serialisation. If a predicate
in the RDF data matches a property of the object, the value of that predicate is
assigned to the property. Additionally, handling complex data structures like arrays
or nested objects requires special consideration during deserialisation.

Remaining Predicates

In the deserialisation process, any remaining predicates that were not mapped to
data members in the class are stored as key-value pairs in a hidden variable within
the class. This ensures that no data is lost during the deserialisation process and
provides flexibility for handling unexpected or additional data.



142 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

During the (re)serialisation of these classes, these unmapped predicates are in-
cluded in the serialisation to ensure that the serialisation output is the same as the
deserialisation input. Developers can also access the unmapped predicates within
custom serialisation and deserialisation functions.

4.3.6 Data Shapes

Basic deserialisation expects the data to be structured based on the decorators. With
interoperability in mind, this assumption does not hold when multiple applications
store their data in different formats. One possible solution that frameworks such
as Soukai [206] use to mitigate this is to make use of data shapes. Data shapes
define the structure of data using a set of vocabularies. These shapes can be used
to standardise the way serialisation of data occurs, while also enabling applications
to provide other parties that can access the data with a blueprint on how they store
RDF data.

Our ODM solution that is built into OpenHPS currently does not support the
loading of data shapes for manipulating how data is deserialised or re-serialised,
but it supports the generation of Shapes Constraint Language (SHACL) shapes for
known data types that can be stored alongside the data.

4.3.7 Querying

To facilitate querying of RDF data within OpenHPS, we have implemented a
query construction driver that is used in a data object service. This driver allows
developers to write queries in MongoDB syntax similar to how querying currently
works in OpenHPS. The MongoDB syntax was chosen due to its flexibility and
ease of use in querying JSON-like data structures. More information about the
syntax can be found in Section 3.8.1.

With the @openhps/rdf module, developers can construct queries that include
conditions and aggregation functions. These queries can then be executed on the
RDF data stored within the OpenHPS framework. This allows for a seamless choice
between in-memory, MongoDB (using the @openhps/mongodb module) or RDF
data storage without interference from the developer in both storage and querying.
Each query is constructed with a similar syntax to the one used in MongoDB and
is converted to an SPARQL query that is executed on the local or remote storage.

Listing 4.10 is the template for a SPARQL CONSTRUCT query [210] that outputs
a graph based on the conditions provided in the WHERE clause. This query
constructs a graph with the subject, its properties, and all its children along with
their properties. Lines 5 and 6 ensure that all the child predicates are selected by
specifying the predicate of the subject to be connected or not be connected by the
dummy example:overrides predicate. This essentially allows for a recursive
selection of linked objects, as it will select all objects that are connected via a



4.3. OBJECT-DOCUMENT MAPPING FOR SEMANTIC DATA 143

CONSTRUCT {
?subject ?prop ?val.
?child ?childProp ?childPropVal.
} WHERE {
?subject ?prop ?7val;
((example:overrides|!example:overrides)+) ?child.
?child ?childProp ?childPropVal.
# Conditions using ?subject and ?child here

= - N B NS U R R

Listing 4.10: Generated query for outputting subjects and all their children

predicate. Line 8 would contain the conditions from the transformed MongoDB
queries in subsequent examples.

displayName: "Maxim"

1 q

2 { ?subject a sosa:FeatureOfInterest. }
3 UNION

4 { ?subject a ogc:SpatialObject. }

5 %

¢ 7?subject rdfs:label "Maxim".

Listing 4.11: Generated query to select all triples pertaining to a data object with
the name (i.e., rdfs:label) “Maxim”

Using this template, Listing 4.11 demonstrates the condition generated from a query
that specifies the display name of a data object. The MongoDB query is displayed
in the top right of the listing and represents the query that the developer used within
the OpenHPS framework. The filter criteria searches for subjects with a specific
data type (i.e., either a sosa:FeatureOfInterest or ogc:SpatialObject).
These data types were not inputted by the user, instead, they were extracted from
the @SerializableObject decorator that specified which RDF types should be
considered to deserialise a DataObject. Next, since our search criteria includes
the display name of a data object, an additional condition is added that specifies
that the subject should have an rdfs:1label that matches "Maxim". More precise
filtering is done during the deserialisation phase, where the returned predicates are
also taken into consideration to determine the relevant data types. This allows the
deserialisation to match the output to the correct subtype (e.g., a SensorObject)
rather than deserialising to a generic DataObject. However, by introducing a
conditional filter in the query itself, we can filter the data earlier in the processing.

When a query includes a specifier for the subject URI, the SPARQL query generator
will ensure the appropriate filtering is included as shown in Listing 4.12. The



© e N ;R W N =

= = =
No—- o

144 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

. uid: "mvdewync"
FILTER(?subject = :mvdewync)

Listing 4.12: Generated query to select all triples pertaining to a data object with
the uri :mvdewync

subject is filtered to only include the subject with the URI :mvdewync. Unlike
Listing 4.11, which includes an additional condition for filtering the type, the
SPARQL query generator will omit this filter due to the existence of a filter on
the URI, which already narrows down the results to a specific subject. Similar to
the previous example, the deserialisation phase can still determine the correct type
used for deserialising the data.

position: { x: 10, y: 20 }

{
{ ?subject a sosa:FeatureOfInterest. }
UNION
{ ?subject a ogc:SpatialObject. }
}
{
{
?subject <http://purl.org/poso/hasPosition> ?7ol.
70l <http://purl.org/poso/xAxisValue> 10 .
7?0l <http://purl.org/poso/yAxisValue> 20 .
}
}

Listing 4.13: Generated query to select all triples pertaining to a data object where
the position has an X-value of 10 and Y-value of 20

Queries where the condition depends on an inner object are also supported. With
Listing 4.13 we illustrate a SPARQL query that is generated to retrieve data objects
with a condition based on the X and Y value of their position. In our query, we
specify that the X value of a position should be 10, while the Y value should be 20.
The query generator first constructs a triple pattern to select the position on line
15 with the variable name ?0l. Next, the predicates for the X and Y values are
determined and use the 701 variable as the subject to narrow down the result. The
query generator will assign a new variable name for every inner object that has a
condition. In case the query depends on the condition of two separate inner objects
(e.g., the position and orientation), a 2"® variable called 702 would be used.

Similarly to Listing 4.11 that selects data objects based on the display name, List-
ing 4.14 demonstrates how a regular expression is converted to a SPARQL query.
The REGEX function in SPARQL is used to test the regular expression against the
object.



= = N T NS U R R

= = N B NS O R R

4.3. OBJECT-DOCUMENT MAPPING FOR SEMANTIC DATA 145

displayName: /Maxim/g

{
{ ?subject a sosa:FeatureOfInterest. }
UNION
{ ?subject a ogc:SpatialObject. }

}

{
?subject rdfs:label ?object.
FILTER(REGEX(?object, "Maxim", "i"))

}

Listing 4.14: Generated query to select all triples pertaining to a data object with
a name that matches a regular expression

Filter Conditions

MongoDB querying supports specifiers to indicate if a value should be greater
than or less than a specific value. In our query generator, we also support these
conditions via SPARQL queries. The following filter conditions are supported:
greater than ($gt), less than ($1t), greater than or equal ($gte) and less than or
equal ($1te).

"position.x": { $gt: 10, $1t: 20 }

{
{ ?subject a sosa:FeatureOfInterest. }
UNION
{ ?subject a ogc:SpatialObject. }
}
{
{
?subject <http://purl.org/poso/hasPosition> ?ol.
{
7?01 <http://purl.org/poso/xAxisValue> ?702.
FILTER(?02 > 10) FILTER(?02 < 20)
}
}
}

Listing 4.15: Generated query to select all triples pertaining to a data object where
the position has an X-value of strict more than 10 strict less than 20

In Listing 4.15, a query is generated to find all data objects with a position where
the X-axis value is strictly greater than 10 and strictly less than 20. Similar to
Listing 4.13, a variable named 701 is created for the position of the subject. Next,
a variable is created for the X value (?02) after which two filters are created to
ensure this variable is within the specified boundaries. The query that is generated



® N L A W N =

146 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

could have been written without the inner group graph pattern for filtering ?01.
However, our ODM solution will automatically put all individual conditions into a
group pattern to facilitate the generation process.

Optional Conditions

An optional condition is a condition that does not have to be met for the query
to return results. It provides flexibility in the search criteria. In MongoDB, this
optional condition is created using the $or syntax.

$or: [{ displayName:

{ R
{ ?subject a sosa:FeatureOfInterest. } P_’Iaxm 3o A
UNION displayName: "Beat" }]
{ ?subject a ogc:SpatialObject. }

}

{ ?subject rdfs:label "Maxim". }

UNION

{ ?subject rdfs:label "Beat". }

Listing 4.16: Generated query to select all subjects that either have the display
name “Maxim” or “Beat”

As shown in Listing 4.16, an optional (OR) condition is translated as a UNION
between conditions. In the given example, all subjects are selected that either have
the name “Maxim” or the name “Beat”. More elaborate queries can contain nested
optional conditions.

4.3.8 Conclusion

Using the object document mapping tool created in the @openhps/rdf, we facil-
itated the development of a positioning system that can store and retrieve data in
RDF. Our tool expands on the decorators provided by our OpenHPS framework to
help developers provide additional metadata on how objects and fields are mapped
to RDF. We designed a solution that can translate the existing MongoDB query
format used by OpenHPS to SPARQL queries.

While our ODM solution offers a simplified way to serialise, deserialise and query
RDF data, it still has several limitations. In its current state, the ordering and
sorting of data is handled in memory rather than by the SPARQL engine itself,
which may result in performance issues for large datasets.

Another limitation in the current implementation of our tool is the limited support
for array operations. MongoDB queries support various array selection criteria. In
our current implementation, these are handled in memory rather than transforming
them into SPARQL queries.



4.4. USER-CENTRIC STORAGE USING SOLID 147

While our ODM solution is tailored to the OpenHPS framework and the data
structure it produces, future work will separate the ODM solution and logic from
the OpenHPS framework. This separation will benefit other developers as well as
the solution itself.

4.4 User-centric Storage Using Solid

In Section 4.2, we discussed our POSO ontology to allow the semantic description
of positioning systems and the data they produce. Interoperability also entails
that data is accessible by other services. To enable this access, we propose a
solution for user-centric storage of positioning system data, where the subject that
is being tracked manages the data required and computed by each positioning system
that tracks this subject. The user-centric storage enables the decentralisation of
positioning systems, as these systems can collaborate to track an individual.

44.1 Architecture

Our proposed solution architecture is based on the Solid project by Tim Berners-
Lee [139]. Solid offers personal data vaults called Pods, storing a user’s data. Users
can choose the provider storing their Pod and thereby determine which organisation
to trust storing their data. Applications and websites that want to store or fetch a
user’s data can ask the user to authenticate themselves to their Pod provider, giving
those applications access to parts of the vault where they can create or read data.
The use of Solid Pods enables users to put their data on the decentralised web.
Users can have multiple personal data vaults with one or more storage providers.

N/
84 __________ > User 1 Pod
User —
Authentication Positioning System Session Storage 7
N
User 2 Pod

Figure 4.12: Basic architecture of linking a positioning system with Solid

In Figure 4.12, we show the basic architecture of a positioning system using Solid.
Users authenticate through a user interface (i.e., either a website or a smartphone
application). The authentication process in this system provides a session key



148 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

that can be used to access the user’s private Pod. Each user will have their own
application-specific unique session key stored in the session database, enabling
access to their Pod. These keys are the only data that the system has to store locally.

Once the positioning system has access to a user’s private Pod, the Pod will be
used to store all relevant tracking data. This might range from processed data,
such as a user’s geographical position, to raw sensor data that should be persisted.
While the positioning system can still store some, if not all, data on privately
owned servers, the philosophy of Solid is that this would be governed by laws such
as the European Digital Markets Act (DMA) [211]. Similar to the governing of
the usage of data vaults, applications with read access to a Pod can theoretically
clone the data locally. However, laws like the European General Data Protection
Regulation (GDPR) [9] aim to protect users from such practices.

The user has control and transparency over the data that is being created or up-
dated by a positioning system, as well as the ability to revoke future access to
this data at any time. Compared to the three-layer model of a Location-based
Service (LBS) [63], our approach moves the responsibility of the reasoning mid-
dleware layer to the application that reads the data, but with additional semantic
rules and knowledge on how this reasoning can be performed. This offers a lot of
flexibility, making the personal data vault not simply an LBS, but also a service for
raw unprocessed data.

While personal data vaults enable users to revoke access to specific data at any
time, these systems may still have collected data from before access was revoked.
In this case, regulations like the GDPR provide users with the right to request the
deletion of all their personal data held by a service provider. In Section 7.6.5 of
our integrated solution, we provide more details on how users can be made aware
of the data collection of a positioning system.

Location data should be interoperable between different systems, meaning that data
created by an indoor positioning system in one building should be compatible with
another positioning system or application. This allows our positioning data to be
processed by different positioning systems to enable the handover of tracking [212],
or allow multiple indoor positioning systems to be linked in one non-proprietary
smartphone application. Linking a positioning system to a user entails that the
user provides the system with access to their data. Interoperability on this scale
further enables the decoupling of positioning systems from the user interfaces and
applications that generate and use the data.

Figure 4.13 shows an architecture where a user authenticates to two individual
positioning systems that work independently from each other. Both systems can
access the same data vaults. In addition, we have a navigation application that uses
the data stored in the decentralised Pods as a location-based service. Alternatively,



4.4. USER-CENTRIC STORAGE USING SOLID 149

User 1 Pod User 2 Pod
NJ N

\ <]
%

— B ol i

Positioning Navigation Positioning
System (A) App System (B)
A A A

Figure 4.13: Two positioning systems using same user Pods

a single application could be responsible for obtaining sensor data on a smartphone
that is then being processed by a positioning system.

Solid allows the storage of regular documents such as media files as well as linked
data [124]. We use the POSO ontology to describe the setup of a positioning system
and its algorithms, the output data with different granularities and a vocabulary that
provides additional context on the accuracy of each output position. Figure 4.14
showcases an example structure of a Pod, consisting of a profile card, and a set of
properties containing observations for those properties.

http://ipin2022.solidweb.org/ position.ttl B
. profile/ <> a sosa:ObservableProperty ;
I— D card rdfs:label "My Position"@en .

:1648831850 a sosa:Observation ;
sosa:observedProperty <> ;

Q position.tt] sosa:resultTime "..." ;
sosa:hasResult: [ ... ] .

N properties/

Q orientation.tt]
D 11648831900 a sosa:Observation ;

sosa:observedProperty <> ;

Figure 4.14: Overview of a fictional user’s data stored in a Solid Pod

Linking a user to a positioning system is the first step towards user-centric data stor-
age for positioning systems. However, internally, a positioning system often needs
to track multiple users, each with their own data. To help manage this ownership



150 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

in the OpenHPS framework, we link all data using the Web Identifier (WebID) of
the user. A technical example is provided in Appendix A.3.4.

4.4.2 Solid Pod Properties

In our paper A Solid-based Architecture for Decentralised Interoperable Location
Data [43] we proposed a solution to store location data such as orientation, position
and velocity as individual properties that can be linked to a user whom these prop-
erties belong to. We aimed for an implementation that allows multiple observations
for a single property, allowing the storage of a trajectory and historical positioning
data.

Slabbinck et al. [213] indicated in their work that the use of single LDP re-
sources [214] for different versions of a position requires proprietary applications,
which is not beneficial for obtaining interoperability between multiple applications
or positioning systems. In addition, they rightfully argue that updating the same
resource is not feasible for fast-moving data, which is generally the case when
working with sensor data or computer position data. With our current solution, the
resource files would rapidly become very large.

In their work, Slabbinck et al. [213] propose a solution for Linked Data Event
Streams [215] within Solid Pods. A new container is created for each granular
version of a position, along with its access control rights. When a resource becomes
too large, a new resource is created where new data will be stored. This solution
facilitates client-side querying as resources remain manageable in size. However, it
does complicate the storage of new data, as it must adhere to the LDES specification
to structure the data.

4.4.3 Linked Data Event Streams

One of the technical challenges involved with storing large amounts of data in
Solid is the need for efficient ways to handle streams of data. In an RDF database
with SPARQL endpoint, triples can be added or queried efficiently from a dataset.
However, in Solid, RDF data is stored in resources that become larger over time as
more data is added. This not only increases the complexity of making changes to
this data, but due to the lack of a SPARQL endpoint, it also makes it challenging
to efficiently retrieve part of the data.

Linked Data Event Streams (LDES) offers a method to create and, more importantly,
describe immutable event streams [215]. As a core ontology, LDES uses the
TREE hypermedia specification [216], which structures the data over multiple
smaller fragments, which are optimally structured in a hierarchical tree structure.
Splitting the data over multiple fragments provides greater flexibility in storing
and retrieving chunks of data. Since data produced by sensors or our positioning



p—

4.4. USER-CENTRIC STORAGE USING SOLID 51

systems is a time series, fragmenting the data based on time intervals can greatly
improve the efficiency of data retrieval.

a ldes:EventStream Eventstream @

treewvi Specifies which predicate is used to indicate the
ree:view timestamp of the data and which predicate is used to

indicate the version of the data. > @ sosa:Observation

I

a tree:Node

Uil

a sosa:Observation

tree:member

When date >=

2025-01-01

a tree:Relation tree:node a tree:Node
a tree:Collection

When date >=

2025-02-01

oo
i

tree:relation

A

a tree:Relation tree:node a tree:Node a sosa:Observation

0

When date >=
2025-03-01

a tree:Relation tree:node a tree:Node a sosa:Observation

Figure 4.15: Linked Data Event Streams example with multiple TREE nodes and
observations

The TREE specification consists of three main concepts; a tree:Collection
describing the data and containing (part of) the data within the collection, a
tree:Node thatdescribes a fragment of the collection and finally tree :Relations
that describe how nodes are related to each other. Various relations are defined in the
specification, such as simple “greater than” or “less than” relations as well as more
complex geospatial relations. Together, this creates linked data fragments (LDF)
of the collection, spread over multiple nodes [217].

LDES builds on top of the TREE specification by defining an event stream as an
immutable collection that can only be appended. It enforces a stream as a time-
based source of information and adds a vocabulary to indicate the retention policy
of data stored in this stream as well as the strategy for splitting up the stream into
buckets.

Figure 4.15 illustrates the basic concept of an event stream created using LDES
and TREE. An event stream defines the root node of the data structure. This
root node can indicate relations to other nodes that contain information about the
tree:Collection. In our adapted solution for providing user-centric storage to
data produced by positioning systems, we continue with our previous approach
of using Solid to store the data. However, to ensure the scalability of the data
contained within Solid, we utilise LDES to structure the stream of information.

While LDES is inherently a Linked Data vocabulary, it has found its way to data-
base management systems such as PostgreSQL and MongoDB with the Vlaamse



152 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

Smart Data Space (VSDS) project®. This enables developers to utilise the se-
mantic description of LDES while simultaneously leveraging the performance and
scalability of traditional database systems needed for handling real-time streaming
data.

4.4.4 Communication Broker

In the context of our proposed architecture for user-centric interoperable location
data storage, the integration of Linked Data Event Streams (LDES) provides a robust
solution for handling large data streams efficiently within Solid Pods. However, in
a real-time system, a method of communication is needed to ensure that new data
is processed and stored when it is made available.

Solid storage providers implement the Linked Data Notifications (LDN) specific-
ation [218], which allows applications to listen for changes made to an individual
resource or all resources within an LDP container. In our work [44] and [42],
we propose two independent solutions for utilising these notifications to offer real-
time data processing. In our first solution [44], we created new schema:Actions!
items in a container to act as events. In the second solution [42], we used these
actions for real-time manipulations in a 3D environment.

4.4.5 Adapted Solution

We developed the @openhps/solid™ module for OpenHPS, which enables the use
of Solid to store data using Linked Data Event Streams and individual observations.
The solution extends our earlier prototype of storing properties and observations in
a Solid Pod. However, to optimise the storage, the structuring is based on the work
of Slabbinck et al. [213], but with a more specific focus on structuring properties.

As detailed earlier in Section 4.4.2, properties represent all observational properties
of an object, or in our user-centric use-case, a user. Each property consists of a
description and a collection of observations for these properties.

Fetching Properties

When a user authenticates a positioning system with their Solid Pod, the system
should first determine the user’s existing properties. While our implementation
will store properties in the /properties container relative to the root of the Solid
storage, existing properties in the Pod do not need to adhere to this data structure.

The profile card of the user who owns the Solid storage should contain a reference
to all properties about this individual. Figure 4.16 illustrates the discovery of

Shttps://github.com/Informatievlaanderen/VSDS-LDESServer4]/
Ohttps://schema.org/Action
Uhttps://openhps.org/docs/solid/


https://github.com/Informatievlaanderen/VSDS-LDESServer4J/
https://schema.org/Action
https://openhps.org/docs/solid/

[ N O N

4.4. USER-CENTRIC STORAGE USING SOLID 153

9 discovery via WebID

. profile/ discovery

L Q card via ssn:hasProperty
. properties/

L

. position/

|: Q .meta
Q property.ttl

Figure 4.16: Discovery of properties from the user

properties within a user’s Pod. A user authenticates their Pod with a positioning
system along with its associated Web Identifier. This WebID links to the profile
card within the Pod that then references the observable properties of the user using
the ssn:hasProperty predicate. At this stage, the positioning system knows
which observable types of data are available for the authenticated user.

Fetching Observations

Once the positioning system is aware of the types of data that are available, indi-
vidual observations of these properties can be retrieved. For example, if a position
property is available, an individual observation represents the position at a partic-
ular point in time.

With our aim for interoperability of different systems that may not use linked data
event streams, the fetching of observations does not distinguish between observa-
tions within a stream or observations in a dataset as done earlier in our previous
solution [43]. Similar to the fetching of properties, our implementation will at-
tempt to structure new observations according to our proposed solution. However,
existing observations or observations made by other services can still be obtained.

SELECT DISTINCT ?observation WHERE {
?collection tree:member ?observation .
?observation a sosa:Observation .
FILTER(?collection = <...>)

Listing 4.17: Generic SPARQL query for retrieving all observations in a property
collection



154 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

To fetch observations, we use a generic SPARQL query as shown in Listing 4.17,
executed on the property using link traversal querying [219]. This query retrieves
all observations in a property without distinguishing between observations within
a stream or dataset. The result is a set of observations that can be used for further
analysis and processing.

Creating Properties

A positioning system may provide observational data that is not yet available in a
user’s Pod. In such cases, the system should enable the creation of new properties
and observations. These newly created properties can then be linked to the user’s
profile card for future reference or other applications that want to make use of this
data.

Creating a new property is a three-step process: (1) the property container and
property.ttl file are created. This property.ttl file contains information
about the observational property and links to TREE nodes that contain observations
about the property. (2) the property is linked from the user’s profile card using
the ssn:hasProperty predicate. (3) the metadata of the property container is
set, which includes information about the LDES event stream, its retention policy
and other knowledge needed by an application to store new observations of this

property.

Creating Observations

When we create a new observation, we first assume that the property exists and that
the application can access the container where this property is located. Creating a
new observation involves several steps, but it is important to note that it is up to the
producer who stores this data to structure and split the data. A producer may split
the data depending on the existing amount of data in a single node, the date of the
observations within the node or any other relevant criteria. The observations may
be appended to the event stream in chronological order, ensuring that the stream
maintains its immutable nature.

Our solution makes use of the structuring of LDES, which consists of nodes that
each contribute additional data pertaining to a particular collection. In our case,
this is a collection of all observations from an observational property.

As an example, a new node can be created whenever the previous node has more
than 50 observations or when the last observation in a node was created more
than 24 hours ago. In @openhps/solid, developers can configure these criteria
depending on their use cases. In the current solution, the structuring is based on the
implementation of the producer, rather than the user — which is one of the changes
that will be made in future work.



4.4. USER-CENTRIC STORAGE USING SOLID 155

Currently, the data producer that creates new observations is responsible for ad-
hering to and managing the data retention policy, which is defined using LDES. In
future work, this data retention policy should be managed by an orchestrator or the
Solid Pod itself to ensure that data producers are not responsible.

Slabbinck et al. [213] also indicated in their work that maintaining streams within
a Solid Pod requires additional logic, which is currently not present in Solid.
However, as an architecture for structuring this data, while solving the scalability
issue which was present in our initial design, we believe that our proposed solution
is a step in the right direction.

4.4.6 Implementation in a Positioning System

In Chapter 3, we already established that we can model a positioning system as
a processing graph with individual nodes that either push or pull information. In
Section 4.2, we further detailed that we can express these nodes as procedures that
act upon the data. In this section, we detail how our user-centric storage solution
integrates with a positioning system, or more specifically, as the source or sink of
a positioning system.

Sink

A sink node is used to finalise information. It can be a node that visualises a
location, saves data to a database, or sends data to another system for further
processing. In our context, the sink node can be used to store observational data
from the positioning system in the user’s Solid Pod. This data can then be analysed,
visualised, or shared with other applications that have access to the Pod. The sink
node in our solution is responsible for creating new observations and properties in
the user’s Pod, based on the data received from the positioning system.

Internally, a sink node is relatively in line with the workflow discussed earlier for
creating observations. When new data is received from the positioning system, the
sink node transforms the data frame into observations. These observations are then
stored in the correct LDP container (i.e., TREE node).

Source

A source node, on the other hand, is used to provide information to the positioning
system. Other than the sink node, its implementation is more complex due to the
active pushing of new information from a stream as opposed to passively pulling
information.

Figure 4.17 illustrates a source node and its role in pushing and pulling information
from Solid. Pulling information involves querying the Pod for the latest observation
similar to the solution detailed in the previous section. Querying offers a solution



156 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS

. properties/ push()

L . position/

.meta

L Q property.ttl
— Wy 1714815000/ @
Q .meta
Q {uuid}.ttl Source

Q {uuid}.ttl.acl
— Wy 1716031800/

- Q pull()

Figure 4.17: Pushing and pulling information from the Solid Pod

to fetch the latest information. However, it does not force the creation of new
information. Actively pushing new information involves a more complex design,
as it requires monitoring the stream of observations from the Solid Pod and reacting
to each new observation.

Communication Broker

As detailed earlier in Section 4.4.4, Solid can be used as a communication broker.
By simply combining the source and sink nodes in two independent processing
graphs, we can push information from one positioning system to the other.

Section 3.6 includes a figure that illustrates the use of MQTT as a communication
broker. A similar approach can be taken in our proposed solution, where the
sink node stores data in a Solid Pod and the source node actively fetches new
observations.

4.4.7 Conclusion

We presented a Solid-based architecture enabling the creation of a user-centric
positioning system where user-owned location and sensor data are stored in a
user’s personal data vault. This user-centric storage allows users to remain in
control of their data while allowing different positioning systems and applications
to access and use the data, given a user’s consent.

We realised a basic implementation of the proposed architecture where two posi-
tioning systems and one location consumer application store and read data from the
same decentralised vault. This application and implementation are further detailed



4.4. USER-CENTRIC STORAGE USING SOLID 157

in Section 6.4. Based on related work that was published after our initial solu-
tion, we modified our final solution to structure the data using Linked Data Event
Streams (LDES). We still make use of the SOSA and POSO ontology to represent
our data, but we utilise the TREE specification to structure the data over multiple
buckets that are more scalable than the single resource used in our first prototype.

While Solid is still under development, it highlights the need and advantages of
decoupling a user’s data from applications that produce and consume the data.
With location and sensor data being such a sensitive property of a person, it is
highly beneficial to store them in the personal data vaults provided by Solid. We
showcased that this change in storage is not only ensuring transparency, but the
interoperability of data can help in linking multiple indoor positioning systems
and improve the reasoning performed on the data. By using linked data in Solid,
we might also leverage the data vaults as communication brokers for transmitting
sensor observations from one part of a positioning system to another part by using
live update notifications [139].

One limitation in the structuring of data with LDES is the possibility of race
conditions that can occur on the event stream. As discussed in our solution in
Section 4.4.5, we mentioned that it is up to the data producer to structure the data
in a Solid Pod. However, this also entails that multiple producers do not know
about the currently running transactions that are occurring over the data. This can
cause issues such as duplicated nodes, overridden data in shared resources such as
the property.ttl or in some cases, data that is not linked to the property due to
deleted triples. To solve this issue, an orchestrator should be designed that handles
the storage and structuring within a Pod. Alternatively, if Solid supported bulk
operations where multiple actions can be performed using a single request, our
solution could be designed to prevent race conditions.

To further improve interoperability between positioning systems that produce in-
formation, future work should use the 1des:BucketizeStrategy to determine
the appropriate strategy for splitting observations into nodes. Currently, each data
producer, including our implementation in OpenHPS, handles these bucketising
strategies based on the developer’s preferences. This strategy can be customised
based on various criteria, such as the size of each node, the time interval between
nodes, or other relevant factors. While bucketising strategies, retention policies,
and data partitioning schemes are common in data streaming applications, applying
them to Linked Data streams in a Solid Pod introduces new challenges that need to
be addressed. With the potential for multiple producers to be writing to the same
Pod simultaneously, conflicts may arise in the structuring of data. Future work
should therefore consider the use of an orchestrator that manages the structuring
and ensures that the data adheres to the policies and strategies defined in LDES.



158 CHAPTER 4. INTEROPERABLE POSITIONING SYSTEMS




The beginning of knowledge is the discovery
of something we do not understand.

— Frank Herbert

Chapter 5

Discovering Positioning Systems

In Chapter 4, we defined interoperability of a positioning system as the ability
to access, read and understand the data produced by positioning systems. As
an answer to RQ2.1, we proposed a user-centric data storage of linked data in a
Solid Pod. However, while this enables the seamless exchange of data, it does
not allow users or applications to discover the availability of these interoperable
positioning systems.

The discovery of a system or service is not necessary when we assume the existence
of a single positioning system or standardisation, but it is required when we have
decentralisation of systems and services, which is the case for indoor positioning
systems. To answer research question RQ3, we delve into the concept of discov-
ering systems and services. The focus of this chapter is on defining a method or
framework that enables users to discover the availability of different positioning
systems in different environments.

As outlined in Section 2.6.3, from a theoretical point of view, we can use the
open world assumption of the Semantic Web to query all the necessary information
that we could potentially need by traversing the Web. From an engineering point
of view, querying the entire Web is not feasible, and we need a more structured
approach to finding information, or ideally multiple structured approaches that find
the same information.

Knowledge starts with the discovery of something we do not know or understand,
as stated by Frank Herbert. The same applies to the interoperability of data. With
decentralised data, we do not know of the existence of knowledge. Does the indoor
environment you visit have a floor plan? Is there an application available that can
help you navigate the building? Are there other services that I, as a user, should be
aware of when visiting a particular location? Without knowledge of the existence
of positioning systems, the interoperability of such systems is irrelevant.

159



160 CHAPTER 5. DISCOVERING POSITIONING SYSTEMS

5.1 Methodology

The discovery of data and services is a broad domain with various solutions de-
pending on the goals. To scope our research on this discovery, we focus on the
discovery of indoor positioning systems and the technology used within such sys-
tems. An indoor system is deployed in a building on Earth, meaning it has a fixed
location.

For discovering these types of services, we investigated methods of discovery that
found their foundations amongst standardisation within these services. By doing
this, we hope to design a discovery solution that does not break the interoperability
of the systems that are being discovered, as outlined with research question RQ3.1.
Next, as detailed by research question RQ3.2, since an indoor positioning system is
deployed within a certain environment, we also investigated the physical discovery
of apositioning system. In general, based on current use cases for indoor positioning
systems (see Section 2.7), we can assume that the discovery of such a system is
primarily needed when physically present in the environment where the service is
used.

In this chapter, we present two contributions that help with the local discovery of
positioning systems (i.e., physical discovery) but also the global discovery, which
will aid in the interoperability of our integrated solution of Chapter 7. Our first
contribution is a semantic beacon specification called SemBeacon that advertises
a Bluetooth signal to nearby receivers and describes the environment using the
POSO ontology and other ontologies available on the Semantic Web. We decided
on the use of Bluetooth beacons due to their prominent use in indoor positioning
systems and frameworks.

We validated the use of SemBeacon through various proof of concepts, multiple
applications and real-world usage during the IoT 2023 and FOSDEM 2025 confer-
ences to identify and discover users via their WebID. However, since this solution
requires additional hardware in a building, we designed the Linked Data Hash
Table (LDHT) specification that offers global discovery of positioning systems
based on a rough location estimate. Together, SemBeacon and LDHT offer a ro-
bust discovery method for positioning systems and the environments in which they
are deployed. The related work for our local and global discovery solution is further
detailed in Sections 5.2.2 and 5.3.1 respectively.

5.2 Semantic Bluetooth Low Energy
Beacons

As an answer to research question RQ3 and the underlying research question RQ3.2,
we developed the SemBeacon specification [45] to discover physical things and



5.2. SEMANTIC BLUETOOTH LOW ENERGY BEACONS 161

environments. The general principle of our specification is that uniquely identified
beacons have a position and additional semantic data available on the Web, which
is accessible via a Uniform Resource Identifier (URI), describing the beacon and its
deployed environment. Beacons broadcast this URI via an advertisement, allowing
any application that receives the advertisement to know the position of the beacon.
Because indoor positioning systems often detect multiple of these battery-powered
beacons in rapid succession, our specification is designed to limit the number of
network connections needed to retrieve information about the location of beacons
and the amount of data these beacons have to broadcast. Our specification is fully
backwards compatible with AltBeacon and iBeacon [220, 221] and Eddystone-
URL scanners, which allow existing buildings to gradually add SemBeacons to
cover their spatial area.

With SemBeacon, we aim to provide a solution to discover services and data based
on the physical location, but we also want SemBeacons to act as context providers
in ubiquitous computer systems. Similar to other related work, such as Imogl [79],
SemBeacons can support location-aware adaptivity, providing more detailed floor
plans when nearing an area. With Imogl, the authors envisioned that a museum
would use intelligent artefacts which broadcast their information. Similar to ImogI,
the design philosophy with SemBeacon is to avoid the need to update a centralised
database by decentralising the data on the Semantic Web.

While the Eddystone-URL specification can be used to broadcast a URI of a
semantic resource providing more information about an object, there is a lack of
information for its use in real-time positioning systems. An Eddystone beacon’s
MAC address can be used to uniquely identify an object. However, as the URL
needs to be a short encoded URL to fit within the 17 bytes, the information that can
be encoded within this URL is limited. Unlike regular-sized URLSs, where there
is enough space to support descriptive domains and paths that provide context
about the content (e.g., mycompany .com/buildingl), 17 bytes is too limited to
recognise beacons belonging to the same spatial area. Furthermore, the use of
URL shorteners is encouraged with Eddystone-URL, which further obfuscates the
URL. Due to this limitation, beacons within the same spatial area cannot be easily
recognised based on this short URL.

Being able to identify a set of beacons belonging to the same spatial area or
namespace prevents us from having to perform network requests to retrieve this
information. One possible solution to this problem is the use of Eddystone-UID,
which offers a UID and namespace to classify the hierarchical structure of a beacon.
An Eddystone-URL could be combined with this UID frame as an advertisement
packet and scan response to offer similar capabilities as SemBeacon. However, due
to their packet size, it is not possible to encode additional information about the
type of SemBeacon that is being deployed as shown in Section 5.2.3.



162 CHAPTER 5. DISCOVERING POSITIONING SYSTEMS

Other than the local discovery of LOCgram [26], which also uses Eddystone-URL
beacons for discovering nearby location-based services, we want to offer a method
that distinguishes between regular URLs and URIs that provide semantic data. In
addition, our focus with SemBeacon is towards positioning systems by adding ad-
ditional flags and identifiers that can help with the identification of useful beacons.

With our solution, we also aim to create interoperable indoor positioning systems
where users can obtain the location of a beacon as well as any other sensors or
configured positioning systems in a building without prior knowledge of the envir-
onment. Our proposed solution for creating semantic Bluetooth Low Energy (BLE)
beacons is divided into two main sections. While Section 5.2.3 describes the ad-
vertisement specification based on AltBeacon and Eddystone-URL, Section 5.2.4
introduces the semantic description of SemBeacons on the Web, including the use
of the POSO [40] vocabulary for describing indoor positioning systems.

A main advantage of using SemBeacon for broadcasting information about an
environment is the ability to operate without the need for a proprietary application
that defines a database or Web Service to map the beacons to contextual data.
Our vocabulary enables the description of positioning systems which in turn helps
applications to find these beacons in an indoor environment where GPS cannot be
used.

5.2.1 Architecture

2100 B

Hey I am a OxBEAC with
<namespace> <instance> ! = BeaconMap

Check cache

|

* I do not know your namespace

|

Check https://bit.ly/3JsEnF9

e — "\ HTTP GET (Accept: text/turtle,

ye N\ < application/rdf+xml)

_/
> RDF

/

Linked data response

v

Cache <namespace>
and all beacons
< within response

POSO & & °
Consortium 1l o &
Figure 5.1: SemBeacon architecture and discovery flow

Figure 5.1 illustrates the SemBeacon architecture and discovery flow. The beacon
acts as a lighthouse that emits a namespace and instance identifier that can be used
to uniquely identify the beacon. An application checks if it has prior knowledge



5.2. SEMANTIC BLUETOOTH LOW ENERGY BEACONS 163

about the namespace. If yes, it means that the beacon or another beacon in that
same namespace was previously discovered. If no information is available, the
application will request additional information from the beacon, after which it will
respond with a URL

This URI leads to contextual information about the specific beacon. Depending
on the use case, it can contain information about its position, observable data such
as telemetry information, and a description of how to interact with the beacon.
However, more importantly, it also links to the namespace in which it is deployed
and all other beacons, infrastructure or environment information related to this
namespace. The information is represented as linked data and uses vocabularies
such as the POSO ontology and GeoSPARQL.

After the beacon’s information is fetched, the namespace, along with other in-
formation on devices and beacons within this namespace is cached. When new
beacons are detected with the same namespace, the information does not need to
be retrieved. Furthermore, the contextual information of non-SemBeacons, such as
iBeacon can be distributed by SemBeacons, preventing the need to replace existing
infrastructure with SemBeacon.

5.2.2 Related Specifications

Our SemBeacon solution draws its inspiration from existing specifications, primar-
ily from iBeacon, AltBeacon, Eddystone-URL, UriBeacon and Bluetooth IPS. In
this section, we delve deeper into these specifications and their uses within an
indoor positioning system.

iBeacon Specification

The iBeacon specification was developed by Apple Ltd. in 2013. In the specific-
ation, a total of 30 bytes is used for the manufacturer data to encapsulate the
information it broadcasts. As illustrated in Figure 5.2, the iBeacon specification
offers three layers of device identification (dark blue) and adds an additional byte for
the reference transmission power at one metre distance. A 128-bit proximity UUID
identifies all beacons used by the same positioning system or application. Next,
an unsigned 16-bit major and minor number identify the hierarchy of the beacon
with a spatial region [222]. The specification does not mention at what spatial level
the hierarchical separation of the major and minor identifiers should be chosen.
However, most commonly, the major number defines the building or floor and the
minor number represents the beacon within that floor. The iBeacon specification
does not advertise a beacon’s location and requires a database or a known trusted
service to provide this information.



164 CHAPTER 5. DISCOVERING POSITIONING SYSTEMS

Adv Flags| Len |Type |Company ID Beacon Type| Beacon Len [HEger&iiERabinERiER s Vil TX @ 1m
3B 1B | 1B 2B 1B 1B 16B 2B 2B 1B

Ox1A | OxFF 0x4C00 0x02 0x15 uint8[] uint8 uint8 int8

Figure 5.2: iBeacon advertisement data (30 bytes)

Eddystone Specification

Eddystone was developed by Google in 2015. Other than the iBeacon specification,
it does not use custom manufacturer data, but creates a service with its own unique
UUID containing the beacon information [223]. The specification offers four types
of frames:

* Eddystone-URL for broadcasting short URL addresses. Originally, this
frame was used in the Physical Web to show notifications on Android devices.

* Eddystone-UID for broadcasting beacon identifiers similar to iBeacon. Uses
a namespace and instance identifier instead of a service UUID, major and
minor number.

* Eddystone-TLM for broadcasting telemetry data such as sensor data or
battery information.

* Eddystone-EID is a security specification for broadcasting ephemeral iden-
tifiers. In comparison to Eddystone-UID, the identifier changes at a given
interval and has to be resolved via an external service. This ensures that the
beacon cannot be tracked based on this rotating identifier.

Figure 5.3 shows the Eddystone specification for UID and URL Eddystone frames.
To limit the size of the broadcasted URL in an Eddystone-URL, the specification
adds 1 byte to specify the URL scheme prefix (e.g., 0x00 matches "http://www. "
or 0x01 matches "https://www."). The URL itself is a UTF-8 character array of
the URL without a scheme. Commonly used UTF-8 character groups, such as top-
level domains, can be encoded using a single byte (e.g., 0x00 matches ".com/")
as detailed in the specification!.

Despite the encoding techniques, a URL shortening service is often needed in order
to obtain a URL that fits within the frame. This short URL redirects to the full
URL, preventing the encoding of identifiable information within the domain or
path without performing an HTTP request.

Multiple frames can be combined to provide additional data. For example, the
Eddystone-UID frame can be combined with a scan response containing telemetry
data to return additional data while identifying a beacon with its namespace and
instance identifiers.

Thttps://github.com/google/eddystone


https://github.com/google/eddystone

5.2. SEMANTIC BLUETOOTH LOW ENERGY BEACONS 165

Adv Flags|Service List| Len |Type | UUID Eddystone Frame
3B 4B 1B 1B 2B 2B - 20B

0x0303,0xFEAA| 0x?7? | 0x16 | OXFEAA

Len | Type UUID UID Frame Type|TX @ Om Namespace ID IS Reserved
1B 1B 2B 1B 1B 10B 6B 2B
0x03 | 0x03 | OxXFEAA 0x00 int8 uint8[] uint8[] 0x0000
URL |Frame Type|TX @ @m| URL Prefix Encoded URL
1B 1B 1B 0B - 17B
0x10 int8 uint8 uint8[]

Figure 5.3: Eddystone-UID and Eddystone-URL advertisement data (13-31 bytes)

Using the Eddystone-URL frame, Seo and Yoo [224] proposed an interoperable
context model advertising Place, Object and Annotation URIs. These URIs led to
HTML web pages providing augmented reality context via HTML elements. For
its use within the context of interoperable positioning systems, there is a lack of
identifiable information that would prevent applications from having to access the
URI of every encountered Eddystone-URL beacon.

UriBeacon Specification

As the predecessor of the Eddystone-URL beacon frame [153], UriBeacon has
a similar maximum URI byte size as Eddystone (17 bytes) and uses the same
encoding techniques. The main difference to the Eddystone-URL specification is
the addition of 1 byte that can be used to add flags to the URI. The specification
only implemented one invisible hint flag defining whether users should be notified
about the presence of the URI. In Eddystone-URL, this byte is used to indicate
the type of Eddystone frame (i.e., ®x10 for Eddystone-URL). Having the ability
to add flags to the beacon to indicate how the client should handle or use the URI
is an important and useful feature in real-time systems, which we also decided to
use in our own solution. Figure 5.4 showcases the UriBeacon specification. As
can be seen from the figure, there are no differences between Eddystone-URL and
UriBeacon apart from the service UUID and flag byte.

Adv Flags|Service List| Len |Type UUID Flags |TX @ @m | URI Prefix Encoded URI
3B 4B 1B | 1B 2B 1B 1B 1B oB - 17B
0x0303,0xFED8| 0x?? | 0x16 | OxFED8 0x80 int8 uint8 uint8[]

Figure 5.4: UriBeacon specification



166 CHAPTER 5. DISCOVERING POSITIONING SYSTEMS

AltBeacon Specification

AltBeacon is an open specification by Radius Networks? that is backwards compat-
ible with iBeacon scanners not specifically scanning for beacons manufactured by
Apple Ltd. However, unlike iBeacon’s identification through a proximity service
UUID and a major and minor classification, AltBeacon uses 20 bytes as a single
beacon identifier.

Adv Flags| Len | Type |Company ID |Beacon Code Beacon ID TX @ 1m| Unused
3B 1B | 1B 2B 2B 20B 1B 1B

0x1B | OxFF uintlé OxBEAC uint8[] int8

Figure 5.5: AltBeacon advertisement data (31 bytes)

While iBeacon only uses 30 bytes, the last byte in AltBeacon was added to the
specification as a manufacturer-specific byte. The specification recommends using
a UUID for the beacon identifier’s first 16 bytes in a single organisational unit,
enabling backwards compatibility with iBeacon scanners looking for a proximity
UUID.

An AltBeacon is identified as such by setting bytes 7—8 to the ®xBEAC hexadecimal
representation, which would indicate the beacon type and remaining payload length
foriBeacon. In AltBeacon, these two bytes are called the beacon code as illustrated
in Figure 5.5. Similar to iBeacon, the AltBeacon specification does not include
information about a beacon’s location. Unlike the AltBeacon specification, which
recommends using the same 128-bit UUID for the same organisational unit, we
aim for a specification where beacons are not specifically deployed for a single
proprietary application.

All the presented prominent beacon specifications used for positioning and proxim-
ity awareness are built on top of Bluetooth v4.2 compatible advertisements. While
these advertisements are lightweight and sufficient to broadcast the required inform-
ation, they are limited when used without an additional database or Web service
mapping the beacons to other contextual data. With our SemBeacon specification,
we have considered the backwards compatibility with the prominent beacon spe-
cifications, as well as some of their characteristics and features that could be useful
for semantically describing the locations and environments in which these beacons
are placed.

Bluetooth IPS Specification

In 2015, the Bluetooth SIG published a core specification for advertising an indoor
positioning service via BLE [225]. This advertisement specification allows broad-
casting the global WGS84 location [65], local coordinates within a building, the

2https://github.com/AltBeacon/spec


https://github.com/AltBeacon/spec

5.2. SEMANTIC BLUETOOTH LOW ENERGY BEACONS 167

transmission power and additional information needed to know the transmitter’s
location.

Figure 5.6 shows an overview of the Bluetooth IPS specification as described by
the Bluetooth SIG. The specification describes the broadcast of the location data in
20 bytes and GATT services to configure these properties. Any changes made to
the location have to be configured in the hardware itself, making remote changes
impossible without additional network communication. While the specification
broadcasts a location in a global and local reference frame, no information is
broadcast on how to interpret these local coordinates.

Adv Flags| Len |Type |Flags Lat Long | North | East |TX Power|Floor |Altitude|Uncertainty|RFU
3B 1B | 1B 1B 4B 4B 2B 2B 1B 1B 2B 1B 1B

0x020106 | 0x14 | 0x25 - - - - - int8

Figure 5.6: Bluetooth IPS specification (20 bytes)

Other than all aforementioned specifications that influenced the design of our
solution, Bluetooth IPS provides an interesting advantage that other specifications
do not. The advertising payload itself provides basic context about the location
instead of relying on external information.

5.2.3 Advertisement Specification

For our semantic beacon specification, we had several design requirements. The
specification should be compatible with both the iBeacon as well as AltBeacon
specifications to be recognised by existing deployed indoor positioning systems. In
addition, existing infrastructures consisting of hardware beacons whose protocol
cannot be altered should also be supported, regardless of the type or manufacturer
of those beacons. Our advertising packet payload shown in Figure 5.7 is based on
the AltBeacon specification which is backwards compatible with iBeacon.

We also introduced a BLE v5 compatible advertisement leveraging the additional
payload size and range of BLE v5 [91]. Figure 5.8 showcases the extended ad-
vertisement data with the same 16-byte namespace and 4-byte instance identifier.
However, we added a byte for versioning the specification and an extended encoded
resource URI of 128 bytes, to avoid the shortening of URLs.

Identification

A SemBeacon is recognised as an AltBeacon (i.e., bytes 7—8 should be 9xBEAC) that
offers an Eddystone-URL compatible scan response. Individual SemBeacons are
identified as a combination of a 16-byte namespace identifier and a 4-byte instance
identifier that is unique for all beacons in the same namespace. The namespace is
a 128-bit universally unique identifier (UUID) that is unique per spatial area where



168 CHAPTER 5. DISCOVERING POSITIONING SYSTEMS

. D
lemBeacon Advertisement Data (31 bytes) Em
Adv Flags| Len |Type |Company ID| Beacon Code Namespace ID ISEREEDA TX @ 1m | Flags
3B 1B | 1B 2B 2B 16B 4B 1B 1B
- 0x1B | OxFF uintlé OXBEAC 128-bit UUID 32-bit WUID int8 =
»
EﬂemBeacon Scan Response Data (<= 24 bytes) s
Len | Type UUID Frame |TX @ @m|URI Prefix Encoded Short Resource URI
1B | 1B 2B 1B 1B 1B 0B - 17B
0x?? | 0x16 | OXFEAA 0x10 int8 © uint8 uint8[]
L J $0x00 'http://www." US-ASCIL URL
T 1 0x01 'https://www.' 0x00 '.com/' 0x06 '.com'
_ EQX@Z "http://" 0x01 '.org/' 0x07 '.org'
Eddy.stone URL~ i 0x03 "https://" 0x02 '.edu/' 0x08 '.edu'
compatible service D0x04 'urn:uuid: ' 0x03 '.info/' 0x09 '.info'
H 0x04 '.biz/' 0x0A '.biz'
0x05 '.gov/' 0x0B '.gov'

Figure 5.7: SemBeacon specification based on AltBeacon with an Eddystone-URL
compatible scan response

beacons are deployed, including buildings or even floors. The instance identifier is
a 32-bit (unsigned big-endian integer) uniquely identifying all beacons within the
same namespace. The splitting of an identifier into a namespace and instance is
inspired by Eddystone-UID. However, unlike Eddystone-UID, which recommends
that the namespace be used for filtering beacons during the scanning (i.e., for
a specific application), we utilise the namespace to remember which semantic
resources have already been retrieved.

Similar to the iBeacon specification which does not specify the spatial relation
between its major and minor identifiers, SemBeacon does not force the use of a
certain spatial hierarchy between namespaces and instance identifiers. However, all
beacons that can be fetched with a single HTTP GET request should be considered

. D
EemBeacon Extended Advertisement Data (<= 156 bytes) sm
Version |[Flags|URI Prefix|Encoded Resource URI
16B 1B 1B 1B 0B - 128B
128-bit UWID 32-bit UUID 0x10 o uint8 | uint8[]
' e
H " exos 'urn:’ 0xC . rdf#’
0x06 'tag:' : 0xeD '.ttl#'
Len | Type UUID Major Minor 0x06 'http://purl.org/' 0xQE '.rdf'
1B 1B 4B 4b 4b 0x07 'https://purl.org/' : OxOF '.ttl'
0x08 'http://w3id.org/’' 0x10 '.jsonld'
0x?7? | 0x20 0x00ACBE0Q 0001 0000 0x09 'https://w3id.org/' :

Figure 5.8: SemBeacon specification for Bluetooth 5.0



5.2. SEMANTIC BLUETOOTH LOW ENERGY BEACONS 169

to be in one namespace, offering users the freedom to decide how to group beacons
in a single resource.

With our aim for interoperability, newly developed BLE scanners should not filter
on a specific namespace identifier, but rather perform filtering after obtaining the
semantic data. However, existing implementations that scan for certain proxim-
ity UUID iBeacons can be supported by using the same 16-byte UUID for the
namespace identifier. These existing implementations will not be able to leverage
the broadcasted URI, but can still use an internal database — enabling existing po-
sitioning systems to slowly transition to SemBeacon without having to modify the
existing application. Applications that want to implement filtering of SemBeacons
used by one positioning system can use a prefix for the 128-bit UUID.

Semantic Flags

With SemBeacons, we aim to provide most, if not all, information on the Semantic
Web [124] via the broadcasted URI. However, some beacons might not require an
HTTP request to the URI if the online information is guaranteed to be unusable
for the application detecting the beacons. For example, an application designed to
use SemBeacons as landmarks for indoor positioning cannot make use of beacons
attached to movable objects.

The final byte of the SemBeacon advertisement is a manufacturer-specific byte in
AltBeacon. SemBeacon uses this byte to provide boolean information about the
type of SemBeacon and the expected available online data, which can be used to
decide whether to access the resource URI depending on the scanning application.

| Bit | Description \

0 | Indicates if beacon has a position (0 =unsure, 1 = yes).

1 Indicates if beacon is private (0 = public, 1 =private).

2 | Indicates if beacon is stationary (0 = stationary, 1 = mobile).

3 Indicates if the beacon is part of a positioning system (0 =no, 1 =yes).
4

5

Indicates if beacon provides observable data (0 =no, 1 =yes).
Indicates if beacon provides actuators (O =no, 1 =yes).
6-7 | Reserved for future use.

Table 5.1: SemBeacon flags

In Table 5.1 we provide an overview of the available SemBeacon flags, which are
based on the Bluetooth Indoor Positioning Service [225] flags, Eddystone frames
and the UriBeacon [153] flag. While they repeat certain information that could be
available online, the flags depend on the deployment of the beacon and should not
need to change after deployment. For example, if a beacon is placed on a wall and is
therefore considered stationary with a fixed position, these properties of the beacon
should not change regardless of any external influence. Our current version of



170 CHAPTER 5. DISCOVERING POSITIONING SYSTEMS

the specification (version 1.1) introduces some changes to the originally published
specification. Our previous version of these flags can be found in Appendix C.1.

To support positioning through multilateration or cell identification as outlined in
Section 2.3, each beacon requires a position. During the installation of beacons
in the physical environment, the first bit is set to 1 to indicate that the beacon is
installed at a fixed known location. In a use case where these beacons are placed
to merely provide information about the environment or provide information about
other beacons in the environment, they do not necessarily require a location. For
example, a building owner may place a SemBeacon at the entrance of a building
to make nearby users aware of the other beacons available within the building, the
environment, positioning system(s), and other contextual data.

If users or assets are equipped with a SemBeacon, these moving objects (indicated
by bit 2) can be tracked. For some assets or persons, the semantic description might
require authentication to limit access to the URL. In this case, the private flag at
bit 1 can be toggled on. A use case would be that the semantic data is stored in a
Solid Pod [139] as discussed in Section 2.5.2. In such a scenario, the SemBeacon
advertises a privately owned resource inside a Pod. In Section 6.7, we demonstrate
a use case where SemBeacon is used to advertise a privately owned augmented
reality environment, managed by a Solid Pod.

Finally, interoperable indoor positioning applications might only be interested in
SemBeacons which are placed for indoor positioning systems, in which case bit 3
can be toggled to indicate that the beacon forms part of a positioning system. In
addition, the semantic description might provide additional information on imple-
mented positioning techniques that use other sensors such as Wi-Fi fingerprinting
or Ultra-wideband beacons [226, 54, 2].

[ Bit | Axiom \
0 poso:hasPosition min 1 poso:AbsolutePosition
1-2 | N.a.

3 poso:inDeployment min 1 ssn:Deployment

4 ssn:hasProperty min 1 sosa:0ObservableProperty

5 ssn:hasProperty min 1 sosa:ActuableProperty
6-7 | Reserved for future use.

Table 5.2: SemBeacon flag axioms

With flags being used to determine if information is available online, the use of these
flags implies that certain data is indeed available online. Table 5.2 lists the axioms
for the 6 available flags. As anexample, if a SemBeacon indicates to provide observ-
able data, this data should be available through the sosa:ObservableProperty
predicate. Similarly, other flags should imply that predicates are available in the
online linked data.



5.2. SEMANTIC BLUETOOTH LOW ENERGY BEACONS 171

Scan Response Payload

Bluetooth Low Energy can respond with a scan response payload in addition to
the advertisement data. The scan response consists of an additional 31 bytes
of data that is sent whenever a scan request is received. In Figure 5.7, we see
an Eddystone-URL-compatible SemBeacon URI in the scan response. We have
chosen this frame as a legacy scan response due to its implementation in existing
libraries, applications and hardware. During the setup of the beacons, the URI
can be put behind a linked data front-end that serves a web page when the URI
is visited by the browser of users who are scanning for Eddystone-URL beacons.
These websites might contain a visual representation of the semantic data as in the
Physical Web [152]. However, unlike the Physical Web, our main goal is to access
the URI via software. A SemBeacon URI should resolve to a machine-readable
document where the data is structured using RDF. The namespace identifier should
match the base URI, ensuring that the namespace identifier matches the base URI
for all beacons within this document.

5.2.4 Semantic Description

For the design of our vocabulary to semantically describe beacons, we have fo-
cused on the use case where SemBeacons are used as proximity beacons in pos-
itioning systems and location-aware applications, but additional functionality and
data can be added as with any vocabulary. We have chosen the Positioning Sys-
tem Ontology (POSO) [40] as our core ontology. The ontology already offers the
terminology to describe landmarks used in a positioning system, such as beacons
or other RF transmitters. We extended POSO (poso-common) with an additional
vocabulary for describing the different types of beacons including SemBeacons
and their related information.

As outlined in Section 5.2.3, the identification of a semantic beacon is done on a
namespace and instance level. Namespace identifiers resemble the base URI of
a semantic resource. In our online technical specification, we make it clear that
multiple beacons within the same resource should use the same namespace. A
resource is a collection of triples that can be obtained from a single HTTP GET
request.

In Listing 5.1, we show a basic description of a SemBeacon and its spatial location
written as triples using the Resource Description Framework (RDF) [227]. The
individual :room_al_2 on line 13 is a sembeacon:SemBeacon type. An indi-
vidual is an instance of a class, in this case for a specific Deployment [124]. We
describe the reference RSSI at 1 metre and the absolute position defined using
the POSO ontology. As some positioning systems and beacons require the ref-
erence RSSI to be measured at 0 metres (e.g., Eddystone-UID), the distance can
be identified using poso:hasRelativeDistance on line 22. Further, we use



172 CHAPTER 5. DISCOVERING POSITIONING SYSTEMS

http://sembeacon.org/example.ttl

@prefix : <http://sembeacon.org/example.ttl#> .
@prefix hardware: <http://w3id.org/devops-infra/hardware#> .
@prefix poso: <http://purl.org/poso/> .

@prefix posoc: <http://purl.org/poso/common/> .

@prefix sembeacon: <http://purl.org/sembeacon/> .

@prefix qudt: <http://qudt.org/schema/qudt/> .

@prefix unit: <http://qudt.org/vocab/unit/> .

:building_a a ssn:Deployment ;
rdfs:1label "Building A" ;
sembeacon:namespaceld "el9c5eled6al4d. ..

xsd:hexBinary .

:room_al_2 a sembeacon:SemBeacon ;
rdfs:label "SemBeacon Room Al.2"@en ;
rdfs:isDefinedBy <http://sembeacon.org/example.ttl#> ;
sembeacon:namespace :building_a ;
sembeacon:instanceId "beac0101"" "xsd:hexBinary ;
hardware:mac "00:11:22:33:44:55" ;
posoc:referenceRSSI [ # Reference RSSI is a ...

poso:hasRSS [ # ... factory calibrated signal strength
qudt:unit unit:DeciB_M ; qudt:numericValue -56 ] ;
poso:hasRelativeDistance [ # ... measured at a distance

unit:Meter ; qudt:value "1.0"" "xsd:double ]] ;
poso:hasPosition [ a poso:AbsolutePosition ;
poso:hasAccuracy [ ... ] ; poso:xAxisValue [ ... ] ;
poso:yAxisValue [ ... ] ; poso:zAxisValue [ ... ] ]

Listing 5.1: Example SemBeacon description

the Hardware Ontology from the DevOps Infrastructure Ontology Catalogue [228]
to provide a beacon’s physical address, which can be used by some positioning
systems to uniquely identify other types of beacons that do not offer an identifier
in their advertisement data.

Listing 5.2 illustrates how additional beacons defined in the same resource and
namespace can be retrieved whenever the resource is fetched from SemBeacons.
An iBeacon is defined with a deployment as a common namespace also shown in
Listing 5.1 on line 16. In the online documentation3, we provide more details on
all additions to the vocabulary and its usage. Developers can decide to extend the
vocabulary to describe different output data types or even different protocols for
interfacing with the beacon or device.

3https://sembeacon.org/terms/1.0/


https://sembeacon.org/terms/1.0/

BT Y N N

5.2. SEMANTIC BLUETOOTH LOW ENERGY BEACONS 173

http://sembeacon.org/example.ttl

:room_al_3 a posoc:iBeacon ;
rdfs:label "iBeacon Room Al.3"@en ;
rdfs:isDefinedBy <http://sembeacon.org/example.ttl#> ;
sembeacon:namespace :building_a ;
hardware:mac "00:55:44:33:22:11" ;
posoc:major 10001 ; posoc:minor 12831 ;
posoc:referenceRSSI [ ... ] ; poso:hasPosition [ ... ]

Listing 5.2: Example iBeacon description

Figure 5.9 illustrates the extension to the POSO ontology. The POSO ontology
already provides the concept of BluetoothBeacon as landmarks. The POSO-
common extension provides common beacon types, such as iBeacon, AltBeacon
and an Eddystone beacon. With our SemBeacon extension, we provide an addi-
tional SemBeacon class which provides an instance identifier, version and short
resource URI data type. The extension also adds a namespace identifier data prop-
erty and a namespace object property, which can be used on any beacon type.
These can be used to link all beacons belonging to the same namespace. The full
ontology extension is available in Appendix C.4.

5.2.5 State and Discovery Flow

We now provide an overview of the different steps an application has to take to
scan and use SemBeacons. All beacons within the same spatial environment will
be put in the same resource. Each beacon within this resource will have the same
namespace identifier, which removes the need for unnecessary HTTP requests when
multiple beacons are detected with the same namespace.

In the following, we list the six different steps of an application scanning for
BLE v4 advertisements:

1. Passive scanning: The application passively scans for incoming advert-
isements until AltBeacon-compatible manufacturer data is detected that in-
cludes a 128-bit UUID (i.e., namespace identifier). When a UUID is detected,
the application will proceed to the beacon identification step.

2. Beaconidentification: A beacon isidentified with a namespace and instance
identifier. The application checks if it knows the namespace identifier. If the
namespace was not previously discovered, an active scan is performed.

3. Active scanning: The application actively scans for new beacons using a
BLE scan request. This scan triggers a response from nearby beacons that
receive this scan request.



174 CHAPTER 5. DISCOVERING POSITIONING SYSTEMS

-+ ssn:Deployment f---

rdfs:range rdfs:domain

sembeacon: namespaceld sembeacon: namespace

beemee- rdfs:range: -
I
I

--1 posoc:major

poso:BluetoothBeacon

T
h
.
:
- rdfs:domain-r--1 posoc:minor
i
.
h
.
1

pom--- posoc: iBeacon --4 posoc:proximityUUID
o«
S
ZAEEEEEE posoc:AltBeacon
8
(G2 g
<. ---1  sembeacon:instanceld
ZEREEEEEEE posoc:EddystoneBeacon .
2 i
2 ! r---rdfs:domain----- -§--- sembeacon: shortResourceUri
e sembeacon: SemBeacon te-e sembeacon:version
poso:hasRSS Legend
' sembeacon: <http://purl.org/sembeacon/>
' poso: <http://purl.org/poso/>
rdfs:range
: posoc: <http://purl.org/poso/common/>
. e Object Data
poso:RelativeSignalStrength Class e Property

Figure 5.9: SemBeacon extension to the POSO ontology

4. SemBeacon detection: SemBeacons will respond with a scan response that
includes the Eddystone-URL-compatible resource URI. Compatible scan-
ners will detect a SemBeacon when it has an AltBeacon advertisement and
a scan response that is compatible with Eddystone-URL.

5. Data retrieval: In case no information about the namespace was available,
the resource URI is accessed to retrieve the location of the beacon and other
beacons within the same namespace. Depending on the flags shown earlier
in Table 5.1 and the implementation of the application to act on these flags,
the data might not be retrieved.

6. Passive scanning: The application continues the passive scan until an un-
known namespace is found, in which case step (3) is performed again.



5.2. SEMANTIC BLUETOOTH LOW ENERGY BEACONS 175

On iOS devices, Apple limits the passive scanning for iBeacon manufacturer data
to beacons with a known proximity UUID#. This behaviour works fine when you
are tracking a set of known iBeacons, but in our use case, this would require prior
knowledge of the namespace identifiers of each SemBeacon. However, with our
SemBeacon specification, we can circumvent this limitation by scanning for the
OxFEAA service, which will provide us with a URI. Using this URI, we can then
retrieve information about the beacon’s namespace — which in turn will provide
us with a UUID that we can use to scan for a set of beacons.

5.2.6 Service Ranking

In the service ranking step, once the application has successfully scanned and
retrieved data from SemBeacons, it can rank the services based on proximity and
relevance to the application. This method of ranking is a discovery technique
similar to contextual discovery [154, 155].

5.2.7 Libraries and Application

We implemented and validated the SemBeacon solution by developing our own
hardware and software libraries to create and detect these beacons. Using this
software, we developed several use cases where SemBeacons are used to discover
resources on the Web and in Solid Pods. As a demonstrator of discovering environ-
ments and semantic beacons located within this environment, we transformed and
redeployed the indoor positioning system used for our OpenHPS framework. When
redeploying this positioning system, we made sure to add several SemBeacons near
the entrance to broadcast information about the environment [35].

Hardware

Our experiments were performed using custom beacons that we created to aid our
research. The beacons were designed based on the ESP32-S33, which at the time
when we started developing the hardware was a novel new chip that supported
Bluetooth Low Energy 5.0 and was initially not available in development boards.

Figure 5.10 showcases the hardware consisting of (a) a USB-A port to easily
power the beacon using a power bank or existing USB port of monitors, () an
external SMA antenna mount and (c) the ESP-S3 together with 16MB of flash. We
envision that SemBeacons are deployed to provide contextual information about
other beacons or positioning hardware within the building, rather than being used
themselves as a positioning technique (i.e., RF-based positioning using Bluetooth
beacons). Therefore, the inclusion of the USB-A port facilitates the deployment

4https://stackoverflow.com/questions/20988671/
how-to-scan-ibeacon-signals-without-specifying-uuid
Shttps://www.espressif.com/en/products/socs/esp32-s3


https://stackoverflow.com/questions/20988671/how-to-scan-ibeacon-signals-without-specifying-uuid
https://stackoverflow.com/questions/20988671/how-to-scan-ibeacon-signals-without-specifying-uuid
https://www.espressif.com/en/products/socs/esp32-s3

176 CHAPTER 5. DISCOVERING POSITIONING SYSTEMS

Figure 5.10: SemBeacon with Wi-Fi capabilities and BLE 4.0 and 5.0

in the building by simply inserting these devices into existing hardware such as
monitors, routers or other devices.

As part of our goal to ensure easy adoption of SemBeacon, an Arduino library that
enables easy development of SemBeacons on any ESP32 development board was
open-sourced alongside the hardware®. A code snippet with an example of how to
use this library, as well as more information about the hardware can be found in
Appendix C.

Mobile Application

We have developed a mobile application and a web app for detecting SemBeacons
and retrieving the information that these SemBeacons contain. Our app was built
for Android, iOS and the Web using the Web Bluetooth API [183].

For our integrated solution, we have expanded on this mobile application to include
Solid [139] support to advertise WebIDs to enable the discoverability of users and
organisations. In addition, the Solid authentication enables access to URIs that are
not public and only accessible by authenticated users.

Figure 5.11 shows several screenshots of the mobile application. The screenshot
at the bottom left shows an indoor environment fetched from SemBeacons. This
indoor environment includes GeoJSON data to represent rooms, hallways and
the building contour, as well as a floor plan image of the floor. On the left
of this screenshot, we can see the different floors that are available within this

Shttps://www.arduino.cc/reference/en/libraries/esp32_sembeacon/


https://www.arduino.cc/reference/en/libraries/esp32_sembeacon/

5.2. SEMANTIC BLUETOOTH LOW ENERGY BEACONS 177

environment. On top of this map, we display the beacons as markers. Beacons
fetched from SemBeacons, but are not detected through Bluetooth, are shown with
a translucent marker to indicate that they are not detected. Users can click on the
markers to see more contextual information, such as the distance and RSSI value,
as well as the name of the beacon.

In the screenshot on the top left, we have a basic overview of all detected beacons.
Our application scans for the most common types of beacons, including iBeacon,
AltBeacon, all Eddystone frames and of course SemBeacon. If a SemBeacon
can provide contextual information about other non-SemBeacons, such as their
name, it will be displayed in this overview. By changing the tab to Simulator, the
user can use the smartphone to simulate a SemBeacon. The top right screenshot
shows an overview of the details of a SemBeacon that is being simulated, including
the URI (long and shortened), as well as the flags. Finally, in the bottom right
screenshots, we illustrate a simulated beacon for the WebID of the user, which is a
SemBeacon with more contextual information to indicate that it is a profile that is
being broadcast.

5.2.8 Conclusion

In this section, we presented our solution to the local discovery of positioning
systems and digital twins of environments. Our local discovery uses the properties
of RF signals to only propagate near a transmitter to ensure that only nearby re-
ceivers can obtain information on the environment. By developing the SemBeacon
hardware and corresponding Arduino library, as well as the mobile application and
web app for detecting and retrieving SemBeacon information, we have provided
a comprehensive set of tools for enabling the use of SemBeacon in existing and
future applications.

One of the disadvantages of SemBeacon is its requirement for proprietary hard-
ware that can scan for Bluetooth Low Energy advertisements and scan responses.
However, our solution expands on existing specifications such as AltBeacon,
Eddystone-URL and the Semantic Web to enable the discovery. Furthermore, we
also provide an alternative global discovery method in Section 5.3, which provides
a discovery method that only requires link traversal querying.

In future work, we plan to extend the semantic flags to add more offline contextual
information to the beacons. These flags will depend on SemBeacon’s use cases and
will not influence the current implementations. We envision SemBeacon being
used for future user interactions with IoT devices. These devices could store a
stream of sensor data in an online storage provider, which SemBeacon could then
advertise to nearby applications or other IoT devices.



178 CHAPTER 5. DISCOVERING POSITIONING SYSTEMS

20:58 € o % Al 61% =

= Beacon

SCANNER SIMULATOR

BEACON_06

T

@ 77f340db-ac0d-20e8-aa3a-f656a29...
Major 45586
Minor 7654
BEACON_09
uuID

@ 77§340db-ac0d-20e8-aa3a-f656a29...
Major 46150
Minor 39949
BEACON_10
uuID

@ 77f340db-ac0d-20e8-aa3a-f656a29...
Major 31814
Minor 3312
BEACON_11

___ UUID

\@) 771340db-ac0d-20e8-aa3a-f656a29...
Major 56563
Minor 20918

21:00 B e %0 =R 61%E

Beacon Map

BEACON_07
Last seen: 2s ago
RSSI: -68 dBm

Distance: 3.98 m

15:41 B

& Edit beacon

§ SemBeacon

Name

BEACON_08

MAC Address
7:5¢:38:a4:45:ec

Manufacturer

SPECIAL USE/DEFAULT (0xFFFF)

Calibrated RSSI at Tm
-56

Namespace ID

77f340db-ac0d-20e8-aa3a-f656a29f236¢

Instance ID

c187d748

20:59 o =R 61%E

& Edit beacon

Maxim Van de Wynckel

WebID
https://solid.maximvdw.be/profile/card#me

Job title
Teaching Assistant and Researcher on Intero

E-mail
maxim.van.de.wynckel@vub.be

Nickname
Maximvdw

Birth date
Fri Mar 10 1995

Manufacturer

SPECIAL USE/DEFAULT (OxFFFF)

Namespace ID

Figure 5.11: Screenshots of the SemBeacon mobile application showcasing the
environment and beacon map, WebID broadcasting and other functionalities



5.3. LINKED DATA HASH TABLE 179

5.3 Linked Data Hash Table

Semantic beacons enable local discovery of positioning systems by advertising
their presence to local Bluetooth receivers. To aid with the global discovery, as
well as the discovery of positioning systems that do not make use of SemBeacons,
we designed a distributed lookup table for positioning systems and location-based
services. Such a solution forces positioning systems to publicly register to a
distributed system, but it avoids deploying hardware in a building.

The lookup table in our solution relies on a geospatial lookup. The user or tracking
device provides a rough estimate of a location, based on GPS, cellular signals,
an IP address or even user input. In the lookup table, this information is used
to determine nearby positioning systems or location-based services that could
potentially cover the area the user is currently in. Each of these systems can provide
additional context that can help to decide which system is the most appropriate to
use for a given application.

One of the main challenges with this approach is the granularity of the geospatial
lookup. What3Words [229] is a reverse geocoding service that splits up the earth
into a grid that assigns three words to uniquely identify each cell in this grid. Each
cell covers three square metres, making it a relatively precise method to describe a
location with only three words.

However, in our approach, we want a system to look at which services potentially
lie within a larger area, rather than a specific three-square-metre cell. This requires
a more flexible and scalable geospatial lookup mechanism that can handle varying
levels of granularity based on the accuracy of the rough location that can be
obtained. Our proposed solution should be able to locate or discover potential
positioning systems. However, access to these positioning systems can require
additional authentication.

To solve this issue, we propose the use of a Distributed Hash Table (DHT) consisting
of multiple nodes to store and retrieve information. Each node in the DHT is
responsible for a set of keys and is able to efficiently retrieve information about the
values (i.e., URIs). Our DHT is based on Kademlia [230] with a similar lookup
strategy.

To keep this lookup table interoperable, we make use of linked data to store the
information of individual nodes and locate nodes using their URI. We created
the Linked Data Hash Table (LDHT) specification, which builds on top of the
TREE hypermedia specification [216]. The linked data DHT network is imple-
mented in the @openhps/dht7 module of OpenHPS and interfaces with Solid, as
shown in Section 2.5.2, to manage each node in the network.

7https://openhps.org/docs/dht/


https://openhps.org/docs/dht/

180 CHAPTER 5. DISCOVERING POSITIONING SYSTEMS

LDHT is a solution to a wide range of discovery problems and not only for dis-
covering positioning systems. In our use case, we want to use the specification to
distribute the knowledge of indoor positioning systems bound to spatial locations.
We apply a hash function to partition the Earth into a fixed-size grid. Each cell in
this grid is assigned a unique key that maps to a set of URIs of indoor position-
ing systems within this cell. Users obtain an inaccurate location via cell towers,
GPS or user input. This location is then hashed to the cell(s) that lie within this
location radius, after which the LDHT can be traversed to find a list of potential
IPSs. LDHT provides a solution to the general research question RQ3 while main-
taining interoperability (RQ3.1) by fragmenting a single collection over multiple
linked data resources. We envision a shared collection of positioning systems that
is expanded using LDHT nodes that contain part of the ever-growing collection of
(indoor) positioning systems.

5.3.1 Related Work

Global discovery is a common challenge to overcome in discovering data and
services. In Section 2.6.1, we already discussed several protocols and specifications
to perform global discovery of data and services. However, often, these approaches
require centralised registries, which are not scalable.

The use of distributed hash tables for discovering (Web) services is not a new
concept. Other related work exists that proposes the discovery of such services
through decentralised registries [231]. These distributed hash table implementa-
tions often rely on well-known overlaying communication layers such as Kademlia,
Chord, or Pastry [232]. The protocol layer can be adapted to different implementa-
tions. While some protocols only enable communication between peers, protocols
such as IPFS [233] or OpenDHT [234] offer public endpoints that enable outsiders
to query information.

However, the semantic and processing interoperability of such a gateway limits
the accessibility by third parties. These open gateways provide no insights into
the hash function that is being used and require prior knowledge of the hashed
key itself. Furthermore, these public gateways often provide no semantics on the
available functions, which are available and require prior knowledge on how to
interface with these gateways.

Linked data inherently already offers the decentralisation of data. With our
POSO ontology, we offered interoperable positioning systems with the opportunity
to describe themselves on the Semantic Web. Positioning systems are identified
by the URI linking to the description of such a system. However, discovering or
querying linked data becomes increasingly complex when more sources provide
fragments of this data. Without additional knowledge, this system cannot be dis-
covered. To address this issue, we propose a solution that offers a distributed



5.3. LINKED DATA HASH TABLE 181

discovery through linked data and facilitates client-side querying through linked
data fragments (LDF).

Retrieving or discovering data in our implementation requires no knowledge about
our proposed specification and uses the inherited properties of linked data to
traverse peers on the Semantic Web. Adding new nodes or data to the network
relies on existing specifications or vocabularies such as the TREE hypermedia
specification [216], the Solid project [139] and the Schema.org vocabulary [204].

Earlier in Section 4.4, we have already decided on the use of the Solid project
for enabling user-centric storage of data produced by positioning systems. Essen-
tially, this entails that each user’s Pod could potentially serve as a node in our
DHT network.

5.3.2 Architecture

In this section, we provide a high-level architectural overview of our Linked Data
Hash Table (LDHT) solution, which is based on the Kademlia DHT protocol.
In Sections 5.3.3, 5.3.4 and 5.3.5 we further detail the protocol and its use for
discovering positioning systems.

Action
N nodel/ Listener Node #2

LQ .meta
L Q node. ttl e Read

LQ data.ttl (g Read 0

L Q nodes. ttl e Read
- B T S
L . actions/ e Append
LQ .meta Action 9 9 Action

L Q 1715158486 tt1 Listener Node #1 Listener Node #3

LD ) @

Add a new value to the DHT network

Figure 5.12: Linked Data Hash Table (LDHT) architecture

Figure 5.12 depicts the basic architecture of our LDHT approach. Each node is a
Solid Pod with a process or application running in the background. The Solid Pod
is structured in a way that provides data (i.e., the collection we want to distribute
across the network), the other nodes that are known by the node (i.e., neighbouring
nodes), information about the node itself, and finally an inbox container with
actions that is used to trigger an action on the node. Other nodes can create new
actions on other nodes to add or remove data from the collection. Each node is
responsible for a set of data. If an action is received to store data that should not
be placed on the node, the action is propagated to the neighbouring nodes.



182 CHAPTER 5. DISCOVERING POSITIONING SYSTEMS

Data is indexed by a unique key, and each node is responsible for a range of keys.
A node contains information about neighbouring nodes and the range of data they
are responsible for. When the node wants to look for data indexed by a certain key,
it can use this knowledge to traverse the neighbouring nodes to retrieve the data.

Our solution’s overlaying network architecture is based on the Kademlia protocol.
Kademlia is a decentralised DHT protocol designed for efficient lookup in peer-
to-peer (P2P) networks. It structures the network as a binary tree, where each
node has a unique identifier (node ID). Each node maintains a routing table to
locate other (neighbouring) nodes. The protocol uses XOR distance as a metric
to determine the proximity between node IDs, which enables O (log(n)) lookups.
This XOR-distance is computed as their bitwise XOR and is further detailed in
Equation 5.4.

T

Keyspace (3-bit)

Figure 5.13: Kademlia DHT with a 3-bit keyspace

Figure 5.13 shows a simplified Kademlia DHT with a 3-bit keyspace and 3 buckets.
In this example, a total of 8 different keys can be stored. Each node assigns itself a
random key.

To maintain routing efficiency, each node stores a routing table structured as
k-buckets. A k-bucket holds up to k nodes per distance range. Lookups are
recursive and are handled by protocol messages that propagate through the network
(i.e., follow the binary tree). The Kademlia DHT protocol consists of four main
protocol messages that are sent as Remote Procedure Calls (RPCs):



5.3. LINKED DATA HASH TABLE 183

* PING: A ping message is used to verify if a node is still alive. When a node
is offline, it should no longer be used in the routing.

* STORE: The store protocol message is used to store a key-value pair in a
node. This message is sent to the closest node and may be propagated to
other nodes in the network.

* FIND_NODKE: This protocol message is used to request nearby nodes for a
particular key. The message is sent to a neighbouring node to request its
closest neighbours, and it can propagate through the network.

* FIND_VALUE: This protocol message works similar to the searching of a
value, but instead of finding a node responsible for a key, it will return the
value stored for this key. Just as the protocol message for finding a node, the
message can propagate through the network.

Other than the default Kademlia protocol, our architecture only uses an RPC mes-
sage for storing data or pinging a node. The search for nodes and data is accessible to
each node via the Web. Therefore, the node can traverse the linked data client-side
instead of letting a call propagate through the network.

5.3.3 Hashing Function

To efficiently distribute the data across nodes based on their geographical location,
we use a hashing function that maps latitude and longitude values to a unique key
in the Kademlia DHT. Latitude has a range from —90° to 90° while longitude has
a range from —180° to 180°. The hash function takes the latitude and longitude
values as input and outputs a single unique key that falls within the range of keys.

latyormalised = latitude + 90 (5.1
Ingnormatisea = longitude + 180

As shown in Equation 5.1, we first normalise the latitude (/at) and longitude (Ing)
to an absolute value. This will ensure that our hashing function produces positive
keys.

. size 10
parutions = circumference ~ 40007.86 (5.2)
360 360

lat ;
latPartition = {—normamed

partitions

lngnormalised J

IngPartition = —
partitions



[ I R Y. I N VO SR

184 CHAPTER 5. DISCOVERING POSITIONING SYSTEMS

Next, in Equation 5.2, we partition the normalised latitude and longitude into cells
of 10x 10km. This essentially splits the Earth in a grid of 8006001 cells that
can be distributed amongst all peers. We have chosen this cell size based on the
number of expected positioning systems that could exist in a single cell. In our
equation, the size is the grid size in km, while the circum ference is the Earth’s
circumference measured through the poles (40 007.87km). This means we require
at least a 23-bit node identifier and ideally use 23 k-buckets in each node.

The lookup in a cell would require an O(n) performance, meaning that if our
cell size is too large, and therefore covers more positioning systems, it would also
require more computation time to look up one particular positioning system. If the
cell size is too small, a lot of nodes would exist that have no data included, as the
use of indoor positioning systems is currently still limited. The 10km grid size was
chosen after conducting a set of queries on OpenStreetMap (OSM) to determine
the average number of positioning systems for different grid sizes (i.e., indexed by
the hashed key). We calculated the average by performing a query that counts the
public buildings in a bounding box. This query is executed for each cell in our grid,
after which we use the average building count as an average amount of positioning
systems that would be available for one hash key. To limit the number of queries to
Overpass?, the API for accessing OSM data, we limited our querying to Belgium as
opposed to querying all 8006001 cells. However, this does not account for empty
grid cells such as overseas or rural areas.

[out:json];
(
way["building public|government |school |university|
college|hospital|clinic|fire_station|
police|library|civic"]
(49.490271,1.799646,50.390094,2.699469) ;
);

out count;

n~n

Listing 5.3: Example Overpass query for a bounding box to count public buildings
on OpenStreetMap (with a 100km grid size)

Listing 5.3 shows a generated query® for retrieving the amount of public buildings
in a 100km grid cell. In this case, we calculated the average public buildings in a
100km cell to be 1605. Similar tests were conducted with different grid sizes until
we settled on a default grid size of 10km which has an average amount of 16 public
buildings and a maximum amount of 403 public buildings in one cell. While we

Shttps://wiki.openstreetmap.org/wiki/Overpass_API
https://github.com/OpenHPS/openhps-dht/blob/
29fa15d851037eb31£10e8b730147d0c8d2a919b/test/utils/validator.ts


https://wiki.openstreetmap.org/wiki/Overpass_API
https://github.com/OpenHPS/openhps-dht/blob/29fa15d851037eb31f10e8b730147d0c8d2a919b/test/utils/validator.ts
https://github.com/OpenHPS/openhps-dht/blob/29fa15d851037eb31f10e8b730147d0c8d2a919b/test/utils/validator.ts

5.3. LINKED DATA HASH TABLE 185

use this as the default in our @openhps/dht module, developers can still override
this number for other data collections.

hash = latPartition = 31 + Ing Partition (5.3)

Finally, the hash of the latitude and longitude cell is calculated in Equation 5.3
using the sum of the latitude partition multiplied by the prime number 31 and the
longitude. This multiplicated was added to ensure that the hash is unique for each
latitude and longitude combination (i.e., when the sum of the latitude and longitude
is equal to a previous hash value).

When we want to search for positioning systems at a given latitude and longitude,
but the location accuracy for the search is less accurate than 10km, the lookup will
occur over multiple cells that cover the complete latitude and longitude in a radius
based on the accuracy.

5.3.4 Storage and Lookup

In our DHT network, we consider a node to be an individual Solid Pod that can
contain data. New nodes can join the network and may also leave the network. The
DHT network is initialised by letting each node that joins the network generate its
identifier using a random latitude and longitude that is hashed using the hashing
function. Nodes are located using URISs that link to nodes of the TREE hypermedia
specification [216].

When a new node is added to the network via one or more nodes, this change
is propagated through the nearby nodes. Each node has 20 buckets that include
information about neighbouring nodes based on their proximity. Distance between
nodes uses the XOR distance between two nodes as shown in Equation 5.4.

distance = | nodel D°"erNodelD | 5.4)

bucket = |logs(distance)] 5.5)

Using the hashing function, a latitude and longitude can be converted to a hash key.
Each node stores 20 nodes per bucket.

While we can make the data of each node accessible by other nodes, distributed
hash tables still require remote procedure calls for storing data and managing nodes.
To enable this, we make use of Linked Data Notifications (LDN) [218] and write
access to a Linked Data Platform (LDP) container.



T B N S S

186 CHAPTER 5. DISCOVERING POSITIONING SYSTEMS

# Collection of (indoor) positioning systems
<http://purl.org/poso/collection/> a ldht:Collection ;
tree:view <> ; # Node described in <>
# The nodes managing this collection are available in ...
ldht:nodes <http://purl.org/poso/collection/nodes/> .

# Collection of nodes
<http://purl.org/poso/collection/nodes/> a tree:Collection ;
tree:view <./nodes.ttl> . # Node described in nodes.ttl

# Description of this LDHT node (ID 37958)
<> a ldht:Node ; ldht:nodeID 37958 ;
# Relation to other keys (i.e., node identifiers)
tree:relation
[ a tree:GreaterThanOrEqualToRelation ; tree:value 43219 ;
tree:node <http://othernodel> ; tree:path ldht:nodeID ],
[ a tree:GreaterThanOrEqualToRelation ; tree:value 37958 ;
tree:node <./data.ttl> ; tree:path ldht:nodeID ],
[ a tree:GreaterThanOrEqualToRelation ; tree:value 16161 ;
tree:node <http://othernode3> ; tree:path ldht:nodeID ];
# Actions that can be performed on the node
schema:potentialAction
[ a 1dht:PingAction ; schema:target <./actions/> ],
[ a 1dht:AddNodeAction ; schema:target <./actions/> ],
[ a ldht:RemoveNodeAction ; schema:target <./actions/> ],
[ a 1ldht:StoreValueAction ; schema:target <./actions/> ]

Listing 5.4: DHT node with identifier and relations to the data

Listing 5.4 shows the description of an LDHT node. Each node has an identifier,
a list of potential actions that can be performed on the node and relations to the
data in the node, as well as on other known nodes. Each node knows (some) of the
other nodes in the network, which is available in a separate collection. While this
separate collection is not needed due to the existence of the tree:relation to
other neighbouring nodes, it does facilitate defining a collection of all nodes within
the network.

In a Distributed Hash Table (DHT) network, finding data involves a distributed
search process among the nodes. The process of finding data in our LDHT network
does not require the creation of a new action. Instead, the nodes are traversed based
on the most likely neighbouring nodes that would contain the data. The traversing
and searching for data is done similarly to Kademlia, with the only exception being
that the LDHT network can traverse the network itself as opposed to sending a
message to the nearest node to find the data.



5.3. LINKED DATA HASH TABLE 187

For our hashing algorithm that divides the Earth into cells, the key is first calculated
based on the location and search range. For each key, the nearest neighbour
is calculated by sorting the neighbouring nodes based on their XOR distance
nodeID*¢Y. The data.ttl of the closest node will be checked for the data. If the
node is not responsible for this key, its neighbouring nodes are also checked and
traversed.

5.3.5 Network Actions

In our linked data approach, network actions such as the addition of nodes make
use of Linked Data Notifications (LDN) [218]. These notifications enable a
WebSocket connection to a container to automatically receive events whenever
a new resource is added to this container.

Information retrieval does not require action as the data is expected to be made
public. Any agent capable of executing actions will also be able to read the data
that the node contains. Due to the nature of our Linked Data approach, even if the
backend logic that responds to actions is down, the data contained within the node,
as well as pointers to other nodes, remains available as long as the web server is
running.

All actions are written as individual resources within a Solid container. Actions
are subclasses of schema.org [204] and may require a response to indicate that
the action has been executed. The method of using actions is similar to the use of
Solid as a communication broker as detailed in Section 4.4.4. The current draft of
the vocabulary is available in Appendix D.

Our decision to use schema.org actions as opposed to activity streams [235] was
due to the simplicity of the actions and the available vocabulary to indicate the
status and type of action. In our set-up using Solid, the activity streams are already
used to indicate that a new resource has been appended to the container.

Action: 1dht:AddNodeAction

When a node enters the DHT network, it triggers the addition of a new node action.
Listing 5.5 illustrates an example of this action where a new node is added to
the network by referencing it using schema:object. Actions have a status that
indicates if the node has read and completed the action. To avoid race conditions
where nodes are waiting for an acknowledgement of their addition, nodes that
receive the 1dht:AddNodeAction will immediately set the status to complete,
while the first node waits for confirmation from its neighbouring nodes.



T B N S S

—
S

L= Y S T N

188 CHAPTER 5. DISCOVERING POSITIONING SYSTEMS

# Action to add a new node

<> a ldht:AddNodeAction ;
# Date and time of the action
dct:created "2024-05-18T13:00"" "xsd:dateTime;
# Current status (active, completed, failed)
schema:actionStatus schema:ActiveActionStatus ;
# Publisher of the action (i.e, other node)
schema:agent <http://node2/node.ttl> ;
# Node to be added
schema:object <http://newnode/node.ttl> .

Listing 5.5: Turtle markup of an add node action

Action: 1dht :RemoveNodeAction

Offline nodes will be removed from the network. The remove node action will
update the network accordingly. This action is sent by a node that no longer wishes
to be part of the DHT network (e.g., due to becoming offline). Other than the
addition of a node, the action is immediately resolved once it is received by the
neighbouring nodes; there is no need to wait for a confirmation.

Action: 1dht:StoreValueAction

An action is used to trigger the node to store a new value. Depending on the other
nodes that the target node is aware of, the data will be forwarded to other nodes in
the network. Neighbouring nodes may not be responsible for storing the new value,
but may have more knowledge of other nodes that are responsible. By forwarding
the action from one node to the other, the data ends up in the correct node.

<> a ldht:StoreValueAction ;
dct:created "2024-05-18T13:00"" "xsd:dateTime;
schema:agent <http://node2/node.ttl>;
schema:object [ a ldht:Entry ;
dct:identifier 48665 ; schema:value <http://some_ips/>
] ; schema:actionStatus schema:CompletedActionStatus .

Listing 5.6 Turtle markup of an action instructing a node to add a new value

In Listing 5.6, an example action is provided for instructing a node to add a new
value based on a key (i.e., dct:identifier). Depending on the access rights of
the collection, the store action can be created by any agent, authenticated or not. It
is the responsibility of the node to validate the data.



T N

5.3. LINKED DATA HASH TABLE 189

Action: 1dht:PingAction

Network actions require backend logic that listens for and responds to these actions.
In order to ensure that the backend logic is still operational, a ping action is used
to test if the node is active.

<> a ldht:PingAction ;
dct:created "2024-05-18T13:00"" "xsd:dateTime ;
schema:agent <http://node2/node.ttl> ;
schema:actionStatus schema:CompletedActionStatus .

Listing 5.7: Turtle markup of a ping action

Listing 5.7 illustrates a ping action created on a node by another node in the network.
Initially, the action status is set to schema:ActiveActionStatus to indicate that
the ping is active and pending. The backend logic, which has write permissions
to this action will update the status to completed to indicate it responded to the
ping request. If the ping times out, the node that initiated the ping will update the
status of the action to schema:FailedActionStatus to indicate to the node that
it should no longer respond to the ping request if it comes back online.

5.3.6 Implementation in a Positioning System

We envision that an (indoor) positioning system will register itself with a known
node. This node can be a self-hosted node by the system itself or a node provided
by a third-party service that provides the poso collection.

To demonstrate how we envision the use of LDHT for registering a positioning
system, we provide an example using OpenHPS in Listing 5.8. The model adds a
solid service to the positioning system on lines 11 to 14, which is the same service
that is used to store user data in a Solid Pod. The service is responsible for handling
authentication and the retrieval and storage of datasets. Next, a DHTService is
added with a DHTRDFNetwork. While our @openhps/dht module is primarily
aimed at an LDHT implementation, other types of networks can be added in the
future.

The LDHT network is initialised with the collection URI on lines 2 to 4. Optionally,
a local node can be added to the network. If this is the case, new nodes and data
will be sent as an action to this node. When the local node is not set, a new node
is created using the authenticated Solid Pod. The DHTService is created on lines
10 to 12 using the previously initialised network. To automatically register the
positioning system on the network, a geospatial boundary must be set in addition
to the URI where the positioning system is detailed.



T R N S S

190 CHAPTER 5. DISCOVERING POSITIONING SYSTEMS

// Create LDHT network

const network = new DHTRDFNetwork(
'http://purl.org/poso/collection/"’

)H

network.setLocalNode(
LocalRDFNode.fromURI('https://.../nodes/poso/node.ttl')

DK

// Create DHT service with the LDHT network

const service = new DHTService(network);
service.setBoundary(/* ... */);
service.setSystem("https://my-positioning-system.com/");

// Create a positioning model
ModelBuilder.create()
.addService(new SolidClientService({

clientId: "...", clientSecret: "...",
clientName: 'OpenHPS', autologin: true,
i9))
.addService(service)
fromQ .via(/* ... */).to().buildQ;

Listing 5.8: OpenHPS implementation of linked data hash tables for adding a
positioning system

5.3.7 Conclusion

In Section 5.2, we proposed a solution for the local discovery of positioning systems
using beacons that advertise signals to nearby receivers. One of the limitations
we discussed in that solution is the requirement for additional infrastructure to
merely enable the discovery process. To address this limitation, we introduced the
concept of a Linked Data Hash Table (LDHT) network that utilises the Semantic
Web and Solid to create a distributed and self-organising network of nodes. The
LDHT network allows for the seamless addition and removal of nodes, as well as
the storage and retrieval of values within the network.

LDHT nodes are not self-managing, meaning each node requires logic behind the
scenes to orchestrate the distribution of data and the linking of neighbouring nodes.
We envision that these nodes run alongside a personal data vault (PDV) such as
Solid, or are integrated within the PDV.

In our current implementation of this specification, we have implemented the main
functionalities for achieving distributed lookup and storage. Future work should
expand our implementation to include additional features to ensure replication of
data among nodes in case a Solid Pod (i.e., peer) is no longer accessible. While our



5.3. LINKED DATA HASH TABLE 191

solution is generic for a wide range of use cases, not limited to spatial or hierarchical
ordered data, we focus on the use case of global discovery of positioning systems.
Future work should investigate different scenarios, as well as the scalability of the
network on a larger scale.

At the beginning of this chapter, we scoped our research to indoor positioning
systems bound to a geographical location. While this is true for most IPSs, envir-
onments such as cruise ships can benefit from an IPS, but are not spatially bound
to one location. Our LDHT solution would not be feasible in such a scenario. We
envision that for these types of use cases, our previously presented SemBeacon
solution can offer a more dynamic proximity discovery.



192 CHAPTER 5. DISCOVERING POSITIONING SYSTEMS




For the human makers of things, the
incompletenesses and inconsistencies of our
ideas become clear only during
implementation.

— Frederick P. Brooks Jr.

Chapter 6

Applications and Technical
Evaluations

Throughout our research, multiple prototypes, applications and software libraries
were developed to perform technical evaluations on each research question and
solution to these research questions. All of our prototypes were developed on top
of the OpenHPS framework. While the framework originally handled the creation
of positioning systems, it was later expanded to represent these systems and the data
they produce in linked data. Using this new expansion, we developed prototypes for
decentralising the data produced by these systems. All applications and technical
evaluations influenced the design of our solutions and eventually were used as
inspiration for the architectural design in our integrated solutions, which will be
detailed in Chapter 7.

6.1 Multi-Sensor Ball Tracking

One of our initial prototypes that was developed as part of the OpenHPS technical
report [32] is the tracking of a toy ball through multiple sensor streams. The
purpose of this prototype was to validate the capability of OpenHPS to handle
different data types and positioning systems to validate research question RQ1 and
the underlying research questions RQ1.1 and RQ1.2. In addition, we wanted to
validate that our design for a process network could handle more complex streams
that contain loops and different throughputs for each sensor.

For this prototype, we developed a positioning system for a Sphero Mini toy using
the internal sensors of this toy and an external camera. The Sphero provides
raw sensor readings for the linear and angular velocity, raw accelerometer data,
orientation and an internally computed position. This internal position is computed

193



194 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

by the Sphero toy itself and makes use of the motor velocity, accelerometer and
gyroscope.

We make use of the @openhps/core!, @openhps/opencv? and the use case-
specific @openhps/sphero3 modules to construct a model that fuses these multiple
sources into one position. The model consists of four sources; the video input, an
internally computed position, the input that is sent to the toy and finally the dead
reckoned position that is calculated by OpenHPS using the provided velocity.

Our setup is shown in Figure 6.1. We used yellow floor markers to define an
area of 260 X 200cm. The camera is positioned with a perspective view of the
area and the start position of the toy is at the bottom right corner of the camera
source. The complete dataset, including the raw video recordings, was published
on Kaggle [39].

Figure 6.1: Multi-sensor ball tracking overview

For the scope of this prototype, the toy performs a simple spiralling trajectory. The
input for this device consists of an orientation (heading) and speed. Before the
start of our input trajectory, we manually calibrated the origin orientation. This

Thttps://github.com/OpenHPS/openhps-core/
2https://github.com/OpenHPS/openhps-opencv/
3https://github.com/OpenHPS/openhps-sphero/


https://github.com/OpenHPS/openhps-core/
https://github.com/OpenHPS/openhps-opencv/
https://github.com/OpenHPS/openhps-sphero/

6.1. MULTI-SENSOR BALL TRACKING 195

provides us knowledge on the start position and orientation used by the internally
calculated position, which allowed us to define a frame of reference.

Various methods exist to combine the aforementioned positioning methods. Fig-
ure 6.2 shows the simplified graph representation of our demonstrated positioning
model. Starting from the four different sources on the left of the figure, we will
discuss how each signal is processed and fused. We use two feedback loops from
our fused position (originating from the sink node on the right) to provide temporal
information to our positioning model.

Main feedback loop

Video
Source

Blob
Detection

Velocity
Processing

Debounce

Position
Merging

Velocity
Processing

Velocity
Processing

Velocity
Processing

Position
Merging

Sphero
Position

Velocity
Calculation

Filter

Figure 6.2: Demonstrator positioning model

The positioning result of each independent source is shown in the trajectory plots in
Figure 6.3. Each positioning method has a different frequency, resulting in varying
amounts of data points used to determine the position. Our main feedback loop
indicated on the top right of Figure 6.2 ensures that the fused position never relies
on a single source.

6.1.1 Input Control

Input to the Sphero is given using a heading (degrees), speed (0-255) and roll dura-
tion. We assume that the Sphero has a maximum speed of 1 m /s as documented on



196 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

(a) Input Position (b) Sphero Position
200 200
150 B— ; 150 -
Tl :
100 - - ; Il 1001 l._S
50 A - ! 50 -
| -
0 T T T T T O T T T T T
0 50 100 150 200 250 0 50 100 150 200 250
(c) Dead Reckoning Position (d) Video Position
200 200
q
1501 | 15011 ¢ 1
|l o l ! :::r’ |
ety ]
100 - ! (T3 i 100411 | 1!
| L3 ; § |1 33 {
| w——= \
50 - i. reemmnerem rem errsem o J 50 A L |‘
| J
O T T T T T 0 T T T T T
0 50 100 150 200 250 0 50 100 150 200 250

Figure 6.3: Individual position estimates for the given input (a), including the
internally calculated position (b), dead reckoning position (c) and video source (d).
Units of both the X- and Y-axis are in centimetres

the product website*. As input trajectory, we provide a spiralling rectangle starting
from an outer corner to the centre of the area with a speed of 150 (= 0.58 m/s). We
provide a basic roll duration of 4.2 seconds (= 243.6 cm) for the x-axis and a roll
duration of 3.2 seconds (= 185.6 cm) for the y-axis. Essentially, this means that the
ball will roll for a specified time, with a speed of 0.58 m/s in a particular direction.
Every turn, the duration of the movement along the x-axis is reduced by 168 ms
while the movement along the y-axis is reduced by 128 ms, creating a spiralling
rectangle. This input is fed to a velocity processing node that is built into the core
component of our framework, resulting in the output shown in Figure 6.3a.

6.1.2 Visual Positioning

In our prototype, we wanted to evaluate that apart from regular sensor data, we can
also tackle the problem of positioning with visual input through our processing net-
work. The video source uses the OpenCV [186] library to capture a 30 FPS camera
feed from the camera which has a perspective view of the floor. When processing
the video stream, we create the inverse perspective view by manually specifying

“https://sphero.com/pages/support?hcUrl=%2Fen-US %2Fsphero-mini-faq-244300


https://sphero.com/pages/support?hcUrl=%2Fen-US%2Fsphero-mini-faq-244300

6.1. MULTI-SENSOR BALL TRACKING 197

the position of four yellow markers on the floor. This creates a wrapped image
rectangle of 1040 x 800 px.

Figure 6.4: Conversion of wrapped video to blob

Once the video source is wrapped, blob detection is used to determine the centroid
position of the blue toy. We apply a colour mask that converts the image to an
HSV colour space and performs a masking filter to only show the blue ball as
illustrated in Figure 6.4. Next, in Listing 6.1 we create a custom processing node
that sets the position of our tracked object to the pixel position of the blob (i.e., the
centre of the largest contour). As the accuracy for our position, we take the square
root of the blob area. A reference space is created (lines 1 to 4 in Listing 6.2)
and applied to the output position (pixel coordinate) on line 22 to scale it to the
corresponding rectangle dimensions.

Without interference from other sources, the video processing provides the output
shown in Figure 6.3d. We will use this source as our most accurate position, as it
is the only available external positioning method.

6.1.3 Internal Sensors

The Sphero that we are using for our prototype is aimed towards children who
want to learn development in a fun way. To cater to this audience, the Sphero



198 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

includes an internally calculated position that is computed and provided to the
user for educational purposes. We use this internal position as a source itself to
compare and experiment with using this internal position to determine a more
accurate position.

In Figure 6.3b we show the internal positioning calculated by the Sphero, converted
to a certain reference space created with our calibrated orientation knowledge.
Instead of using the raw position, we determine the displacement of this internal
position (using the filtered feedback loop shown in Figure 6.2) and apply this
displacement to the fused position.

class ContourDetectionNode extends ProcessingNode<VideoFrame> {
public process(frame: VideoFrame): Promise<VideoFrame> {
return new Promise((resolve) => {

let contours = frame.image.findContours(
OpenCV.RETR_EXTERNAL, OpenCV.CHAIN_APPROX_SIMPLE);

if (contours.length >= 1) {
contours = contours.sort((a, b) => a.area - b.area);
const m = contours[0].moments();
const center = new OpenCV.Vec2(

m.ml® / m.m@0, m.m01 / m.mOO);
const position = new Absolute2DPosition(
center.x, center.y); // Center as 2D pixel position

position.unit = LengthUnit.CENTIMETER;
position.accuracy = Math.sqrt(contours[0].area);
frame.source.setPosition(position);

}

resolve(frame);

b
}
}

Listing 6.1: Contour detection processing node

Apart from an internally calculated position, the toy provides raw sensor data for
the accelerometer, gyroscope, orientation and velocity (internally fused from the
motor velocity and acceleration). For the scope of this demonstration, we make
use of this velocity and orientation to compute the position using OpenHPS. The
output of this source is shown in Figure 6.3c.

6.1.4 Model Creation

With each sensor stream configured, we combine the four streams or graph shapes.
These graph shapes include our video output, internal position, input and dead
reckoned position. We use a built-in object merging node that merges frames



© o N ;R W =

6.1. MULTI-SENSOR BALL TRACKING 199

const videoSpace = new ReferenceSpace(defaultSpace)
.translation(1040, 800)
.rotation(new Euler(180, 180, 0, 'ZXY', AngleUnit.DEGREE))
.scale(4, 4); // First transform, then rotate and scale
VALY
export default GraphBuilder.create()
.from(new VideoSource(new CameraObject("sphero_video"), {
autoPlay: true, fps: 30, throttleRead: true,
source: new CameraObject("sphero_video")
}) .load("/dev/video2"™))
.via(new ImageTransformNode({
src: [
new OpenCV.Point2(307, 120), new OpenCV.Point2(1473, 87),
new OpenCV.Point2(1899, 891), new OpenCV.Point2(20, 1024),

1,
height: 800, width: 1040 // 200 x 260cm

i9))

.via(new ColorMaskProcessing({
minRange: [90, 50, 50], maxRange: [140, 255, 255]
19D

.via(new ContourDetectionNode())
.convertFromSpace(videoSpace).to();

Listing 6.2: Graph shape video

where the source UID is equal to “sphero”. The merge node will wait until all of its
incoming edges push a frame, or the timeout of 20 ms has been reached. By default,
this merge will use the weighted average of all incoming positions, velocities and
orientations (with the weight being the inverse of its accuracy). Developers that
create a positioning system with high-level sensor fusion have the choice to choose
their own strategy by, for instance, selecting a single position based on the highest
accuracy.

This final fused position is presented in Figure 6.5a. Compared to the individual po-
sitioning methods shown in Figure 6.3, we have more data points for our positions.
This is because we do not wait for all sources to provide data before computing
the next position (20 ms timeout). Our feedback loop called “feedback™ ensures
that position fusion never relies on just one source and always takes the previously
computed position into account.

6.1.5 Evaluation

We have shown our completed positioning system in the previous section. Four
sources and a feedback loop resulted in a fused position. In order to evaluate this



200 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

positioning model, we removed parts of our video source to simulate an obstacle
or blind spots for the camera.

The goal of this evaluation is to first ensure that the positioning model can function
with missing information and to determine the error as a result of this missing
positioning data. To illustrate a baseline of the remaining sources that will take
over the positioning, we show the merged position of all sources except the video
source in Figure 6.5b.

Figures 6.5¢ and 6.5d show two examples with video blind spots (grey areas).
Indicated in blue are the data points where the video processing was still able to
detect an object, whereas the positions calculated without input from the video
source are highlighted in red in the figures.

Source(s) Avg error | Max error
all sources (Figure 6.5a) 0.00 cm 0.00 cm
input control only (Figure 6.3a) 23.07cm | 50.06cm
internal position only (Figure 6.3b) | 16.16cm 33.38 cm
dead reckoning only (Figure 6.3c) 17.09 cm 34.44 cm

video source only (Figure 6.3d) 1.30cm 4. 74 cm
all sources excl. video (Figure 6.5b) | 13.59cm 29.73 cm
blind spot left (Figure 6.5¢) 4.26 cm 21.65cm
blind spot right (Figure 6.5d) 4.81cm 24.40cm

Table 6.1: Average and maximum XY position error compared to the fused position
with all sources

In Table 6.1, we show the average and maximum position error compared to
the final fused position from Figure 6.5a. This error is determined by taking
100 timestamped key points in each trajectory (every 51 ms) and calculating the
average and maximum difference for those points.

Our results show that the video source is the main positioning method in the
fused position. Blind spots in this source result in the model falling back to the
remaining dead reckoning. However, the positioning model is self-correcting and
will gradually align with the video source position once it becomes available.

The positioning model illustrated in Figure 6.2 is highly adaptable depending on
the desired outcome. For example, noise filtering nodes such as a Simple Moving
Average (SMA) can be used on video accuracy to provide a smoother transition at
the border of the blind spot. With the evaluation in Figure 6.5 and Table 6.1, we
have proven that multiple producers of sensor information can be merged into a
continuous stream of fused positions. By creating blind spots in our video source,
we have shown that the model created with OpenHPS is capable of running without
our main visual positioning method.



6.2. ROBOT OBSTACLE DETECTION 201

200 200
e o e e S e 8 e e et S m oo l - -
s{ { ‘ s {77 o h
¢ ) H
150 \ { ™ \ 1501
] I | N N
£ ] —— i £ 1 '
5 125 é ! g— ,{_ -—-“\) ; i i | 5 125 ; '
K] [ | \ \ 5 :
£ 100 [ Loy A \ £ 100 i
IR RN NN RN S N
LR T I O LI Ee
[ NUSREHE— ;
501 - y \ I s04 i
25 L,.-... S 25 (N |
. R o /
% 50 100 150 200 250 % 50 100 150 200 250
X-Coordinate (cm) X-Coordinate (cm)
(a) Fused position using all sources (b) Fused position without video source
—— all sources expected —— all sources expected
200 —— excl. video blind spot | 200 —— excl. video blind spot
—— e .
1754 ( " 175 1
e H WU S it~ e ~
150 ( "" N 1501 (\.— R .___f\!
- e . i e STt
% 125 4 } {' \‘ ( ’ ’ % 125 ! \ ! {...—-— ' f l
£ Pt [ H | = ||
£ 100 il | L , | £ 100 ! L I
3 ! ! 5 | i e
MIRIE L«——3 Bt MARBRES= A
Q 754 i i Q 754 | i ]
* i =— } > | I | |
50 ! B k 50 ‘ &'_K./-’-- )
e
254 25 L, )
e _.__.._.." ———
% 50 100 150 200 250 % 50 100 150 200 250
X-Coordinate (cm) X-Coordinate (cm)

(c) Fused position with camera blind spot on (d) Fused position with camera blind spot on
the left the right

Figure 6.5: Fused positions processed by our model

6.2 Robot Obstacle Detection

Continuing from an earlier research project [236] that started before the work on
our OpenHPS framework, we wanted to investigate the possibility of performing
basic obstacle detection using OpenHPS in a Sumo Robot. A Sumo Robot is a
small robot that is placed in a circular area together with other opponents. The goal
of the robot is to push the other robot outside the circle while making sure that the
robot itself does not drive outside the circle. To help the robot achieve this goal,
the border of the arena is equipped with a black line that the robot can detect using
sensors to avoid driving off the edge. Our robot is depicted in Figure 6.6.

In a real-world scenario, the algorithms used in these robots in basic competitions
are often heuristic and do not require complex computations due to the limited
sensor input. Our aim with this experiment was to test the REST API module of
OpenHPS, as well as test the possibility of implementing basic, but configurable



202 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

Figure 6.6: Custom-designed Sumo Robot with Wi-Fi connection

algorithms as custom processing nodes. This would allow us to easily tweak the
algorithms to optimise the robot’s performance based on the sensors’ performance.

The custom robot we are using has four line sensors as shown in Figure 6.7¢, two ac-
curate but narrow front sensors (see Figure 6.7a) and two inaccurate but wide range
side sensors as shown in Figure 6.7b. The hardware consists of an Arduino Nano
with no network connectivity. It was extended with an ESP8266 module to enable
Wi-Fi communication and time synchronisation.

Positioning was done via a server application running a positioning system created
with OpenHPS. Using @openhps/rest, a web server was created that offered a
REST API for transmitting data obtained by the robot via HTTP POST requests.
This data contains a snapshot of the current sensor values (encoded as JSON data)
and is transmitted two times per second. The slow transmission speed was due
to several factors, which we addressed in the framework and are detailed in Sec-
tion 6.2.2.

Each sensor value was treated as a source node and was pushed through the
positioning model accordingly. Our sink node triggered an HTTP response to the
original HTTP request and contained the speed for both motors, essentially acting
as the remote controller for moving and rotating the robot.

6.2.1 Positioning Model and Custom Nodes

One of the main concepts in our positioning model was the use of two data ob-
jects to represent the main concepts for a Sumo robot; a LineDataObject that
represents the line and is used to determine if the robot is nearing the edge, and a
OpponentDataObject that represents the opponent that should be pushed out of



6.2. ROBOT OBSTACLE DETECTION 203

(a) Front of the robot showing two IR dis-  (b) Side of the robot showing an acoustic
tance sensors distance sensor

(c) Bottom of the robot showing four line
Sensors

Figure 6.7: View of all the sensors of the sumo robot

the arena. Depending on whether the line and/or opponent was detected, the robot
would perform a certain manoeuvre. Due to the limited available sensor data, data
objects (i.e., opponents and lines) were considered stationary and were not tracked
in time. However, our positioning model was modified to account for certain types
of sensor noise.

Figure 6.8 shows the positioning model with a basic, but modular approach to the
processing of data. Line sensor readings were merged into a single node that would
determine if a line was detected, and if yes, where in relation to the orientation
of the robot it was located. Similarly, opponent sensor readings were merged for
the front sensors and side sensors after which both of them were merged in the
OpponentDetectionNode which concluded if an opponent was detected, and the
most probable location of the opponent. Finally, both streams of processed sensor
data were merged with the previous historical value and arrived in a sink node that
determined the action of the motors (i.e. forward, left or right).



204 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

Line
Detection

Motor
Control

. Opponent
Detection

------------

Figure 6.8: Positioning model for sumo robot

Processing Node: LineDetectionNode

The first custom node was the line detection node that would create a new data
object to represent the /ine. A line was represented as a simple object that had a
relative 2D position to the robot and had eight possible positions depending on how
many sensors were detecting a line. When no line was detected, the /ine object was
not added to the data frame.

The position of a line can either be directly in front, behind, to the left, to the
right, front left, front right, back left, or back right of the robot. The position was
determined based on which of the four line sensors were detecting the line and their
relative positions.

Processing Node: OpponentDetectionNode

Opponent detection was done in two stages. In the first stage, the front sensors and
side sensors would each attempt to detect an opponent, with the assumption that
an opponent could not be both in front and on the sides.

Based on the sensor data of the front and side sensors, an opponent data object
was created with a relative 2D position. Using the known specifications of each
sensor (i.e. field of view, minimum and maximum distance) we could determine if



6.2. ROBOT OBSTACLE DETECTION 205

an object’s 2D position was straight in front of the robot or slightly off to an angle.
Finally, both nodes were combined with the front sensor getting the highest priority
due to the accuracy of the sensors.

Sink Node: MotorControlSinkNode

Based on the input from the line sensors and distance sensors, the first priority
of the robot was to remain within the boundaries of the arena by detecting lines
and moving away from the line whenever one was detected. Once no lines were
detected, the robot would focus on opponents by moving towards the opponents.

Instructions were sent to either go forward or turn left or right to a certain degree.
This data would then influence the current position and orientation of the robot.
However, while this position and orientation were recorded and used to transform
the position of relative objects, it was not used by the positioning model.

6.2.2 Conclusions

Based on this experiment, we discovered several limitations and development issues
in the OpenHPS framework that were addressed as a response to this experiment.
A lot of design decisions of the API were shaped thanks to this simple but effective
experiment.

The limited sensor data of the sumo robot did not allow for the full potential of all
features in OpenHPS. Future work can expand the robot to include IMU data which
can help in determining the orientation and provide additional dead reckoning data
similar to the application in Section 6.1.

1. Pushing metadata: One of the issues we experienced was the need to include
data alongside data frames that do not belong within the data frame itself.
In this experiment, the HTTP request that triggered the creation of a data
frame expected a certain response that was only given at a sink node. We
solved this issue by adding PushOptions> to each node push. By default,
these simply include metadata about the node initiating the push, but it can
be extended to include information such as an HTTP request so the sink can
respond to this request.

2. Controlling inlets and outlets: Initially, the philosophy of OpenHPS was
to create an abstraction of regular stream-based frameworks such as Akka
by hiding the concepts of inlets and outlets. Instead, OpenHPS was meant
to only offer nodes and internally handle the connection of outlets to inlets.
However, with custom nodes, it was often desirable that access to inlets (and
outlets) was provided.

Shttps://openhps.org/docs/core/interfaces/pushoptions


https://openhps.org/docs/core/interfaces/pushoptions

206

CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

6.3

Separation of concerns: Earlier versions of OpenHPS included various
default positioning algorithms in the core component. With this experiment,
almost none of these default algorithms were used. This has led us to
the refactoring of algorithms such as IMU algorithms to their own module
(e.g., @openhps/imu®).

Relative 2D/3D position: In older versions of OpenHPS, a relative position
was only represented as a distance, angle or velocity to another object. If
a coordinate position was given, it was assumed that the position was an
absolute position with a relative reference space. This essentially required
that every object became a reference space when performing relative posi-
tioning to this object, which was complicated when the reference frame was
a movable object. In later versions, we introduced a Relative2DPosition
and Relative3DPosition which is used to indicate a position relative to
another moving object. A reference space is a fixed space that should not
move.

Role of data frames: Initially, a data frame contained raw unprocessed data
that would only be moved or used to a data object when processed. In the case
of acceleration or velocity, this would imply that the velocity was part of the
data frame and influenced the position and orientation of a data object. With
non-standard use cases such as this experiment, it would require developers
to create a custom data frame to contain the line and distance sensors. In
future versions, we modified this behaviour so sensor data was an object
on itself that could influence other data objects — preventing the need for
custom data frames for each use case.

Overhead of JSON: With the limited hardware resources available, creating
JSON documents for sending sensor data was resource-demanding. We
solved this issue by developing protocol buffers that minimise the size of the
data.

Indoor Positioning Server and
Application

Some positioning systems require a training phase before the system can be used for
regular positioning. This is called the offline phase of a positioning system. Once
training is completed, the positioning system enters its online phase, where this
training data is used to determine a position. Stream-based processing networks by
default cannot simply switch between different states. To solve this particular issue,
we introduced the concept of services in OpenHPS. As explained in Section 3.8, a

Shttps://openhps.org/docs/imu/


https://openhps.org/docs/imu/

6.3. INDOOR POSITIONING SERVER AND APPLICATION 207

(data) service works independently from the processing network to persist data or
to compute this data.

Services have various uses, ranging from time synchronisation to handling user
actions. With our first prototype for tracking a ball using various sensors, we
focused on the evaluation of the effectiveness of representing such a system as a
graph-based processing network. The use of (data) services was limited in this
initial prototype. Instead, we focused on the use of services to demonstrate how a
state can be stored and switched in the stream-based network.

Position
Fusion

. Online-stage App .

Fingerprint Socket Socket
B Storage Source Source

Velocity

Processing Saa

Source

WLAN BLE BLE ‘,
Fingerprint Fingerprint Multilateration Position Socket
Processing Processing Processing Fusion Sink

Fingerprint Beacon
Service Data Service Server

Figure 6.9: Positioning model for server, offline and online application

To demonstrate the use of OpenHPS for offline and online phases of a positioning
system, we created a process network with a server, two Android applications and
a socket connection for transmitting sensor data to a server and feedback from the
server. With this demonstration, we also wanted to showcase the capability of
OpenHPS to be used for indoor positioning scenarios as well as the capability of
the framework to be used in mobile applications.

The server is implemented based on Node.js? and handles the storage of fingerprints
and position processing, while the two applications have been developed using
React Native®. In our @openhps/react-native® component we provide several
source nodes for interfacing with native sensors. Apart from support for React
Native, we also added modules for NativeScript, Apache Cordova and Capacitor.

A complete overview of the positioning model is provided in Figure 6.9. Two socket
source nodes on the server (indicated in green) handle the server endpoints for the
offline and online stage applications. In the offline stage, features from objects
within data frames are stored as fingerprints to perform RSSI fingerprinting.

7https://nodejs.org/en/
Shttps://reactnative.dev
Shttps://openhps.org/docs/react-native/


https://nodejs.org/en/
https://reactnative.dev
https://openhps.org/docs/react-native/

208 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

The fingerprint service used to store fingerprints is shared with the online stage.
For the scope of our evaluation, we used various positioning methods ranging
from BLE multilateration and cell identification using 11 BLE beacons, wireless
LAN (WLAN) fingerprinting and BLE fingerprinting. A high-level position fusion
node fuses the positions based on their accuracy [102]. Finally, the calculated
position is sent back to the mobile application through the socket sink node (orange)
as indicated in Figure 6.9.

Our mobile application was preconfigured with all locations that required a finger-
print. The user had to click on the location to start the recording of the fingerprint,
after which it was presented with instructions on how to hold the phone. With
our application, we recorded data in four directions for 20 seconds. After each
direction was recorded, the user was instructed to turn to the new location after
which the recording started again.

Fingerprinting

Figure 6.10: Fingerprinting application created with React Native and a screengrab
from a video testing the online-phase application



6.3. INDOOR POSITIONING SERVER AND APPLICATION 209

Figure 6.10 shows the mobile application which was used to collect the fingerprints
on the left. The application shows the floor plan with all predefined locations
that require fingerprint collection. Locations marked green have already been
completed while red locations still require the collection of data. After collecting
the fingerprints, the data was sent to the server for processing. The photo on the
left of Figure 6.10 is a screen grab from a video that demonstrates the online-phase
application. In this phase, the user walks around with the mobile device and data
is sent to the server for processing. After processing, the position is sent back and
displayed to the user as a marker.

6.3.1 Dataset

For the evaluation of our positioning model, we created a fingerprinting dataset of
a single floor in the building of our research lab [35]. A visual representation of
our dataset is shown in Figure 6.11. The dataset was recorded with a calibration
application collecting information from WLAN access points, BLE beacons with
a known position (blue) and an IMU sensor.

m
(O]
5
Training data
£ 2 - 9
c BLE Beacon
(@]
= Test data
()]
o 15 -
o y
> |[r === =¥ {F=—F | o e e |
I = +
10 =y 3
- ELS:E:I-I- :
I iInl B D gl yall| Al N
[0+ + + +04 § + 404+ + 404 + + 304 § + 404 + |
5 - : R : : - :
L I
1| +
TS e et e e Tt e T i e r— T ——  — | —
09~ - o 0 - [ N
0 10 20 30 40

X Position (metres)

Figure 6.11: Fingerprinting dataset data points



210 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

Each of the 110 training data points (red) and 30 test data points (green) were col-
lected in four directions (up, right, bottom and left) by standing still for 20 seconds
with a phone held at chest height. In our dataset, we provide the raw data of all
WLAN scans, BLE advertisements as well as IMU data including device orienta-
tion, acceleration, rotation rate and magnetometer data. Each detected access point
is anonymised, but we provide information about SSID groups and the frequency of
the access point. This high-dimensional information allows developers to use the
dataset to experiment with different fingerprinting techniques that can potentially
take the orientation and signal propagation into account for different Wi-Fi broad-
casting frequencies [237]. Our methodology for recording this dataset was based
on existing datasets and the information that was lacking from those datasets, such
as recordings in multiple orientations. We conducted an initial recorded dataset
on a smaller scale in 2020 [38]. More information about this initial recording is
available in AppendixA.4.

To enrich the contextual information in our dataset, we use the symbolic space
abstraction included in OpenHPS to create symbolic spaces for the rooms, corridors
two lobbies and toilets. These symbolic spaces will be used to determine the
hit rate and are exported as GeoJSON polygonal features. While we provide
GeoJSON features of the environment, they were not used to train or influence the
behaviour of the tracking algorithms. However, by including these in our dataset,
we provide other researchers with the opportunity to make use of this contextual
data.

6.3.2 Test Data Points

Our first evaluation of stationary test data points uses WLAN and BLE information
to determine the position and symbolic location. For this test, we used aggregated
RSSI (received signal strength indicator) results.

We configured the WLAN fingerprinting on our server positioning model shown
in Listing 6.3. On lines 2-5, we configure the preprocessing fingerprinting service.
The flexibility of our system allows developers to choose how fingerprints are
stored, normalised and aggregated. If needed, this service can be replaced with
a custom pre-processing algorithm. Lines 15-17 show the creation of an offline
fingerprinting node. This is an object processing node extracting features of objects
and storing them in the fingerprinting service. The online stage (lines 8—12) can
use processed fingerprints to obtain a position. In this particular test, we used
a weighted k-NN algorithm that is configured similarly to the parameters used
by RTLS@UM in the EvVAAL competition of 2015 [238]. The use of general
parameterised processing nodes offers great flexibility for developers to tweak the
positioning system. In this evaluation, we removed the pedestrian dead reckoning
and feedback loop from our positioning model.



© e N ;R W =

6.3. INDOOR POSITIONING SERVER AND APPLICATION 211

ModelBuilder.create()
.addService(new FingerprintService(
new MemoryDataService(Fingerprint), {
classifier: "wlan", defaultValue: -95
19D
.addShape (GraphBuilder.create() // ONLINE MODE
grom(/* ... */)
.via(new KNNFingerprintingNode ({
weighted: true, k: 4, classifier: "wlan",
weightFunction: WeightFunction.SQUARE,
similarityFunction: DistanceFunction.EUCLIDEAN

P).to(/* ... F/))
.addShape (GraphBuilder.create() // OFFLINE MODE
from(/* ... */)

.via(new FingerprintingNode({
classifier: "wlan"
P).to(/* ... F/))
.buildQ;

Listing 6.3: Positioning with fingerprinting parameters

Table 6.2 shows the average, minimum and maximum error for different positioning
techniques, along with the standard deviation and failed points. Failed points
indicate test reference points for which the positioning technique was not capable
of determining a position. In the case of BLE positioning, these are the calculated
positions where not enough BLE beacons were in range. The symbolic space hit
rate represents the amount of test data points that were assigned to the correct
symbolic space (i.e., room or zone).

The modularity of our OpenHPS framework allows developers to rapidly adapt and
test the sensor fusion for a specific use case. Developers can decide which metrics
they want to optimise. Other than simply trying to determine the most accurate
position, the goal of a positioning system might be to get the most accurate hit rate,
increase the update frequency or minimise energy consumption. In our chosen
sensor fusion, we adapt the accuracy of a certain positioning technique based on
the available information (e.g., BLE beacons in range) to achieve a higher symbolic
space hitrate. Such a sensor fusion algorithm is useful if a positioning system wants
to achieve a reliable general location of persons or objects without requiring precise
tracking of the location within a small area. WLAN fingerprinting offers the best
average error overall, but by adding BLE beacons in symbolic spaces, we can
increase the symbolic space hit rate with a minimal impact on the average error.



212 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

Positioning Techniques

failed points 0

average error 1.23m
WLAN Fingerprinting | minimum error 0.01m
(k=4) maximum error 4.77m

standard deviation 1.04 m

symbolic space hit rate | 95.82%

failed points 6

average error 3.23m
BLE Fingerprinting minimum error 0.17m
(k=3) maximum error 15.39m

standard deviation 2.69m

symbolic space hit rate | 80.83%

failed points 12
average error 4.92m
BLE Multilateration mlnl.m um error 0.74m
maximum error 19.26 m
standard deviation 3.50m
symbolic space hit rate | 52.50%
failed points 0
average error 1.37m
Sensor Fusion minimum error 0.01m
(WLAN + BLE) maximum error 9.75m
standard deviation 1.26m

symbolic space hit rate | 96.67%

Table 6.2: Average, minimum and maximum x/y position error compared to the
fused position

6.3.3 Trajectories

In addition to stationary data points, we included several trajectories in our dataset.
These trajectories include IMU data alongside the WLAN and BLE data. The
process network in our online application sends the WLAN and BLE data to the
server, where it is processed similarly to the test data points in Section 6.3.2,
while the IMU data is used locally in the application to perform pedestrian dead
reckoning. Trajectory sensor information was collected by keeping the phone at
chest height while performing the trajectory at a normal walking pace. Other than
the stationary points, the update frequency and accuracy are more important than
the symbolic hit rate.



6.3. INDOOR POSITIONING SERVER AND APPLICATION 213

Sensor fusion
WLAN & BLE Cell-ID
—=—- Expected trajectory
» Trajectory start
5 l ‘ru ‘z ',:;" Al
=k ir wtj g
EIN- N

Figure 6.12: Test trajectory with WLAN, BLE and IMU data

The expected trajectory is shown in red in Figure 6.12. We determined the error
by comparing the last known position with the actual expected position in the
trajectory. While WLAN positioning and BLE cell identification can show a visual
representation of the complete route, it only consists of 13 data points that are
not synchronised with the user’s real-time position. This delay is due to the scan
duration and the processing time on the server.

In Table 6.3 we show the maximum and average error for our test trajectory with
and without IMU data. The delay caused in the fingerprinting in combination with
the slow update frequency causes a larger error compared to the real-time position
during the trajectory. Note that the flexibility of OpenHPS allows developers to
experiment with different positioning algorithms and fusion techniques to further
optimise the system.

The modularity of our framework allows developers to rapidly adapt and test the
sensor fusion for a specific use case. Other than trying to determine the most
accurate average error, the goal of a positioning system might be to get the most



214 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

Positioning Techniques
average error 3.29m
maximum error 9.60m

WLAN + BLE standard deviation 2.09m
average update frequency | 3.04s
average error 1.26 m
maximum error 3.10m

WLAN +BLE +IMU standard deviation 0.77m
average update frequency | 0.52s

Table 6.3: Sensor fusion comparison for test trajectory

accurate hit rate, increase the update frequency or minimise energy consumption. In
our chosen sensor fusion, we adapt the accuracy of a certain positioning technique
based on the available information (e.g., BLE beacons in range) to achieve a higher
symbolic space hit rate. This makes OpenHPS an ideal prototyping solution by
simply adding, removing or configuring different nodes.

6.4 Collaborative Positioning Systems

For our paper, “A Solid-based Architecture for Decentralised Interoperable Loc-
ation Data” [43], we developed a set of applications that demonstrate the use of
personal data vaults for user-centric data storage of location data. To evaluate our
solution with Solid Pods, we used these prototypes of positioning systems which
store the information within a Solid Pod°.

Providing user-centric data storage enables positioning systems to work in a decent-
ralised and collaborative manner. While our storage is centralised around the user,
the data from multiple users is decentralised on the Web rather than centralised
around the positioning system(s) obtaining this data.

We implemented a non-trivial prototype that uses our user-centric storage with a
basic indoor positioning system, one outdoor positioning system and a consumer
application that shows a user’s recent data along with additional information. With
these implementations, we wanted to demonstrate how a user’s personal position,
orientation and velocity are stored, how applications gain access to this data and
how our solution might benefit tracked users. These prototypes helped us to adapt
our solution to a more scalable system that can handle a large amount of data. Our
final adapted solution was detailed in Section 4.4.

In addition to a validation of our user-centric storage, this proof of concept was
also used to verify that the Sensor, Observation, Sample and Actuator (SOSA)

Ohttps://github.com/OpenHPS/ipin2022-solid/


https://github.com/OpenHPS/ipin2022-solid/

6.4. COLLABORATIVE POSITIONING SYSTEMS 215

and Semantic Sensor Network (SSN) ontologies, detailed in Section 4.2, could
be leveraged to describe positioning systems. We used these ontologies before the
design of our own POSO ontology with minimal modifications to verify the general
descriptiveness of SOSA and SSN.

Geolocation API (a) User Pod (c) READ
= APPEND R N .../position.ttl
.../position.ttl / http://.../ % >
APPEND : H READ
== H i H .../orientation.ttl LIRS T
‘/,/ .../orientation.ttl ' N profile/ ' > g':;u’;;
= T : L : READ 0002ms
| APPEND ; 0 card : Jvelocity ti1
@ .../velocity.ttl : : cee Y. ; nnnnnnnn Orientation Velocity
N properties/ H NOTIFICATION .
- ! ! .../position.ttl
READ H [ position.ttl ' €-----=-=-=-- >
.../position.ttl ! ! NOTIFICATION
E H Q : : H .../orientation.ttl
APPEND ' orientation.ttl | €----=-=-=-= »
E,] .../position.ttl H . H NOTIFICATION
: 0 velocity.ttl ¢ ... /velocity. ttl v
@ \\ /,’ " o <
QR-scanner IPS (b) Consumer Application (d)

Figure 6.13: Demonstrator with two positioning systems (a, b) and one consumer
application (d) connected to the same user pod (c)

Figure 6.13 shows the technical setup of our demonstrator. For the scope of
this demonstration, the used indoor positioning system is a QR code check-in
system that will update the position of a user depending on the check-in and check-
out scanning (see bottom left of Figure 6.13). When a user scans the check-in
QR code, their location will be updated to the room that they are checking into.
When they scan the check-out QR code, their location is updated to the hallway. The
outdoor positioning system uses the Geolocation API [64] to update the position,
orientation and velocity as depicted in the top left of Figure 6.13. Finally, the
consumer application is depicted on the right, which displays the user’s positioning
data.

Figure 6.14: VUB QR-code check-in and check-out [239]



© N o L R W N =

216 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

Our QR-scanning is based on a common use case during the COVID-19 pandemic.
As depicted in Figure 6.14, visitors were requested to check in when entering an
indoor environment such as our workspace and scanning the check-out QR-code
when leaving the area.

@prefix profile: <http://.../profile/card#> .
@prefix example: <http://purl.org/ipin2022-solid#> .

11646891100 a sosa:Observation;
sosa:hasFeatureOfInterest profile:me;
sosa:usedProcedure example:qrscanner_checkin ;
sosa:hasResult [ a geosparql:Geometry;
geosparql:asWKT """
<http://www.opengis.net/def/crs/0GC/1.3/CRS84>
POINT Z(5.893628199 46.641890130 15)
""""“geosparql :wktLiteral ;
geosparql:coordinateDimension 3 ;
geosparql:hasSpatialAccuracy [ a qudt:QuantityValue ;
qudt:numericValue 598 ;
qudt:unit qudt-unit:CentiM ] ];
sosa:observedProperty <> ;
sosa:resultTime "2022-03-10T06:45:00.000Z"""xsd:dateTime .

Listing 6.4: Example position observation (position.ttl)

While in this demonstration we focus on positioning data, the SOSA ontology
enables the modelling of properties and observations of any sensor data that belongs
to the tracked entity. Properties such as relative positions, raw signal strengths
from beacons or raw IMU sensor data can also be modelled similarly as shown in
Listing 6.4 with a different value for sosa:hasResult. Finally, in Section 6.4.3
we demonstrate how another positioning system or application can use the semantic
context of the two positioning systems to predict a more reliable output.

6.4.1 Properties

Each tracked entity should have a set of specific observable properties such as
a position, orientation, velocity or any other data that a positioning system can
provide. These properties indicate information, belonging to an entity, that can be
observed by a sensor.

In our demonstration, we manage three properties of the entity that we are tracking:
the position, orientation and velocity. Our Geolocation API provides all three prop-
erties, while the QR scanning only updates the position property. For the scope of
this demonstration, the velocity and orientation are expressed as a one-dimensional
value in the sosa:hasResult of the example observation in Listing 6.4.



[ Y O N

6.4. COLLABORATIVE POSITIONING SYSTEMS 217

Properties can be discovered by reading or querying the profile card of a Solid
Pod!. Listing 6.5 shows an example profile card describing a person and feature
of interest (i.e, sosa:FeatureOfInterest), which are accessible URIs to the
datasets containing the observations of these properties.

:me a schema:Person, sosa:FeatureOfInterest, foaf:Person ;
vcard:bday "1995-03-10"""xsd:date ;
vcard:fn "Maxim Van de Wynckel" ;
vcard:hasAddress [ ... ] ; vcard:organization-name "VUB" ;
ssn:hasProperty </properties/orientation.ttl>,
</properties/position.ttl>, </properties/velocity.ttl> ;

Listing 6.5: Example profile card with properties

All position observations from every positioning system are stored in the same
resource (*.ttl file!?). These timestamped observations include information on
the system that observed them and the procedures used by that system. In the case
of the indoor positioning system, it also includes a reference to the room where a
check-in occurred.

Later evaluations and work proved that the storage of all observations in a single
resource is not beneficial for performance and privacy reasons. In the proposed
integrated solution of this dissertation, we will take these issues into account.

6.4.2 Applications

Figure 6.13a shows the Geolocation API application that only appends new obser-
vations to the user pod. This type of system only requires the submitter role to
append new information. The QR code scanner application determines a check-in
or check-out depending on the current position and therefore requires read permis-
sions. If the last position is inside a room, scanning the QR code again means
the user leaves it. The minimum required role for this system is a poster. For
the application that visualises the data, we only require the visifor role with read
permission.

Figure 6.15 shows the authentication and visualisation of the data in the Pod. A user
starts by selecting their Pod issuer, after which they are redirected to the provider’s
login page to request access. After access has been granted, the application can
query the last positions, velocities and orientations. Additional information that
is referenced within the observations, such as the room, will be fetched from
the public triple dataset semantically explaining the shapes and locations of the

Uhttp://ipin2022.solidweb.org/profile/card
Zhttp://ipin2022.solidweb.org/properties/position.ttl


http://ipin2022.solidweb.org/profile/card
http://ipin2022.solidweb.org/properties/position.ttl

218 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

( 17:03 (] # B i 93% s ’ 18:49 (] oW Rl 78%8 i f 16:59 © B i 94% 0
i io/ipit H I IPIN2022 C Applicati =
| . O @ .github.io/ipin2t @ % i TSNS ARl e
| | |
In rU = i | Date 4/27/2022 3:32:51 PM
New position available! Updating ...! = Coordinates  50° 49'13.91" N, 4° 23 31.65' €
Altitude 83m
50°49'14.47"N, 4° 23'32.96" E
Accuracy 6.66 m
T LT Syst QR Check-out
a ° ystem -scanner eCK-0U!
© © 350.17
0.02 m/s
i
Connect to IPIN2022 .
z = S ne
Consumer Appllcatlon Position Orientation Velocity 9
This application wants to: >
Date 4/24/2022 6:47:21 PM
&7 Know your WebID N e o 40 0a .
Identify you using your WebID Coordinates 50°49'14.47" N, 4° 23'32.96" E
= Runinthe background Altitude 83m © OpensStreetMap contributors.
To check for notifications or updates Accuracy 2.96m
>
System QR-scanner Check-in
Date 4/27/2022 3:31:14 PM
> Coordinates 50°49'13.91" N, 4° 23' 31.65" E

Figure 6.15: Login authentication example and consumer app

rooms!3. Users of a Solid-based application only need to remember a single login,
which benefits the use of an IPS that does not require an additional account.

6.4.3 Querying

In the current Solid specification, the server is not required to handle SPARQL quer-
ies due to its computational complexity on the server. Therefore, not every storage
provider supports it, preventing us from depending on its existence. In our example
implementation*, we use the Comunica [241] SPARQL engine that supports local
queries on fetched datasets as well as server-side querying on supported Solid
providers. The engine supports link traversal-based query execution [242] where
the set of documents will continuously expand by following the URIs within the
dataset that one performs the query on. This allows us to perform queries without
previous knowledge of the datasets.

Listing 6.6 shows the SPARQL query used by the consumer application to obtain
the last 20 positions, the time when they were observed and the accuracy in metres.
With this example, we want to highlight the advantage of additional semantic
context and linked data provided by the used vocabularies. Our query is executed
on the dataset of the profile where the properties are referenced. The property URIs
mentioned in the profile card link to other datasets that contain the observations
that we aim to query. These datasets linked within the profile will be automatically

Bhttps://purl.org/ipin2022-solid
“4One solution to this problem is the creation of pre-defined SPARQL queries that offer an endpoint
to retrieve that information [240]


https://purl.org/ipin2022-solid

O ® N9 ;R W N =

6.5. FINGERPRINT ACCURACY PREDICTION USING CNN 219

fetched by using link traversal. A GeoSPARQL 1.1 query function is used for
converting the well-known text literal to a GeoJSON format (line 9) to immediately
use the output in our application. We also use additional semantics from the
QUDT ontology to convert the accuracy to a base unit regardless of the unit used
in the data (lines 12 to 16).

SELECT 7posGeo]SON ?datetime ?accuracy {

?profile a sosa:FeatureOfInterest ;

ssn:hasProperty ?property .

?observation sosa:hasResult ?result ;
sosa:observedProperty ?property ;
sosa:resultTime ?datetime .

?result geosparql:hasSpatialAccuracy ?spatialAccuracy ;

geosparql:asWKT ?posWKT .
BIND(geof:asGeoJSON(?posWKT) AS ?posGeo]SON)
?spatialAccuracy qudt:numericValue ?value ;

qudt:unit ?unit .

OPTIONAL { ?unit qudt:conversionMultiplier ?multiplier }

OPTIONAL { ?unit qudt:conversionOffset ?offset }

BIND(COALESCE(?multiplier, 1) as ?multiplier) # Default 1

BIND(COALESCE(?offset, 0) as ?offset) # Default 0

BIND(((?value * ?multiplier) + ?offset) AS ?accuracy)

} ORDER BY DESC(?datetime) LIMIT 20

Listing 6.6: SPARQL query on the profile card dataset

As shown in Figure 6.13, the consumer application listens for update notifications on
the properties. These are used to obtain live updates of the position. In a positioning
system, this could be used as a push-based source for sensor and location data. With
our example implementation in Figure 6.15, we visually showcase these position
changes as a pop-up notification.

6.5 Fingerprint Accuracy Prediction
Using CNN

In Chapter 4, we have discussed the importance of semantic and syntactic inter-
operability to enable multiple positioning applications to work together. However,
another important aspect that must be available is the actual data and, more im-
portantly, its accuracy. Developers of positioning systems have the best knowledge
about the limitations and strengths of their algorithms. Making this knowledge
available for other systems facilitates collaboration.

One of the design goals of our POSO ontology is the ability to describe the processes
of a positioning system, so other systems or applications can reason on the accuracy



220 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

of the output. This, in turn, helps other services to decide on the importance of
the data when performing sensor fusion. Describing such processes and reasoning
about their relevance does require a lot of background knowledge of the functioning
of such algorithms, which is not always feasible.

In this experiment, we used the OpenHPS TensorFlow (@openhps/tf) module to
create a neural network that can predict the accuracy of alocation, given an RSSI fin-
gerprint. Our design for our neural network is based on CCpos [97], which focuses
on using a neural network to determine a position from a set of RSSI values. In our
experiment, a regular fingerprinting algorithm such as k-NN fingerprinting [96] is
used and compared to real-world positions to determine the accuracy. Our research
hypothesis in this experiment is that the neural network approach allows us to de-
termine accuracy based on the available or unavailable fingerprint data. It should
also enable us to predict which areas will result in a lower accuracy prediction.

With this experiment, we want to evaluate whether we can use traditional neural
network shapes inside processing networks. We also want to investigate if we
can reuse parts of this network as individual nodes in a processing network. The
challenge with this experiment is that a neural network behaves differently from a
processing network. With the process network, we transmit data at runtime from
one node to the next by wrapping it in a data frame. In a neural network, this would
result in a large overhead of packing and unpacking data. To solve this, OpenHPS
will detect neighbouring TensorFlow processing nodes at runtime that are linked
together.

Similar to CCpos our neural network is composed of a Collaborative Deep Denois-
ing Autoencoder (CDAE) autoencoder and a Convolutional Neural Network (CNN).
The input and output of the autoencoder are the RSSI fingerprints, while the output
of the CNN is a single value for the accuracy in metres. The CNN also has an
input for the X and Y values of the calculated position. For training and testing, we
continued using the dataset introduced in Section 6.3.1 which consists of training
and test data points of a single floor in the building of the lab.

6.5.1 Training

Training of the neural network is done in two parts. In the first part, the training
of the CDAE is performed by setting the RSSI values of measured data points as
the input and output of the autoencoder. After the training, the decoder is removed
and the encoder is used to compress the RSSI values to a latent space that aims to
capture the important features of the set of RSSI values.

In the second part of the training, the encoder is connected to the CNN network
and training is only enabled for the CNN part. The input for the CNN consists of
the compressed RSSI values from the encoder along with the X and Y position
values from our fingerprinting algorithm.



6.5. FINGERPRINT ACCURACY PREDICTION USING CNN 221

On a set of data points, we have the known position and the corresponding RSSI fin-
gerprints. This data is used to train the neural network to predict the accuracy of a
location based on the RSSI values.

6.5.2 Testing

!

Lo
[a
4

TR
TR

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36

N |
2 I B
= I =
.
olAa wal
L J U | IV J LN
L l ]
I ] in
L S T e T I B i T 1 7 | \ | [ T D
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
(a) Accuracy heatmap for k=3 (b) Accuracy heatmap for k=4
| N E
g ] 5 HET—
2 U EI s T
5 - \
g - B
g =
© © H
= e El
b = -ERnls
2 =1 :
il
© Wal N @ olAa
: II m J J AN ) : II =
~ I I ) I. ~ .
° ] BN ECEUUSURR T ° ) SOENUROEUND USRI
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
(c) Accuracy heatmap for k=4 (d) Accuracy heatmap for k=5
0 3 10
Accuracy

Figure 6.16: Interpolated accuracy heat maps for different k values in the k-
NN fingerprinting algorithm. Units of both the x and y-axis are in metres

Figure 6.16 shows a heat map of the predicted accuracy at certain locations ac-
cording to our model. Data was interpolated and extrapolated from the test data
to visualise areas on the floor where fingerprinting accuracy might not be ideal.
A higher number of the accuracy (in metres) means the fingerprints in that area
produce an inaccurate result.

Based on the predicted accuracies, we could determine how close the predicted
accuracy matches the actual accuracy. Such a prediction can help to quickly



222 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

determine the performance of different parameters for the fingerprinting algorithm
in different areas. Alternatively, it can provide feedback to the user who sets up the
system to collect more fingerprints at those locations.

After creating the accuracy heat maps, we noticed inaccuracies in a certain area (top
right, next to our lab). We further analysed the cause of this inaccuracy together with
our non-anonymised dataset, which we used for our fingerprints. We concluded
that the data points collected in front of this office contained more movement
(based on the IMU data). Our dataset was recorded on a Sunday to minimise
interference from other people moving around the building. However, the office
was still occupied on that day, which most likely resulted in both interference as
well as a different posture when standing in front of the door to collect the data. Our
non-anonymised data also contained various Wi-Fi and Bluetooth devices within
the office that were filtered out in the pseudonymised dataset. Insights such as this
would not have been easily detected without our accuracy prediction algorithm.

6.5.3 Future Work and Conclusions

With this experiment, we first and foremost investigated the use of OpenHPS for in-
cluding neural networks within the process models. To do so, we designed a proof-
of-concept neural network for predicting the accuracy of the built-in OpenHPS fin-
gerprinting algorithm based on CCpos [97]. We demonstrated that we could predict
the accuracy of location estimation with reasonable accuracy. Our model is para-
meterised, which allowed us to test the predicted accuracy for varying numbers of
selected neighbours in our k-nearest neighbours algorithm.

This type of accuracy prediction could be combined with other contextual informa-
tion in a hybrid positioning system to more efficiently determine which algorithms
or parameters of the algorithms to use in different areas. Furthermore, an accur-
acy prediction can help to provide more context to the output data. However, the
process of obtaining this prediction should also be semantically described, which
is challenging when working with machine learning, as the process itself is not
always easy to describe.

The experiment also helped us expand the OpenHPS framework’s inlets and outlets.
In our robot obstacle detection experiment in Section 6.2, we indicated that we
required additional control for inlets and outlets. The TensorFlow experiment
strengthened this requirement since we have to access the inlets to combine layers.

Additionally, this experiment also enabled us to strengthen the monotonicity re-
quirement in OpenHPS. Before, nodes often computed both the position as well
as the accuracy of this position. With this experiment, we designed a solution
where one node computes the position and another node independently calculates
the accuracy of the position.



6.6. DISCOVERABLE IOT DEVICES AND ENVIRONMENTS 223

6.6 Discoverable loT Devices and
Environments

Our solution to local discovery was the design of a Bluetooth specification called
SemBeacon. This specification, detailed in Section 5.2, was primarily used to
discover positioning systems and their environment.

However, to ensure that our solution was not too domain-specific, we also invest-
igated other use cases where SemBeacon could be leveraged to discover data. One
of those use cases was the discovery of Internet of Things (IoT) devices and how to
interact with them. Since we are interested in interacting and discovering nearby
devices, we focused on the use of Bluetooth Low Energy (BLE) beacons for this
purpose.

To demonstrate the deployment and use of SemBeacons, we developed an applica-
tion'> that can scan for iBeacons, Eddystone beacons, AltBeacons and SemBeacons.
The application will retrieve the environment information that is broadcast by
SemBeacons, together with the devices and deployed positioning systems in these
environments. The application, along with the SemBeacons was tested in a real-
world environment.

Our prototype SemBeacons that were deployed within the building were designed
using an ESP32-S3 microcontroller (see Appendix C for more details). The
Arduino code for creating and configuring a SemBeacon using an ESP32 can
be found on GitHub. Our scanner application is developed in Ionic Capacitor?,
which also allows SemBeacons to be discovered via Web Bluetooth Scanning [183]
as well as using an Android or iOS device. A native Android library for scanning
beacons is available on the SemBeacon GitHub .

6.6.1 Dataset

For our demonstrator, we transformed and extended an existing indoor positioning
dataset [35] to semantic RDF data’®. We redeployed the beacons of the dataset in
the same building but replaced two of the original beacons that are closest to the
entrance of the floor with SemBeacons (i.e., BEACON_07 and BEACON_08). Other
than existing indoor positioning systems for navigating in indoor spaces or tracking
the location of physical objects, our solution does not require prior knowledge of the
beacons within this dataset. We can publish the semantic data online and let the two
SemBeacons broadcast their resource identifier. Any changes to the environment,

Bhttps://github.com/SemBeacon/sembeacon-app/
https://github.com/SemBeacon/sembeacon-arduino-esp32/
https://capacitorjs.com
Bhttps://github.com/SemBeacon/sembeacon-android-library/
Yhttps://sembeacon.org/examples/openhps2021/beacons.ttl


https://github.com/SemBeacon/sembeacon-app/
https://github.com/SemBeacon/sembeacon-arduino-esp32/
https://capacitorjs.com
https://github.com/SemBeacon/sembeacon-android-library/
https://sembeacon.org/examples/openhps2021/beacons.ttl

224 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

BEACON_08 BEACON_02
B
)
ADV_IND
< <
2 %
2%& %% ADV_IND
o <
%; SCAN_REQ

v

SCAN_RSP

HTTP GET https://bit.1ly/3JsEnF9
1

i
HTTP RESPONSE text/turtle

= Last seen: a few seconds ago
) RSSI: -59 . "
({ ) pistance: 1.37 m ]]

y
o

BEACON_07

B

BEACON 08

J—EJD

1} @) <

Figure 6.17: Example scenario using the floor plan and transformed dataset of [35]

such as new smart devices or additional details to the geospatial description, can
be modified online without the need to update the application or reconfigure the
beacons. An example of this transformed dataset is shown in Listing 6.7.

6.6.2 Device and Environment Discovery

We have developed a demonstrator application that is continuously scanning for
SemBeacons while showing the user a regular map with their current location.
When one or more SemBeacons are discovered, and their data retrieved, their
information is shown on a map. This information may include an indoor map
as well as the location of the beacons or devices themselves. Future applications
can expand on this to provide contextual actions on the beacons or devices or
to visualise information on the map or when interacting with the marker. Our
application uses the POSO ontology to extract the positioning system used within
the environment. In our dataset, the positioning is limited to multilateration between
the fixed locations of iBeacons and SemBeacons.



=T B« Y T N O N

6.6. DISCOVERABLE IOT DEVICES AND ENVIRONMENTS 225

https://sembeacon.org/examples/openhps2021/beacons. tt1#BEACON_08

:pl9_3 a ssn:Deployment ;
rdfs:label "PL9.3"@en ;
sembeacon:namespaceld "77f340dbacOd...

xsd:hexBinary .

:BEACON_08 a sembeacon:SemBeacon ;
sembeacon:namespace :pl9_3 ;
sembeacon:instanceld "c187d748"" "xsd:hexBinary ;
poso:hasPosition [ a ogc:Geometry ;

ogc:asWKT "POINT Z(...)" "ogc:wktLiteral ]

:BEACON_07 a sembeacon:SemBeacon ;
sembeacon:namespace :pl9_3 ;
sembeacon:instanceld "00cc38e7 xsd:hexBinary ;
poso:hasPosition [ a ogc:Geometry ;

ogc:asWKT "POINT Z(...)" "ogc:wktLiteral ]

nAa A

:BEACON_02 a posoc:iBeacon ;
sembeacon:namespace :pl9_3 ;
posoc:proximityUUID "77f340dbac®d..."" "xsd:hexBinary ;
posoc:major 50174 ; posoc:minor 64267 ;
poso:hasPosition [ a ogc:Geometry ;
ogc:asWKT "POINT Z(...)" "ogc:wktLiteral ]

Listing 6.7: Dataset transformed to POSO

Let us now provide a step-by-step example based on the states described Sec-
tion 5.2.5. In Figure 6.17, we illustrate our example scenario using an existing
dataset [35] with BEACON_7 and BEACON_8 transformed to SemBeacons near the
entrance. As soon as a phone arrives in the building, it will passively pick up beacon
advertisements from the nearby SemBeacons as well as other beacons advertising
on the floor shown as the advertisement indicator (ADV_IND) arrows in grey.
Without prior knowledge of the namespace identifier, these advertisements are ig-
nored. Once an AltBeacon-compatible advertisement with an unknown namespace
identifier is detected, the phone sends a scan request which triggers SemBeacons
to respond with an encoded short resource URI.

After retrieving the short resource URI, the application performs a GET request
which in turn returns the resource with the description of the beacon, metadata
about the environment and other beacons stored in this resource. On the left-hand
side of Figure 6.17, we show our application visualising the GeoJSON floor layout,
the beacons in range and known beacons that are not in range (semi-transparent
markers). On the right-hand side, we see the semantic resource describing the
SemBeacons as well as any other beacons or sensors in the namespace. In our



o - N o N

s

226 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

scenario, we have two SemBeacons each with a unique instance identifier and a
position. Other beacons within the same deployment are identified as iBeacons.

PREFIX sembeacon: <http://purl.org/sembeacon/>
PREFIX poso: <http://purl.org/poso/>
SELECT 7?beacon {
?beacon a poso:BluetoothBeacon .
{ ?beacon sembeacon:namespaceld "...
UNION {
7?beacon sembeacon:namespace ?namespace .
7namespace sembeacon:namespaceld "..."""

xsd:hexBinary }

xsd:hexBinary

Listing 6.8: Example SPARQL query to retrieve all beacons belonging to the same
namespace

In Listing 6.8, we showcase a simple SPARQL query to demonstrate how our
application retrieves all beacons belonging to the same namespace. This can either
be a SemBeacon with the :namespaceId predicate or a deployment that in turn
has a :namespacelId.

6.7 Discoverable and Interoperable AR

In Section 6.6 we used SemBeacon to discover Internet of Things (IoT) devices
and provide contextual information to users. To validate the discoverability of
positioning systems as stated in research question RQ3 and the validation of the
genericness of the POSO ontology introduced in Section 4.2, we created the fiducial
marker ontology named FidMark [41].

FidMark served as a validation for the POSO ontology to be extended for use cases
beyond what was originally envisioned. The ontology is detailed in Appendix B.2.3.
As part of the validation of this ontology, we developed a prototype for tracking
fiducial markers and positioning virtual objects relative to these markers. Our
prototype was built on top of OpenHPS. We created a web application that provides
custom nodes for (1) detecting ArUco [243] fiducial markers using js-aruco22°® and
(2) a sink node for displaying virtual objects in the scene using Three.js.

Figure 6.18 showcases the demonstrator web application of the FidMark ontology?
with a fiducial marker placed on a movable object and a virtual object posi-
tioned relative to this object. The AR application works in real time using the

20https://github.com/damianofalcioni/js-aruco2
2lhttps://fidmark.openhps.org/application/


https://github.com/damianofalcioni/js-aruco2
https://fidmark.openhps.org/application/

6.7. DISCOVERABLE AND INTEROPERABLE AR 227

& fidmark.openhps.org

Camera

Figure 6.18: Fiducial marker with a relatively positioned virtual object

OpenHPS framework, and it was our prototype that uses AR in our framework,
while also leveraging the ability for OpenHPS to run in a browser.

The graph for the AR example is trivial, starting from a video source node and
following a single processing lane that computes the pose of the marker and visu-
alises the virtual objects. Based on some of the feedback we received for storing
positioning data in Solid through properties [43], we evaluated a new technique
that enables the storage of virtual environments in Solid Pods.

Our proposed solution aims to allow multiple AR devices to contribute to a single
shared AR environment or virtual space belonging to a user. We assume that the
AR device used to contribute to augmented environments is a smart device with
access to the Web and can broadcast an RF signal. In the general architecture
of our proposed solution, we let AR devices broadcast a semantic Bluetooth Low
Energy (BLE) beacon advertisement containing the URI of a specific resource. We
utilise the SemBeacon advertising protocol that advertises an AltBeacon advert-
isement and Eddystone-URL-compatible scan response to broadcast semantic data
URIs. The use of SemBeacon to advertise the environment URI is illustrated in
Figure 6.19. This environment resource contains information about the personal
environment(s) owned by the user. Other devices can receive these advertisements
when in proximity to the AR device and then access the URI to retrieve more
information. For each environment, we have a link to a public inbox that other
users can use to link their own modifications to the environment. Any modifica-
tions made to the superimposed space are stored in a Solid Pod owned by the user
who made the modifications, which enables users to both contribute to the same



228 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

environment as well as control the access rights of modifications made to these
environments.

Pod User #1 G m\ \fé"}' m\ Pod User #2 0
L . environments/ i RN ? L . environments/
L home/ Solid App L desk/
LN : 5 L[y ...
L § office/ L N useri-office/
L M data.ttl.acl I—Q data.ttl.acl
L M data.ttl User #1 User #2 L Q data.ttl
X Read
L . inbox/ P ’ L ‘ea
Lh - inbox/
H -acl g L acl
Read, Append bt e
L “t\] 1€-lacrea‘;pt’:.nttl .)) ((. g_ Read, Append
L _ Advertising Advertising
Q 2-create. ttl URI of URT of userl-
LQ 3-move.ttl office/data.ttl office/data.ttl

Figure 6.19: A user’s discoverable AR environments with two example users
(User #1 and User #2) having a Solid Pod

On the left-hand side of the architecture shown in Figure 6.19, we have a Solid
Pod for user 1. The Pod contains all environments owned or modified by the
user. An AR device connects to the user’s Solid Pod through a Solid application
that authenticates the user, allowing it to modify the resources when editing a vir-
tual environment. To enable the discovery of these virtual spaces, the AR device
broadcasts the *.ttl file of the environment it is currently in via BLE advert-
isements. This resource contains all the information about the environment, such
as its location, any identifiable features and all virtual objects placed relative to
the environment. While the broadcasted URI is public, the access to read this
URI is controllable through access control lists implemented in Solid. SemBeacon
offers a broadcasted flag to indicate whether a URI is publicly accessible to prevent
applications that do not have access to the resource from attempting to access it.

When another user (e.g., user 2) wants to modify the environment of user 1, they
create a new resource including the modifications and additions to virtual objects
or detectable features (e.g., markers). The application will then notify user 1 about
these changes by referencing the userl-office/data. ttl file in the inbox [218]
container of the environment that is being modified.

An alternative architecture is illustrated in Figure 6.20. In this scenario, a fixed
Bluetooth beacon is placed in aroom, broadcasting the URI of a single environment.
This scenario can be used for public physical environments, such as a meeting room
or laboratory, enabling collaboration in AR. Similar to personal environments
shown in Figure 6.19, users store their changes to an environment in their Solid
Pod and reference these changes in the inbox of the environment.



6.7. DISCOVERABLE AND INTEROPERABLE AR

229

environments/
restaurant/

N lab/

L data.ttl.acl

Lb data.ttl

L N inbox/

L [j .acl

LQ 1-create.ttl
LY 2-modify.ttl

N
L
L

)

Advertising
URI of lab/data.ttl

<> a seas:Room ;

1dp:inbox

<./inbox/> ;

vcard:address [ ... ]
:printer_marker a fidmark:AruCo ;

fidmark:markerIdentifier 12 .
:printer_info a sosa:FeatureOfInterest ;

-1

poso:hasPosition [
poso:isRelativeTo :printer_marker ;

omg:hasGeometry [ ... ]

rdfs:label "Our Lab"@en ;

Figure 6.20: Single discoverable AR environment using the seas®, fidmark?,
poso¢ and omg? vocabularies

“Smart Energy Aware Systems Ontology: https://w3id.org/seas/
hﬁduchlhdmkerOnuﬂogy:http://purl.org/fidmark/
“Positioning System Ontology: http://purl.org/poso/

dOntology for Managing Geometry: https://w3id.org/omg#

6.7.1 Usage

Our solution is depicted in Figure 6.21 where we showcase the flow of our architec-
ture previously illustrated in Figure 6.19. Two users with AR devices have their own
Solid Pod. User 1 will create an environment (A) on their Pod and subscribe to the
inbox container of this environment. Once the environment is ready, the AR device
will use the SemBeacon specification to advertise the URI of the environment and

enable its discovery.

User #1

Create
Environment A

of Environment A

modification(s)

Solid Pod

©

Subscribe to inbox
— e

Broadcast

Environment A a
URI via

Notify user of
<« —

SemBeacon

E Subscribe to inbox__
of Environment A

—

User #2

®

Create
Environment A'

Modify
Environment A'

Add modification
to inbox of Environment A

Solid Pod

6

—

—

Figure 6.21: Interaction flow of two users contributing to the same augmented

reality environment


https://w3id.org/seas/
http://purl.org/fidmark/
http://purl.org/poso/
https://w3id.org/omg#

T N T - N T SO U R R

230 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS

When another user (e.g., user 2) discovers the resource URI, the AR application
will access the environment to visualise the augmented objects. If user 2 makes
a modification such as adding virtual objects, these modifications are stored in
the Pod of user 2 as environment A’, ensuring ownership of this contribution and
enabling user 2 to choose the access rights to this modification. To keep up-
to-date with changes in the original environment, the application will listen for
changes in the inbox of environment A. All users who are subscribed to this inbox
will receive linked data notifications [218] whenever a new modification is added.
Unlike the i-VISION [244] project which uses RESTful polling to detect changes
in the publish and subscribe gateway, linked data notifications can enable real-time
updates without the additional data overhead introduced in polling.

An inbox uses the LDP?2 vocabulary to index all resources within this container. A
user who wishes to accept contributors for their environment should configure this
inbox container with public append access rights, allowing other users to append
a new resource to the container. Each inbox item represents an action using the
schema.org vocabulary [204]. An action represents an event that occurred in the
environment, such as creating a new virtual object, moving an object or interacting
with a virtual object.

@prefix card: <https://user2.../profile/card#>.
@prefix office: <https://user2.../environments/userl-office/data.ttl#>.

<> a schema:CreateAction ;
schema:description "Created a new object 'painting'"@en ;
# AR application that created the action
schema:agent <https://ar-app.com/id> ;
schema:creator card:me ; # Owner of the modification
schema:object office:painting ; schema:result office:painting .

Listing 6.9: Inbox item to identify the creation of a virtual object

Listing 6.9 demonstrates an individual appended inbox item to the Solid Pod of
user 1. In the example, we see a schema:CreateAction indicating that user 2
created a new painting object. Users can listen for notifications in the inbox to
automatically apply changes to virtual objects in the shared AR environment as
they are made [218].

The positioning of virtual objects is done using the POSO ontology [40], which
allows the description of (virtual) objects to be placed relative to other objects using
the poso:isRelativeTo predicate. When a user wants to place an object in an
environment using an absolute position that is not relative to a marker or detectable
feature, the same predicate can be used to indicate that the absolute position is
relative to the environment.

22https://www.w3.org/ns/ldp#


https://www.w3.org/ns/ldp#

6.8. DISCUSSION 231

The final AR environment, combining all modifications made by other users, is
created by the AR application that has access to the Solid Pod. Our architecture
allows users to easily ignore all contributions of another user or agent. Individual
modifications or contributions can be rejected by ignoring the individual inbox
items where these changes are referenced. Future work might address the mod-
eration of individual contributions by applying quality assessment crowdsourcing
techniques [245].

6.7.2 Reference Frame

Augmented reality uses one or more reference frames [246] to anchor virtual objects
in the physical environment and to determine an absolute or relative position. This
can be done through feature detection [247] that creates anchors based on visual
patterns or artificial features such as fiducial markers [248].

To enable interoperable applications to contribute to the same environment, all
applications need to operate within the same reference frame. Our solution assumes
that contributions to an environment not only include virtual objects, but also
additional anchor points such as markers and detectable features contributed by
multiple users [41]. By semantically describing these reference frames as visual
landmarks rather than a frame of reference, the POSO ontology can be used to
position virtual objects relative to these anchors.

6.8 Discussion

In this chapter, we demonstrated several examples of (indoor) positioning systems
and discussed various applications and evaluations of these systems. We showcased
prototypes such as the user-centric storage in Solid Pods and our SemBeacon applic-
ation. All the prototypes shown in this chapter were developed using the OpenHPS
framework. We also used these prototypes to further improve the framework and
its data representation, and to pave the path towards an integrated solution.

By building and testing each of our prototypes using OpenHPS, we provide future
researchers with reusable components and algorithms to conduct further experi-
ments. Furthermore, it also provides researchers with usable artefacts for using
ontologies such as POSO and FidMark in real-world applications. Applications,
prototypes and experiments in this chapter were conducted as technical evaluations
of the frameworks, ontologies and specifications presented in this dissertation.
Furthermore, by conducting these technical evaluations, we have revealed several
limitations which we were able to address in the current version of our OpenHPS
framework and the integrated solution.



232 CHAPTER 6. APPLICATIONS AND TECHNICAL EVALUATIONS




Walking on water and developing software
from a specification are easy if both are
frozen.

— Edward V. Berard

Chapter 7

Integrated Solution

Based on the answers to our research questions provided in Sections 3, 4.2, 5.2
and 5.3, we designed an integrated proof of concept solution enabling the interop-
erability and discoverability of positioning systems. With our integrated solution,
we propose an architecture for developing new positioning systems that offer in-
teroperability of the data they produce, as well as consumer applications, such as
navigation applications that require location data to function.

We start with a user analysis on the stakeholders of our integrated solution. Next,
we list the requirements of our proposed solution in Section 7.2. Using these
requirements and our solution for defining the data in hybrid positioning systems
(RQ1), we define the actors of our solution in Section 7.3.

The final integrated solution extends on our previous work with the SemBeacon
application, which already implements OpenHPS, POSO, the scanning of semantic
beacons and the visualisation of environments. Together with our work with Solid,
we designed an architectural solution that offers user-centric storage of data and
uses Solid as a distributed registry for positioning systems using our Linked Data
Hash Table (LDHT) solution.

With Objective 5, we wanted to determine the feasibility of our solution for inter-
operable and discoverable indoor positioning systems. We detail the architecture of
the solution and illustrate how our individual contributions fit within this architec-
ture in Section 7.5. While our implementation uses Solid, the conceptual design of
our integrated solution is generic and can be implemented using different personal
data vaults.

By separating our architecture into different components, we enable developers to
adapt and extend the solution according to their needs. Furthermore, the use of
Solid and Linked Data principles ensures data privacy, user-centricity, and control
over personal data.

233



234 CHAPTER 7. INTEGRATED SOLUTION

7.1 User Analysis

Before determining the requirements of our integrated solution, we must first
identify the various users involved in the project. The primary stakeholders in this
case are the end users who will be using the integrated solution on a day-to-day
basis.

Next, the building owners who wish to deploy such a system are also important.
Without their support, the deployment of an indoor positioning system would not
be possible. Finally, the developers and technicians responsible for implementing,
deploying and maintaining an indoor positioning system should also be considered.
For the scope of this analysis, we consider the industry players that develop these
systems as part of their business goal to be part of this group. These three main
stakeholders, along with the possible advantages our integrated solution would
bring, are further detailed in this section.

7.1.1 End Users

We consider end users to be those who use an indoor positioning system on a
daily basis. Use cases can vary from navigation to the tracking of assets within
a building, meaning they may not be the actual users or objects being tracked by
such a system.

For users who are tracked, our solution offers the ability to store the data obtained
by such a system in a user-centric storage. This provides them with control and
transparency on the applications and services that have access to read and/or write
to their managed storage.

Interoperability among indoor positioning systems opens the doors for reusable
applications and other interfaces. This allows users to choose which application(s)
to use rather than being forced to use the application associated with a particular
building. Furthermore, in current SOTA, users would have to switch between
applications when navigating from one building to another. With reusable and
interoperable applications, this need would be prevented by offering seamless
positioning.

7.1.2 Building Owners

As detailed in Section 2.2, deploying indoor positioning systems is costly due to
the need to deploy hardware, calibrate environments and develop software [78].
With our integrated solution, we aim to pave the way for interoperable systems,
while also encouraging more building owners to deploy such a system.

We believe that by providing reusable applications and components, we can limit
part of this cost. Additionally, by enabling interoperability among these systems, a



7.2. REQUIREMENTS 235

building owner can easily reuse a deployed system and its associated data for other
use cases. By also facilitating the discovery of deployed systems, building owners
who want end users to benefit from an IPS can be targeted more effectively.

7.1.3 Developers and Technicians

We want to offer developers an architecture that they can use to design an (indoor)
positioning system, capable of integrating with existing applications and other
systems. Instead of forcing developers to start from scratch, we want to enable
the creation of building blocks and reusable software that allows them to focus on
modifications rather than reimplementation.

Configuring positioning systems often requires a setup phase in which technicians
collect data within a building. As these applications are often only used once, they
are either very generic (e.g., GetSensorData [249]) or lack efforts to enhance the
user experience. Reusable applications would entail that more time can be spent on
designing these single-use applications, as they can be reused in different buildings.
This would benefit both the developers who implement these applications, as well
as the technicians who are the primary users of such applications.

From a business perspective, the ability to reuse applications limits the need for de-
velopers to be hired to develop such software. However, we believe that providing
them with reusable building blocks helps advance the domain to better stand-
ardisations and interoperability beyond location data. However, we acknowledge
that some industry players may see the reusability and accessibility of data as a
competitive disadvantage.

7.2 Requirements

In the following, we formalise the requirements of our integrated solution, which
combines the answers to all our research questions. The requirements combine
the individual requirements of hybrid positioning systems, interoperability of these
systems and finally the discovery.

7.2.1 Functional Requirements

We identified the functional requirements by analysing the needs of users, system
capabilities, and potential use cases. These requirements include the ability to
collect data from different positioning systems, integrate the data into a common
format, perform fusion algorithms to improve accuracy, and provide an interface
for users to access and manipulate the integrated data.

The requirements for our integrated solution represent high-level requirements for
the functioning of our solution. These requirements were established based on



236 CHAPTER 7. INTEGRATED SOLUTION

our OpenHPS requirements, as detailed in Section 3.2, as well as the requirements
derived from our research questions.

Track Persons and Objects

An interoperable positioning system should track persons or objects in a specified
environment. This means that multiple positioning systems that can behave in
an interoperable manner should be able to track the same individual object or
person. This functional requirement also indicates that these individuals should be
identifiable between systems.

Processing of Data

Multiple applications or systems should be able to process the data produced
by an interoperable positioning system as detailed in Definition 5. Data such as a
computed absolute position, orientation or relative position should be integrated and
processed seamlessly, allowing for the utilisation of the data in various applications
or services.

Access Control and Privacy

Individuals who are tracked should be able to control which positioning systems
and applications have access to their data. This functional requirement ensures
that we can enable access to data while also ensuring that the privacy of sensitive
location data is retained. In addition to this requirement, we include the ability
for users to provide consent to the systems and services that produce and consume
location data. In the case of objects that are being tracked by a positioning system,
the owner of the object should have control over which systems and services can
access the data.

Discovering Entities and Systems

Positioning systems should be able to discover and identify entities that can be
tracked. Vice versa, an entity should also be able to discover if a positioning
system exists within a nearby environment. This functional requirement should
still adhere to other requirements such as the access control and privacy rights of
users. While we want systems to discover entities, this should happen privately
with the consent of the user.

7.2.2 Environment Requirements

These requirements include factors such as the type of infrastructure available,
the area coverage needed, and the level of accuracy required for positioning data.



7.2. REQUIREMENTS 237

By considering both functional and non-functional requirements, along with en-
vironmental factors, our integrated solution is designed to effectively address the
challenges of interoperability and discoverability in positioning systems.

Physical Environment

The architecture is to be deployed in a physical environment and does not apply
to virtual positioning systems that operate in a fictional environment such as a
virtual world. However, virtual positioning systems can still be added on top of
our architecture under the condition that the environment of the system mimics a
physical environment.

This environmental requirement scopes our architecture to the physical world,
rather than designing interoperable positioning systems that could also be used
to ensure seamless data exchange in video games. While open use cases exist to
ensure interoperable exchange of location data in video games [250], these would
also require interoperable virtual reference frames, which we do not tackle in this
integrated solution.

Positioning Infrastructure

Positioning systems can use a wide range of infrastructure, such as beacons or visual
markers. An interoperable solution should be aware of this available infrastructure
and the requirement for this infrastructure to be documented.

7.2.3 Data Requirements

Most of the data requirements for positioning systems have already been defined
in Chapter 3. In this section, we focus on the data requirements for our integrated
solution, with the additional requirement of making the data interoperable and
ensuring privacy and transparency for the user.

Generic Input and Output

When creating an integrated solution, the data that is stored by this solution should
offer a generic input and output representation of positioning systems.

User Data Consent

User data, such as location data, is private to the user. Our integrated solution
requires a user’s consent to ensure that users have control over who can access their
location data. This requirement aligns with the access control and privacy rights
of individuals, allowing them to provide consent for the systems and services that
collect and use their data.



238 CHAPTER 7. INTEGRATED SOLUTION

Interoperable Data

Data generated and used by a positioning system should be semantically described
in order to support interoperability between applications and systems. This includes
the input and output data of a positioning system.

Furthermore, with our integrated solution, we adhere to the Open World assump-
tion, which states that we cannot rely on the fact that data does not exist if it is not
available within a knowledge base. The same applies to the location data of users.
Simply because our integrated solution has no knowledge of services and systems
that track a subject, we cannot guarantee that all location data is accounted for.

Interoperable Environments

An environment where a positioning system is deployed should be semantically
described so it can be recognised by other systems. This includes information
about the physical layout, boundaries, obstacles, and other relevant features of the
environment. By meeting these data requirements, our integrated solution ensures
that positioning data can be easily shared, combined, and used across different
systems and applications.

7.3 Actors

In Chapter 3, we already defined different actors in a hybrid positioning system.
We defined a tracked actor, tracking actor, calibration actor and a computing
actor as the four actors within OpenHPS. In our integrated solution, we also want
to consider consumers of the output data from a positioning system, as well as the
storage in which this data is located.

We therefore generalised these actors even further by classifying the individual
parts of a positioning system as a data producer, data consumer, data processor and
data store. This allows us to consider position visualisation applications that do
not provide any tracking as a data consumer. Similar to the OpenHPS actors, the
object or person that is being tracked will be called the tracked subject. Individual
sensors that are part of a positioning system are also data producers in their own
scope of data. The calibration actor, which was present in OpenHPS is considered
a data producer that stores calibrated information in a certain storage. Each actor
is represented in Figure 7.1.

Tracked Subject

The tracked subject of the architecture is the object that is subjected to the tracking
of a positioning system. This tracked subject can be a person, robot or any other
asset that must be located. Examples of tracked subjects include mobile robots,



7.3. ACTORS 239

Tracked Subject Data Producer Data Processor Data Store Data Consumer

N —

Figure 7.1: Actors of positioning systems

vehicles, and individuals in a smart environment. The tracked subject interacts
with the positioning system by generating data that can be used for positioning and
tracking purposes. Additionally, the tracked subject may also consume information
from the positioning system, such as receiving alerts or notifications based on their
location.

Data Producer

Similar to other stream-based processing systems such as Apache Kafka [179], a
data producer in our architecture is any third-party service or system that creates
or updates information about a tracked subject. This data can include real-time
location updates, sensor data, or any other relevant information that can be used
for positioning purposes. Data producers can range from Iol devices and mobile
applications to external positioning systems.

Furthermore, the data producer is responsible for representing data in a standardised
format that adheres to the semantic description of the data requirements. This
ensures that the data can be easily consumed and utilised by the positioning system
and other relevant actors within the ecosystem.

Data Processor

Data processors are any algorithmic procedure that manipulates produced data. A
data processor can be a single procedure or a pipeline of procedures that processes
the same data. This actor describes a positioning system and a data producer that
processes sensor data.

Data Store

Finally, the last actor that can be found in all positioning systems is the data storage
actor. Data producers produce data that is temporarily stored or persisted in a data
store. This can include simple data storage, such as a temporary in-memory data
store to more intricate cloud-based storage of information.



240 CHAPTER 7. INTEGRATED SOLUTION

Data Consumer

A data consumer in our architecture is any third-party service or system that
consumes information of a tracked subject. This includes applications that visualise
the position of tracked subjects as well as analytics tools that process the data
generated by the positioning system. Data consumers can range from navigation
applications to data analysis platforms. Furthermore, in the context of hybrid- or
interoperable positioning systems, a data consumer actor also applies to the logic
that consumes information from another service to aid in the tracking of a tracked
subject.

7.4 Use Cases

The integrated solution we propose in this dissertation is based on the problem
statement outlined in our research questions and the varying use cases in which
an (indoor) positioning system is used. A general overview of the different do-
mains where indoor positioning systems are used is provided in Section 2.2.1. In
this section, we delve deeper into specific use cases where our interoperable and
discoverable integrated solution innovates.

7.4.1 Navigation System

A navigation system is a positioning system that aims to guide a person to a specific
destination using visualisation techniques. As opposed to navigation systems for
robots which aim to guide autonomous vehicles to navigate to a location by follow-
ing a path, we assume that the tracked subject in this use case are humans who need
to follow textual or visual instructions. Outdoors, these navigation systems use
a single technology (i.e., GPS). To create an interoperable navigation system, the
system should perform seamless positioning with a handover from one position-
ing system (i.e., outdoors) to another (i.e., a building-specific indoor positioning
system).

In previous work, we developed an indoor navigation system that makes use of sim-
plified instructions and visual aids to direct the user to their destination [99]. If we
consider the use of a single navigation application that works both indoors and out-
doors, we require a method that uses GPS outdoors while seamlessly transitioning
to other positioning techniques when entering a building.

7.4.2 Indoor Positioning System

Indoor positioning systems are systems that track a person or object within an
indoor environment. Outdoors, we can rely on public maps to provide context to
an outdoor environment. However, buildings and internal floor plans are often not



7.5. ARCHITECTURE 241

considered public. Even if a building is public, there is often no method to retrieve
indoor mapping information. Our integrated solution would allow the discovery of
these indoor positioning systems and the environments (e.g., floor plans or digital
representations) in which they are deployed.

7.4.3 Asset Tracking

Asset tracking is a service that tracks assets such as cars, equipment or inventory. In
this scenario, we consider assets as non-users who cannot consent to the tracking.
However, assets are usually owned by an organisation or user. Our integrated
solution should provide users with a solution to add multiple assets that can be
tracked individually.

7.4.4 Collaborative Robots

Collaborative robots, also known as cobots, are robots designed to work alongside
humans in a shared workspace. In an industrial setting, these robots can assist
human workers with tasks that may be repetitive, dangerous, or physically demand-
ing. For effective collaboration between humans and robots, precise positioning
and tracking of both entities are crucial. Our integrated solution can provide
real-time monitoring and communication between collaborative robots and human
workers within a shared workspace.

7.4.5 Augmented Reality

Augmented Reality (AR) is a technology that superimposes digital information
onto the real world, typically viewed through a smartphone or AR headset. In
most modern implementations of AR applications and devices, each AR device is
responsible for its own tracking and frame of reference [246]. One use case for our
integrated solution is to enable interoperability between multiple AR devices and
to enable AR devices to discover each other when in the same environment. This
type of interoperability will allow for collaborative AR experiences where multiple
users can interact with the same digital content in real time. Early work on this
type of interoperability was developed in a prototype in Section 6.7.

7.5 Architecture

Our solution relies on the use of personal data vaults for every person and object
that can be tracked by a positioning system. In our architecture, the tracked subject
is central to the collection, accessibility and interoperability of the data. For our
solution, we make use of the Solid project detailed in Section 2.5.2. Solid provides
each user with a personal data vault that can store both binary and linked data.



242 CHAPTER 7. INTEGRATED SOLUTION

Positioning systems are represented as graph-based processing networks that take
input data and output a position along with possibly other information about
the tracked subject. This graph-based representation is further detailed in our
OpenHPS framework, which generalises the structure of most hybrid positioning
systems. Each step in this process network is described as a procedure. When we
store data, we also keep track of the procedure(s) used to process this data. This
gives us knowledge on how certain data is manipulated, providing applications with
more understanding of the relevancy and accuracy of this data.

For expressing positioning systems as a graph structure, we make use of our
POSO ontology. POSO provides a semantic description of the individual proced-
ures within a system. In addition, POSO also provides a vocabulary for describing
the data produced and consumed by such systems.

Finally, the discoverability of the tracked subjects and positioning systems alike will
be done using physical media. Whenever we are talking about a positioning system,
we represent it as something in a physical space that aims to track physical objects.
To aid in this discovery, we developed the SemBeacon specification [45] which
uses Bluetooth Low Energy (BLE) to transmit the URI of the semantic resource.
However, other physical mediums such as a simple Quick Response (QR) code can
be used to discover the positioning system at a particular location.

(Semi-)public Positioning
Definitions System
iiiiii i _\
W
A '.
: [ i
. ' i Discoverable
1 \
! pENTY }_ and Identifiable
: ;’ N Features
! ; '
am— ‘
$ O
. T
Personal Tracked
Data Vault Subject

Figure 7.2: Architecture of an interoperable positioning system using personal data
vaults and discoverable features



7.5. ARCHITECTURE 243

The basic setup of our architecture is illustrated in Figure 7.2. In blue, we have
the positioning system along with its semantic definition. This definition can be
completely public or private, as long as the positioning system can be discovered
via a discoverable and identifiable feature. This feature can be anything that can be
mapped or resolved to the URI of the semantic definitions. The tracked subject and
its data vault are indicated in red. A tracked subject must provide the positioning
system with access to its personal data vault. Depending on the granted access
rights, the positioning system can read, update or create new information about
the tracked subject in its own personal data vault. Other positioning systems with
similar access rights will be able to continue the tracking using this same personal
data vault. Positioning systems can also decide not to reveal all internal algorithms
and procedures publicly, similar to a location-based service (LBS). In this case, the
information is semi-public since it still contains a minimum amount of information
needed to discover the system.

Personal Tracked
Data Vault Subject

Mobile Application Mobile Application

Server

Figure 7.3: Architecture of an interoperable positioning application using personal
data vaults

In Figure 7.3; we consider a third-party mobile application and a third-party server
(illustrated in green). The mobile application becomes the discoverable and identi-
fiable feature of the tracked subject. Both the application and server require access
rights to the personal data vault of the tracked subject. Optionally, only the server
can request access rights, in which case the mobile application interfaces with the
personal data vault via its own authenticated server.



244 CHAPTER 7. INTEGRATED SOLUTION

Optional Identfiable
QR-code Smartphone
ano [T
O
R
(Semi-)public ,,’, @ Tracked
Definitions ~ - Subject
-------- g SDI(F: ¢ PERC
Profile URI -
A ™ SemBeacon SemBeacon A
E N . profile/ :
' L m card
E . . properties/
' . — — . position/
W 1714815000/ ()
%@H 4 LQ o
W 1716031800/ (§
Positioning Lb
System L
. N -

Figure 7.4: Architecture of our integrated solution including Solid and SemBeacon

The complete architecture of our integrated solution is shown in Figure 7.4. It
consists of a tracked subject that manages a Solid Pod, a positioning system that
has a semantic description of its algorithms and technologies. This description can
be public or private, depending on the use case of the positioning system.

Both the tracked subject and positioning system use the SemBeacon specification
to act as their discoverable feature. For a tracked subject, the profile URI is
advertised as the identifiable feature, while for positioning systems it is the URI
to a description of the poso:PositioningSystem. While our integrated solution
proposes the use of SemBeacon to act as the discoverable feature, other techniques
such as QR codes which act similarly can be used.

A user’s Solid Pod contains the profile card that is advertised using the SemBeacon
specification. In addition to this profile, a container with properties is kept that
structures different observable properties (e.g., position, orientation or velocity)



7.6. LINKED DATA VOCABULARY 245

into Linked Data Event Streams (LDES). Users can provide positioning systems
with access to their properties, enabling them to add new observations of these
properties or to make use of this data to further improve positioning accuracy.

The positioning system used within our architecture can include a wide range of
techniques and algorithms. As long as they can be semantically expressed, they can
be integrated into our framework. With OpenHPS, we have already validated that
various systems and setups can be configured as a graph structure. In our paper,
Indoor Positioning Using the OpenHPS Framework [33], we demonstrated how we
could use Wi-Fi fingerprinting, Bluetooth Low Energy beacons, and dead reckoning
techniques to determine a position. Unlike our previous paper, positioning systems
designed with our integrated solution would not require a proprietary application
for each building that deploys an indoor positioning system.

7.6 Linked Data Vocabulary

To enable interoperable input and output data of a positioning system, as well as an
interoperable description of the system itself, we require a linked data vocabulary.
Our vocabulary mainly relies on the POSO ontology detailed in Section 4.2 along
with additional extensions. While the vocabularies listed in this section offer
a baseline that we would use within an integrated solution, linked data can be
expanded to any domain, any use case and any open problem.

7.6.1 Positioning Data Vocabulary

Any data that represents computed positioning data (e.g., a position, orientation,
velocity) should be representable using a linked data vocabulary. Each system may
provide data with a certain accuracy and unit.

In Section 4.2, we introduced our Positioning System Ontology (POSO) aimed at a
wide range of positioning solutions, which enables us to semantically describe in-
dividual observations of properties. This ontology generically represents location
data with the assumption that positioning systems do not always use a geographical
coordinate reference system.

In the environmental requirements of our integrated solution, we scope the solution
to physical indoor environments which are bound to geographical coordinates.
This allows us to make the assumption in our solution that we are working with
geospatial data.

7.6.2 Sensor Data Vocabulary

Positioning systems generate positioning data that is computed from raw sensor
data. Part of the definition of interoperability is the ability to access data, including



246 CHAPTER 7. INTEGRATED SOLUTION

any data that is used by the system to process information. In our integrated
solution, we propose the use of the Machine-to-Machine Measurement (M3) lite
ontology [203], which enables the description of sensors. We have aligned this
ontology with POSO using the poso-m31ite ontology alignment. For the scope
of our integrated solution, we focused on the interoperability between positioning
systems with the data they produce.

7.6.3 Positioning System Vocabulary

Being able to represent the sensor and computed positioning data already enables
the interoperability of different positioning systems. However, to reason on the
importance of the computed positioning data, we also need to describe the posi-
tioning system itself using a linked data vocabulary. This includes the capabilities,
constraints, and requirements of the system to enable seamless integration and
communication between different positioning systems. By defining a standardised
vocabulary for positioning systems, we can ensure that data sharing and interoper-
ability are achieved at a high level of accuracy and efficiency.

Similarly to the positioning data vocabulary, we use the POSO ontology to describe
the individual algorithms and technologies these systems employ by defining them
as procedures within a pipeline. We designed an object-document mapping tool
for TypeScript to enrich classes with metadata which provides information about
their semantic definition. On the OpenHPS website, we provide a URI for every
single processing node that is created by an official module, enabling positioning
systems created with OpenHPS to explicitly indicate which implementation was
used rather than providing a general description of the algorithm.

7.6.4 Access Control Rights and Discovery Vocabulary

In our proposed integrated solution, we aim to allow the user to control access
to their location data. Multiple standardisations already exist to enable access
control rights, such as the Access-Control List (ACL) [251] or Web Access Con-
trol (WAC) [252].

Before a positioning system can access resources in a personal data vault, the user
needs to authenticate themselves with the system. The authentication flow of the
application is detailed in Section 2.5.2, but in general, it requires user interaction
for authentication.

7.6.5 Authentication and Consent

The public definition of a positioning system should provide information for users
on how to authenticate their personal data vault with the system. However, in



7.7. PERSONAL DATA VAULT 247

addition, it should also provide contextual information on how the system plans to
use the data.

The Data Privacy Vocabulary [253] provides a comprehensive vocabulary for de-
scribing policies, consent and the basis for processing of data. Using this vocab-
ulary, a positioning system can detail to users how they track a user’s location or
utilise data from their personal data vault before they authenticate.

7.7 Personal Data Vault

To provide users and organisations with a personal data vault that they can use to
store their data, we propose to make use of the Solid project (see Section 2.5.2).
Solid allows users to create personal data vaults, often referred to as a Pod that
they register at a Pod or Storage Provider. They can choose which provider they
use and under what terms and conditions the storage provider offers to store their
data. These data stores can store binary data and linked data that pertains to the
user who owns the storage.

An advantage of Solid is its ability to enable access control to third-party data
providers and consumers who want to access (part of) the data within their personal
data vault. In the scope of our integrated solution, this means we can enable users
to decide which location data is shared with which application or service.

Each Solid storage has a public user profile linked data resource (LDR) containing
user information such as basic personal information. We expand this profile with
a set of observable properties that this person can have using the ssn:Property
predicate described in Section 4.2. This allows applications that read a user’s
profile to know which properties!observable can be found in the personal data
vault.

7.7.1 Data Structure

The data that we store in the personal data vault will be structured to support
Linked Data Event Streams (LDES) [213] while maintaining individual streams
for location, orientation and velocity data. This structure is necessary to enable
us to store a large stream of data. Storing a stream of data in a single resource as
we proposed in our original work with Solid [43] is not feasible due to scalability
issues.

Figure 7.5 showcases the structure of properties such as a position or orientation.
Each property is located in its own LDP container and contains all the data concern-
ing the property, including its description or individual observations, regardless of
the source or accuracy of the data. To structure the data in a way that allows
multiple data producers to write new data without causing a single resource to



248 CHAPTER 7. INTEGRATED SOLUTION

. profile/

L m card

. properties/

— . position/

— b .meta

— b property.ttl
— Wy 1714815000/
D .meta

D {uuid}.ttl
b {uuid}.ttl.acl
— 1y 1716031800/ (@

Ly

— . orientation/

L.

Figure 7.5: Container structure of properties

become unmanageable, we use a TREE hypermedia structure [216] with a single
event stream for each property. More information about the TREE hypermedia
structure and LDES is provided in Section 4.4.3.

Data of the property is structured into multiple containers that contain a subset of the
data and act as a node within the TREE structure. Each data point (i.e., observation)
at a particular timestamp is stored as a separate resource (i.e., . tt1 file). The root
node, located in the property.ttl file provides information on the distribution
of the data and indicates which child nodes contain information for a certain
timestamp. Positioning systems should have append permissions to the property
container and write permission to the property.ttl file. Using these permissions,
new containers can be created while also ensuring that child nodes are added to the
root node in the property resource.

Different levels of granularity can be stored by indicating the accuracy as a specific
version using LDES. Regardless of the level of granularity, the data is stored with
the same event stream, sorted by the timestamp when it was created. Future work
will have to improve this method, as currently, it would require complex techniques
to provide access control to a certain granularity of data.



7.8. TRACKED SUBJECT DISCOVERY 249

The data structure is stored as a data shape for each property, providing a consistent
blueprint for other applications and positioning systems. For the scope of our
integrated solution, we will not store real-time sensor data such as accelerometer
data within personal data vaults. The vocabularies to represent this information
exist, such as M3 Lite [203] and our alignment with POSO. Data would be stored
similarly to properties within their own containers to enable a solution that can
scale with large amounts of streaming data.

7.8 Tracked Subject Discovery

Positioning systems aim to track objects or users within their operating environment.
Identifying these tracked subjects within a spatial environment requires a method
to discover and identify subjects based on a set of features.

The architecture proposed in our integrated solution envisions the broadcasting of
Web Identifiers (WebID) [140] through semantic beacons. Tracked subjects that
wish for positioning systems to detect their presence can optionally enable the
discovery of their WebID. Semantic beacons, implemented as Bluetooth beacons
adhering to the SemBeacon specification introduced in Section 5.2, will broadcast
a shortened WebID URI together with a flag that identifies the WeblID as a movable
object.

Similarly, the discovery of a positioning system can be achieved by advertising the
presence of the organisation that deployed the system. Contextually, this knowledge
can aid users and applications in determining the relevance of the positioning
system.

In Figure 7.6, we demonstrate the SemBeacon application receiving the WebID of
a tracked subject. The WebID acts as the identifiable feature of the tracked subject,
while the advertising using BLE represents the discoverable feature of the tracked
subject. With our integrated solution, the identifiable WebID indirectly links to
the properties of the tracked subject through the profile document, allowing us to
discover the position of a person or object.

7.8.1 User and System Flow

In this section, we will outline the user and system flow for discovering and identify-
ing tracked subjects within the spatial environment. We consider two main groups
of scenarios based on the use cases listed in Section 7.4, more specifically (1) scen-
arios where the user initiates the search of a positioning system and (2) scenarios
where a user is tracked without their (prior) consent.



250 CHAPTER 7. INTEGRATED SOLUTION

20:27

& Beacon details I— . pr‘ofile/

L B card

Maxim Van de Wynckel
WebiD card

https://solid. maximvdw.be/profile/card#me

Job title

Teaching Assistant and Researcher on Interc <> a foaf:PersonalProfileDocument ;
foaf:primaryTopic :me .

maxim.van.de.wynckel@vub.be

Nickname

Maximvdw :me a foaf:Person ;

Birth date foaf:name "Maxim Van de Wynckel" ;
FriMer1oees foaf:givenname "Maxim" ;
foaf:surname "Van de Wynckel" ;
foaf:nick "Maximvdw" ;

RSSI: -51 dém Distance: 0.56 m
Created: 235 ago Last seen: 0s ago

Calibrated RSS! at 1m

-56
MAC Address
6c:be:14:c4:5¢:17 o ____________________________

Detectable and Identifiable Feature

Figure 7.6: WeblID advertising of a tracked subject through the SemBeacon ap-
plication

User-initiated Tracking

User-initiated tracking involves all use cases where a user initiates the tracking
by manually searching for a nearby positioning system. This manual task can be
accomplished by actively searching for new systems or by passively discovering
systems that are relevant to the user. While we assume this is a manual task, we
also consider scenarios where automated processes can assist in the discovery of
positioning systems based on user preferences or historical behaviour. However,
due to the data requirement of user intervention to provide permissions to the user
data, we assume that the user initiates the tracking.

(I) The first step involves the user using an application or background service! to
scan for BLE signals. This is a step that is continuously performed as long as
the user wishes to find positioning systems. At the same time, a BLE signal
is broadcast containing the user’s WeblD. This broadcasting is optional and
only needed when the user wishes positioning systems to discover, track and
identify the user.

!An application that runs in the background and does not require user interaction unless a
positioning system is found



7.8. TRACKED SUBJECT DISCOVERY 251

()

(II0)

av)

V)

Once a BLE signal is discovered that can be matched to a semantic beacon
containing a positioning system, the application will access the online de-
scription of the system to determine its relevance for the application?.

The online description of a positioning system that aims to store information
about a user requires public information that indicates how users should
authenticate themselves with the system and how they can provide the system
with access to their Solid storage.

Once authenticated, the system will check the available properties of the
given user. A user can have multiple observable properties, some of which
are not relevant to the positioning system. When the positioning system can
provide properties that are not yet available in the user’s Solid storage, they
will be created.

When the relevant properties are found or created, the positioning system
can start to add observations of these properties using a linked data event
stream structure.

System-initiated Tracking

Existing use cases of positioning systems, such as surveillance, asset tracking and
supply chain management involve scenarios where a user is tracked without their
consent. In these scenarios, the tracking is initiated by the system itself based on
predefined parameters or rules.

For system-initiated tracking, we only consider cases where users will eventually
be able to choose to opt-in to the tracking system. This opt-in process is crucial to
enable the storage of the data in their personal data vault.

@

()

(II0)

av)

A user is tracked by a non-trivial set of positioning techniques. An internal
profile is created for the user in the system that contains the output by the
system. For example, a positioning system may track a Bluetooth device
without knowledge of who it belongs to.

The user enables their discovery by advertising their WebID via the Bluetooth
SemBeacon protocol.

The system detects the advertised WebID and links this identifier with the
internal profile that contains the location data. At this point, a user is uniquely
identified, but data is not stored in a user’s personal data vault.

In the WebID, a reference to the properties (e.g., position) of the user is
available. Depending on the permissions, the system can write data to this

2Contextual relevance depends on the use case of the application, the proximity of the positioning
system and other information



252 CHAPTER 7. INTEGRATED SOLUTION

property. In case the system does not have permission to write to the user’s
Solid storage, a request has to be made to the user to request access.

7.9 Distributed Registry

In Section 5.3 we introduced our Linked Data Hash Table (LDHT) specification. As
an implementation of this specification, we created the POSO collection registry, a
distributed hash table of positioning systems using LDP containers in Solid.

This collection registry aims to provide global discovery of positioning systems
by letting applications globally search for nearby positioning systems based on an
approximate location estimate, such as a rough GPS position or user input. We
envision that interoperable and discoverable indoor positioning systems are not
only available via SemBeacon advertisements but also that their URI is available
in the distributed registry. This allows applications to dynamically discover and
connect to nearby positioning systems based on user preferences and requirements.

Interoperable positioning systems that implement our architecture could request
users if they are willing to let their Solid Pod be added as a peer to the LDHT net-
work. This would ensure that users can help others in the discovery of positioning
systems.

7.10 Discussion

Our integrated solution offers an architectural blueprint to design interoperable
and discoverable indoor positioning systems. However, the quote by software
engineer Edward V Berard, “Walking on water and developing software from a
specification are easy if both are frozen.” is also applicable to our work. While most
specifications used within our integrated solution have been tested for several years,
newer specifications such as LDHT may still require some changes that influence
our presented solution. Moreover, our solution relies on the Solid project, which is
a living project that is still under construction. Changes to the Solid specification
may also influence the design of our solution or facilitate certain actions.

Based on our survey results [4], we can conclude there is a growing interest
from users to have more control over their location data. However, challenges
in achieving widespread adoption and implementation of our proposed system by
industry players remain. Interoperability relies on the use of specifications, which
we can only encourage, but not enforce. Data sovereignty can help steer this in the
right direction, but ultimately, it is up to the industry players to decide to adopt and
implement these specifications. Future work should investigate how to facilitate
the structuring of this data without putting this responsibility on the client that
implements our integrated solution.



7.10. DISCUSSION 253

From our survey results, we also gathered that users are concerned about their
location data being stolen in a data breach (Appendix E.2). In this integrated
solution, we propose an architecture that moves data to personal data vaults managed
by the user. Users can provide access to their data through our implementation that
uses the Solid project as the personal data vault. However, security concerns remain
valid. Related work investigated the security and privacy aspects of Solid [254,
255]. In this related work, general issues were identified, such as the responsibility
of the Pod provider to adhere to security standards. One prominent issue that
remains in Solid is the lack of data minimisation, which prevents the sharing
of anonymised data. In the context of positioning systems, Location Privacy
Protection Mechanisms (LPPMs) should apply to the data before sharing it with
other parties.

By developing modular frameworks such as OpenHPS that provide tools for creating
positioning systems and optionally add modules for ensuring their interoperability,
we steer the industry in the right direction without forcing them to. Similarly, our
SemBeacon solution is not limited only to indoor positioning systems. Use cases
such as the discovery of IoT devices help to expand the potential scope of adoption
for our proposed system.



254 CHAPTER 7. INTEGRATED SOLUTION




Chapter 8

Discussion and Future Work

Our initial goal when starting this research was to design a method for positioning
systems to seamlessly work together to track spatial objects or individuals. With
a shift in the perspective on the privacy of location data in the last decade, we
also wanted to ensure that individuals could control and see which systems were
tracking them.

The design of such systems requires a more thorough understanding of the various
technologies that accommodate location tracking, as well as the methods to make
each technology and system work together. This led to the design of interoperable
positioning systems, systems that can seamlessly work together with other inter-
operable systems to track the same object or individual, while potentially relying
on different technologies. In this dissertation, we explained the concept of such
systems and why it is necessary to enable the discovery of these systems.

We designed a solution that provides users and objects with their own data space
that contains personal data, including sensor output and computed information
about their position. These data vaults are private but can be accessed when users
allow third-party applications to access and modify the data. Data is stored as
linked data, enabling the reasoning of this data. Positioning systems, whether it is
an indoor positioning system or a simple system that tracks objects on a meeting
table also have a personal or public data space that contains information about the
capabilities of the system, as well as a semantic description of the inner workings
of this system and how input data is processed to a certain output.

By leveraging the Semantic Web, we provided a foundation that also enables these
indoor positioning systems to be used for inference-based positioning or decision-
based sensor fusion. This type of fusion, detailed in Section 2.1.1, offers the ability
to infer a location based on additional user-context well beyond what is currently
envisioned in our architecture. Our solution can integrate with future context
brokers such as Next Generation Service Interfaces — Linked Data (NGSI-LD) [256]

255



256 CHAPTER 8. DISCUSSION AND FUTURE WORK

to enrich other services and obtain additional contextual information for tracking
subjects.

For the discovery of positioning systems, we rely on their physical discovery by
letting the infrastructure of the positioning systems announce their availability to
users (e.g., via the Wi-Fi access points, Bluetooth beacons or even a QR code for
registering the system). Users can choose to provide access to their data space
for the positioning system or even revoke this access when they no longer want to
be tracked by a certain application or system. By storing all data about users in
a user-centric location, positioning systems can work together to track the same
object and enable seamless handover from one tracking method to another.

8.1 Discussion

We summarised how our integrated solution provides an answer to our three main
research questions to create interoperable and discoverable positioning systems. In
the following, we reflect on the limitations of this integrated solution and other
research artefacts that contributed to this solution.

Looking at the individual aspects and research questions of this dissertation, we
first started with RQ1 that aimed to generalise hybrid positioning systems. We
subdivided this research question into the generalisation of input data (RQ1.1) and
output data (RQ1.2) as we need to define what input and output a hybrid positioning
system consumes and produces to generalise it. In our research, we provided a
solution to this research question by developing our OpenHPS framework, and we
introduced a modular data structure that can be applied to a wide range of use cases.

OpenHPS was developed in TypeScript, which limits its computational perform-
ance compared to other — more low-level programming languages. Our framework
was designed with data generality in mind to pave a path towards interoperability.
Positioning systems may often use algorithms that heavily rely on computer vision
or, in more recent examples, machine learning. TypeScript was chosen as it enables
OpenHPS to be deployed in web browsers, servers, mobile applications, as well
as some embedded devices. We demonstrated using a benchmark and available
modules that we can optimise OpenHPS to work on multiple workers and systems.
We also discussed that we can create bindings with low-level frameworks such
as OpenCYV to handle computational tasks, while still using the data structure in
OpenHPS to handle the processing of the high-level data.

While our decision to represent positioning systems as graph processing networks
offers a flexible framework, some procedures or algorithms are difficult to im-
plement in a process network. Actions that are performed by a user, such as
authentication or the calibration of a sensor, are blocking actions that are difficult
to implement in a pipeline. To solve this issue, we introduced a wide range of



8.1. DISCUSSION 257

services that help to perform these tasks in the background. While this solves our
issue, it does introduce additional complexity in the design of a positioning system.

From the feedback we received from industry players, OpenHPS offers a backbone
for designing a wide range of positioning systems. However, the graph-based
architecture and low-level aspect of choosing your own algorithms make it difficult
to implement a system without prior experience. As outlined in the introduction of
Chapter 3, our framework is aimed at developers and researchers with knowledge
of the algorithms used within a positioning system. Future work should expand on
OpenHPS to provide additional layers of abstractions that offer pre-built graphs or
GUIs to enable end users to design the targeted systems. These graphs would still be
modifiable, but by adding different layers of abstraction, we can adapt our interface
to the end user’s expertise. Furthermore, to facilitate the adoption of OpenHPS
and the modules that provide interoperability, more efforts should be made to offer
pre-built applications and tools. Currently, developers wishing to use OpenHPS
have to develop everything from scratch, even if it is a simple application that
helps in collecting fingerprints or other sensor data. Providing these applications
to developers will already help in the adoption of the framework.

Next, after defining a representation of a hybrid positioning system and generalising
its data, we investigated the interoperability of these systems to answer RQ?2.
Interoperability was defined as the ability for multiple applications to access, read
and understand the data belonging to a user. We proposed a solution to RQ2.1 by
using personal data vaults that tackle the access and reading of the data. We use
linked data to describe positioning systems and the data they produce. To answer
RQ2.2, we developed the POSO ontology to semantically describe these systems,
enabling us to perform reasoning on the data they produce.

In Section 2.4.3, we addressed the issue of the additional overhead involved with
working with linked data. While it offers a rich way to describe and reason
about positioning systems, the use of linked data also introduces complexity in
terms of data processing and storage. One limitation of our approach is the
potential scalability issues that may arise when dealing with large amounts of linked
data, especially in real-time positioning scenarios where data is constantly being
generated and processed. This issue is not only related to positioning systems
but is a hot topic amongst researchers in the field of the Semantic Web. We
already worked towards the scalability issues by leveraging specifications such as
Linked Data Event Stream (LDES), which allows for more efficient data streaming
and incremental updates to linked data resources. However, further research and
development are needed to fully address the scalability challenges posed by linked
data in the context of positioning systems.

We acknowledge that our integrated solution, using Solid as its current implement-
ation to provide user-centric storage of data, is not efficient enough for real-time
storage, real-time collaboration and real-time sensor fusion. However, the concep-



258 CHAPTER 8. DISCUSSION AND FUTURE WORK

tual design of our architecture, along with the syntactic, semantic and processing
interoperability that we offer to positioning systems, provides a stable foundation to
improve upon. With Solid still being actively developed and improved, we foresee
that it will offer future researchers the possibility to enable more efficient storage
and retrieval of data. In turn, this will ensure that the user-centric storage becomes
a communication broker for enabling high-level sensor fusion and collaboration of
positioning systems.

While interoperability is a good start to enable multiple applications to access
positioning systems or their data, they should be able to discover the existence of
these systems. To provide a solution for RQ3 and RQ3.2, we created SemBeacon, a
semantic beacon specification for advertising resources via Bluetooth Low Energy.
Our solution enables users to discover semantic resources in physical environments
based on their proximity to these semantic beacons.

While the use of a custom specification enables the discovery, it could break the
interoperability aspect of the solution, as it requires a proprietary technology and
detection algorithm. With the design of our SemBeacon solution, we have built
on existing specifications such as AltBeacon and Eddystone-URL. In our tech-
nical evaluations of SemBeacon, we provide various prototypes built on top of
existing libraries that can already scan for beacons that implement these existing
specifications. With research question RQ3.1, we specifically focus on the inter-
operability of the discovery. We enabled interoperability by providing the ability
for SemBeacon to advertise standardised linked data resources, making it easier for
different applications to understand and interact with the discovered resources.

SemBeacons offer local discovery of positioning systems by physically transmitting
a URI when near such a system. However, due to the requirement of specific
hardware and the interoperability issues that may result from the use of specific
communication protocols, we also designed Linked Data Hash Tables. These hash
tables offer a distributed approach to data sharing via an interoperable semantic
description of this data. Similar to our decentralisation with Solid, LDHT uses
the Solid specification to offer the creation of distributed hash tables. While this
specification is available in OpenHPS, it is currently still under development to make
it more scalable and requires more intensive benchmarking to test its performance
over a larger set of nodes.

The integrated solution we have presented in Chapter 7 combines the answers to all
the research questions in a solution that strongly relies on personal data vaults as
the storage of input and output data of positioning systems. In our proposed design,
we have used the Solid project [139] to act as the personal data vault due to its use
of linked data, which we already defined for RQ2 as a semantic method to enable
interoperability. To discover these systems and the subjects that are tracked by
these systems, we use SemBeacons to advertise Web Identifiers (see Section 7.6)
to uniquely identify subjects in physical environments.



8.2. FUTURE WORK 259

One of the key challenges that remains is finding the balance between interoper-
ability, performance, scalability, and security in the integrated solution. Solutions
such as fragmenting the data with Linked Data Event Stream (LDES) as proposed
in our integrated solution in Section 7 ensure that data can be relatively efficiently
distributed and processed in real time, but it also introduces additional complexity
for applications and positioning systems to adhere to this structure. Furthermore,
this additional complexity becomes problematic for the user or tracked subject
when they want to manage the access over which consumers can access part of
their location data. One possible solution to this problem would be to add a layer
of abstraction over the personal data vaults that adheres to certain specifications
and standardisations to store data. Such an abstraction layer could remove the
responsibility of storing interoperable data while ensuring that the performance
and consistency of the stored data can be maintained. Van Herwegen and Ver-
borgh [240] proposed a method for fine-grained access control through endpoints
that abstract the execution of SPARQL queries. Such a system could be applied to
location data with multiple endpoints abstracting the underlying data structure.

Another open question that remains is for systems to request access to a user’s
location data. In our current integrated solution, user-initiated tracking allows
users to provide access to a positioning system, for it to store data in their personal
data vault. However, in system-initiated tracking, a user may not be aware that a
positioning system wants to track them. To solve this, a positioning system should
request access to their data. One possible solution to this problem would be to
create a public inbox where unauthorised positioning systems (i.e., agents) can
notify the user that they request access.

8.2 Future Work

In this dissertation, we paved the way towards the interoperability of indoor posi-
tioning systems. Hybrid- or integrated positioning systems can contain a wide range
of positioning techniques. The graph-based processing network we developed with
OpenHPS in Chapter 3 was validated with major positioning system architectures
and technologies. However, with the increase of research on new methods of po-
sitioning, which often rely on large trained datasets, this stream-based processing
should be validated with modern algorithms. We have already started the validation
with the release of modules for enabling artificial intelligence within processing
networks!, but this module and the data it represents are currently not mapped to
linked data. Ontologies such as the Neural Network ontology [132] could be used
to represent procedures that rely on pre-trained neural networks.

The generic Positioning System Ontology (POSO) introduced in Section 4.2 offers
a stable core ontology for describing positioning systems and the data they produce.

https://openhps.org/docs/tf/


https://openhps.org/docs/tf/

260 CHAPTER 8. DISCUSSION AND FUTURE WORK

While it is designed to be as generic as possible so it can be applied to a wide range
of positioning systems, current examples and applications are heavily focused on
indoor positioning systems. Future work should investigate if the POSO ontology
is generic enough to apply to more advanced positioning systems and is also
descriptive enough to ensure the interoperability of more advanced algorithms,
such as computer vision.

Our solution heavily relies on the Solid project, which is still in its early stages
of development. As such, future work might involve further collaboration with
the Solid community to enhance the functionalities and scalability of our solution.
In its current state, the main downside of Solid and the semantic linked data it
would contain is the overhead required to query information within a Pod, without
knowledge of the shape or structure of the linked data [219]. Furthermore, the
Solid specification draft aims to offer a solution for persisting and synchronising
offline changes. Such offline changes would enable positioning systems to store
real-time data locally without requiring a constant network connection. However,
no implementations have currently been made in Solid to enable this functionality
and it is therefore not considered in our integrated solution.

The work that was presented in this thesis provides a foundation for future research
and industrial applications in the field of indoor positioning systems. With users
becoming more and more aware of their privacy and new regulations being in-
troduced to address these concerns, our solution offers a baseline to build on. In
our solution, we have addressed Objective 2 by investigating the seamless data ex-
change and reusability of indoor positioning systems. What is left is an effort from
those systems to accept that seamless data exchange is necessary and beneficial.
Companies such as Google have already started migrating away from cloud-based
location-based services since 2024 to adhere to regulations?, but their solution cur-
rently relies on storing raw location data locally on a user’s device. This limits the
availability and accessibility of the data to other services or even other devices. Our
solution would provide both companies and users with the seamless storage and
exchange of location data while also ensuring the expected privacy, transparency
and control that goes along with this data.

One possible solution to unravel the issue of data producers having too much
responsibility to adhere to the interoperable architecture is to introduce an orches-
trator in a personal data vault. This orchestrator is managed by the user and ensures
that data producers adhere to the specifications of the linked data architecture by
restructuring data and applying policies such as retention and storage policies.
In addition, this orchestrator can create an abstraction around the data vault that
provides the data with different granularities without having to replicate the actual
data. This, in turn, can pave a path towards a more optimised storage of data.

2https://support.google.com/maps/answer/141698187hl=en


https://support.google.com/maps/answer/14169818?hl=en

8.2. FUTURE WORK 261

Finally, with the contributions in this dissertation, we focused on the technical
aspect of ensuring that we can create interoperable and discoverable indoor posi-
tioning systems. To scope our design, we did not investigate how we can ensure
the correctness of the data published in the Pod of a user. Future work should
determine how users can verify that the data produced by positioning systems is
correct. Furthermore, a consumer of this data should also be given assurances on
the correctness of the data. For example, a navigation application that makes use
of the location data to determine how busy an area is should be aware if a location
is altered or fake.

With the open specifications, frameworks and examples that we created during
our research, including OpenHPS3, SemBeacon*, POSO> and LDHT, we hope
that future researchers and developers can continue the creation of interoperable
positioning systems and facilitate their discovery by non-proprietary applications.
This way, we hope that one day we have Findable, Accessible, Interoperable and
Reusable (FAIR) indoor positioning systems to guide us to our destination.

3https://openhps.org
4https://sembeacon.org
Shttps://poso.openhps.org


https://openhps.org
https://sembeacon.org
https://poso.openhps.org

262 CHAPTER 8. DISCUSSION AND FUTURE WORK




Appendix A
OpenHPS

This appendix contains technical information about the OpenHPS framework and
its modules. An up-to-date version can be found on the online documentation?.

A.1 UML
A.1.1 Data Objects

DataObject
+displayName
+createdTimestamp
+uid
-_position
-_relativePositions
+parentUID SensorCalibrationData<T>
ActustorPraparty ™ +uid SpaceTransformationOptions
+getPosition() +unit e
+name +setPosition() voffset B +inverse
+callback +setUID() +multiplier +update()
+ ()
+removeRelativePositions() +ransform()
+addRelativePosition()
+getRelativePositions()
+getRelativePosition()
+hasRelativePosition()
+bind()
+clone()
ReferenceSpace
-_translationMatrix
-_transformationMatrix
-_scaleMatrix
-_rotation
o -_unit
ActuatorObiject SensorObject<T> parent
#properties +value +static fromDataObject()
+frequency +update()
+invoke() +calibrationData +orthographic()
+perspective()
+reset
+referenceUnit()
+translation()
+scale()
+rotation()
+transform()

Figure A.1: UML diagram of the main data objects in the core of OpenHPS

lhttps://openhps.org/docs/core/

263


https://openhps.org/docs/core/

264 APPENDIX A. OPENHPS

A.1.2 Sensor Objects

SensorCalibrationData<T>

+unit DataObject | Vector3 |
+offset

+multiplier

SensorValue<U>

SensorObject<T> +timestamp
+accuracy
+value -_defaultUnit
+frequency : +unit
+calibrationData
+setAccuracy()

/ da i
+clone() \|

| Linearacceterati | [ Linearvetocity [Fetativeoriontat |

Figure A.2: UML diagram of the main sensor objects in the core of OpenHPS

A.1.3 Sensor Values

Accuracy<U,T>
+value
#_unit
Vector3
+to()
+abstract valueOf()
+abstract toString()
+clone()
4
SensorValue<U>
Accuracy2D<U> A 1D<U> +timestamp Velocity
+accuracy
+value +value -_defaultUnit +linear
+unit +angular
:floa(l)ueOf() +valueOf()
: +toString() +setAccuracy() +clone()
+toString() +toTuple()
+clone()
A LinearVelocit: AngularVelocit
y3D<U: Magnetism - ! Y gu it N
- F y il i Acceleration
+o() +unit ; ] E |
+valueOf() +static fromArray() +static fromArray()

Figure A.3: UML diagram of the main sensor values in the core of OpenHPS



A.l. UML 265

A.1.4 Absolute and Relative Position

N Position<U>
Trajectory
N +timestamp
+ggjjectUID +accuracy
o +probabilit
+positions ___-—“’ B Y
+createdTimestamp P Xl +clone() Ssao
—__\___-— +equals() ‘~\~~\
=" ,Q Se 5
\ 0.. K ]
AbsolutePosition / \
+timestamp /' RelativePosition<T,U>
+velocity L
+orientation +timestamp
+unit Pose +re;erencegbject}rJlD
+referenceSpaceUID : +referenceObjectType
-_accuracy :Err:\i?stamp +referenceValue
-_probability - accuracy -_accuracy
— “probabiltty Ll
+setOrientation() = -_defaultUnit
::gﬁgcﬂrﬁg)rlr(l)\lector() +static fromMatrix4() unt
+abstract toVector3() +static fromPosition() +setAccuracy()
+abstract angleTo() +equals()
+distanceTo() +clone()
+equals()
+clone()
1

Absolute2DPosition
RelativeAngle o . Relative2DPosition
#vector ¥
+angleTo() | Quaternion I Iggﬁmatlon +unit +fromVector()
+fromVector() +referenceValue +referenceValue +toVector3()
+toVector3() +clone()
+clone()
Orientation
Absolute3DPosition - Relative3DPosition
+timestamp
accurac
+fromVector() b Y +fromVector()
+toVector3() +static fromBearing() +toVector3()
+clone() +static fromQuaternion() +clone()
+clone()

GeographicalPosition

+distanceTo()
+bearing()
+angleTo()
+destination()
+fromVector()
+toVector3()
+clone()

Figure A.4: UML diagram of the absolute and relative position classes



266 APPENDIX A. OPENHPS

A.1.5 Graph

Inlet<In>
Outlet<Out>
X +pull()

EventEmitter<T> +emit() GraphNode<In,Out>
+emit() +gg(s)h() 1)
+emit() + H
+on() A |

) ! -
1 4 ]
H ’1 1
! /’ Graph<In,Out>
Edge<InOut> | ,* +internalSink
. internalSource
+inputNode :Iend
ges
+outputNode i
j—gﬂgﬂﬁ(h)() +findNodeByUID()
+push() +findNodeByName()
+pull() +findEdge()
+on() +addEdge()
+deleteEdge()
+deleteNode()

Figure A.5: UML diagram of the graph-related classes



267

A.l. UML

.1.6 Services

Bojebueyodeay+
azifeussap+
zijeuas+

<1>suondoeoiniasereq

()Jdoaienens onejs#
()Jo109jegABLIy1EN[BAS OlBISH
()10108]95UOSLIEAWODBIEN[EAS OllBIS#
()J0108j8S81EN[BAS JNBISH
()uredereniens oneisy#
()ureqwoi4anjeA1ab onejs+
()ereniens onels+
()iusuodwoarenjeas onels+
()A1anpxabaysi onels-

Onyaieep+

()ainAgpuy+
BlEp #

<l1‘|>e31ni9seIeghlowapy

()dweysawi puiy—-
()1elqoereaAgpuy+
()18 ypuit+
()a10j0gpuij+
()owreiguasui+

<1>d3dIAIegawelgeleq

(nyaejep joensqe+
()a10]9p 10B1SqR+
()uasul joensqe+
()1unoo 10e.SqER+

()ainAgpuy 1oensqe+

suondo#
adA ejep+

<L‘|>4eAuQe:

Jageleq

()puadsnsg

()dois#

(ue1sg

()a1eiqieo 10BNISqR+

apoug

<1>a01A19SUONEIqIED

!

()dwejsawn | puiy

<1>931ni88108lq0RIeq

Onyaierep+

(ainAgpui+
()Aoudies+
()1enughonsep -
()1eAugpiing -

()a1e19p+
()lunoo+
(Juosur+

Aoud+
JoAUp#

<1‘P>eo1neselRq

()1e660+

()Aouspuadagppe+

sajouspuadap+

EEITNEY

Yorepwaag+
Los+
i+ Jogt
adA| elep+ pues
suondopuiy <L Aenpiooy

1ojenjeaghianphiowapy

<]>Ii0108jeSKIeND

JaMwgluangoufsy

-related classes

f the service

iagram o

UML d

Figure A.6



268 APPENDIX A. OPENHPS

A.1.7 Units

UnitPrefix
Unit +static DECA
+static HECTO
-_name +static KILO
-_baseName +static MEGA
-_definitions +static GIGA
-_;a)lriz!;;Tsype +static TERA
= +static PETA UnitValue<U,T>
#static UNIT_BASES itOpti i -
#static UNITS UnitFunctionDefinition<In,Out> UnitOptions :z:g::g ?E(‘?TA & vEle
+static UNKNOWN +inputType +baseName +static YO(T:TA # unit
= +name +static DECI =
S S RilVES +definitions +static CENTI +o()
~_initFunctionDefinition() +oUnit w"afm 1stte m:(l':%o Hosuringl
~initBasicDefinition() +romUnit Toverride “stalic NANO ATl
+createBaseDefinition() Rl :;:(:g PICO 1opivae0
+§'raeeactsllie>re(t)lmnon() +static FEMJO CIone()
+ static ATT
#findByName() :s(a(:c ZEPTO
+§:jar::;;efr|tr(1;15yNamel) +static ngll-\?AL
i tati
+static convert() iiaarvlfe
+static registerUnit() +abbrevation
+magnitude
GCs 0.r
DerivedUnit +static EARTH_RADIUS_MEAN itBasicDefiniti
- +static EARTH_EQUATORIAL_RADIUS UnitBasicDefinition
-_units +static EARTH_POLAR_RADIUS nit
~_unitPower +static EARTH_ECCENTRICITY agnitude
+static EPSG4326 g
+addunit() +static WGS84 soffset
+swap() +static ECEF
+static EPSG3857

Figure A.7: UML diagram of the unit-related classes

A.2 Dependencies

In Chapter 3, we detailed the use of TypedJSON as one of our main dependen-
cies for serialising data. However, one of the other main dependencies in the
framework is the Three.js framework. Three.js provides mathematical concepts for
representing matrices, vertices and quaternions, which we utilise within OpenHPS.
All dependencies in OpenHPS either have an MIT or Apache-2.0 license, which
ensures that the framework remains open-source and free for anyone to use and
modify. Additionally, Three.js is widely used and well-documented, making it
easier for developers to understand and contribute to the OpenHPS framework.

Figure A.8 shows the tree map of all components in the core module of OpenHPS.
The Web module has a total size of 309KB. In total 43.4% of the final bundle
amounts to dependencies. The extension on top of TypedJSON along with the data
structure amounts to 18.9% and the built-in nodes amount to 12.1%.



=T = T T N o R N

A.3. EXAMPLES 269

shapes

nodes
other

dependencies

processing

position serializer

Figure A.8: Tree map of the components in our minified OpenHPS Core module

A.3 Examples

A.3.1 Fiducal Markers as Reference Spaces

@SerializableObject({
rdf: { type: fidmark.FiducialMarker }
b
export class FiducialMarker extends ReferenceSpace {
@SerializableMember ({
rdf: {
predicate: fidmark.markerData, datatype: xsd.string
3,
1))
data?: string;
@SerializableMember ({
rdf: {
predicate: fidmark.markerIdentifier, datatype: xsd.integer
}, numberType: NumberType.INTEGER
b
identifier?: number;
@SerializableMember ({
rdf: { predicate: fidmark.hasDictionary }
B
dictionary?: MarkerDictionary;
origin?: MarkerOrigin;

@SerializableMember ({
rdf: {



25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63

270 APPENDIX A. OPENHPS

predicate: [fidmark.hasHeight],
serializer: (value: number) => {
return RDFBuilder.blankNode()
.add(rdf.type, qudt.QuantityValue)
.add(qudt.unit, LengthUnit.MILLIMETER)
.add(qudt.numericValue, value, xsd.double).build(Q);
1,
deserializer: (thing: Thing) => {
const unit = RDFSerializer.deserialize(
thing.predicates[qudt.unit][0] as Thing, LengthUnit);
return unit.convert(parseFloat(
thing.predicates[qudt.numericValue] [0].value),
— LengthUnit.MILLIMETER);
1,
1,
b
height?: number;
@SerializableMember ({
rdf: {
predicate: [fidmark.hasWidth],
serializer: (value: number) => {
return RDFBuilder.blankNode()
.add(rdf.type, qudt.QuantityValue)
.add(qudt.unit, LengthUnit.MILLIMETER)
.add(qudt.numericValue, value, xsd.double).build(Q);
1,
deserializer: (thing: Thing) => {
const unit = RDFSerializer.deserialize(
thing.predicates[qudt.unit][0] as Thing, LengthUnit);
return unit.convert(parseFloat(
thing.predicates[qudt.numericValue] [0].value),
— LengthUnit.MILLIMETER);
1,
1,
b
width?: number;
@SerializableMember ({
rdf: { predicate: fidmark.hasImageDesciptor }
b

imageDescriptor?: ImageDescriptor;

Listing A.1: Fiducial marker object created as a ReferenceSpace in OpenHPS

A.3.2 Beacon Classification

During our development of SemBeacon, we have expanded the capabilities of
our RF module (@openhps/rf) to facilitate the development of use cases where
unknown beacons had to be discovered. One of our additions is a processing node
that can classify the beacon type based on raw advertisement data. After providing
a list of the different beacon types that can be detected, the node will match the



=T - N T N O

A.3. EXAMPLES 271

import { ModelBuilder, DataFrame, CallbackSinkNode } from '@openhps/core';
import {
BLEBeaconClassifierNode, RelativeRSSIProcessing, PropagationModel,
BLEAltBeacon, BLEiBeacon,
BLEEddystoneURL, BLEEddystoneUID, BLEEddystoneTLM,
} from '@openhps/rf';
import { BLESourceNode } from '@openhps/capacitor-bluetooth’;

ModelBuilder.create()

.from(new BLESourceNode({ uid: "ble" 3}))

.via(new BLEBeaconClassifierNode({
resetUID: true,
types: [ BLEAltBeacon, BLEiBeacon, BLEEddystoneURL,

BLEEddystoneUID, BLEEddystoneTLM ]

1)) .via(new RelativeRSSIProcessing({
environmentFactor: 2.0,
propagationModel: PropagationModel.LOG_DISTANCE

) .to(new CallbackSinkNode((frame: DataFrame) => {
// ...

IDK

Listing A.2: Scanning and classifying beacons in OpenHPS

beacon that matches first. Developers can easily create new beacon objects in
OpenHPS as data objects that extend a BLEBeaconObject.

A.3.3 Protocol Buffers

The @openhps/protobuf module uses protocol buffers [184] to limit the amount
of bandwidth used to communicate data via MQTT, socket connections or other
communication layers. Protocol buffers work by defining a protocol beforehand
that indicates which fields will be included in a message, what data type these fields
contain, and also which other messages will be sent in the same protocol.

OpenHPS provides a data structure for data objects, data frames, and other data
that is relevant to a positioning system. However, the data itself is not fixed which
allows developers or other modules to extend these data types. While this offers
flexibility, it also prevents the use of a single protocol for the entire OpenHPS
framework which is the main reason why JSON or RDF data is used to serialise
data.

In @Gopenhps/protobuf, we solve this issue by automatically generating protocol
messages based on the decorated (see Section 4.3) objects and field names. At
runtime, we can access the decorators along with the data types to automatically
generate a protocol as shown in Listing A.3 for a data object and absolute position.

Listing A.4 demonstrates how developers can then integrate these protocol buffers
in communication layers such as MQTT. Each communication module allows



© ® N L R W N =

272 APPENDIX A. OPENHPS

package openhps.core;
syntax = "proto3";
import "google/protobuf/any.proto";
message DataObject {
string displayName = 1;
int64 createdTimestamp = 2;
string uid = 3;
string parentUID = 4;
google.protobuf.Any position = 5;
repeated google.protobuf.Any relativePositions = 6;

package openhps.core;

syntax = "proto3";

import "Velocity.proto";

import "Orientation.proto";

import "google/protobuf/any.proto";

message Absolute3DPosition {
string timestamp = 1;
Velocity velocity = 2;
Orientation orientation = 3
google.protobuf.Any unit =
string referenceSpaceUID
google.protobuf.Any accurac
string probability = 7;
double x = 8;
double y = 9;
double z = 10;

4;
5;
y = 6;

}

Listing A.3: Generated protobuf message for a DataObject
Absolute3DPosition

and



N - NV S SO UV R

A.3. EXAMPLES 273

ModelBuilder.create()
.addService(new MQTTServer({
port: 1443,
N
.from(new MQTTSourceNode ({
uid: "source",
// Override frame serializer (not the options)
serialize: (obj, options) => ({
frame: ProtobufSerializer.serialize(obj),
options
b,

deserialize: (obj) => ProtobufSerializer.deserialize(obj.frame)
)

.to(Q)
.buildQ;

Listing A.4: Integrating protocol buffers in MQTT

the override of the serialisation and deserialisation functions, which are utilised to
replace the default JSON serialiser with the more optimised protocol buffers. While
this ensures a more efficient data exchange, it removes all contextual information
from the data, which requires each node to have the same version of the generated
protocol.

A.3.4 Data Owner in Solid

Linking a user to a positioning system is the first step towards user-centric data
storage for positioning systems. However, internally, a positioning system needs to
manage multiple users.

In Chapter 3 we defined the concepts of DataObject and DataFrame. We detailed
that we use these concepts to cover all data produced and consumed by a positioning
system. Our @openhps/solid module augments anew property for all data objects
to include a Web Identifier (WebID). Listing A.5 illustrates how a WebID can be
set for a data object to link objects to one user.

import { DataObject } from 'G@openhps/core';

const phone = new DataObject("myphone™);
phone.webId = "https://solid.maximvdw.be/profile/card#me";

Listing A.5: Indicating an owner of a data object in OpenHPS



274 APPENDIX A. OPENHPS

A.4 Garage Fingerprinting Dataset

In 2020, during the development of OpenHPS, we scheduled the creation of a large
crowdsourced dataset as part of our ongoing research towards the crowdsourcing
of fingerprinting data. Due to the COVID-19 pandemic, this was not feasible until
2021 when we created a dataset containing Wi-Fi, Bluetooth and IMU data [35].

However, to continue development, a smaller-scale dataset was created in a garage.
The raw unprocessed dataset was used for 5 years during the course Information
Visualisation to teach students how to process and extract the information, and
was a stepping stone towards our final dataset and mobile application to capture
this dataset. While the dataset was only released publicly in 2025, it served as a
valuable resource for testing and refining the OpenHPS framework with its use in
integration testing of the @openhps/imu and @openhps/rf modules.

Figure A.9: Dataset recording environment

Figure A.9 depicts the environment in which the recording was made. Data was
captured in a grid with each point spanning 50 cm apart. Four Bluetooth beacons
were placed around the garage and were part of the recorded data along with IMU
and WLAN data. Figure A.10 visualises the RSSI readings of a beacon placed
in a corner. While the signal propagation can be distinguished from the recorded
readings, the dataset is too small to perform meaningful positioning. Our full
dataset is available on Kaggle [38].

A4.1 Impact

The recording of this dataset helped us optimise the process of recording such data.
The following issues were addressed as a response to this dataset:



A.4. GARAGE FINGERPRINTING DATASET 275

350
300+
250 —
200- .
L
1001 .
L
@ 100 200 300 400 500
X (cm)
-65.0 -68.75 -72.5 -76.25 -80.0
RSSI (dBm)

Figure A.10: Beacon RSSI readings

* Grid size: Despite only using 45 data points, the recording of the dataset

took a very long time. With this dataset, we wanted to record fingerprint data
in four directions. Due to the update frequency of the Wi-Fi scanning, we
also wanted to have a 30 second recording for each orientation. Combined
with the setup and all other tasks related to the creation of the dataset, the
recording took well over a day for a single room. In a dataset that spans an
entire building or floor, this would not be feasible.

User input: Our initial application to record the sensor data required user
input for the coordinates. This increased the likelihood of human error in
data collection and also introduced more complexity in the recording process.
The application was later modified to visualise the unrecorded data points.

Orientation: Our recording application had no user input for the orientation
in which the recording was made. Instead, the orientation was based on
the compass direction of the smartphone. While this was sufficient for our
dataset, it resulted in more post-processing to normalise these orientations.
Additionally, it also introduced human error as there was no feedback to the



276

APPENDIX A. OPENHPS

user on which orientation was completed. This human error also led to the
dataset being recorded twice. In our application, we made a clear UI that
shows which orientation was missing, similar to our changes that visualise
unrecorded data points. Another issue related to the orientation was the bias
introduced by the motor of the garage door. While post-processing the data,
we noticed that our compass drifted towards the motor in certain areas.

Constant data collection: With our first version of the recording application,
we collected data non-stop from the beginning of the session until the end.
Only during post-processing, we segmented the data and removed data in
between data points. This segmentation was accomplished by utilising the
accelerometer data to determine if the user was standing still after inputting
the position. However, this post-processing was too complex. Moreover,
the constant collection of data, especially IMU data resulted in more than
20 GB of unprocessed data. The mobile application would also crash when
network conditions were not ideal, which was a likely problem in our large-
scale dataset. To solve this issue, we relied again on the visualisation of
unrecorded data points. By clicking on such a data point, the application
would only collect and transmit sensor data for a specific amount of time.

Usefulness of trajectory data: While our constant data collection was not
ideal for the stability of our recording, it did highlight a feature that would
be nice for our final large-scale dataset. Trajectory data in combination with
fingerprint data would not only provide researchers with valuable spatial
information but also information on the movement patterns within the envir-
onment. This led us to include trajectory data in our final dataset recording
application.

Usefulness of Wi-Fi access points: During the pseudonymisation of the
dataset, more specifically, the MAC addresses of the Wi-Fi access points,
we noticed that a lot of contextual data was missing. To strengthen our final
dataset, we included additional pseudonymised context about each access
point.

Training and testing: The limited number of data points made it difficult to
perform effective training and testing of algorithms for indoor positioning.
In our next dataset, we added specific test data points in between training
data points.

Improving CSV handling: Our dataset was internally kept as JSON files
with the serialised data from OpenHPS. After processing, we needed an
effective method to handle the data. To aid in the handling of such data,
we modified @openhps/csv to help developers use datasets for developing
positioning systems.



A.4. GARAGE FINGERPRINTING DATASET 277

* Magnetometer calibration: Magnetic positioning uses the magnetometer
sensor inside a smartphone. These signals are susceptible to hard iron and
soft iron effects. To address this issue in our next dataset, we normalised the
magnetometer data after calibrating it using existing calibration techniques.
This ensured that the magnetic positioning data in our dataset was more
accurate and reliable for future research and development.

Overall, the dataset helped us to prepare for the large-scale dataset that we recorded
one year later. While this dataset was not as detailed as our final dataset, it still
proved itself useful and is still used in integration tests throughout the OpenHPS
framework.



278 APPENDIX A. OPENHPS




Appendix B

POSO

B.1 Version 1.0

ssn:System ssn: implements————————>|

:' --------- ! poso:LocationBasedService ‘

ERREEEEEEE ‘ poso:PositioningSystem ‘

sosa:Procedure

--{ poso:RadioPropagation ‘

b ---‘ poso: SensorFusion ‘

----- ‘{ poso: IndoorPositioningSystem ‘

- --‘ poso:PositioningTechnique ‘

poso: IntegratedPositioningSystem

e ‘ poso: InertialPositioningSystem

:'-"-‘{ poso:OpticalPositioningSystem ‘

heeee ! poso:SatellitePositioningSystem

sosa:Result sosa:ObservableProperty

- poso:Position

:' ----- poso:RelativePosition
""" poso:AbsolutePosition

poso:Velocity

poso:Acceleration

poso:DeadReckoning ‘

tee-- poso:PDR

:'-{ poso:Fingerprinting ‘

poso:0dometry ‘

:,---- poso: VisualOdometry
EREEE poso:MagneticOdometry

poso: SLAM ‘

beees poso: VSLAM

poso:Triangulation ‘

S -
ssn <http://www.w3.org/ns/ssn/> Er"-- E'"--
sosa <http://www.w3.org/ns/sosa/> E -----

Figure B.1: Main POSO ontology classes in version 1.0

Figure B.1 illustrates the structure of the main classes in version 1.0 of the
POSO ontology. An updated illustration can be found in Figure 4.4 in Section 4.2.
The dotted line in the figure represents the rdfs: subClassOf relationship.

279



DS Y N R N

280 APPENDIX B. POSO

B.2 Extensions

B.2.1 Common Positioning Systems and Algorithms

o g y )
g gt ad il d g g g

# Object Properties

1L 1ALl bl el el el el el el el el el el el el A A
7 F T 7 HHHHHT it 7t HHFHTHHFHT HHFHTHH AT 7 i

) L4 IRy 4 L4 AL o g o
HHHFHHTHIFHIF T HF T

### http://purl.org/poso/common/hasReferenceRSSI
:hasReferenceRSSI rdf:type owl:ObjectProperty ;

rdfs:comment "has a reference Received Signal Strength Indicator at a
— specified distance."@en ;

rdfs:label "has reference RSSI"@en

1L 4L AL A AL A 1L L 1L AL b Al Al bl A L A AL AL AL
g g il gl g vl gl g kel kel

# Data properties

"

o 4 g y L4 g ;4 oy g o L )
g g g g g g gl

### http://purl.org/poso/common/major
:major rdf:type owl:DatatypeProperty ;
rdfs:domain :iBeacon , [ rdf:type owl:Restriction ;
owl:onProperty :major ;
owl:someValuesFrom xsd:integer ] ;
rdfs:range xsd:int ;
rdfs:label "major"@en

### http://purl.org/poso/common/minor
:minor rdf:type owl:DatatypeProperty ;
rdfs:domain :iBeacon , [ rdf:type owl:Restriction ;
owl:onProperty :minor ;
owl:someValuesFrom xsd:integer ] ;
rdfs:range xsd:int ;
rdfs:1label "minor'"@en

### http://purl.org/poso/common/proximityUUID
:proximityUUID rdf:type owl:DatatypeProperty ;
rdfs:domain [ rdf:type owl:Restriction ;
owl:onProperty :proximityUUID ;
owl:someValuesFrom xsd:hexBinary
] ’
rdfs:range [ rdf:type rdfs:Datatype ;
owl:onDatatype xsd:hexBinary ;
owl:withRestrictions ( [ xsd:maxLength "32"" “xsd:int ] )
1
rdfs:label "proximity UUID"@en

o g y o ) ;4 o o y) g ey y o )
HHHH T T T T T AT HTFTFLTF LT HTFTF T

# Classes

" ” ) " " ) " " .y 4 " " 4 " "
7 i HHH 7t 7 s 77 i 77 7 i 77 77 i #*




46
47
48
49

50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74

75
76
77
78
79
80
81
82
83
84
85
86

87
88
89
90
91
92

B.2. EXTENSIONS 281

### http://purl.org/poso/common/AltBeacon
:AltBeacon rdf:type owl:Class ;

rdfs:subClassOf poso:BluetoothBeacon ;

rdfs:comment "AltBeacon is an open and interoperable proximity beacon
— specification."@en ;

rdfs:label "AltBeacon"@en ;

rdfs:seeAlso "https://altbeacon.org/""“xsd:anyURI .

### http://purl.org/poso/common/EddystoneBeacon
:EddystoneBeacon rdf:type owl:Class ;

rdfs:subClassOf poso:BluetoothBeacon ;

rdfs:comment "Eddystone was a Bluetooth Low Energy beacon profile
— released by Google in July 2015."@en ;

rdfs:label "Eddystone'"@en ;

rdfs:seeAlso <http://dbpedia.org/resource/Eddystone_(Google)> .

### http://purl.org/poso/common/EddystoneEID

:EddystoneEID rdf:type owl:Class ;
rdfs:subClassOf :EddystoneBeacon ;
rdfs:label "Eddystone-EID"@en .

### http://purl.org/poso/common/EddystoneTLM
:EddystoneTLM rdf:type owl:Class ;

rdfs:subClassOf :EddystoneBeacon ;

rdfs:comment "Eddystone-TLM provides telemetry information. It can
— include the battery voltage, temperature, advertisement count and
— uptime."@en ;

rdfs:1label "Eddystone-TLM"@en .

### http://purl.org/poso/common/EddystoneUID
:EddystoneUID rdf:type owl:Class ;

rdfs:subClassOf :EddystoneBeacon ;

rdfs:comment "Eddystone UID provides a 10 byte namespace and 6 byte
— instance identifier."Gen ;

rdfs:label "Eddystone-UID"@en .

### http://purl.org/poso/common/EddystoneURL

:EddystoneURL rdf:type owl:Class ;
rdfs:subClassOf :EddystoneBeacon ;
rdfs:comment "Eddystone-URL can broadcast a short encoded URL."@en ;
rdfs:label "Eddystone-URL"@en .

### http://purl.org/poso/common/SemBeacon
:SemBeacon rdf:type owl:Class ;

rdfs:subClassOf poso:BluetoothBeacon ;

rdfs:comment "A SemBeacon is a semantic beacon based on AltBeacon and
— Eddystone-URL."@en ;

rdfs:label "SemBeacon"@en ;

rdfs:seeAlso <http://purl.org/sembeacon/SemBeacon> .

### http://purl.org/poso/common/iBeacon
:iBeacon rdf:type owl:Class ;
rdfs:subClassOf poso:BluetoothBeacon ;



93

94
95
96
97
98
99
100
101
102

103

105
106
107
108

109
110
111
112
113
114

115
116
117
118
119
120
121
122
123
124
125

126
127
128
129
130
131

132
133
134
135

282 APPENDIX B. POSO

rdfs:comment "An iBeacon is a beacon that advertises the proximity beacon
— packet specification."@en ;

rdfs:label "iBeacon'@en ;

rdfs:seeAlso "https://developer.apple.com/ibeacon/"""xsd:anyURI .

o Ly TR ) Ly IRIRTEINe) 4 IR Ly IR 4
gl ddid gl rd il el bl e

# Individuals

### http://purl.org/poso/common/AbsolutePositionOutput
:AbsolutePositionOutput rdf:type owl:NamedIndividual , poso:PositionOutput
— , rdfp:GraphDescription ;

rdfs:label "Absolute position output"@en ;

rdfp:presentedBy [ ]

### http://purl.org/poso/common/Anyplace
:Anyplace rdf:type owl:NamedIndividual , poso:PositioningPlatform ;
rdfs:comment "Anyplace is a first-of-a-kind indoor information service
— offering GPS-less localization, navigation and search inside buildings
— using ordinary smartphones."@en ;
rdfs:isDefinedBy <https://anyplace.cs.ucy.ac.cy/> ;
rdfs:label "Anyplace"@en .

### http://purl.org/poso/common/BDS
:BDS rdf:type owl:NamedIndividual , poso:SatellitePositioningSystem ;
rdfs:comment "BeiDou, or BDS, is a global GNSS owned and operated by the
— People's Republic of China. BDS was formally commissioned in 2020. The
— operational system consists of 35 satellites. BDS was previously called
— Compass."@en ;
rdfs:isDefinedBy "https://www.gps.gov/systems/gnss/" " "“xsd:anyURI ;
rdfs:label "BeiDou Navigation Satellite System"@en ;
<http://www.w3.org/ns/ssn/hasDeployment> :EarthDeployment .

### http://purl.org/poso/common/CSIFingerprinting
:CSIFingerprinting rdf:type owl:NamedIndividual , poso:Fingerprinting ;
rdfs:label "Channel State Information fingerprinting"@en .

### http://purl.org/poso/common/EarthDeployment
:EarthDeployment rdf:type owl:NamedIndividual , poso:OutdoorDeployment ;
rdfs:comment "A generic deployment for any positioning system deployment
< on Earth."@en ;
rdfs:isDefinedBy <https://dbpedia.org/resouce/Earth> ;
rdfs:label "Earth deployment"@en .

### http://purl.org/poso/common/FootMountedPDR
:FootMountedPDR rdf:type owl:NamedIndividual , poso:PDR ;

rdfs:comment "Foot-mounted pedestrian dead reckoning uses a sensor on the
— foot of a pedestrian to detect steps."@en ;

rdfs:label "Foot-mounted pedestrian dead reckoning"@en .

### http://purl.org/poso/common/GLONASS
:GLONASS rdf:type owl:NamedIndividual , poso:SatellitePositioningSystem ;



136

137
138

139
140
141
142
143

144
145
146
147
148
149
150

151
152
153
154
155
156
157

158
159
160
161
162
163
164
165
166
167
168
169

170
171

B.2. EXTENSIONS 283

rdfs:comment "GLONASS (Globalnaya Navigazionnaya Sputnikovaya Sistema, or
— Global Navigation Satellite System) is a global GNSS owned and operated
— Dby the Russian Federation. The fully operational system consists of 24+
— satellites."@en ;
rdfs:isDefinedBy "https://www.gps.gov/systems/gnss/"""xsd:anyURI ;
rdfs:label "Global Navigation Satellite System"@en , "Globalnaya
— Navigazionnaya Sputnikovaya Sistema"@ru ;
<http://www.w3.org/ns/ssn/hasDeployment> :EarthDeployment .

### http://purl.org/poso/common/GPS

:GPS rdf:type owl:NamedIndividual , poso:SatellitePositioningSystem ;
rdfs:comment "The Global Positioning System (GPS) is a U.S.-owned utility

— that provides users with positioning, navigation, and timing (PNT)

— services. This system consists of three segments: the space segment,

— the control segment, and the user segment. The U.S. Space Force

— develops, maintains, and operates the space and control segments."@en ;
rdfs:isDefinedBy "https://www.gps.gov/systems/gps/"@en ;
rdfs:label "Global Positioning System"@en ;
<http://www.w3.org/ns/ssn/hasDeployment> :EarthDeployment .

### http://purl.org/poso/common/Galileo

:Galileo rdf:type owl:NamedIndividual , poso:SatellitePositioningSystem ;
rdfs:comment "Galileo is a global GNSS owned and operated by the European

— Union. The EU declared the start of Galileo Initial Services in 2016

— and plans to complete the system of 24+ satellites in 2021."@en ;
rdfs:isDefinedBy "https://www.gps.gov/systems/gnss/"" " xsd:anyURI ;
rdfs:label "Galileo"@en ;
<http://www.w3.org/ns/ssn/hasDeployment> :EarthDeployment .

### http://purl.org/poso/common/GeolocationAPI

:GeolocationAPI rdf:type owl:NamedIndividual , poso:LocationBasedService ;
rdfs:comment "The Geolocation API is a W3C specification that provides

— geographical location data based on the capabilities of the hosting

— device."@en ;
rdfs:isDefinedBy "https://www.w3.org/TR/geolocation/
rdfs:label "Geolocation API"

xsd:anyURI ;

### http://purl.org/poso/common/HectorSLAM

:HectorSLAM rdf:type owl:NamedIndividual , poso:VSLAM ;
rdfs:1label "Hector SLAM"@en ;
rdfs:seeAlso "http://wiki.ros.org/hector_slam"”"xsd:anyURI .

### http://purl.org/poso/common/IRNSS

:IRNSS rdf:type owl:NamedIndividual , poso:SatellitePositioningSystem ;

owl:sameAs :NavIC ;

rdfs:comment "IRNSS is a regional GNSS owned and operated by the
Government of India. IRNSS is an autonomous system designed to cover
the Indian region and 1500 km around the Indian mainland. The system
consists of 7 satellites. In 2016, India renamed IRNSS as the
Navigation Indian Constellation (NavIC, meaning \"sailor\" or
\"navigator\")."@en ;

rdfs:isDefinedBy "https://www.gps.gov/systems/gnss/"""xsd:anyURI ;

rdfs:label "Indian Regional Navigation Satellite System"@en ;

rreoert



172
173
174
175
176

177
178
179
180
181
182

183
184
185
186
187

188

189
190
191
192
193
194
195
196
197
198
199
200
201
202

203
204
205
206
207
208
209
210
211

284 APPENDIX B. POSO

<http://www.w3.org/ns/ssn/hasDeployment> :EarthDeployment .

### http://purl.org/poso/common/IndoorAtlas
:IndoorAtlas rdf:type owl:NamedIndividual , poso:PositioningPlatform ;
rdfs:comment "Cross-platform indoor positioning SDK powered by patented
— 6-layer sensor fusion core. Fast development cycles. Easy to set up.
— Proven by 10,000+ developers."@en ;
rdfs:isDefinedBy "https://www.indooratlas.com/"" "xsd:anyURI ;
rdfs:label "IndoorAtlas"@en .

### http://purl.org/poso/common/KNNFingerprinting
:KNNFingerprinting rdf:type owl:NamedIndividual , poso:Fingerprinting ;
rdfs:comment "k-Neirest Neighbour fingerprinting is a fingerprinting
— technique where a number (k) of matches are selected, as opposed to one
— single fingerprint match. The final output position is the (weighted)
— average of the k-number of selected fingerprints."@en ;
rdfs:label "k-NN fingerprinting"@en .

### http://purl.org/poso/common/LDPL
:LDPL rdf:type owl:NamedIndividual , poso:RadioPropagation ;
rdfs:comment "The log-distance path loss model is a radio propagation
— model that predicts the path loss a signal encounters inside a building
— or densely populated areas over distance."@en ;
rdfs:isDefinedBy
— <http://dbpedia.org/resource/Log-distance_path_loss_model> ;
rdfs:label "Log-distance path loss model"@en .

### http://purl.org/poso/common/MidpointLateration

:MidpointLateration rdf:type owl:NamedIndividual , poso:Lateration ;
rdfs:comment "Midpoint lateration uses the midpoint of two points."@en ;
rdfs:label "Midpoint lateration"@en .

### http://purl.org/poso/common/NLSMultilateration
:NLSMultilateration rdf:type owl:NamedIndividual , poso:Multilateration ;
rdfs:label "Non-linear least squares multilateration"@en .

### http://purl.org/poso/common/NavIC

:NavIC rdf:type owl:NamedIndividual , poso:SatellitePositioningSystem ;

rdfs:comment "IRNSS is a regional GNSS owned and operated by the
Government of India. IRNSS is an autonomous system designed to cover
the Indian region and 1500 km around the Indian mainland. The system
consists of 7 satellites. In 2016, India renamed IRNSS as the
Navigation Indian Constellation (NavIC, meaning \"sailor\" or
\"navigator\")."@en ;

rdfs:isDefinedBy "https://www.gps.gov/systems/gnss/"" " xsd:anyURI ;

rdfs:label "Navigation Indian Constellation"@en ;

<http://www.w3.org/ns/ssn/hasDeployment> :EarthDeployment .

rrrirts

### http://purl.org/poso/common/ORBSLAM2
:ORBSLAM2 rdf:type owl:NamedIndividual , poso:VSLAM ;
rdfs:label "ORB-SLAM2"@en ;
rdfs:seeAlso "https://github.com/raulmur/ORB_SLAM2"" "xsd:anyURI .



212
213
214
215
216
217
218
219

220
221
222
223
224
225
226

227
228
229
230

231
232
233
234
235

236
237
238
239
240
241

242

243
244
245
246
247

248

B.2. EXTENSIONS 285

### http://purl.org/poso/common/ORBSLAM3

:ORBSLAM3 rdf:type owl:NamedIndividual , poso:VSLAM ;
rdfs:isDefinedBy "https://github.com/UZ-SLAMLab/ORB_SLAM3"" "xsd:anyURI ;
rdfs:label "ORB-SLAM3"@en .

### http://purl.org/poso/common/OpenHPS

:OpenHPS rdf:type owl:NamedIndividual , poso:PositioningPlatform ;
rdfs:comment "OpenHPS is an open source hybrid positioning system to help

— developers fuse various positioning technologies and algorithms. The

— system offers a modular data processing framework with each modules

— ranging from computer vision to common algorithms such as

— fingerprinting or data persistence of sampled data."@en ;
rdfs:isDefinedBy "https://openhps.org"”"xsd:anyURI ;
rdfs:label "OpenHPS"@en .

### http://purl.org/poso/common/OpenVSLAM

:0OpenVSLAM rdf:type owl:NamedIndividual , poso:VSLAM ;
rdfs:label "OpenVSLAM"@en ;
rdfs:seeAlso

— "https://stella-cv.readthedocs.io/en/latest/index.html" " "xsd:anyURI ;
<http://www.w3.0rg/2004/02/skos/core#altLabel> "stella-vslam"@en .

### http://purl.org/poso/common/ProbabilisticFingerprinting
:ProbabilisticFingerprinting rdf:type owl:NamedIndividual ,
— poso:Fingerprinting ;

rdfs:label "Probabilistic fingerprinting"@en .

### http://purl.org/poso/common/QZSS

:QZSS rdf:type owl:NamedIndividual , poso:SatellitePositioningSystem ;

rdfs:comment "QZSS is a regional GNSS owned by the Government of Japan
and operated by QZS System Service Inc. (QSS). QZSS complements GPS to
improve coverage in East Asia and Oceania. Japan declared the official
start of QZSS services in 2018 with 4 operational satellites, and plans
to expand the constellation to 7 satellites by 2023 for autonomous
capability."@en ;

rdfs:isDefinedBy "https://www.gps.gov/systems/gnss/

rdfs:label "Quasi-Zenith Satellite System"@en ;

<http://www.w3.org/ns/ssn/hasDeployment> :EarthDeployment .

rrerrt

xsd:anyURI ;

### http://purl.org/poso/common/RFCellIdentification
:RFCellIdentification rdf:type owl:NamedIndividual ,
— poso:CellIdentification ;

rdfs:comment "RF cell identification is a technique that determines the
— position based on the closest RF landmark in range."Gen ;

rdfs:label "RF cell identification"@en .

### http://purl.org/poso/common/ROS
:ROS rdf:type owl:NamedIndividual , poso:PositioningPlatform ;
rdfs:comment "ROS (Robot Operating System) provides libraries and tools
— to help software developers create robot applications. It provides
— hardware abstraction, device drivers, libraries, visualizers,
< message-passing, package management, and more."@en ;
rdfs:isDefinedBy "https://www.ros.org/"" "xsd:anyURI ;



249
250
251
252
253
254
255
256
257

258
259
260
261
262
263

264

286 APPENDIX B. POSO

rdfs:label "Robotics Operating System'@en .

### http://purl.org/poso/common/SVMFingerprinting
:SVMFingerprinting rdf:type owl:NamedIndividual , poso:Fingerprinting ;
rdfs:label "Support Vector Machine fingerprinting"@en .

### http://purl.org/poso/common/SonyNimway

:SonyNimway rdf:type owl:NamedIndividual , poso:PositioningPlatform ;
rdfs:comment "Nimway from Sony is a complete smart office solution for

— the people-centred workplace. Acting as your personal assistant

— throughout the workday, it facilitates many otherwise time-consuming

— tasks, like finding your way to a meeting room, locating a colleague or

— booking a desk."@en ;
rdfs:isDefinedBy "https://www.sonynetworkcom.com/nimway" " " xsd:anyURI ;
rdfs:label "Sony Nimway"@en .

### http://purl.org/poso/common/WeightedAccuracyFusion
:WeightedAccuracyFusion rdf:type owl:NamedIndividual, poso:HighLevelFusion;
rdfs:comment "Decision level fusion based on weighted average of the
— accuracy -1."Gen ;
rdfs:label "Weighted accuracy fusion"@en .

Listing B.1: POSO common positioning systems and algorithms

B.2.2 Crowdsourcing via Solid (WiP)

Setting up an indoor positioning system is a complicated, time-intensive task and
often requires calibration with different hardware. Crowdsourcing is a common
practice in the set-up of indoor positioning systems and is one of the foundational
features of some of our related work such as AnyPlace [160]. However, one of the
limitations of crowdsourcing is the ownership of data and the transparency of which
datais being collected. Furthermore, crowdsourcing also entails that the aggregator
should get some validation on the data’s validity to prevent the calibration from
containing data that could negatively influence the localisation accuracy.

To solve this issue, we started with the design of an extension for the POSO ontology
that would facilitate this crowdsourcing. While the extension and accompanying
OpenHPS module were never finished, we envisioned that positioning systems
would have a set of procedures to indicate the steps the user must take to start
calibration. These procedures contained actions such as “move forward”, “rotate
90 degrees” or an action to input a position. A user would then collect sensor
data specified by the procedure and store this data in their Solid Pod. After the
collection, the user could then share this data with the positioning system. In
general, the idea of the poso-crowdsource extension was to offer a descriptive
vocabulary capable of describing all system and user procedures involved with
crowdsourcing.



=T = T R N O R

24
25
26
27
28
29

30
31
32
33
34
35

B.2. EXTENSIONS 287

@prefix : <http://purl.org/poso/crowdsource/> .

b 11ttt Attt Attt bttt thtp bttt ottt bttt bttt ottt At
HHARBA AR AR ARG A AR A AR R AR RIS HHHHHS

# Classes

"

L L L L AEALE At bl A A h E L L L L L ALELE

(ks

Lt ad gl gl gl g

### http://purl.org/poso/crowdsource/CrowdsourceSystem

:C

rowdsourceSystem rdf:type owl:Class ;
rdfs:subClassOf <http://www.w3.org/ns/ssn/System> ;
rdfs:label "Crowdsource system"@en ;

skos:altLabel "Crowdsourcing system"@en

### http://purl.org/poso/crowdsource/Device

:D

evice rdf:type owl:Class ;
rdfs:subClassOf <http://www.w3.org/ns/sosa/FeatureOfInterest> ,
<http://www.w3.org/ns/ssn/System> .

### http://purl.org/poso/crowdsource/InputAction
:InputAction rdf:type owl:Class ;

—

rdfs:subClassOf :UserAction ;

rdfs:comment "A user input action is a procedure where a user inputs
information."@en ;

rdfs:label "User input action"@en .

### http://purl.org/poso/crowdsource/InputOrientationAction
:InputOrientationAction rdf:type owl:Class ;

—

rdfs:subClassOf :InputAction ;

rdfs:comment "A user input orientation action is a procedure where a user
inputs their current orientation."Gen ;

rdfs:label "User input orientation action"@en .

### http://purl.org/poso/crowdsource/InputPositionAction

I

—

nputPositionAction rdf:type owl:Class ;

rdfs:subClassOf :InputAction ;

rdfs:comment "A user input orientation action is a procedure where a user
inputs their current position."Gen ;

rdfs:label "User input position action"@en

### http://purl.org/poso/crowdsource/ObserveAction

:ObserveAction rdf:type owl:Class ;
rdfs:subClassOf :SystemAction ;

rdfs:label "Observe action"@en .

### http://purl.org/poso/crowdsource/SystemAction

:S

—

ystemAction rdf:type owl:Class ;
rdfs:subClassOf <http://www.w3.org/ns/sosa/Procedure> ,
[ rdf:type owl:Restriction ;
owl:onProperty <http://www.w3.org/ns/ssn/implementedBy> ;
owl:allValuesFrom :CrowdsourceSystem ] ;
rdfs:comment "A system action is a procedure executed by a system.'"@en



58
59
60
61
62
63
64

65
66
67
68
69
70

71
72
73
74
75
76

71
78

288 APPENDIX B. POSO

rdfs:label "System action"@en .

### http://purl.org/poso/crowdsource/UserAction
:UserAction rdf:type owl:Class ;
rdfs:subClassOf <http://www.w3.org/ns/sosa/Procedure> ,
[ rdf:type owl:Restriction ;
owl:onProperty <http://www.w3.org/ns/ssn/implementedBy> ;
owl:allValuesFrom :CrowdsourceSystem ] ;
rdfs:comment "A user action is a procedure executed by the user."@en ;
rdfs:label "User action"@en .

### http://purl.org/poso/crowdsource/UserMoveAction
:UserMoveAction rdf:type owl:Class ;

rdfs:subClassOf :UserAction ;

rdfs:comment "A user move action is a procedure where a user is asked to
< move to a certain location."@en ;

rdfs:label "User move action"@en .

### http://purl.org/poso/crowdsource/UserRotateAction
:UserRotateAction rdf:type owl:Class ;

rdfs:subClassOf :UserAction ;

rdfs:comment "A user move action is a procedure where a user is asked to
< rotate to a certain orientation."@en ;

rdfs:label "User rotate action"@en .

### http://purl.org/poso/crowdsource/UserliaitAction
:UserWaitAction rdf:type owl:Class ;

rdfs:subClassOf :UserAction ;

rdfs:comment "A user move action is a procedure where a user is asked to
— wait."@en ;

rdfs:label "User wait action"@en ;

skos:example "A user wait action can be combined with a system action to
— wait while the system finishes a certain procedure."@en .

Listing B.2: POSO extension to describe crowdsourcing instructions (Work in
Progress)

B.2.3 FidMark

This appendix contains information about the current state of the Fiducial Marker
ontology (FidMark) that extends the POSO ontology. Figure B.2 shows the main
classes that FidMark extends from the POSO ontology. We make a clear classi-
fication of active and passive markers [257] as this represents the major difference
between different types of markers. We further classified passive markers into
barcodes that can encode information such as an identifier. In addition to these
main classes, we currently provide over 30 different types of markers as subclasses
of the fiducial marker class!, such as reacTIVision [258] or CCTag [259].

For more information about the ontology profile and ontology statistics, please check the online
documentation.



B.2. EXTENSIONS 289

fidmark:hasImageDescriptol—
rdfs:subClassOf fldmark:hasDicnonary—
mrdfszsubclassofrdFs:subClassOf—|
sosa:Procedure s.vg, fjdmar.kz.origin(,‘entsr, Fidmark:hasOrigi fidmark:FiducialMariJ
fidmark:0OriginTopLeft, ...
A {

A

poso:PositioningTechnique J[ poso: TrackedFeature J(—rdfs:subclassof
rdfs:subClassOf

e-g. An infrared marker in fidmark:ActiveMarker
AR controllers rdfs:subClassOf
1

fidmark:PassiveMarker

rdfs: subClassOf

AN

—{ fidmark:MarkerPoseEstimation }{ fidmark:Barcode1D

J0SSeTIANs 1S 4pJ

1

rdfs:subClassOf rdfs:subClassOf

fidmark:MarkerDetection } [ fidmark:CircularBarcode fidmark:Barcode

Figure B.2: FidMark main classes

—

fidmark:MarkerlessPossEstimation} { fidmark:Barcode2D

T

rdfs:subClassOf

—

With our FidMark ontology, we aim to describe different markers, their setup and
their position relative to a certain reference space. The basic architecture and a use
case for our ontology are demonstrated in Figure B.3. We describe markers, their
identifier, position and orientation using the combination of FidMark and POSO.
FidMark handles the description of the markers while POSO is used to describe the
markers’ absolute and relative position as visual landmarks. AR-capable devices
with access to this description can synchronise their reference frame due to the
common description. Any virtual object placed relative to these markers can again
use the generality of POSO to indicate its relative position.

In our ontology, each type of fiducial marker is annotated with additional metadata
describing the markers’ visual and functional properties such as their shape, colour
and encoding method. When available in OpenCV [186], we also provide the
dictionary names of markers as they are available in OpenCV to facilitate the
development.

To demonstrate the generality of FidMark for applications outside the domain of
augmented reality, we provide the fidmark-dicom alignment ontology to align
fiducial markers and POSO with the Digital Imaging and Communications in
Medicine (DICOM) ontology [260] in our supplemental material.

Fiducial markers have a set of properties that are sub-properties of properties on
sosa:FeatureOfInterest from the Sensors, Observations, Systems and Actu-
ators (SOSA) ontology [131]. They define how the marker should be detected,
decoded and mapped to its location within the physical space. With fiducial mark-
ers being used to determine the relative translation, scale or orientation of visual
objects within the field of view. The object and data properties we added to our
ontology are also chosen to enable this description.



290

APPENDIX B. POSO

[Homark PQSO

Describes the type of tag, its Describes the spatial pose
dictionary and enables the of a tag using a specific
identification of tags. reference space.
[
1
RDF Store

Figure B.3: Basic usage of FidMark together with the POSO ontology

We provide the :hasOrigin predicate and :MarkerOrigin property to indicate
the position origin on the marker itself. This origin determines the 2D or 3D location

on th

e fiducial marker. An origin description is required to determine the accurate

translation when performing relative positioning from virtual objects relative to the
marker.

dictionary: A set of marker identifiers that are available using a specified
encoding scheme. A dictionary is also referred to as a marker symbology
or marker family [261]. This encoding scheme can be generalised to both
binary encoding in barcodes as well as the encoding with active markers such
as infrared markers [262].

origin: The origin of the marker is an important design requirement in
order to determine the relative orientation and translation to the marker.
Our :hasOrigin predicate and :MarkerOrigin property are based on the
OpenCV pattern.

dimensions: The known dimensions of a marker can be used to determine
its scale. Our ontology supports the specification of both, a marker’s width
and height to support rectangular markers such as AprilTag [263].

hamming distance: The minimum hamming distance between two codes,
represented by the minimum number of bits that must be changed in one
tag’s code to reach another tag’s code.

image descriptor: The marker image descriptor links to an image URI or a
Base64 representation of the image. Alternatively, the image descriptor can



B.2. EXTENSIONS 291

be described as a processed descriptor for natural feature tracking [264] as
illustrated in Figure B.4.

* identifier: A numeric identifier that can uniquely identify a marker from a
(pre-)defined dictionary. The identifier is (part of) the encoded data.

* data: Other than an identifier, some marker types allow the encoding of
other types of binary data. An example of such a marker is a QR code, which
can be used for both, pose estimation as well as the encoding of binary data.

* codes & marker bits: Frameworks with no prior knowledge of the concept
of a dictionary or how it is computed require a list of all available codes that
can be encoded with the available :markerBits and error correction.

fidmark:asImage { xsd:hexBinary
5 : fidmark:asNFT e
fidmark:ImageDescriptor f------ AT ES e > )
fidmark:aszFT Seasell
= xsd:anyURT

fidmark:asPATT

Figure B.4: Image descriptor usage for markers

For a complete list of properties, please refer to the online documentation in our
supplemental material also provides marker-specific object and data properties?.

2https://openhps.github.io/FidMark/1.0/en/


https://openhps.github.io/FidMark/1.0/en/

292 APPENDIX B. POSO




Appendix C

SemBeacon
C.1 Specification 1.0

This section contains information about the first version of the SemBeacon spe-
cification. The latest version can be found in Section 5.2.

| Bit [ Description |

0 | Indicates if beacon has a position (0 =unsure, 1 =yes).

1 Indicates if beacon is private (0 = public, 1 = private).

Indicates if beacon is stationary (0 = stationary, 1 = mobile).

Indicates if the beacon is part of a positioning system (0 =no, 1 =yes).
Indicates if beacon provides telemetry data (O=no, 1 =yes).

5-7 | Reserved for future use.

| W

Table C.1: SemBeacon v1.0 flags

Table C.1 showcases the first version of the flags in the SemBeacon specification.
Version 1.1 did not introduce any breaking changes to these flags. However,
terminologies were changed which expanded the use cases of some of the flags.

C.2 Arduino Library

An Arduino library is available which facilitates the broadcasting and scanning of
a SemBeacon on both BLE v4 and BLE v5 devices. The library only handles the
broadcasting on embedded devices and does not retrieve any linked data from the
URIs. The library is available via the Arduino IDE:
https://docs.arduino.cc/libraries/esp32_sembeacon/

#define GPIO_DEEP_SLEEP_DURATION 100 // Sleep duration in ms
#define BLE_ADVERTISEMENT_INTERVAL 1
#define BEACON_UUID "77f340db-ac0d-20e8-aa3a-f656a29f236c"

/% Uncomment the following two lines to disable BLE5 */

#include "sdkconfig.h"
#undef CONFIG_BT_BLE_50_FEATURES_SUPPORTED

293


https://docs.arduino.cc/libraries/esp32_sembeacon/

294 APPENDIX C. SEMBEACON

#include <BLESemBeacon.h>
#include <BLESemBeaconAdvertising.h>

#include "BLEDevice.h"
#include "esp_sleep.h"

BLESemBeaconAdvertising *advertising;

void createBeacon() {
BLESemBeacon beacon = BLESemBeacon();
// Choose 0x004C for Apple Ltd. Note that this will
// not automatically be detected on iOS
beacon.setManufacturerId(0xFFFF);
// RSSI at Im distance
beacon.setSignalPower(-30);
// Namespace UUID
beacon. setNamespaceId(BLEUUID(BEACON_UUID));
// Instance Identifier
beacon.setInstanceId(0x9c7ce6fc);
// URI to the resource
beacon.setResourceURI("https://bit.ly/3JsEnF9");
beacon.setBeaconFlags(

SEMBEACON_FLAG_HAS_POSITION | SEMBEACON_FLAG_HAS_SYSTEM

N

advertising->setBeacon(&beacon) ;

}

void setup() {
// Create the BLE Device
BLEDevice::init("");
advertising = new BLESemBeaconAdvertising();
// Create the beacon data
createBeacon();

}

void loop() {
// Start advertising
advertising->start();
delay(100);
advertising->stop(Q);
esp_deep_sleep(1000LL * GPIO_DEEP_SLEEP_DURATION);

Listing C.1: Example usage of the SemBeacon Arduino library

Listing C.1 shows an example of the ESP32_SemBeacon Arduino library. This
particular example is used to create the beacons in our proof of concept application
explained in Section 6.6.



C.3. HARDWARE 295

The use of the library is similar to the existing BLE library for ESP32! with
our classes expanding upon this library. Developers can create a SemBeacon by
specifying the basic information (i.e., the manufacturer and signal power) and then
providing a namespace and instance identifier. Next, a (shortened) URL is provided
in combination with a set of flags. Depending on the availability of BLE v5, the
library will automatically determine if the SemBeacon should be broadcasted as a
BLE v5 or v4 beacon.

C.3 Hardware

For evaluating our SemBeacons, we developed our own hardware which included
an ESP32-S3 microcontroller that supports Bluetooth 5.0. At the time of the
development, no development boards were available in Europe. Four revisions
of the hardware were made. These revisions mainly fixed issues concerning the
antenna and RF interference. Our final revision uses a 4 layer PCB design with an
external SMA antenna and USB-A port.

Originally, the hardware was designed as a Bluetooth and Wi-Fi scanner, similar
to our earlier work [99] where we designed battery-powered scanners to perform
indoor navigation. While the hardware still supports this functionality, we focused
on using the hardware to broadcast SemBeacons.

thttps://github.com/espressif/arduino-esp32/tree/master/libraries/BLE


https://github.com/espressif/arduino-esp32/tree/master/libraries/BLE

296 APPENDIX C. SEMBEACON

C.3.1 PCB

(a) Top layer (b) Inner layer 1 (c) Inner layer 2 (d) Bottom layer

Figure C.1: PCB layers of the OpenHPS ESP32 scanner revision 3B

C.3.2 Schematic

The design of the ESP32-S3 hardware was based on the FeatherS32 schematic.
However, with our design, we wanted to leverage the OTG USB support, increase
the amount of flash memory to enable a small website to run on the device(s) and
also use an external antenna. Figure C.2 shows the final schematic of our hardware.

2https://github.com/UnexpectedMaker/esp32s3/blob/main/schematics/
schematic-feathers3_p7.pdf


https://github.com/UnexpectedMaker/esp32s3/blob/main/schematics/schematic-feathers3_p7.pdf
https://github.com/UnexpectedMaker/esp32s3/blob/main/schematics/schematic-feathers3_p7.pdf

C.3. HARDWARE 297

C.3.3 Bill of Material
# | Manufacturer Part Manufacturer Supplier | Supplier Part | Price
1 | W25Q128JVPIQ WINBOND LCSC C2803379 1.405
1 | USB-05 SOFNG LCSC C112454 0.098
1 | HI-SMAO023 LCSC C1509219 0.615
1 | SLFL15-2R450G-01TF Sunlord LCSC C96778 0.032
1 | ESP32-S3 ESPRESSIF LCSC C2913192 2.698
2 | 0402WGF680JTCE UniOhm LCSC C25131 0.001
1 | FC-F1005UGK-520M5 NATIONSTAR LCSC C130723 0.037
2 | 0402CG220J500NT FH LCSC C1555 0.001
1 | NCP167AMX330TBG ON Semiconductor | LCSC C603662 1.403
4 | CCO402KRX7R7BB104 | YAGEO LCSC C60474 0.001
7 | CLOSA105KPSNNNC SAMSUNG LCSC C14445 0.002
1 | TZ0475B TST LCSC C501793 0.139
2 | TS-1177-C-B-B XKB Enterprise LCSC C561512 0.06
1 | 0402B103K500NT FH LCSC C1524
1 | B5819W MDD LCSC C64885 0.018
1 | RC0402FR-07100KL YAGEO LCSC C60491
1 | 0402WGF4423TCE UniOhm LCSC C5101 0.001
1 | 0402WGF1002TCE UniOhm LCSC C25744 0.001
1 | FC-F1005HRK-620H5 NATIONSTAR LCSC C130719 0.034

Table C.2:

Bill of material (prices in USD)



APPENDIX C. SEMBEACON

298

T S T 2 3 T z T
[ /@Pudm op uep wixew :Ag umeid  €¢-1T-¢20Z  :91ea
- sdHuado () ano
T/T :393ys [9ssnag 323ssoAIuN B[lUA  Auedwo) ==
qe ARY Jauueds z£dS3 SdHuado
(3L AND
a
7z
e AR
i
AaND  aND ERERIEY o
T T ao axe axo PEOID £101d9 [ .
1 o i
3 d 49 [
M Juor | any G 9£01dD  IM /€014 0TOIdO 21
— (0on1a Ry ano S
£0== 020 e DS) (zon#dm 72
|_| |—| Aolas 21 (eon#13s3u/#a1oH (Tonod I3
QHIIS o 3O #53 & ano
OIArEZIOSZM m -
£n [ a 6 smeis
(9W9T) HSV14IdS B
1S”aaA B 90 5ag Ny
> o SN026>N50043-04
uol > 1vis
€10 &
C
T
. £5°05d53
ano ano ALE
] = = £5-zeds3
aNo  ano
D0Q-ON E20VIIS-TH QNS YINS T T
QO O o b oy L woor |
13|14 SSed-MOT 4Y 015 C)
&;chwg - fovns Ty I_\ I‘\
€20 (Y NUYNT
: I
1959y 9jqnog d OIS aNo e
=J110-D037HZG1 1418 _
1 NTIVIX
ano ano
euuRY YIS
Ty i ayo
9-6-0-LL11 5L 9-6-0-JL1SL - -
eSS ooy SHOZOHE00L4-0 i/
U89
v 2y
g
ALE Dﬂo asn
(Ag€) H03einbay sbejjon pue gsn
S 2 3 z T T

Figure C.2: Schematic of OpenHPS ESP32 Scanner



=T - T N O

25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41

C.4. ONTOLOGY 299

C.4 Ontology

SemBeacon comes with a small vocabulary extension to the Positioning System
Ontology (POSO) that adds SemBeacon as a type of BluetoothBeacon with a
namespace and instance identifier.

4 y) g g LA g IR Ly g y Ly Iy
bt bt

# Object Properties

e 4 y Ll A A 4 ey 4 ey y eI
HHH 77 T 777 HHH 7 i 7 FHF AT

### http://purl.org/sembeacon/namespace
:namespace rdf:type owl:ObjectProperty ;

rdfs:domain <http://purl.org/poso/BluetoothBeacon> ;

rdfs:range <http://www.w3.org/ns/ssn/Deployment> ;

rdfs:comment "The namespace property directs to the deployment containing
— all sensors deployed in this namespace."@en ;

rdfs:label "namespace'"@en .

Ly ey Ly Iy g L e
g g g g g

4 LA g IR
HHHFHTF T

# Data properties

" 4 " " " ) " " ) " " ;4 " " ”n
HHHFHFTHTH 7 i HHH 77 s 77 i HHHHHHITH i

### http://purl.org/sembeacon/instanceld
:instanceld rdf:type owl:DatatypeProperty ;
rdfs:domain :SemBeacon ;
rdfs:range xsd:hexBinary ,
[ rdf:type rdfs:Datatype ;
owl:onDatatype xsd:hexBinary ;
owl:withRestrictions ( [ xsd:maxLength "8""“xsd:int ] )
1
rdfs:comment "An instance identifier is the 32-bit UUID that defines the
— instance of a SemBeacon within a namespace."@en ;
rdfs:label "Instance ID"G@en

### http://purl.org/sembeacon/namespaceld
:namespaceld rdf:type owl:DatatypeProperty ;
rdfs:domain <http://purl.org/poso/BluetoothBeacon> ,
<http://www.w3.org/ns/ssn/Deployment> ;
rdfs:range [ rdf:type rdfs:Datatype ;
owl:onDatatype xsd:hexBinary ;
owl:withRestrictions ( [ xsd:maxLength "32"""xsd:int ] )
15
rdfs:comment "A namespace identifier is the 128-bit UUID that defines
— the namespace of a SemBeacon."@en ;
rdfs:label "Namespace ID"@en .

### http://purl.org/sembeacon/shortResourceURI
:shortResourceURI rdf:type owl:DatatypeProperty ;
rdfs:domain :SemBeacon ;
rdfs:range xsd:anyURI ;



42

43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68

69
70

300 APPENDIX C. SEMBEACON

rdfs:comment "Shortened resource URI. The resource URI should resolve
to the full resource URI of the resource that this predicate is used
in."Cen ;

rdfs:label "Short resource URI"@en ;
<http://www.w3.0rg/2004/02/skos/core#example>

— "https://tinyurl.com/5jxncuvy"@en .

)

!

### http://purl.org/sembeacon/version
:version rdf:type owl:DatatypeProperty ;
rdfs:domain :SemBeacon ;
rdfs:range xsd:string ;
rdfs:comment "SemBeacon version'"@en ;
rdfs:1label "version'"@en ;
<http://www.w3.0rg/2004/02/skos/core#example> "1.1"@en .

# Classes

o o L4 " ) Ly TRy oy Iy o g 4 o
g gl d il d il d g gl gl gl

### http://purl.org/poso/BluetoothBeacon
<http://purl.org/poso/BluetoothBeacon> rdf:type owl:Class .

### http://purl.org/sembeacon/SemBeacon
:SemBeacon rdf:type owl:Class ;
rdfs:subClassOf <http://purl.org/poso/BluetoothBeacon> ,
[ rdf:type owl:Restriction ;
owl:onProperty <http://purl.org/poso/common/hasReferenceRSSI> ;
owl:minCardinality "1"""xsd:nonNegativelnteger
1
rdfs:comment "SemBeacon is a semantic beacon that broadcasts an URI
— describing its position and references its deployment."@en ;
rdfs:label "SemBeacon"@en ;
rdfs:seeAlso <http://purl.org/poso/common/SemBeacon> .

Listing C.2: SemBeacon ontology extensions of POSO



=T - T T T N O N

S

11

25
26
27
28
29
30
31
32
33
34
35

Appendix D

Linked Data Hash Tree
Specification

@prefix : <http://purl.org/ldht/> .

# ...

HHHFHFTD

L L L AL Al bl bl bl bl bl A A L A A AL AL 1L AL
G HH I (ks (ks

F T G HHHFHTF T 7 kel

# Object Properties

y y ;4 u y) L

1A g 4 y g 4 g " 1A LA
HHHFHTFHT AT T T T T TFLTFHTFTFLTF T

### http://purl.org/ldht/hashFunction
:hashFunction rdf:type owl:ObjectProperty ;

rdfs:comment "The hashing function describes how input data is

— transformed to a value"@en ;
rdfs:label "Hashing function"@en .

### http://purl.org/ldht/key
:key rdf:type owl:ObjectProperty ;
rdfs:domain :Entry ;
rdfs:label "key"@en .

### http://purl.org/ldht/nodes

:nodes rdf:type owl:ObjectProperty ;
rdfs:subPropertyOf owl:topObjectProperty ;
rdfs:domain :Collection ;
rdfs:range <https://w3id.org/tree#Collection> ;

rdfs:comment "Indicates the collection of nodes for a particular linked

— data hash table"Gen ;
rdfs:label "Nodes collection"@en

### http://purl.org/ldht/value
:value rdf:type owl:ObjectProperty ;
rdfs:domain :Entry ;
rdfs:label "value"@en

4 Ly y) y g g ;4 g Ly

y) g e 4 g
g didrdidid didrd gl gl g

4 g y)
i g g g

# Data properties

" y " ” ;4 " " y " "

" " y
gl g e i HHHHHHTH g

301



302 APPENDIX D. LINKED DATA HASH TREE SPECIFICATION

36 ###  http://purl.org/ldht/nodeID
37 :nodeID rdf:type owl:DatatypeProperty ;

38 rdfs:domain :Node ;

39 rdfs:range xsd:integer ;

40 rdfs:comment "The node identifier is a number generated by using the hash
— algorithm of the network."@en ;

41 rdfs:label "node identifier"@en .

42
43 ### http://purl.org/ldht/timeout
44 :timeout rdf:type owl:DatatypeProperty ;

45 rdfs:domain schema:Action ;

46 rdfs:range xsd:integer ;

47 rdfs:comment "The timeout is the time in milliseconds that a node will
— wait for a response from another node."@en ;

48 rdfs:label "timeout"@en .

49

50 R R AR ARHBR AR AR AR AR AR RR AR AR AR RR AR BRARR AR AR RR A AR AR A

51 # Classes

52 R BHH BB HARHHARHH
53
sa  ### http://purl.org/ldht/AddNodeAction
s5  :AddNodeAction rdf:type owl:Class ;

56 rdfs:subClassOf schema:AddAction ;

57 rdfs:comment "The act of indicating to a node that a new node has joined
— the network."@en ;
58 rdfs:label "Add node action"@en .

59
60 ### http://purl.org/ldht/Collection
61 :Collection rdf:type owl:Class ;

62 rdfs:subClassOf <https://w3id.org/tree#Collection> ;
63 rdfs:comment "A ldht:Collection is a tree collection."@en ;
64 rdfs:label "Collection"@en .

65

66 ### http://purl.org/ldht/Entry

¢7 :Entry rdf:type owl:Class ;

68 rdfs:label "Entry"@en .

69

70 ### http://purl.org/ldht/Node

71 :Node rdf:type owl:Class ;

72 rdfs:subClassOf <https://w3id.org/tree#Node> ;

73 rdfs:comment "A ldht:Node is a node in a distributed hash tree that may
<> contain relations to other nodes in the distributed hash tree."@en ;

74 rdfs:label "Node"@en .

75

76 ### http://purl.org/ldht/PingAction

77 :PingAction rdf:type owl:Class ;

78 rdfs:subClassOf schema:Action ;

79 rdfs:comment "The act of pinging a node to request if it is still active
— and responding to actions."@en ;

80 rdfs:label "Ping action"@en .

81
82 ###  http://purl.org/ldht/RemoveNodeAction
83 :RemoveNodeAction rdf:type owl:Class ;



303

84 rdfs:subClassOf schema:DeleteAction ;

85 rdfs:comment "The act of indicating to a node that another node is
— removed in the network."@en ;

86 rdfs:label "Remove node action"@en .

87
88

89 ###  http://purl.org/ldht/StoreValueAction

90 :StoreValueAction rdf:type owl:Class ;

91 rdfs:subClassOf schema:InsertAction ;

92 rdfs:comment "The act of storing a value in a node."@en ;
93 rdfs:label "Store value action"@en .



304 APPENDIX D. LINKED DATA HASH TREE SPECIFICATION




Appendix E

Survey on the Privacy and
Transparency of Location Data

This appendix contains information on our survey on the “Privacy and Transparency
of Location data”. The survey was launched in January 2025 and was primarily
used to determine how users perceive the privacy and transparency of their location
data in mobile applications. Our complete pseudonymised results were published
on Zenodo [4], which also includes screenshots of the questions.

E.1 Questions

In this section, we list all the questions that were asked in the survey. We also
provide additional context as to why some of these questions were asked. Each
question is numbered! (e.g., Q5), this is an internal numbering and corresponds to
the results presented in Section E.2.

E.1.1 General Awareness

We first started with general questions concerning their awareness of location data
privacy. Some of these questions also serve as redundant questions for other
questions. The possible answers to these questions are sometimes intentionally
vague or self-explanatory to encourage participants to think critically about the
potential impacts. Additionally, these questions also serve to scope the follow-up
questions.

(Q2) How familiar are you with the concept of location data
tracking?

In this question, participants were asked about their familiarity with location data
tracking. Choices ranged from “Not at all familiar” (1) to “Extermely familiar” (5).

Numbering starts at Q2 due to the first question being the GDPR consent

305



306 APPENDIX E. SURVEY ON THE PRIVACY AND TRANSPARENCY

(Q3) How can services or companies track your physical
location? (Check all that apply)

The following options were presented in a random order:
1. By sharing my location data using an application
2. Through surveillance cameras
3. By monitoring wireless activity
4. By accessing cloud data
5. Through my visits to websites
6. By intercepting cellular signals
7. Through my social media posts

Theoretically, most options apply, but the granularity of the location differs. This
question was aimed to assess the general awareness of which types of interactions
and technologies could be used to ensure that the participant thinks critically.

(Q4) Which of the following applications do you think use your
location data? (Check all that apply)

The following types of applications were presented in a random order:
1. GPS/Maps applications (e.g., Google Maps, Waze)

Social media apps (e.g., Facebook, Instagram)

Weather apps

E-commerce platforms (e.g., Amazon, eBay)

Ride-sharing or food delivery apps

Smart home devices or assistants (e.g., Alexa, Google Home)

Travel or airline apps

Fitness or health-tracking apps (e.g., Fitbit, Strava)

A e S B e T

Banking apps

_
e

E-mail clients

—_—
—_—

. Applications to control smart devices

—
[\

. None of the above



E.1. QUESTIONS 307

(Q5) Have you ever installed a navigation application for one
specific building?
This question was given with additional context: For navigating an airport, confer-

ence, hospital or any other building. Participants could answer yes, no or unsure.

(Q6) How often do you check the permissions granted to apps
regarding location tracking?

Participants could choose between always, often, sometimes, rarely or never.

(Q7) How often do you read privacy policies when downloading
or using apps?

The question was posed as a gauge from 0 (never) to 10 (always).
(Q8) Without checking, what percentage of applications on your
smartphone have constant access to your location data?

This question was given with additional context: Constant access entails that an
application can request your current location at any time even when the application
is not running. The question was posed as a gauge from 0% to 100%.

(Q9) On a scale from 1 to 10, how valuable do you think your
location data is to third parties?

The question was posed as a gauge from 1 to 10.

E.1.2 Privacy Concerns

This set of questions aims to asses any privacy issues associated with location data.

(Q10) Rank the following concerns about location data tracking
from most concerning to least concerning.

1. Data being shared with third parties

Data being used for targeted advertising
Data being stolen in a breach

Lack of transparency about data usage
Being monitored by authorities or employers

Being monitored by friends or family

N kW

Being denied access to services due to location-based profiling



308 APPENDIX E. SURVEY ON THE PRIVACY AND TRANSPARENCY

8. Applications collecting more information than required
9. Unclear consent processes (e.g., not knowing what you are agreeing to)

10. The ability of third parties to track you across different devices

(Q11) How concerned are you about the following scenarios
involving your location data?

Participants were given five scenarios. Each scenario could be ranked on a Likert
scale from “not at all concerned” (1) to “extremely concerned” (5).

1. Your location data being sold to third parties without your consent.

2. Your location data being used to create a detailed profile about you.

3. Being denied access to services due to location-based profiling.

4. Your location being used to track your movements without your knowledge.
5

. Your location data being vulnerable to hacking or breaches.

(Q12) Do you feel you have enough control over how your
location data is used?

Likert scale from “definitely not” (1) to “definitely yes” (5). When users indicated
that they definitely did not have enough control, they were asked a follow-up
question: [Q13] Why do you feel that you need more control over how your location
data is used? Users who indicated that they definitely have enough control were
asked the opposite: [Q14] Why do you feel that you have enough control over how
your location data is used?

(Q15) Have you ever refused to use an app or service because of
privacy concerns about location data?

A yes or no question asking if users ever refused to use an application due to privacy
concerns.

(Q16) What actions, if any, do you take to limit location tracking?

An open question aimed to learn more about any actions participants take to protect
their location data.

E.1.3 Transparency of Applications and Systems

This set of questions is aimed to determine how users perceive the transparency on
the user of their location data. Even if an application or service provides a privacy



E.l. QUESTIONS 309

policy, users are often unaware of the implications when rejecting this policy or
what data is shared.

(Q17) How transparent do you believe apps and systems are
about how they use location data?

Participants were given five statements. For each statement, they could indicate
their level of agreement on a Likert scale from 1 (strongly disagree) to 5 (strongly
agree).

1. Apps clearly explain why they need my location data.

2. Privacy policies are easy to understand.

3. I feel informed about how my location data is shared.

4. I feel informed on how often an application can access my location data.

5. T am aware of the impact when I decline sharing my location data with an

app.

(Q18) Would you trust an app more if it provided real-time
notifications or visual indicators when it accesses your location
data?

This question was given with additional context: A visual indicator is similar to
how modern smartphones show an icon to indicate that the camera is used.

Three options were available:
1. Yes, I would feel much more confident.
2. Yes, but only if the notifications or visual indicators were not intrusive.

3. No, notifications or visual indicators would not change my level of trust.

(Q19) If a company was found to be misusing location data, how
would it affect your behaviour?

Five choices were presented. These choices were determined based on the possible
scenarios that a user could take after discovering data misuse, these scenarios are
based on the topics of the European Data Protection Supervisor (EDPS)?2.

1. I would stop using their services entirely.
2. I would review and change my data-sharing permissions.

3. I would switch to a competitor with better transparency.

2https://www.edps.europa.eu/


https://www.edps.europa.eu/

310 APPENDIX E. SURVEY ON THE PRIVACY AND TRANSPARENCY

4. I would demand more accountability from the company.

5. It wouldn’t affect my behaviour.

(Q20) What's your preferred way for apps to communicate their
location data policies?

1. A clear and concise summary during setup
2. A detailed privacy policy document

3. A short video explaining data practices

4. Periodic notifications about data usage
5

. Other (please specify below)
Participants were given a text field to specify, identified in the pseudonymised
results as Q21 _TEXT

(Q21) How comfortable would you be if apps stored your location
data directly on your device or in a private space you control,
instead of on their servers?

Likert scale from “extremely uncomfortable” (1) to “extremely comfortable” (5).

E.1.4 Valuation of Location Data

With this line of questions, we wanted to determine how valuable users find their
location data. We used a relative scale to assess the valuation of location data by
asking participants how they rank their location data compared to other personal
data.

(Q22) How important is location data to the functionality of the
apps you use daily?

Participants could choose between; not at all important, slightly important, moder-
ately important, very important, extremely important, and “I don’t know”.

(Q23) Would you pay for an app or service that is guaranteed not
to track your location?

This question was given with additional context: Example: If a (free) service
mentions that they use your location data for targeted advertising, but you can

disable it by paying a fee. Three options were given; “yes, definitely”, “maybe,
depending on the cost” or “no, I would not pay”.



E.1. QUESTIONS 311

(Q24) If an app or system requests location data, what kind of
benefit or incentive would justify this for you? (Check all that

apply)

1.

2
3
4.
5

Improved app performance or features

. Personalised content or offers

. Monetary rewards (e.g., discounts, cashback)

None, I prefer not to share my location data

. Other (please specify below)

Farticipants were given a text field to specify, identified in the pseudonymised
results as Q25_TEXT

(Q25) Why do you think companies collect location data?

1.

N ok wN

To improve app features and functionality

For targeted advertising and marketing

To sell data to third parties

For analytics and business insights

To comply with regulatory or safety requirements
To improve the user experience

Other (please specify below)
Participants were given a text field to specify, identified in the pseudonymised
results as Q26 _TEXT

(Q26) For each type of tracking, indicate how valuable you think
it is for third parties

This question was given with additional context: A third party is a company that
purchases location data from a source that collects it. Participants were given five
examples of tracking that they could rank on a scale from “not valuable at all”” (1)
to “extremely valuable” (5).

1.

2
3
4.
5

A current snapshot of your exact location (e.g., where you are now)

. Constant tracking of your movements (e.g., over days or weeks)

. An estimate of your general location (e.g., city level)

Past location history (e.g., where you’ve been in the last month)

. Aggregated location trends (e.g., patterns derived from multiple users)



312 APPENDIX E. SURVEY ON THE PRIVACY AND TRANSPARENCY

(Q27) Rank the following personal data in order of importance to
you (important to less important)

With this question, we wanted to determine how users rank their location data
compared to other personal information. The following types of data were listed in
random order, participants could move the items to rank them. The types of data
were loosely based on the definitions for Personally Identifiable Information (PII)
in the General Data Protection Regulation (GDPR) [9].

1. Location data

Web browsing activity

Home address

Phone number

E-mail address

Social media profile data

Health and/or medical information

Private calendar information

o ® Nk wN

Photos

H
e

E-mail messages

E.1.5 Demographic Information

For privacy reasons and also because more specific user information was not
required for the scope of this survey, our demographic questions were limited to
age (Q28) and an indication of whether or not the participant lived inside the
EU (Q29). The latter was used to determine if existing regulations such as the
GDPR apply to this participant, which can influence the choices made in regard to
transparency.

E.2 Pseudonymised Results

In total, 58 users participated in the survey. On average, participants spent
13 minutes on the survey with a median time of 12 minutes. Results were processed
to remove identifiable information such as the IP address, rough estimate of the
location, start and end time and internal identifiers used by Qualtrics. Next, unne-
cessary information was removed from the results, which is only used to determine
the validity of the responses (e.g., captcha results and progress). Responses were
originally sorted based on the start time but were randomised for the pseudonymised
result.



E.2. PSEUDONYMISED RESULTS 313

After this processing, the open answers were analysed to determine if any identifi-
able information was present. The open responses were cleaned to remove empty
answers or invalid characters. Finally, open answers in Dutch (i.e., one of the
languages in which the survey was distributed) were translated into English. This
translation is explicitly mentioned in the results through a separate column.

Location data vulnerable

to hacking or breaches i i

Location dataused to \
create a detailed profile \

Location used to
track movements without knowledge

Location data sold to \
third parties without consent \

Being denied access to
services due to location-based profiling

-

Not at all Slightly Moderately Very Extremely
concerned concerned concerned concerned concerned

Figure E.1: User concerns on location data

Our results contain various insights. Some of these insights were used to highlight
why our solution of interoperable positioning systems is needed. Figure E.1 shows
the user concerns for location data. Based on these results, we can see that the
selling of location data to third parties is one of the main concerns. Interoperable
positioning systems would provide more transparency towards the collection of this
data, and would ultimately open up future work for optimising the privacy of this
collected data.



314 APPENDIX E. SURVEY ON THE PRIVACY AND TRANSPARENCY




Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

Scott Jenson. Mobile Apps Must Die, 2011. URL https://jenson.org/
mobile-apps-must-die/. Accessed on November 2023.

Yanying Gu, Anthony Lo, and Ignas Niemegeers. A Survey of Indoor Position-
ing Systems for Wireless Personal Networks. IEEE Communications Surveys &
Tutorials, 11(1), 2009. doi: 10.1109/SURV.2009.090103.

Knut Blind. The impact of standardisation and standards on innovation. In Jakob
Edler, Paul Cunningham, Abdullah Gok, and Philip Shapira, editors, Handbook
of Innovation Policy Impact, Chapters, chapter 14, pages 423—449. Edward Elgar
Publishing, 2016. doi: 10.4337/9781784711856.00021.

Maxim Van de Wynckel and Beat Signer. Survey on the Privacy and Transparency
of Location Data, May 2025. doi: 10.5281/zenodo. 15564050.

Dan Cvrcek, Marek Kumpost, Vashek Matyas, and George Danezis. A Study on the
Value of Location Privacy. In Proceedings of the 5th ACM Workshop on Privacy
in Electronic Society (WPES), page 109-118. ACM New York, NY, USA, 2006.
doi: 10.1145/1179601.1179621.

George Danezis, Stephen Lewis, and Ross J Anderson. How Much is Location
Privacy Worth? In Proceedings of the Workshop on the Economics of Information
Security (WEIS), volume 5, page 56, 2005.

Google LLC. How Google Uses Location Information — Privacy & Terms —
Google, May 2024. URL https://policies.google.com/technologies/
location-data?hl=en-US. Accessed on May 2024.

Apple Inc. Legal - Location Services & Privacy - Apple, May 2024. URL https://
www.apple.com/legal/privacy/data/en/location-services/. Accessed
on May 2024.

Council of the European Union and European Parliament. Regulation (EU)
2016/679 of the European Parliament and of the Council of 27 April 2016 (Gen-
eral Data Protection Regulation). Official Journal of the European Union, 59
(119), May 2016. URL https://op.europa.eu/en/publication-detail/-/
publication/3e485el15-11bd-11e6-ba9a-01laa75ed71al.

Publications Office of the European Union. Regulation (EU) 2022/868 of the
European Parliament and of the Council of 30 May 2022 on European Data Gov-
ernance and Amending Regulation (EU) 2018/1724 (Data Governance Act). Official
Journal of the European Union, pages 1-45, June 2022. ISSN 1977-0677.

315


https://jenson.org/mobile-apps-must-die/
https://jenson.org/mobile-apps-must-die/
https://doi.org/10.1109/SURV.2009.090103
10.1109/SURV.2009.090103
https://doi.org/10.4337/9781784711856.00021
10.4337/9781784711856.00021
https://doi.org/10.5281/zenodo.15564050
10.5281/zenodo.15564050
https://doi.org/10.1145/1179601.1179621
10.1145/1179601.1179621
https://policies.google.com/technologies/location-data?hl=en-US
https://policies.google.com/technologies/location-data?hl=en-US
https://www.apple.com/legal/privacy/data/en/location-services/
https://www.apple.com/legal/privacy/data/en/location-services/
https://op.europa.eu/en/publication-detail/-/publication/3e485e15-11bd-11e6-ba9a-01aa75ed71a1
https://op.europa.eu/en/publication-detail/-/publication/3e485e15-11bd-11e6-ba9a-01aa75ed71a1

316

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Ankit Guptal. Indoor Positioning and Navigation System Market, by
Component, by Technology by Platform, Forecast to 2032. Tech-
nical Report MRFR/ICT/1243-CR, Market Research Future, October
2018. URL https://www.marketresearchfuture.com/reports/
indoor-positioning-navigation-system-market-1775.

Grand View Research Inc. Indoor Positioning And Navigation Market Size,
Share, & Trends Analysis Report By Component, By Technology, By Applica-
tion, By End-use, By Region, And Segment Forecasts, 2024 - 2030. Technical Re-
port GVR-4-68040-384-4, 2024. URL https://www.grandviewresearch. com/
industry-analysis/indoor-positioning-navigation-market-report.

MarketsandMarkets Research Pvt. Ltd. Indoor Location Market Size,
Share, Growth Analysis, By Offering, Technology, Application, Vertical
and Region, Global Forecast to 2029. Technical Report TC 2878, Au-
gust 2024. URL https://www.marketsandmarkets.com/Market-Reports/
indoor-location-market-989.html.

Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Ap-
pleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino
da Silva Santos, Philip E. Bourne, Jildau Bouwman, Anthony J. Brookes, Tim
Clark, Merce Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo,
Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair J.G. Gray, Paul Groth, Car-
ole Goble, Jeffrey S. Grethe, Peter A.C Heringa, Jaap and’t Hoen, Rob Hooft,
Tobias Kuhn, Ruben Kok, Joost Kok, Scott J. Lusher, Maryann E. Martone, Albert
Mons, Abel L. Packer, Bengt Persson, Philippe Rocca-Serra, Marco Roos, Rene
van Schaik, Susanna-Assunta Sansone, Erik Schultes, Thierry Sengstag, Ted Slater,
George Strawn, Morris A. Swertz, Mark Thompson, Johan van der Lei, Erik van
Mulligen, Jan Velterop, Andra Waagmeester, Peter Wittenburg, Katherine Wolsten-
croft, Jun Zhao, and Barend Mons. The FAIR Guiding Principles for Scientific
Data Management and Stewardship. Scientific Data, 3(1):160018, March 2016.
doi: 10.1038/sdata.2016.18.

Ivana Ivanova, Ryan Keenan, Christopher Marshall, Lori Mancell, Eldar Rubinov,
Ryan Ruddick, Nicholas Brown, and Graeme Kernich. FAIR Data and Metadata:
GNSS Precise Positioning User Perspective. Data Intelligence, 5(1):43—74, March
2023. doi: 10.1162/dint_a_00185.

Publications Office of the European Union. European Digital Mar-
kets Act. Official Journal of the European Union, June 2023.
URL https://op.europa.eu/en/publication-detail/-/publication/
d1lc08elb-c74d-11led-a®5c-0laa75ed71al.

Sandra Heiler. Semantic Interoperability. ACM Computing Surveys (CSUR), 27(2):
271-273, 1995. doi: 10.1145/210376.210392.

Peter Wegner. Interoperability. ACM Computing Surveys (CSUR), 28(1):285-287,
1996. doi: 10.1145/234313.234424.

ISO Central Secretary. Intelligent Transport Systems — Indoor Navigation for
Personal and Vehicle ITS Station —Part 2: Requirements and Specification for Indoor
Maps. Standard ISO 17438-2:2024, International Organization for Standardization,
September 2024. URL https://www.iso.org/standard/67087.html.


https://www.marketresearchfuture.com/reports/indoor-positioning-navigation-system-market-1775
https://www.marketresearchfuture.com/reports/indoor-positioning-navigation-system-market-1775
https://www.grandviewresearch.com/industry-analysis/indoor-positioning-navigation-market-report
https://www.grandviewresearch.com/industry-analysis/indoor-positioning-navigation-market-report
https://www.marketsandmarkets.com/Market-Reports/indoor-location-market-989.html
https://www.marketsandmarkets.com/Market-Reports/indoor-location-market-989.html
https://doi.org/10.1038/sdata.2016.18
10.1038/sdata.2016.18
https://doi.org/10.1162/dint_a_00185
10.1162/dint_a_00185
https://op.europa.eu/en/publication-detail/-/publication/d1c08e1b-c74d-11ed-a05c-01aa75ed71a1
https://op.europa.eu/en/publication-detail/-/publication/d1c08e1b-c74d-11ed-a05c-01aa75ed71a1
https://doi.org/10.1145/210376.210392
10.1145/210376.210392
https://doi.org/10.1145/234313.234424
10.1145/234313.234424
https://www.iso.org/standard/67087.html

BIBLIOGRAPHY 317

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

ISO Central Secretary. Intelligent Transport Systems — Indoor Navigation for
Personal and Vehicle ITS Station — Part 3: Requirements and Specification for Indoor
Positioning Reference Data. Standard ISO 17438-3:2024, International Organization
for Standardization, September 2024. URL https://www.iso.org/standard/
67088 .html.

ISO Central Secretary. Intelligent Transport Systems — Indoor Navigation for
Personal and Vehicle ITS Station — Part 4: Requirements and Specifications for
Interface Between Personal/Vehicle and Central ITS Stations. Standard ISO 17438-
4:2019, International Organization for Standardization, 2019. URL https://www.
iso.org/standard/67089.html.

ISO Central Secretary. Information technology — Real time locating systems —
Test and evaluation of localization and tracking systems. Standard ISO 18305:2016,
International Organization for Standardization, 2016. URL https://www.iso.
org/standard/62090.html.

Pooyan Shams Farahsari, Amirhossein Farahzadi, Javad Rezazadeh, and Alireza
Bagheri. A Survey on Indoor Positioning Systems for IoT-Based Applications.
IEEE Internet of Things Journal, 9(10):7680-7699, 2022. doi: 10.1109/JI0T.
2022.3149048.

Yuejin Deng, Haojun Ai, Zeyu Deng, Wenxiu Gao, and Jianga Shang. An Overview
of Indoor Positioning and Mapping Technology Standards. Standards, 2(2):157-
183, 2022. ISSN 2305-6703. doi: 10.3390/standards2020012.

Francesco Furfari, Antonino Crivello, Paolo Barsocchi, Filippo Palumbo, and
Francesco Potorti. What is next for Indoor Localisation? Taxonomy, protocols,
and patterns for advanced Location Based Services. In Proceedings of the 10th In-
ternational Conference on Indoor Positioning and Indoor Navigation (IPIN 2019),
pages 1-8, 2019. doi: 160.1109/IPIN.2019.8911759.

Francesco Furfari, Antonino Crivello, Paolo Baronti, Paolo Barsocchi, Michele
Girolami, Filippo Palumbo, Darwin Quezada-Gaibor, German M. Mendoza Silva,
and Joaquin Torres-Sospedra. Discovering Location Based Services: A Unified
Approach for Heterogeneous Indoor Localization Systems. Internet of Things, 13:
100334, 2021. doi: 10.1016/j.i0t.2020.100334.

Mohab Aly, Foutse Khomh, Yann-Gaél Guéhéneuc, Hironori Washizaki, and Sou-
maya Yacout. Is Fragmentation a Threat to the Success of the Internet of Things?
IEEE Internet of Things Journal, 6(1):472-487,2019. doi: 10.1109/]I0T.2018.
2863180.

Michael Strasser and Sahin Albayrak. Conceptual Architecture for Self-discovering
in Fragmented Service Systems. In Proceedings of the 7th International Conference
on New Technologies, Mobility and Security (NTMS 2015), pages 1-5,2015. doi: 10.
1109/NTMS.2015.7266479.

Xiansheng Guo, Nirwan Ansari, Lin Li, and Linfu Duan. A Hybrid Positioning
System for Location-Based Services: Design and Implementation. IEEE Commu-
nications Magazine, 58(5):90-96, 2020. doi: 10.1109/MCOM.001.1900737.

Kim H. Veltman. Syntactic and Semantic Interoperability: New Approaches to
Knowledge and the Semantic Web. New Review of Information Networking, 7(1):
159-183, 2001. doi: 10.1080/13614570109516975.


https://www.iso.org/standard/67088.html
https://www.iso.org/standard/67088.html
https://www.iso.org/standard/67089.html
https://www.iso.org/standard/67089.html
https://www.iso.org/standard/62090.html
https://www.iso.org/standard/62090.html
https://doi.org/10.1109/JIOT.2022.3149048
10.1109/JIOT.2022.3149048
https://doi.org/10.1109/JIOT.2022.3149048
10.1109/JIOT.2022.3149048
https://doi.org/10.3390/standards2020012
10.3390/standards2020012
https://doi.org/10.1109/IPIN.2019.8911759
10.1109/IPIN.2019.8911759
https://doi.org/10.1016/j.iot.2020.100334
10.1016/j.iot.2020.100334
https://doi.org/10.1109/JIOT.2018.2863180
10.1109/JIOT.2018.2863180
https://doi.org/10.1109/JIOT.2018.2863180
10.1109/JIOT.2018.2863180
https://doi.org/10.1109/NTMS.2015.7266479
10.1109/NTMS.2015.7266479
https://doi.org/10.1109/NTMS.2015.7266479
10.1109/NTMS.2015.7266479
https://doi.org/10.1109/MCOM.001.1900737
10.1109/MCOM.001.1900737
https://doi.org/10.1080/13614570109516975
10.1080/13614570109516975

318

BIBLIOGRAPHY

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

Altti Tlari Maarala, Xiang Su, and Jukka Riekki. Semantic Reasoning for Context-
Aware Internet of Things Applications. IEEE Internet of Things Journal, 4(2):
461-473,2017. doi: 10.1109/1I0T.2016.2587060.

Maxim Van de Wynckel and Beat Signer. OpenHPS: An Open Source Hybrid
Positioning System. Technical Report WISE-2020-01, Vrije Universiteit Brussel,
2020. doi: 10.48550/ARXIV.2101.05198.

Maxim Van de Wynckel and Beat Signer. Indoor Positioning Using the OpenHPS
Framework. In Proceedings of the 11th International Conference on Indoor Po-
sitioning and Indoor Navigation (IPIN 2021), 2021. doi: 10.1109/IPIN51156.
2021.9662569.

Maxim Van de Wynckel and Beat Signer. OpenHPS: A Modular Framework to
Facilitate the Development of FAIR Positioning Systems. Journal of Open Source
Software, 10(110):8113, June 2025. doi: 10.21105/joss.08113.

Maxim Van de Wynckel and Beat Signer. OpenHPS: Single Floor Fingerprinting
and Trajectory Dataset, May 2021. doi: 10.5281/zenodo.4744380.

Benjamin Vermunicht, Maxim Van de Wynckel, and Beat Signer. 802.11 Man-
agemement Frames From a Public Location, June 2023. doi: 10.5281/zenodo.
8003771.

Nathan Hoebeke, Maxim Van de Wynckel, and Beat Signer. Object Tracking on a
Monopoly Game Board, June 2023. doi: 10.5281/zenodo.7990434.

Maxim Van de Wynckel. Garage Positioning Dataset, 2025. doi: 10.34740/
KAGGLE/DS/6654647.

Maxim Van de Wynckel and Beat Signer. Sphero Dead Reckoning and CV Tracking
Dataset, 2025. doi: 10.34740/KAGGLE/DS/6760212.

Maxim Van de Wynckel and Beat Signer. POSO: A Generic Positioning System
Ontology. In Proceedings of the 21st International Semantic Web Conference (ISWC
2022), Virtual conference, 2022. doi: 10.1007/978-3-031-19433-7_14.

Maxim Van de Wynckel, Isaac Valadez, and Beat Signer. FidMark: A Fiducial
Marker Ontology for Semantically Describing Visual Markers. In Proceedings of
The Semantic Web (ESWC 2024), 2024. doi: 10.1007/978-3-031-60635-9_14.

Maxim Van de Wynckel and Beat Signer. Discoverable and Interoperable Augmen-
ted Reality Environments Through Solid Pods. In Proceedings of the 2nd Solid
Symposium (SoSy 2024), volume 3947, May 2024. URL https://ceur-ws.org/
Vol-3947/short2.pdf.

Maxim Van de Wynckel and Beat Signer. A Solid-based Architecture for De-
centralised Interoperable Location Data. In Proceedings of the 12th International
Conference on Indoor Positioning and Indoor Navigation (IPIN 2022), CEUR Work-
shop Proceedings, volume 3248, 2022. URL https://ceur-ws.org/Vol-3248/
paperll.pdf.

Yoshi Malaise, Maxim Van de Wynckel, and Beat Signer. Towards Distributed
Intelligent Tutoring Systems Based on User-owned Progress and Performance Data.
In Proceedings of the 2nd Solid Symposium (SoSy 2024), volume 3947, May 2024.
URL https://ceur-ws.org/Vol-3947/short3.pdf.


https://doi.org/10.1109/JIOT.2016.2587060
10.1109/JIOT.2016.2587060
https://doi.org/10.48550/ARXIV.2101.05198
10.48550/ARXIV.2101.05198
https://doi.org/10.1109/IPIN51156.2021.9662569
10.1109/IPIN51156.2021.9662569
https://doi.org/10.1109/IPIN51156.2021.9662569
10.1109/IPIN51156.2021.9662569
https://doi.org/10.21105/joss.08113
10.21105/joss.08113
https://doi.org/10.5281/zenodo.4744380
10.5281/zenodo.4744380
https://doi.org/10.5281/zenodo.8003771
10.5281/zenodo.8003771
https://doi.org/10.5281/zenodo.8003771
10.5281/zenodo.8003771
https://doi.org/10.5281/zenodo.7990434
10.5281/zenodo.7990434
https://doi.org/10.34740/KAGGLE/DS/6654647
10.34740/KAGGLE/DS/6654647
https://doi.org/10.34740/KAGGLE/DS/6654647
10.34740/KAGGLE/DS/6654647
https://doi.org/10.34740/KAGGLE/DS/6760212
10.34740/KAGGLE/DS/6760212
https://doi.org/10.1007/978-3-031-19433-7_14
10.1007/978-3-031-19433-7_14
https://doi.org/10.1007/978-3-031-60635-9_14
10.1007/978-3-031-60635-9_14
https://ceur-ws.org/Vol-3947/short2.pdf
https://ceur-ws.org/Vol-3947/short2.pdf
https://ceur-ws.org/Vol-3248/paper11.pdf
https://ceur-ws.org/Vol-3248/paper11.pdf
https://ceur-ws.org/Vol-3947/short3.pdf

BIBLIOGRAPHY 319

[45]

[40]

[47]

(48]

[49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]

Maxim Van de Wynckel and Beat Signer. SemBeacon: A Semantic Proximity
Beacon Solution for Discovering and Detecting the Position of Physical Things. In
Proceedings of the 13th International Conference on the Internet of Things (IoT
2023),2023. doi: 10.1145/3627050.3627060.

ISO Central Secretary. Geographic information — Positioning Services. Stand-
ard ISO 19116:2019, International Organization for Standardization, 2019. URL
https://www.iso.org/standard/70882.html.

Bernhard Hofmann-Wellenhof, Herbert Lichtenegger, and Elmar Wasle. GNSS-
Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. Springer
Science & Business Media, 2007. ISBN 9783211730171.

Goran M. Djuknic and Robert E. Richton. Geolocation and Assisted GPS. Computer,
34(2), 2001. doi: 10.1109/2.901174.

John Krumm, Steve Harris, Brian Meyers, Barry Brumitt, Michael Hale, and Steve
Shafer. Multi-Camera Multi-Person Tracking for EasyLiving. In Proceedings of
the 3rd IEEE International Workshop on Visual Surveillance, pages 3—10, 2000.
doi: 10.1109/VS.2000.856852.

Shinya Sumikura, Mikiya Shibuya, and Ken Sakurada. OpenVSLAM: A Versatile
Visual SLAM Framework. In Proceedings of MM 2019, International Conference
on Multimedia, Nice, France, October 2019. doi: 10.1145/3343031.3350539.

Christina Gsaxner, Jianning Li, Antonio Pepe, Dieter Schmalstieg, and Jan
Egger. Inside-out Instrument Tracking for Surgical Navigation in Augmented
Reality. In Proceedings of the 27th ACM Symposium on Virtual Reality Soft-
ware and Technology (VRST 2021), pages 1-11. ACM New York, NY, USA, 2021.
doi: 10.1145/3489849.3489863.

Kai-Tai Song and Yueh Chuan Chang. Design and Implementation of a Pose
Estimation System Based on Visual Fiducial Features and Multiple Cameras. In
Proceedings of the 2018 International Automatic Control Conference (CACS 2018),
pages 1-6. IEEE, 2018. doi: 10.1109/CACS.2018.8606773.

Robert Harle. A Survey of Indoor Inertial Positioning Systems for Pedestrians.
IEEE Communications Surveys & Tutorials, 15(3):1281-1293, 2013. doi: 10.
1109/SURV.2012.121912.00075.

Hui Liu, Houshang Darabi, Pat Banerjee, and Jing Liu. Survey of Wireless Indoor
Positioning Techniques and Systems. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 37(6):1067-1080, 2007. doi: 10.
1109/TSMCC.2007.905750.

Piotr Mirowski, Tin Kam Ho, Saehoon Yi, and Michael MacDonald. SignalSLAM:
Simultaneous Localization and Mapping with Mixed WiFi, Bluetooth, LTE and
Magnetic Signals. In Proceedings of the 4th International Conference on Indoor
Positioning and Indoor Navigation, Montbeliard-Belfort, France, October 2013.
doi: 10.1109/IPIN.2013.6817853.

Zhenghua Chen, Han Zou, Hao Jiang, Qingchang Zhu, Yeng Soh, and Lihua Xie.
Fusion of WiFi, Smartphone Sensors and Landmarks Using the Kalman Filter for
Indoor Localization. Sensors, 15(1), January 2015. doi: 10.3390/s150100715.


https://doi.org/10.1145/3627050.3627060
10.1145/3627050.3627060
https://www.iso.org/standard/70882.html
https://doi.org/10.1109/2.901174
10.1109/2.901174
https://doi.org/10.1109/VS.2000.856852
10.1109/VS.2000.856852
https://doi.org/10.1145/3343031.3350539
10.1145/3343031.3350539
https://doi.org/10.1145/3489849.3489863
10.1145/3489849.3489863
https://doi.org/10.1109/CACS.2018.8606773
10.1109/CACS.2018.8606773
https://doi.org/10.1109/SURV.2012.121912.00075
10.1109/SURV.2012.121912.00075
https://doi.org/10.1109/SURV.2012.121912.00075
10.1109/SURV.2012.121912.00075
https://doi.org/10.1109/TSMCC.2007.905750
10.1109/TSMCC.2007.905750
https://doi.org/10.1109/TSMCC.2007.905750
10.1109/TSMCC.2007.905750
https://doi.org/10.1109/IPIN.2013.6817853
10.1109/IPIN.2013.6817853
https://doi.org/10.3390/s150100715
10.3390/s150100715

320

BIBLIOGRAPHY

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Anja Bekkelien and Michel Deriaz. Hybrid Positioning Framework for Mobile
Devices. In Proceedings of UPINLBS 2012, International Conference on Ubiquitous
Positioning, Indoor Navigation, and Location Based Service, Helsinki, Finland,
October 2012. doi: 10.1109/UPINLBS.2012.6409759.

Massimo Ficco and Stefano Russo. A Hybrid Positioning System for Technology-
independent Location-aware Computing. Software: Practice and Experience, 39
(13), September 2009. doi: 10.1002/spe.919.

Sean J. Barbeau, Miguel A. Labrador, Philip L. Winters, Rafael Pérez, and Nev-
ine Labib Georggi. Location API 2.0 for J2ME: A New Standard in Location
for Java-enabled Mobile Phones. Computer Communications, 31(6), April 2008.
doi: 10.1016/j.comcom.2008.01.045.

Philipp M. Scholl, Stefan Kohlbrecher, Vinay Sachidananda, and Kristof Van Laer-
hoven. Fast Indoor Radio-Map Building for RSSI-based Localization Systems. In
Proceedings of the International Conference on Networked Sensing (INSS 2012),
Antwerp, Belgium, June 2012. doi: 10.11089/INSS.2012.6240574.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. ROS: An Open-Source Robot Operating System.
In Proceedings of the International Workshop on Open Source Software, Kobe,
Japan, May 2009.

Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finocchio,
Andrew Blake, Mat Cook, and Richard Moore. Real-time Human Pose Recognition
in Parts From Single Depth Images. Commun. ACM, 56(1):116—124, January 2013.
doi: 10.1145/2398356.2398381.

Jochen Schiller and Agnes Voisard. Location-based Services. Elsevier, 2004.
doi: 10.1016/B978-1-55860-929-7.X5000-6.

Andrei Popescu. Geolocation API Specification 2nd Edition. Specification, World
Wide Web Consortium (W3C), November 2016. URL https://www.w3.0org/TR/
geolocation-API/.

B. Louis Decker. World Geodetic System 1984. In Proceedings to the Fourth
International Geodetic Symposium on Satellite Positioning, Austin, USA, April
1986.

Cristiano di Flora, Massimo Ficco, Stefano Russo, and Vincenzo Vecchio. Indoor
and Outdoor Location Based Services for Portable Wireless Devices. In Proceedings
of the 25th IEEE International Conference on Distributed Computing Systems Work-
shops (SDCS 2005), Columbus, USA, June 2005. doi: 10.1109/ICDCSW.2005.77.

Joel Luis Carbonera, Sandro Rama Fiorini, Edson Prestes, Vitor AM Jorge, Mara
Abel, Raj Madhavan, Angela Locoro, Paulo Gongalves, Tamds Haidegger, Marcos E
Barreto, et al. Defining Positioning in a Core Ontology for Robotics. In Proceed-
ings of IROS 2013, IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1867-1872, 2013. doi: 10.1109/IR0S.2013.6696603.

Madhawa Perera, Armin Haller, Sergio José Rodriguez Méndez, and Matt Adcock.
HDGI: A Human Device Gesture Interaction Ontology for the Internet of Things.
In Proceedings of the 19th International Semantic Web Conference (ISWC 2020),
pages 111-126, 2020. doi: 10.1007/978-3-030-62466-8_8.


https://doi.org/10.1109/UPINLBS.2012.6409759
10.1109/UPINLBS.2012.6409759
https://doi.org/10.1002/spe.919
10.1002/spe.919
https://doi.org/10.1016/j.comcom.2008.01.045
10.1016/j.comcom.2008.01.045
https://doi.org/10.1109/INSS.2012.6240574
10.1109/INSS.2012.6240574
https://doi.org/10.1145/2398356.2398381
10.1145/2398356.2398381
https://doi.org/10.1016/B978-1-55860-929-7.X5000-6
10.1016/B978-1-55860-929-7.X5000-6
https://www.w3.org/TR/geolocation-API/
https://www.w3.org/TR/geolocation-API/
https://doi.org/10.1109/ICDCSW.2005.77
10.1109/ICDCSW.2005.77
https://doi.org/10.1109/IROS.2013.6696603
10.1109/IROS.2013.6696603
https://doi.org/10.1007/978-3-030-62466-8_8
10.1007/978-3-030-62466-8_8

BIBLIOGRAPHY 321

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

[81]

Hashim A. Hashim. Special Orthogonal Group SO(3), Euler Angles, Angle-axis,
Rodriguez Vector and Unit-Quaternion: Overview, Mapping and Challenges, 2021.

ISO Central Secretary. Information Technology — Database Languages — SQL
Multimedia and Application Packages — Part 3: Spatial. Standard ISO/IEC 13249-
3:2016, International Organization for Standardization, Geneva, Switzerland, 2016.
URL https://www.iso.org/standard/60343.html.

James Diebel. Representing Attitude: Euler Angles, Unit Quaternions, and Rotation
Vectors. Matrix, 58(15-16):1-35, 2006. URL https://api.semanticscholar.
org/CorpusID:16450526.

Fabian Holzke, Johann-P. Wolff, and Christian Haubelt. Improving Pedestrian Dead
Reckoning Using Likely Paths and Backtracking for Mobile Devices. In Proceedings
of the International Workshop on Pervasive Smart Living Spaces (PerLS 2019),
Kyoto, Japan, March 2019. doi: 10.1109/PERCOMW.2019.8730734.

Alvaro De-La-Llana-Calvo, José-Luis Lazaro-Galilea, Alfredo Gardel-Vicente,
David Rodriguez-Navarro, Ignacio Bravo-Muiioz, and Felipe Espinosa-Zapata.
Characterization of Multipath Effects in Indoor Positioning Systems by AoA and
PoA Based on Optical Signals. Sensors, 19(4), 2019. doi: 10.3390/s19040917.

Wilson Sakpere, Michael Adeyeye-Oshin, and Nhlanhla BW Mlitwa. A State-of-
the-art Survey of Indoor Positioning and Navigation Systems and Technologies.
South African Computer Journal, 29(3):145-197, 2017.

Janne Haverinen. Utilizing Magnetic Field Based Navigation, August 2014. US
Patent 8,798,924.

Seong-Eun Kim, Yong Kim, Jihyun Yoon, and Eung Sun Kim. Indoor Positioning
System Using Geomagnetic Anomalies for Smartphones. In Proceedings of the
2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN
2012), pages 1-5, 2012. doi: 10.1109/IPIN.2012.6418947.

Sudeep Pasricha, Viney Ugave, Charles W Anderson, and Qi Han. LearnLoc: A
Framework for Smart Indoor Localization with Embedded Mobile Devices. In
Proceedings of the International Conference on Hardware/Software Codesign and
System Synthesis (CODES 2015), Amsterdam, Netherlands, October 2015. doi: 10.
1109/CODESISSS.2015.7331366.

Marvelmind Robotics. Typical Costs of Indoor Positioning System, March 2024.
URL https://marvelmind.com/download/costs/.

Kris Luyten and Karin Coninx. Imogl: Take Control Over a Context-aware Elec-
tronic Mobile Guide for Museums. In Proceedings of the Workshop on HCI in
Mobile Guides, in conjunction with 6th International Conference on Human Com-
puter Interaction with Mobile Devices and Services. Citeseer, 2004.

Ching-Sheng Wang, Ding-Jung Chiang, and Yi-Yun Ho. 3D Augmented Reality Mo-
bile Navigation System Supporting Indoor Positioning Function. In Proceedings of
the 2012 IEEE International Conference on Computational Intelligence and Cyber-
netics (CyberneticsCom), pages 64-68, 2012. doi: 10.1109/CyberneticsCom.

2012.6381618.

Marius Huguet, Canan Pehlivan, Francois Ballereau, Antoine Dodane-Loyenet,
Franck Fontanili, Thierry Garaix, Youri Yordanov, Vincent Augusto, Karim


https://www.iso.org/standard/60343.html
https://api.semanticscholar.org/CorpusID:16450526
https://api.semanticscholar.org/CorpusID:16450526
https://doi.org/10.1109/PERCOMW.2019.8730734
10.1109/PERCOMW.2019.8730734
https://doi.org/10.3390/s19040917
10.3390/s19040917
https://doi.org/10.1109/IPIN.2012.6418947
10.1109/IPIN.2012.6418947
https://doi.org/10.1109/CODESISSS.2015.7331366
10.1109/CODESISSS.2015.7331366
https://doi.org/10.1109/CODESISSS.2015.7331366
10.1109/CODESISSS.2015.7331366
https://marvelmind.com/download/costs/
https://doi.org/10.1109/CyberneticsCom.2012.6381618
10.1109/CyberneticsCom.2012.6381618
https://doi.org/10.1109/CyberneticsCom.2012.6381618
10.1109/CyberneticsCom.2012.6381618

322

BIBLIOGRAPHY

[82]

[83]

[84]

[85]

[86]

[87]

[88]

(89]

[90]

[91]

[92]

[93]

Tazarourte, and Abdesslam Redjaline. Indoor Positioning Systems Provide In-
sight Into Emergency Department Systems Enabling Proposal of Designs to Im-
prove Workflow. Communications Medicine, 5(1):72, Mar 2025. ISSN 2730-
664X. doi: 10.1038/s43856-025-00793-y. URL https://doi.org/10.
1038/s43856-025-00793-y.

Maged N. Kamel Boulos and Geoff Berry. Real-time Locating Systems (RTLS) in
Healthcare: A Condensed Primer. International Journal of Health Geographics, 11
(1):25, Jun 2012. doi: 10.1186/1476-072X-11-25.

Laura Vaccari, Antonio Maria Coruzzolo, Francesco Lolli, and Miguel Afonso
Sellitto. Indoor Positioning Systems in Logistics: A Review. Logistics, 8(4), 2024.
doi: 10.3390/1ogistics8040126.

Hyunwoo Hwangbo, Jonghyuk Kim, Zoonky Lee, and Soyean Kim. Store Layout
Optimization Using Indoor Positioning System. International Journal of Distributed
Sensor Networks, 13(2), 2017. doi: 10.1177/1550147717692585.

Sony. Nimway from Sony - Your Smart Office Solution, 2025. URL https:
//www . sonynetworkcom. com/nimway. Accessed on February 2025.

Ling Pei, Ruizhi Chen, Yuewei Chen, Helena Leppikoski, and Arto Perttula.
Indoor/Outdoor Seamless Positioning Technologies Integrated on Smart Phone.
In Proceedings of the First International Conference on Advances in Satellite
and Space Communications (SPACOMM 2019), pages 141-145. 1IEEE, 2009.
doi: 10.1109/SPACOMNM. 2009.12.

Naohiko Kohtake, Shusuke Morimoto, Satoshi Kogure, and Dinesh Manandhar.
Indoor and Outdoor Seamless Positioning Using Indoor Messaging System and
GPS. In Proceedings of the International Conference on Indoor Positioning and
Indoor Navigation (IPIN 2011), Guimardes, Portugal, pages 21-23, 2011.

Danijel Cabarkapa, Ivana Gruji¢, and Petar Pavlovi¢. Comparative Analysis of
the Bluetooth Low-Energy Indoor Positioning Systems. In Proceedings of the
12th International Conference on Telecommunication in Modern Satellite, Cable
and Broadcasting Services (TELSIKS 2015), 2015. doi: 10.1109/TELSKS.2015.
7357741.

Cole Gleason et al. Crowdsourcing the Installation and Maintenance of Indoor
Localization Infrastructure to Support Blind Navigation. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(1), 2018. doi: 10.
1145/3191741.

Kang Eun Jeon et al. BLE Beacons for Internet of Things Applications: Sur-
vey, Challenges, and Opportunities. IEEE Internet of Things Journal, 5(2), 2018.
doi: 10.1109/JI0T.2017.2788449.

Bluetooth SIG Inc. Bluetooth Core Specification v5.1. Specification, Bluetooth
SIG Inc., 2020. URL https://bluetooth.com/specifications/specs/
core-specification-5-1/.

Maeve Kennedy, Petros Spachos, and Graham W. Taylor. BLE Beacon Indoor
Localization Dataset, 2019. doi: 10.5683/SP2/UTZTFT.

Chun Yang and Andrey Soloviev. Positioning with Mixed Signals of Opportunity
Subject to Multipath and Clock Errors in Urban Mobile Fading Environments. In


https://doi.org/10.1038/s43856-025-00793-y
10.1038/s43856-025-00793-y
https://doi.org/10.1038/s43856-025-00793-y
https://doi.org/10.1038/s43856-025-00793-y
https://doi.org/10.1186/1476-072X-11-25
10.1186/1476-072X-11-25
https://doi.org/10.3390/logistics8040126
10.3390/logistics8040126
https://doi.org/10.1177/1550147717692585
10.1177/1550147717692585
https://www.sonynetworkcom.com/nimway
https://www.sonynetworkcom.com/nimway
https://doi.org/10.1109/SPACOMM.2009.12
10.1109/SPACOMM.2009.12
https://doi.org/10.1109/TELSKS.2015.7357741
10.1109/TELSKS.2015.7357741
https://doi.org/10.1109/TELSKS.2015.7357741
10.1109/TELSKS.2015.7357741
https://doi.org/10.1145/3191741
10.1145/3191741
https://doi.org/10.1145/3191741
10.1145/3191741
https://doi.org/10.1109/JIOT.2017.2788449
10.1109/JIOT.2017.2788449
https://bluetooth.com/specifications/specs/core-specification-5-1/
https://bluetooth.com/specifications/specs/core-specification-5-1/
https://doi.org/10.5683/SP2/UTZTFT
10.5683/SP2/UTZTFT

BIBLIOGRAPHY 323

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

Proceedings of the 31st International Technical Meeting of the Satellite Division of
The Institute of Navigation (ION GNSS+ 2018), pages 223-243, 2018. doi: 10.
33012/2018.15833.

Martin Azizyan, Ionut Constandache, and Romit Roy Choudhury. SurroundSense:
Mobile Phone Localization via Ambience Fingerprinting. In Proceedings of the 15th
Annual International Conference on Mobile Computing and Networking (MobiCom
2009), page 261-272. ACM New York, NY, USA, 2009. doi: 10.1145/1614320.
1614350.

Wendong Xiao, Wei Ni, and Yue Khing Toh. Integrated Wi-Fi Fingerprinting and
Inertial Sensing for Indoor Positioning. In Proceedings of the 2nd International
Conference on Indoor Positioning and Indoor Navigation (IPIN 2011), Guimaraes,
Portugal, September 2011. doi: 10.1109/IPIN.2011.6071921.

Xuesheng Peng, Ruizhi Chen, Kegen Yu, Feng Ye, and Weixing Xue. An Improved
Weighted K-nearest Neighbor Algorithm for Indoor Localization. Electronics, 9
(12):2117, 2020. doi: 10.3390/electronics9122117.

Feng Qin, Tao Zuo, and Xing Wang. CCpos: WiFi Fingerprint Indoor Position-
ing System Based on CDAE-CNN. Sensors, 21(4):1114, 2021. doi: 10.3390/
s21041114.

Alwin Poulose, Jihun Kim, and Dong Seog Han. Indoor Localization with
Smartphones: Magnetometer Calibration. In Proceedings of the IEEE Inter-
national Conference on Consumer Electronics (ICCE 2019), pages 1-3, 2019.
doi: 10.1109/ICCE.2019.8661986.

Maxim Van de Wynckel. Indoor Navigation by Centralized Track-
ing. Master’s thesis, Vrije Universiteit Brussel, Elsene, Belgium, June
2019. Available at https://researchportal.vub.be/en/studentTheses/
indoor-navigation-by-centralized-tracking.

Stephane Beauregard and Harald Haas. Pedestrian Dead Reckoning: A Basis
for Personal Positioning. In Proceedings of the 3rd Workshop on Positioning,
Navigation and Communication (WPNC 2006), Merida City, Mexico, October 2006.
doi: 10.1109/ICEEE.2011.6106608.

J.A Cooney, W.L Xu, and G Bright. Visual Dead-reckoning for Motion Control of
a Mecanum-wheeled Mobile Robot. Mechatronics, 14(6):623-637, 2004. doi: 10.
1016/j .mechatronics.2003.09.002.

Wilfried Elmenreich. An Introduction to Sensor Fusion. Technical Report 47/2001,
Vienna University of Technology, November 2002.

Walter T Higgins. A Comparison of Complementary and Kalman Filtering. /EEE
Transactions on Aerospace and Electronic Systems, AES-11(3):321-325, 1975.
doi: 10.1109/TAES.1975.308081.

Xudong Song, Xiaochen Fan, Xiangjian He, Chaocan Xiang, Qianwen Ye, Xi-
ang Huang, Gengfa Fang, Liming Luke Chen, Jing Qin, and Zumin Wang.
CNNLoc: Deep-Learning Based Indoor Localization with WiFi Fingerprinting.
In Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Com-
puting, Advanced & Trusted Computing, Scalable Computing & Communica-
tions, Cloud & Big Data Computing, Internet of People and Smart City Innova-


https://doi.org/10.33012/2018.15833
10.33012/2018.15833
https://doi.org/10.33012/2018.15833
10.33012/2018.15833
https://doi.org/10.1145/1614320.1614350
10.1145/1614320.1614350
https://doi.org/10.1145/1614320.1614350
10.1145/1614320.1614350
https://doi.org/10.1109/IPIN.2011.6071921
10.1109/IPIN.2011.6071921
https://doi.org/10.3390/electronics9122117
10.3390/electronics9122117
https://doi.org/10.3390/s21041114
10.3390/s21041114
https://doi.org/10.3390/s21041114
10.3390/s21041114
https://doi.org/10.1109/ICCE.2019.8661986
10.1109/ICCE.2019.8661986
https://researchportal.vub.be/en/studentTheses/indoor-navigation-by-centralized-tracking
https://researchportal.vub.be/en/studentTheses/indoor-navigation-by-centralized-tracking
https://doi.org/10.1109/ICEEE.2011.6106608
10.1109/ICEEE.2011.6106608
https://doi.org/10.1016/j.mechatronics.2003.09.002
10.1016/j.mechatronics.2003.09.002
https://doi.org/10.1016/j.mechatronics.2003.09.002
10.1016/j.mechatronics.2003.09.002
https://doi.org/10.1109/TAES.1975.308081
10.1109/TAES.1975.308081

324

BIBLIOGRAPHY

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

tion (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 589-595. IEEE,
2019. doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00139.

Martin Brossard, Axel Barrau, and Silvére Bonnabel. AI-IMU Dead-Reckoning.
IEEE Transactions on Intelligent Vehicles, 5(4):585-595, 2020. doi: 10.1109/
TIV.2020.2980758.

Rahul G Krishnan, Uri Shalit, and David Sontag. Deep Kalman Filters. arXiv
preprint arXiv:1511.05121, 2015. doi: 10.48550/arXiv.1511.05121.

Nancy Ide and James Pustejovsky. What Does Interoperability Mean, Any-
way? Toward an Operational Definition of Interoperability for Language Tech-
nology. In Proceedings of the Second International Conference on Global In-
teroperability for Language Resources. Hong Kong, China, 2010. URL https:
//api.semanticscholar.org/CorpusID:11018727.

Wajahat Ali Khan, Magbool Hussain, Khalid Latif, Muhammad Afzal, Farooq
Ahmad, and Sungyoung Lee. Process Interoperability in Healthcare Systems With
Dynamic Semantic Web Services. Computing, 95:837-862, 2013. doi: 10.1007/
s00607-012-0239-3.

Elivaldo Lozer Fracalossi Ribeiro, Erasmo Leite Monteiro, Daniela Barreiro Claro,
and Rita Suzana Pitangueira Maciel. A Conceptual Framework for Pragmatic Inter-
operability. In Proceedings of the 15th Brazilian Symposium on Information Systems
(SBSI2019), SBSI ’19, New York, NY, USA, 2019. Association for Computing Ma-
chinery. ISBN 9781450372374. doi: 10.1145/3330204.3330246.

Alek Radjenovic and Richard F. Paige. Behavioural Interoperability to Sup-
port Model-Driven Systems Integration. In Proceedings of the First Interna-
tional Workshop on Model-Driven Interoperability (MDI 2010), MDI 10, page
98-107, New York, NY, USA, 2010. Association for Computing Machinery. ISBN
9781450302920. doi: 10.1145/1866272.1866285.

Jochen Schiller and Agneés Voisard. LBS Interoperability Through Standards.
In Location-based Services, pages 149-172. Elsevier, 2004. doi: 10.1016/
B978-1-55860-929-7.X5000-6.

Marwa Mabrouk, Tom Bychowski, Jonathan Williams, Harry Niedzwiadek, Yaser
Bishr, Jean-Francois Gaillet, Neil Crisp, Will Wilbrink, Mike Horhammer, Greg
Roy, Serge Margoulies, Gil Fuchs, and Geoffrey Hendrey. OpenGIS Location
Services (OpenLS): Core Services. Technical Report OGC 07-074, Open Geo-
spatial Consortium, September 2008. URL https://portal.ogc.org/files/
?artifact_id=22122.

Jong-Woo Kim, Ju-Yeon Kim, Hyun-Suk Hwang, Sung-Seok Park, Chang-Soo Kim,
and Sung-gi Park. The Semantic Web Approach in Location Based Services. In
Proceedings of Computational Science and Its Applications (ICCSA 2005), pages
127-136. Springer Berlin Heidelberg, 2005. doi: 10.1007/11424826_14.

Guowei Cai, Ben M. Chen, and Tong Heng Lee. Coordinate Systems and Trans-
formations, pages 23-34. Springer London, London, 2011. doi: 10.1007/
978-0-85729-635-1_2.

Howard Butler, Martin Daly, Allan Doyle, Sean Gillies, Tim Schaub, and Chris-
topher Schmidt. GeoJSON, 2014. URL https://geojson.org. Accessed on
January 2020.


https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00139
10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00139
https://doi.org/10.1109/TIV.2020.2980758
10.1109/TIV.2020.2980758
https://doi.org/10.1109/TIV.2020.2980758
10.1109/TIV.2020.2980758
https://doi.org/10.48550/arXiv.1511.05121
10.48550/arXiv.1511.05121
https://api.semanticscholar.org/CorpusID:11018727
https://api.semanticscholar.org/CorpusID:11018727
https://doi.org/10.1007/s00607-012-0239-3
10.1007/s00607-012-0239-3
https://doi.org/10.1007/s00607-012-0239-3
10.1007/s00607-012-0239-3
https://doi.org/10.1145/3330204.3330246
10.1145/3330204.3330246
https://doi.org/10.1145/1866272.1866285
10.1145/1866272.1866285
https://doi.org/10.1016/B978-1-55860-929-7.X5000-6
10.1016/B978-1-55860-929-7.X5000-6
https://doi.org/10.1016/B978-1-55860-929-7.X5000-6
10.1016/B978-1-55860-929-7.X5000-6
https://portal.ogc.org/files/?artifact_id=22122
https://portal.ogc.org/files/?artifact_id=22122
https://doi.org/10.1007/11424826_14
10.1007/11424826_14
https://doi.org/10.1007/978-0-85729-635-1_2
10.1007/978-0-85729-635-1_2
https://doi.org/10.1007/978-0-85729-635-1_2
10.1007/978-0-85729-635-1_2
https://geojson.org

BIBLIOGRAPHY 325

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

ISO Central Secretary. Geographic Information—Well-known Text Represent-
ation of Coordinate Reference Systems. Standard ISO 19162:2019, Interna-
tional Organization for Standardization, Geneva, Switzerland, July 2019. URL
https://www.iso.org/standard/76496.html.

ISO Central Secretary. Geographic information —- Geography Markup Language
(GML). Standard ISO 19136-1:2019, International Organization for Standardiza-
tion, 2020. URL https://www.iso.org/standard/75676.html.

Roberto Minerva, Gyu Myoung Lee, and Noel Crespi. Digital Twin in the IoT
Context: A Survey on Technical Features, Scenarios, and Architectural Models.
Proceedings of IEEE, 108(10):1785-1824, 2020. doi: 16.1189/JPR0OC.20260.
2998530.

Hubert Lehner and Lionel Dorffner. Digital geoIwin Vienna: Towards a Digital Twin
City as Geodata Hub. Journal of Photogrammetry, Remote Sensing and Geoinform-
ation Science, 88(1):63-75, February 2020. doi: 10.1007/s41064-020-00101-4.

OGC Community Standard Apple Inc. Indoor Mapping Data Format. Technical
report, Open Geospatial Consortium (OGC), 2021. URL https://docs.ogc.
org/cs/20-094/index.html.

Hae-Kyong Kang and Ki-Joune Li. A Standard Indoor Spatial Data Model—OGC
IndoorGML and Implementation Approaches. ISPRS International Journal of Geo-
Information, 6(4), 2017. doi: 10.3390/1jgi6040116.

Mark Masse. REST API Design Rulebook: Designing Consistent RESTful Web
Service Interfaces. O’Reilly Media, Inc., 2011. ISBN 9781449319915.

James Snell, Doug Tidwell, and Pavel Kulchenko. Programming Web Services with
SOAP: Building Distributed Applications. ”O’Reilly Media, Inc.”, 2001. ISBN
978-0596000950.

Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, 284(5):34-43, 2001.

Stuart Weibel, John Kunze, Carl Lagoze, and Misha Wolf. Dublin Core Metadata
for Resource Discovery. Technical report, The Internet Society, 1998.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and Complexity
of SPARQL. ACM Trans. Database Syst., 34(3), September 2009. doi: 10.1145/
1567274.1567278.

Olaf Hartig. Zero-Knowledge Query Planning for an Iterator Implementation of Link
Traversal Based Query Execution. In Proceedings of The Semantic Web: Research
and Applications (ESWC 2011), pages 154—169. Springer Berlin Heidelberg, 2011.

Matthew Perry, John Herring, Nicholas J. Car, Timo Homburg, Simon J.D. Cox,
Matthias Bonduel, and Frans Knibbe. OGC GeoSPARQL: A Geographic Query
Language for RDF Data: GeoSPARQL 1.1 Draft. Technical report, Open Geo-
spatial Consortium (OGC), 2021. URL https://opengeospatial.github.io/
ogc-geosparql/geosparqlll/spec.html.

Kashif Rabbani, Matteo Lissandrini, and Katja Hose. SHACL and ShEx in the
Wild: A Community Survey on Validating Shapes Generation and Adoption. In

Companion Proceedings of the Web Conference (WWW 2022), page 260-263. ACM
New York, NY, USA, 2022. doi: 10.1145/3487553.3524253.


https://www.iso.org/standard/76496.html
https://www.iso.org/standard/75676.html
https://doi.org/10.1109/JPROC.2020.2998530
10.1109/JPROC.2020.2998530
https://doi.org/10.1109/JPROC.2020.2998530
10.1109/JPROC.2020.2998530
https://doi.org/10.1007/s41064-020-00101-4
10.1007/s41064-020-00101-4
https://docs.ogc.org/cs/20-094/index.html
https://docs.ogc.org/cs/20-094/index.html
https://doi.org/10.3390/ijgi6040116
10.3390/ijgi6040116
https://doi.org/10.1145/1567274.1567278
10.1145/1567274.1567278
https://doi.org/10.1145/1567274.1567278
10.1145/1567274.1567278
https://opengeospatial.github.io/ogc-geosparql/geosparql11/spec.html
https://opengeospatial.github.io/ogc-geosparql/geosparql11/spec.html
https://doi.org/10.1145/3487553.3524253
10.1145/3487553.3524253

326

BIBLIOGRAPHY

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

Krzysztof Janowicz and Michael Compton. The Stimulus-Sensor-Observation
Ontology Design Pattern and its Integration Into the Semantic Sensor Net-
work Ontology. In Proceedings of the 3rd International Workshop on Semantic
Sensor Networks (SSN 2010), volume 668, 2010. URL https://ceur-ws.org/
Vol-668/paperl2.pdf.

Krzysztof Janowicz, Armin Haller, Simon JD Cox, Danh Le Phuoc, and Maxime
Lefrancois. SOSA: A Lightweight Ontology for Sensors, Observations, Samples,
and Actuators. Journal of Web Semantics, 56, May 2019. doi: 10.1016/j .websem.
2018.06.003.

Anna Nguyen, Tobias Weller, Michael Farber, and York Sure-Vetter. Making Neural
Networks FAIR. In Proceedings of Knowledge Graphs and Semantic Web: Second
Iberoamerican Conference and First Indo-American Conference (KGSWC 2020),
pages 29-44. Springer, 2020. doi: 10.1007/978-3-030-65384-2_3.

Kassem Fawaz and Kang G Shin. Location Privacy Protection for Smartphone Users.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS 2014), pages 239-250, 2014. doi: 10.1145/2660267.
2660270.

Hongbo Jiang, Jie Li, Ping Zhao, Fanzi Zeng, Zhu Xiao, and Arun Iyengar. Location
Privacy-Preserving Mechanisms in Location-based Services: A Comprehensive
Survey. ACM Computing Surveys (CSUR), 54(1):1-36, 2021. doi: 10.1145/
3423165.

Sofie Verbrugge, Frederic Vannieuwenborg, Marlies Van der Wee, Didier Colle,
Ruben Taelman, and Ruben Verborgh. Towards a Personal Data Vault Society:
An Interplay Between Technological and Business Perspectives. In Proceedings of
the 60th FITCE Communication Days Congress for ICT Professionals: Industrial
Data—Cloud, Low Latency and Privacy (FITCE), pages 1-6. IEEE, 2021. doi: 10.
1109/FITCE53297.2021.9588540.

Sofie Verbrugge, Frederic Vannieuwenborg, Marlies Van der Wee, Didier Colle,
Ruben Taelman, and Ruben Verborgh. Towards a Personal Data Vault Society: An
Interplay Between Technological and Business Perspectives. In Proceedings of the
60th FITCE Communication Days Congress for ICT Professionals: Industrial Data
— Cloud, Low Latency and Privacy (FITCE 2021), pages 1-6, 2021. doi: 10.1109/
FITCE53297.2021.9588540.

Ravi S Sandhu and Pierangela Samarati. Access Control: Principle and Practice.
IEEE Communications Magazine, 32(9):40-48, 1994. doi: 10.1109/35.312842.

Min Y Mun, Donnie H Kim, Katie Shilton, Deborah Estrin, Mark Hansen, and
Ramesh Govindan. PDVLoc: A Personal Data Vault for Controlled Location Data
Sharing. ACM Transactions on Sensor Networks (TOSN), 10(4):1-29, 2014. doi: 10.
1145/2523820.

Andrei Vlad Sambra, Essam Mansour, Sandro Hawke, Maged Zereba, Nicola Greco,
Abdurrahman Ghanem, Dmitri Zagidulin, Ashraf Aboulnaga, and Tim Berners-Lee.
Solid: A Platform for Decentralized Social Applications Based on Linked Data.
Technical report, MIT CSAIL & QCRI, 2016.


https://ceur-ws.org/Vol-668/paper12.pdf
https://ceur-ws.org/Vol-668/paper12.pdf
https://doi.org/10.1016/j.websem.2018.06.003
10.1016/j.websem.2018.06.003
https://doi.org/10.1016/j.websem.2018.06.003
10.1016/j.websem.2018.06.003
https://doi.org/10.1007/978-3-030-65384-2_3
10.1007/978-3-030-65384-2_3
https://doi.org/10.1145/2660267.2660270
10.1145/2660267.2660270
https://doi.org/10.1145/2660267.2660270
10.1145/2660267.2660270
https://doi.org/10.1145/3423165
10.1145/3423165
https://doi.org/10.1145/3423165
10.1145/3423165
https://doi.org/10.1109/FITCE53297.2021.9588540
10.1109/FITCE53297.2021.9588540
https://doi.org/10.1109/FITCE53297.2021.9588540
10.1109/FITCE53297.2021.9588540
https://doi.org/10.1109/FITCE53297.2021.9588540
10.1109/FITCE53297.2021.9588540
https://doi.org/10.1109/FITCE53297.2021.9588540
10.1109/FITCE53297.2021.9588540
https://doi.org/10.1109/35.312842
10.1109/35.312842
https://doi.org/10.1145/2523820
10.1145/2523820
https://doi.org/10.1145/2523820
10.1145/2523820

BIBLIOGRAPHY 327

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

Andrei Sambra, Henry Story, and Tim Berners-Lee. WebID 1.0. W3C Editor’s
Draft, World Wide Web Consortium (W3C), 2014. URL https://www.w3.org/
2005/Incubator/webid/spec/identity/.

Eugene Ferry, John O Raw, and Kevin Curran. Security Evaluation of the OAuth
2.0 Framework. Information & Computer Security, 23(1):73-101, March 2015.
doi: 10.1108/ics-12-2013-0089.

Zirui Hu, Yuhan Yang, Jing Wu, and Chengnian Long. A Secure and Efficient
Blockchain-Based Data Sharing Scheme for Location Data. In Proceedings of the
2022 4th International Conference on Blockchain Technology (ICBT 2022), page
110-116. ACM New York, NY, USA, 2022. doi: 10.1145/3532640.3532655.

Muhammad Imran Sarwar, Muhammad Waseem Igbal, Tahir Alyas, Abdallah
Namoun, Ahmed Alrehaili, Ali Tufail, and Nadia Tabassum. Data Vaults for
Blockchain-Empowered Accounting Information Systems. IEEE Access, 9:117306—
117324, 2021. doi: 10.1109/ACCESS.2021.3107484.

Salam Traboulsi. Overview of 5G-oriented Positioning Technology in Smart Cities.
Procedia Computer Science, 201:368-374, 2022. ISSN 1877-0509. doi: 10.1016/
j.procs.2022.03.049. Proceedings of the 13th International Conference on
Ambient Systems, Networks and Technologies (ANT 2022) and the 5th International
Conference on Emerging Data and Industry 4.0 (EDI40).

Salil Pradhan. Semantic Location. Personal Technologies, 4(4), 2000. doi: 10.
1007/BF02391560.

Tim Kindberg and John Barton. A Web-based Nomadic Computing System. Com-
puter Networks, 35(4), 2001. doi: 10.1016/S1389-1286(00)00181-X.

Vassilis Papataxiarhis et al. MNISIKLIS: Indoor Location Based Services for
All. Location Based Services and TelecCrtography II, 2008. doi: 10.1007/
978-3-540-87393-8_16.

Sanya Khruahong et al. Multi-Level Indoor Navigation Ontology for High Assurance
Location-based Services. In Proceedings of HASE 2017, 2017. doi: 10.1109/
HASE.2017.9.

Kangjae Lee, Jiyeong Lee, and Mei-Po Kwan. Location-based Service Using
Ontology-based Semantic Queries: A Study With a Focus on Indoor Activities
in a University Context. Computers, Environment and Urban Systems, 62, 2017.
doi: 10.1016/j.compenvurbsys.2016.10.009.

Sujith Samuel Mathew et al. Web of Things: Description, Discovery and Integra-
tion. In Proceedings of 10T’11 and CPSCom’11, 2011. doi: 10.1109/iThings/
CPSCom.2011.165.

Dave Raggett. The Web of Things: Challenges and Opportunities. Computer, 48
(5), 2015. doi: 10.1109/MC.2015. 149.

Dmitry Namiot and Manfred Sneps-Sneppe. The Physical Web in Smart Cities.
In Proceedings of the 2015 Advances in Wireless and Optical Communications
(RTUWO 2015), 2015. doi: 10.1109/RTUWO0.2015.7365717.

Google LLC. UriBeacon: The Web Uri Open Beacon Specification for the Inter-
net of Things, 2015. URL https://github.com/google/uribeacon/tree/
uribeacon-final. Accessed on November 2022.


https://www.w3.org/2005/Incubator/webid/spec/identity/
https://www.w3.org/2005/Incubator/webid/spec/identity/
https://doi.org/10.1108/ics-12-2013-0089
10.1108/ics-12-2013-0089
https://doi.org/10.1145/3532640.3532655
10.1145/3532640.3532655
https://doi.org/10.1109/ACCESS.2021.3107484
10.1109/ACCESS.2021.3107484
https://doi.org/10.1016/j.procs.2022.03.049
10.1016/j.procs.2022.03.049
https://doi.org/10.1016/j.procs.2022.03.049
10.1016/j.procs.2022.03.049
https://doi.org/10.1007/BF02391560
10.1007/BF02391560
https://doi.org/10.1007/BF02391560
10.1007/BF02391560
https://doi.org/10.1016/S1389-1286(00)00181-X
10.1016/S1389-1286(00)00181-X
https://doi.org/10.1007/978-3-540-87393-8_16
10.1007/978-3-540-87393-8_16
https://doi.org/10.1007/978-3-540-87393-8_16
10.1007/978-3-540-87393-8_16
https://doi.org/10.1109/HASE.2017.9
10.1109/HASE.2017.9
https://doi.org/10.1109/HASE.2017.9
10.1109/HASE.2017.9
https://doi.org/10.1016/j.compenvurbsys.2016.10.009
10.1016/j.compenvurbsys.2016.10.009
https://doi.org/10.1109/iThings/CPSCom.2011.165
10.1109/iThings/CPSCom.2011.165
https://doi.org/10.1109/iThings/CPSCom.2011.165
10.1109/iThings/CPSCom.2011.165
https://doi.org/10.1109/MC.2015.149
10.1109/MC.2015.149
https://doi.org/10.1109/RTUWO.2015.7365717
10.1109/RTUWO.2015.7365717
https://github.com/google/uribeacon/tree/uribeacon-final
https://github.com/google/uribeacon/tree/uribeacon-final

328

BIBLIOGRAPHY

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel Mad-
den, and Michael Stonebraker. Aurum: A Data Discovery System. In Proceedings of
the 34th International Conference on Data Engineering (ICDE), pages 1001-1012,
2018. doi: 10.1109/ICDE.2018.00094.

Dmitry Namiot and Manfred Sneps-Sneppe. Context-aware data discovery. In
Proceedings of the 16th International Conference on Intelligence in Next Generation
Networks, pages 134-141, 2012. doi: 10.1109/ICIN.2012.6376016.

K. Arabshian and H. Schulzrinne. GloServ: Global Service Discovery Architecture.
In Proceedings of the First Annual International Conference on Mobile and Ubi-
quitous Systems: Networking and Services (MOBIQUITOUS 2004), pages 319-325,
2004. doi: 10.1109/MOBIQ.2004.1331738.

Christian Bettstetter and Christoph Renner. A Comparison of Service Discovery
Protocols and Implementation of the Service Location Protocol. In Proceedings of
the 6th EUNICE Open European Summer School: Innovative Internet Applications
(EUNICE 2002),2002. URL https://api.semanticscholar.org/CorpusID:

13179804.

Rajiv Ranjan, Aaron Harwood, and Rajkumar Buyya. Peer-to-Peer-Based Resource
Discovery in Global Grids: A Tutorial. IEEE Communications Surveys & Tutorials,
10(2):6-33, 2008. doi: 10.1109/COMST.2008.4564477.

Md Rakib Shahriar, Xiaoqing Frank Liu, Md Mahfuzer Rahman, and SM Nahian
Al Sunny. OpenDT: A Reference Framework for Service Publication and Discovery
using Remote Programmable Digital Twins. In Proceedings of the 2020 IEEE In-
ternational Conference on Services Computing (SCC 2020), pages 116-123. IEEE,
2020. doi: 10.1109/SCC49832.2020.00024.

Kyriakos Georgiou, Timotheos Constambeys, Christos Laoudias, Lambros Petrou,
Georgios Chatzimilioudis, and Demetrios Zeinalipour-Yazti. Anyplace: A Crowd-
sourced Indoor Information Service. In Proceedings of the International Conference
on Mobile Data Management: Systems, Services and Middleware (MDM 2015),
pages 291-294, 2015. doi: 10.1109/MDM. 2015. 80.

Allal Tiberkak, Abdelfetah Hentout, Mustapha Aouache, and Abdelkader Belkhir.
Outdoor UPnP for Services Discovery in Smart Cities. In Proceedings of the 2018
International Conference on Applied Smart Systems (ICASS 2018), pages 1-6. IEEE,
2018. doi: 10.1109/ICASS.2018.8652043.

José M Sanchez Santana, Marina Petrova, and Petri Mahonen. UPnP Service
Discovery for Heterogeneous Networks. In Proceedings of the 17th International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2006),
pages 1-5. IEEE, 2006. doi: 10.1109/PINMRC.2006.254286.

Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An Overview on Edge
Computing Research. IEEE Access, 8:85714-85728,2020. doi: 10.1109/ACCESS.
2020.2991734.

Max J Egenhofer. Toward the Semantic Geospatial Web. In Proceedings of the 10th
ACM International Symposium on Advances in Geographic Information Systems,
pages 1-4. ACM New York, NY, USA, 2002. doi: 10.1145/585147.585148.

Dongming Guo and Erling Onstein. State-of-the-Art Geospatial Information Pro-
cessing in NoSQL Databases. ISPRS International Journal of Geo-Information,


https://doi.org/10.1109/ICDE.2018.00094
10.1109/ICDE.2018.00094
https://doi.org/10.1109/ICIN.2012.6376016
10.1109/ICIN.2012.6376016
https://doi.org/10.1109/MOBIQ.2004.1331738
10.1109/MOBIQ.2004.1331738
https://api.semanticscholar.org/CorpusID:13179804
https://api.semanticscholar.org/CorpusID:13179804
https://doi.org/10.1109/COMST.2008.4564477
10.1109/COMST.2008.4564477
https://doi.org/10.1109/SCC49832.2020.00024
10.1109/SCC49832.2020.00024
https://doi.org/10.1109/MDM.2015.80
10.1109/MDM.2015.80
https://doi.org/10.1109/ICASS.2018.8652043
10.1109/ICASS.2018.8652043
https://doi.org/10.1109/PIMRC.2006.254286
10.1109/PIMRC.2006.254286
https://doi.org/10.1109/ACCESS.2020.2991734
10.1109/ACCESS.2020.2991734
https://doi.org/10.1109/ACCESS.2020.2991734
10.1109/ACCESS.2020.2991734
https://doi.org/10.1145/585147.585148
10.1145/585147.585148

BIBLIOGRAPHY 329

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]
[180]

9(5), 2020. doi: 10.3390/ijgi9050331. URL https://www.mdpi.com/
2220-9964/9/5/331.

Antonios Makris, Konstantinos Tserpes, Giannis Spiliopoulos, Dimitrios Zissis, and
Dimosthenis Anagnostopoulos. MongoDB VS PostgreSQL: A Comparative Study
on Performance Aspects. Geolnformatica, 25:243-268, 2021.

Robert Battle and Dave Kolas. GeoSPARQL: Enabling a Geospatial Semantic Web.
Semantic Web Journal, 3(4), 2011.

Ruchika Muddinagiri, Shubham Ambavane, Vivek Jadhav, and Santosh Tamboli.
Proximity Marketing Using Bluetooth Low Energy. In Proceedings of the 6th
International Conference on Advanced Computing and Communication Systems
(ICACCS), pages 856-861, 2020. doi: 10.1109/ICACCS48705.2020.9074160.

L Sofyana and A R Putera. Business Architecture Planning With TOGAF
Framework. Journal of Physics: Conference Series, 1375(1):012056, November
2019. doi: 10.1088/1742-6596/1375/1/012056.

Jeffrey Hightower, Barry Brumitt, and Gaetano Borriello. The Location Stack: A
Layered Model for Location in Ubiquitous Computing. In Proceedings of WM CSA
2002, Callicoon, USA, June 2002.

Brandon Jones and Nell Waliczek. WebXR Device API. Technical report, World
Wide Web Consortium (W3C), July 2020. URL https://www.w3.org/TR/
webxr/.

Vipul Kashyap, Christoph Bussler, and Matthew Moran. The Semantic Web: Se-
mantics for Data and Services on the Web. Springer, Berlin, Heidelberg, 2008.
ISBN 978-3-540-76451-9. doi: 10.1007/978-3-540-76452-6.

Edward A. Lee and Thomas M. Parks. Dataflow Process Networks. Proceedings of
the IEEE, 83(5):773-801, May 1995. doi: 10.1109/5.381846.

H. Butler, M. Daly, A. Doyle, Sean Gillies, T. Schaub, and T. Schaub. The GeoJSON
Format. RFC 7946, August 2016.

Anand Ranganathan, Jalal Al-Muhtadi, Shiva Chetan, Roy Campbell, and M Dennis
Mickunas. MiddleWhere: A Middleware for Location Awareness in Ubiquitous
Computing Applications. In Proceedings of Middleware 2004, Subotica, Serbia,
October 2004.

Jeffrey Hightower and Gaetano Borriello. Location Systems for Ubiquitous Com-
puting. Computer, 34(8), August 2001. doi: 10.1109/2.940014.

Mansfield E. de Jong J. Math.js: An Advanced Mathematics Library for JavaScript.
Computing in Science & Engineering, 20(1), January 2014. doi: 10.1109/MCSE.
2018.011111122.

Adam L. Davis. Akka Streams. In Reactive Streams in Java. Apress, Berkeley, CA,
2019. doi: 10.1007/978-1-4842-4176-9_6.

Nishant Garg. Apache Kafka. Packt Publishing, 2013. ISBN 1782167935.

Martin Abadi et al. TensorFlow: A System for Large-scale Machine Learning. In
Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2016), pages 265-283, Savannah, USA, November 2016.
ISBN 978-1-931971-33-1.


https://doi.org/10.3390/ijgi9050331
10.3390/ijgi9050331
https://www.mdpi.com/2220-9964/9/5/331
https://www.mdpi.com/2220-9964/9/5/331
https://doi.org/10.1109/ICACCS48705.2020.9074160
10.1109/ICACCS48705.2020.9074160
https://doi.org/10.1088/1742-6596/1375/1/012056
10.1088/1742-6596/1375/1/012056
https://www.w3.org/TR/webxr/
https://www.w3.org/TR/webxr/
https://doi.org/10.1007/978-3-540-76452-6
10.1007/978-3-540-76452-6
https://doi.org/10.1109/5.381846
10.1109/5.381846
https://doi.org/10.1109/2.940014
10.1109/2.940014
https://doi.org/10.1109/MCSE.2018.011111122
10.1109/MCSE.2018.011111122
https://doi.org/10.1109/MCSE.2018.011111122
10.1109/MCSE.2018.011111122
https://doi.org/10.1007/978-1-4842-4176-9_6
10.1007/978-1-4842-4176-9_6

330

BIBLIOGRAPHY

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

Marc Geilen and Twan Basten. Reactive Process Networks. In Proceedings of EM-
SOFT 2004, International Conference on Embedded Software, Pisa, Italy, September
2004. doi: 10.1145/1017753.1017778.

Esteban Zimanyi, Mahmoud Sakr, Arthur Lesuisse, and Mohamed Bakli. Mobil-
ityDB: A Mainstream Moving Object Database System. In Proceedings of the 16th
International Symposium on Spatial and Temporal Databases (SSTD 2019), Vienna,
Austria, August 2019. doi: 10.1145/3340964.3340991.

Web Bluetooth Community Group. Web Bluetooth Scanning. W3c work-
ing draft, W3C, March 2023. URL https://webbluetoothcg.github.io/
web-bluetooth/scanning.html.

Chris Currier. Protocol Buffers, pages 223-260. Springer International Publishing,
Cham, 2022. doi: 10.1007/978-3-030-98467-0_9.

Ido Green. Web Workers: Multithreaded Programs in JavaScript. O’Reilly Media,
Inc., 2012. ISBN 978-1449322137.

Gary Bradski. The OpenCV Library. Dr. Dobb’s Journal: Software Tools for
the Professional Programmer, 25(11), 2000. URL https://www.drdobbs.com/
open-source/the-opencv-library/184404319.

Witold Litwin and Abdelaziz Abdellatif. Multidatabase Interoperability. Computer,
19(12):10-18, 1986. doi: 10.1109/MC.1986.1663123.

Maria Poveda-Villalén, Alba Ferndndez-lIzquierdo, Mariano Ferndndez-Lépez,
and Raul Garcia-Castro. LOT: An Industrial Oriented Ontology Engineering
Framework. Engineering Applications of Artificial Intelligence, 111, May 2022.
doi: 10.1016/j.engappai.2022.104755.

Pierre-Yves Vandenbussche, Ghislain A. Atemezing, Maria Poveda-Villalén, and
Bernard Vatant. Linked Open Vocabularies (LOV): A Gateway to Reusable semantic
Vocabularies on the Web. Semantic Web, 8(3):437-452, 2016. doi: 10.3233/
SW-160213.

Armin Haller, Krzysztof Janowicz, Simon Cox, Danh Le Phuoc, Kerry Taylor,
and Maxime Lefrancois. Semantic Sensor Network Ontology. World Wide Web
Consortium, 2017. URL https://www.w3.0org/TR/vocab-ssn/.

Joaquin Torres-Sospedra, Rail Montoliu, Adolfo Martinez-Us6, Joan P Avariento,
Tomds J Arnau, Mauri Benedito-Bordonau, and Joaquin Huerta. UlJlIndoorLoc:
A New Multi-Building and Multi-Floor Database for WLAN Fingerprint-based
Indoor Localization Problems. In Proceedings of the 5th International Conference
on Indoor Positioning and Indoor Navigation (IPIN 2014), pages 261-270, 2014.
doi: 10.1109/IPIN.2014.7275492.

Joaquin Torres-Sospedra, David Rambla, Raul Montoliu, Oscar Belmonte, and
Joaquin Huerta. UlJlIndoorLoc-Mag: A New Database for Magnetic Field-based
Localization Problems. In Proceedings of the 6th International Conference on
Indoor Positioning and Indoor Navigation (IPIN 2015), pages 1-10, 2015. doi: 10.
1109/IPIN.2015.7346763.

Senbo Wang, Jiguang Yue, Yanchao Dong, Shibo He, Haotian Wang, and Shaochun
Ning. A Synthetic Dataset for Visual SLAM Evaluation. Robotics and Autonomous
Systems, 124:103336, 2020. doi: 10.1016/j.robot.2019.103336.


https://doi.org/10.1145/1017753.1017778
10.1145/1017753.1017778
https://doi.org/10.1145/3340964.3340991
10.1145/3340964.3340991
https://webbluetoothcg.github.io/web-bluetooth/scanning.html
https://webbluetoothcg.github.io/web-bluetooth/scanning.html
https://doi.org/10.1007/978-3-030-98467-0_9
10.1007/978-3-030-98467-0_9
https://www.drdobbs.com/open-source/the-opencv-library/184404319
https://www.drdobbs.com/open-source/the-opencv-library/184404319
https://doi.org/10.1109/MC.1986.1663123
10.1109/MC.1986.1663123
https://doi.org/10.1016/j.engappai.2022.104755
10.1016/j.engappai.2022.104755
https://doi.org/10.3233/SW-160213
10.3233/SW-160213
https://doi.org/10.3233/SW-160213
10.3233/SW-160213
https://www.w3.org/TR/vocab-ssn/
https://doi.org/10.1109/IPIN.2014.7275492
10.1109/IPIN.2014.7275492
https://doi.org/10.1109/IPIN.2015.7346763
10.1109/IPIN.2015.7346763
https://doi.org/10.1109/IPIN.2015.7346763
10.1109/IPIN.2015.7346763
https://doi.org/10.1016/j.robot.2019.103336
10.1016/j.robot.2019.103336

BIBLIOGRAPHY 331

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

Ralph Hodgson, Paul J Keller, Jack Hodges, and Jack Spivak. QUDT-Quantities,
Units, Dimensions and Data Types Ontologies. https://qudt.org, 2014.

Francisco Zampella, Antonio Ramén Jiménez Ruiz, and Fernando Seco Granja.
Indoor Positioning Using Efficient Map Matching, RSS Measurements, and an
Improved Motion Model. IEEE Transactions on Vehicular Technology, 64(4), 2015.
doi: 10.1109/TVT.2015.2391296.

ISO Central Secretary. Geographic Information — Referencing by Coordinates.
Standard ISO 19111:2019, International Organization for Standardization, 2019.
URL https://www.iso.org/standard/74039.html.

Evandro Bernardes and Stéphane Viollet. Quaternion to Euler Angles Conversion:
A Direct, General and Computationally Efficient Method. PLOS ONE, 17(11):
e0276302, 2022. doi: 10.1371/journal.pone.0276302.

Michael Compton, Payam Barnaghi, Luis Bermudez, Raul Garcia-Castro, Oscar
Corcho, Simon Cox, John Graybeal, Manfred Hauswirth, Cory Henson, Arthur
Herzog, et al. The SSN Ontology of the W3C Semantic Sensor Network Incubator
Group. Journal of Web Semantics, 17, December 2012. doi: 10.1016/j.websem.
2012.05.003.

Zhixian Yan, Jose Macedo, Christine Parent, and Stefano Spaccapietra. Trajectory
Ontologies and Queries. Transactions in GIS, 12:75-91, 2008. doi: 160.1111/j.
1467-9671.2008.01137.x.

Yingjie Hu, Krzysztof Janowicz, David Carral, Simon Scheider, Werner Kuhn, Gary
Berg-Cross, Pascal Hitzler, Mike Dean, and Dave Kolas. A Geo-ontology Design
Pattern for Semantic Trajectories. In Proceedings of the International Conference
on Spatial Information Theory (COSIT 2013), pages 438—456,2013. doi: 10.1007/
978-3-319-01790-7_24.

Isaac Skog, Gustaf Hendeby, and Fredrik Gustafsson. Magnetic Odometry: A
Model-Based Approach Using a Sensor Array. In Proceedings of the International
Conference on Information Fusion (FUSION 2018), pages 794-798, 2018. doi: 10.
23919/ICIF.2018.8455430.

Sebastian Thrun. Simultaneous Localization and Mapping. In Robotics and Cognit-
ive Approaches to Spatial Mapping, pages 13—41. Springer, 2007. doi: 10.1007/
978-3-540-75388-9_3.

Amelie Gyrard, Soumya Kanti Datta, Christian Bonnet, and Karima Boudaoud.
Cross-Domain Internet of Things Application Development: M3 Framework and
Evaluation. In Proceedings of the 3rd International Conference on Future Internet of
Things and Cloud (FiCloud 2015), August 2015. doi: 10.1109/FiCloud.2015. 10.

Andrew Iliadis, Amelia Acker, Wesley Stevens, and Sezgi Basak Kavakli. One
Schema to Rule them All: How Schema.org Models the World of Search. Journal
of the Association for Information Science and Technology, 2023. doi: 10.1002/
asi.24744.

Alberto Hernandez Chillén, Diego Sevilla Ruiz, Jesus Garcia Molina, and
Severino Feliciano Morales. A Model-Driven Approach to Generate Schemas for
Object-Document Mappers. IEEE Access, 7:59126-59142, 2019. doi: 10.1109/
ACCESS.2019.2915201.


https://qudt.org
https://doi.org/10.1109/TVT.2015.2391296
10.1109/TVT.2015.2391296
https://www.iso.org/standard/74039.html
https://doi.org/10.1371/journal.pone.0276302
10.1371/journal.pone.0276302
https://doi.org/10.1016/j.websem.2012.05.003
10.1016/j.websem.2012.05.003
https://doi.org/10.1016/j.websem.2012.05.003
10.1016/j.websem.2012.05.003
https://doi.org/10.1111/j.1467-9671.2008.01137.x
10.1111/j.1467-9671.2008.01137.x
https://doi.org/10.1111/j.1467-9671.2008.01137.x
10.1111/j.1467-9671.2008.01137.x
https://doi.org/10.1007/978-3-319-01790-7_24
10.1007/978-3-319-01790-7_24
https://doi.org/10.1007/978-3-319-01790-7_24
10.1007/978-3-319-01790-7_24
https://doi.org/10.23919/ICIF.2018.8455430
10.23919/ICIF.2018.8455430
https://doi.org/10.23919/ICIF.2018.8455430
10.23919/ICIF.2018.8455430
https://doi.org/10.1007/978-3-540-75388-9_3
10.1007/978-3-540-75388-9_3
https://doi.org/10.1007/978-3-540-75388-9_3
10.1007/978-3-540-75388-9_3
https://doi.org/10.1109/FiCloud.2015.10
10.1109/FiCloud.2015.10
https://doi.org/10.1002/asi.24744
10.1002/asi.24744
https://doi.org/10.1002/asi.24744
10.1002/asi.24744
https://doi.org/10.1109/ACCESS.2019.2915201
10.1109/ACCESS.2019.2915201
https://doi.org/10.1109/ACCESS.2019.2915201
10.1109/ACCESS.2019.2915201

332

BIBLIOGRAPHY

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

Noel De Martin. Soukai, 2024. URL https://soukai.js.org/. Accessed on
May 2024.

O.team. Linked Data Objects (LDO), 2024. URL https://1ldo.js.org/. Ac-
cessed on May 2024.

Ken Wenzel. KOMMA: An Application Framework for Ontology-Based Software
Systems. Semantic Web—Interoperability, Usability, Applicability, 1:1-10, 2010.

Vincent Tunru. rdf-namespaces, 2021. URL https://gitlab.com/
vincenttunru/rdf-namespaces. Accessed on June 2021.

Egor V. Kostylev, Juan L. Reutter, and Martin Ugarte. CONSTRUCT Queries in
SPARQL. In Marcelo Arenas and Martin Ugarte, editors, Proceedings of the 18th
International Conference on Database Theory (ICDT 2015), volume 31, pages 212—
229, Dagstuhl, Germany, 2015. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.
doi: 10.4230/LIPIcs.ICDT.2015.212.

L Cabral, J Haucap, G Parker, G Petropoulos, T Valletti, and M Alstyne. The EU
Digital Markets Act: A Report From a Panel of Economic Experts. Publications
Office of the European Office, 2021. doi: 10.2760/139337.

René Hansen, Rico Wind, Christian S Jensen, and Bent Thomsen. Seamless
Indoor/Outdoor Positioning Handover for Location-based Services in Stream-
spin. In Proceedings of the 10th International Conference on Mobile Data
Management:  Systems, Services and Middleware (MDM 2009), May 2009.
doi: 10.1109/MDM. 2009. 39.

Wout Slabbinck, Ruben Dedecker, Sindhu Vasireddy, Ruben Verborgh, and Pieter
Colpaert. Linked Data Event Streams in Solid LDP Containers. In Proceedings of
the 8th Workshop on Managing the Evolution and Preservation of the Data Web
(MEPDaW 2022), volume 3339, 2022.

Arnaud J. Le Hors and Steve Speicher. The Linked Data Platform (LDP). In
Proceedings of the 22nd International Conference on World Wide Web (WWW 2013),
page 1-2. ACM New York, NY, USA, 2013. doi: 10.1145/2487788.2487790.

Dwight Van Lancker, Pieter Colpaert, Harm Delva, Brecht Van de Vyvere,
Julidn Rojas Meléndez, Ruben Dedecker, Philippe Michiels, Raf Buyle, Annelies
De Craene, and Ruben Verborgh. Publishing Base Registries as Linked Data Event
Streams. In Proceedings of the 21st International Conference on Web Engineer-
ing (ICEW 2021), pages 28-36, Cham, 2021. Springer International Publishing.
doi: 10.1007/978-3-030-74296-6_3.

Pieter Colpaert. Building Materializable Querying Interfaces With the TREE Hy-
permedia Specification. In Proceedings of MEPDaW@ISWC, pages 8—18, 2022.
URL https://treecg.github.io/paper-materializable-interfaces/.

Ruben Verborgh, Miel Vander Sande, Pieter Colpaert, Sam Coppens, Erik Mannens,
and Rik Van de Walle. Web-Scale Querying through Linked Data Fragments. In
Proceedings of the 7th Workshop on Linked Data on the Web, volume 1184 of CEUR
Workshop Proceedings, April 2014. URL https://ceur-ws.org/Vol-1184/
ldow2014_paper_04.pdf.

Sarven Capadisli, Amy Guy, Christoph Lange, Soren Auer, Andrei Sambra, and
Tim Berners-Lee. Linked Data Notifications: A Resource-centric Communication


https://soukai.js.org/
https://ldo.js.org/
https://gitlab.com/vincenttunru/rdf-namespaces
https://gitlab.com/vincenttunru/rdf-namespaces
https://doi.org/10.4230/LIPIcs.ICDT.2015.212
10.4230/LIPIcs.ICDT.2015.212
https://doi.org/10.2760/139337
10.2760/139337
https://doi.org/10.1109/MDM.2009.39
10.1109/MDM.2009.39
https://doi.org/10.1145/2487788.2487790
10.1145/2487788.2487790
https://doi.org/10.1007/978-3-030-74296-6_3
10.1007/978-3-030-74296-6_3
https://treecg.github.io/paper-materializable-interfaces/
https://ceur-ws.org/Vol-1184/ldow2014_paper_04.pdf
https://ceur-ws.org/Vol-1184/ldow2014_paper_04.pdf

BIBLIOGRAPHY 333

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

Protocol. In Proceedings of the 14th International Conference on The Semantic Web
(ESWC 2017), PortoroZz, Slovenia, 2017. doi: 10.1007/978-3-319-58068-5_33.

Ruben Taelman and Ruben Verborgh. Link Traversal Query Processing Over De-
centralized Environments with Structural Assumptions. In Proceedings of the 22nd
International Semantic Web Conference (ISWC 2023), pages 3—22. Springer Nature
Switzerland, 2023. doi: 10.1007/978-3-031-47240-4_1.

HS Rajashree et al. Indoor Localization using BLE Technology. International
Journal of Engineering Research & Technology (IJERT), 6(13), 2018. ISSN 2278-
0181.

Markus Koiihne and Jirgen Sieck. Location-Based Services With iBeacon
Technology. 1In Proceedings of the 2nd International Conference on Artifi-
cial Intelligence, Modelling and Simulation (AIMS 2014), pages 315-321, 2014.
doi: 10.1109/AINS.2014.58.

Apple Inc. Proximity Beacon Specification. Specification, Apple Inc., 2015. URL
https://developer.apple.com/ibeacon/. Accessed on November 2022.

Rodrigo VM Pereira et al. A Digital Implementation of Eddystone Standard Using
IBM 180nm Cell Library. In Proceedings of the 2017 VII Brazilian Symposium on
Computing Systems Engineering (SBESC), 2017. doi: 10.1109/SBESC.2017.28.

Daeil Seo and Byounghyun Yoo. Interoperable Information Model for Geovisual-
ization and Interaction in XR Environments. IJGIS, 34(7), 2020. doi: 10.1080/
13658816.2019.1706739.

Bluetooth SIG Inc. Indoor Positioning Service.  Specification, Bluetooth
SIG Inc., 2015. URL https://bluetooth.com/specifications/specs/
indoor-positioning-service-1-0/.

Hamza Soganci, Sinan Gezici, and H Vincent Poor. Accurate Positioning in Ultra-
Wideband Systems. IEEE Wireless Communications, 18(2), 2011. doi: 10.1109/
MWC.2011.5751292.

Jeff Z. Pan. Resource Description Framework. In Steffen Staab and Rudi Studer,
editors, Handbook on Ontologies, pages 71-90. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009. doi: 10.1007/978-3-540-92673-3_3.

Oscar Corcho et al. A High-Level Ontology Network for ICT Infrastructures. In
Proceedings of the 20th International Semantic Web Conference (ISWC 2021),2021.
doi: 10.1007,/978-3-030-88361-4_26.

Rudy Arthur. A Critical Analysis of the What3Words Geocoding Algorithm. PLOS
ONE, 18(10):1-13, 10 2023. doi: 10.1371/journal .pone.0292491.

Petar Maymounkov and David Mazieres. Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric. In Proceedings of the 1st International Workshop
of Peer-to-Peer Systems (IPTPS 2002), pages 53-65. Springer Berlin Heidelberg,
2002. doi: 10.1007/3-540-45748-8_5.

Quanhao Lin, Ruonan Rao, and Minglu Li. DWSDM: A Web Services Discovery
Mechanism Based on a Distributed Hash Table. In Proceedings of the 5th Interna-
tional Conference on Grid and Cooperative Computing Workshops, pages 176—180,
2006. doi: 10.1109/GCCW.2006.36.


https://doi.org/10.1007/978-3-319-58068-5_33
10.1007/978-3-319-58068-5_33
https://doi.org/10.1007/978-3-031-47240-4_1
10.1007/978-3-031-47240-4_1
https://doi.org/10.1109/AIMS.2014.58
10.1109/AIMS.2014.58
https://developer.apple.com/ibeacon/
https://doi.org/10.1109/SBESC.2017.28
10.1109/SBESC.2017.28
https://doi.org/10.1080/13658816.2019.1706739
10.1080/13658816.2019.1706739
https://doi.org/10.1080/13658816.2019.1706739
10.1080/13658816.2019.1706739
https://bluetooth.com/specifications/specs/indoor-positioning-service-1-0/
https://bluetooth.com/specifications/specs/indoor-positioning-service-1-0/
https://doi.org/10.1109/MWC.2011.5751292
10.1109/MWC.2011.5751292
https://doi.org/10.1109/MWC.2011.5751292
10.1109/MWC.2011.5751292
https://doi.org/10.1007/978-3-540-92673-3_3
10.1007/978-3-540-92673-3_3
https://doi.org/10.1007/978-3-030-88361-4_26
10.1007/978-3-030-88361-4_26
https://doi.org/10.1371/journal.pone.0292491
10.1371/journal.pone.0292491
https://doi.org/10.1007/3-540-45748-8_5
10.1007/3-540-45748-8_5
https://doi.org/10.1109/GCCW.2006.36
10.1109/GCCW.2006.36

334

BIBLIOGRAPHY

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

Yahya Hassanzadeh-Nazarabadi, Sanaz Taheri-Boshrooyeh, Safa Otoum, Seyhan
Ucar, and Oznur Ozkasap. DHT-based Communications Survey: Architectures and
Use Cases. arXiv preprint arXiv:2109.10787, 2021.

Dennis Trautwein, Aravindh Raman, Gareth Tyson, Ignacio Castro, Will Scott,
Moritz Schubotz, Bela Gipp, and Yiannis Psaras. Design and Evaluation of IPFS:
A Storage Layer for the Decentralized Web. In Proceedings of the ACM SIGCOMM
2022 Conference, SIGCOMM °22, page 739-752, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450394208. doi: 10.1145/
3544216.3544232.

Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia Ratnasamy,
Scott Shenker, Ion Stoica, and Harlan Yu. OpenDHT: A Public DHT Service and
Its Uses. SIGCOMM Comput. Commun. Rev., 35(4):73-84, August 2005. ISSN
0146-4833. doi: 10.1145/1090191.1080102.

Martin Atkins, Will Norris, Chris Messina, Monica Wilkinson, Rob Dolin,
and James Snell. Activity Streams 2.0. W3C Editor’s Draft, World
Wide Web Consortium (W3C), May 2017. URL https://www.w3.org/TR/
activitystreams-core/.

Maxim Van de Wynckel. Putting an Artificial Brain in my
Sumo Robot, June 2019. URL https://medium.com/@aximvdw/
putting-an-artificial-brain-in-my-sumo-robot-9bdb5e8671d.

Ngewi Fet, Marcus Handte, and Pedro José Marrén. A Model for WLAN Signal
Attenuation of the Human Body. In Proceedings of the 2013 ACM International
Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2013), Zurich,
Switzerland, September 2013. doi: 10.1145/2493432.2493459.

Adriano Moreira, Maria Jodo Nicolau, Filipe Meneses, and Anténio Costa. Wi-
Fi Fingerprinting in the Real World: RTLS@UM at the EVAAL Competition. In
Proceedings of the 6th International Conference on Indoor Positioning and Indoor
Navigation (IPIN 2015), Calgary, Canada, July 2015. doi: 10.1109/IPIN.2015.
7346967.

Yassine Bouagaz. Anonymous Contact Tracing Fusion. Master’s thesis, Vrije Uni-
versiteit Brussel, Elsene, Belgium, 2021. Available athttps://researchportal.
vub.be/en/publications/anonymous-contact-tracing-fusion-2.

Joachim Van Herwegen and Ruben Verborgh. Granular Access to Policy-Governed
Linked Data via Partial Server-Side Query. In Proceedings of the 21st Ex-
tended Semantic Web Conference (ESWC 2024), May 2024. doi: 10.1007/
978-3-031-78952-6_52.

Ruben Taelman, Joachim Van Herwegen, Miel Vander Sande, and Ruben Verborgh.
Comunica: a Modular SPARQL Query Engine for the Web. In Proceedings of the
17th International Semantic Web Conference (ISWC 2018), October 2018. doi: 10.
1007/978-3-030-00668-6_15.

Olaf Hartig and Johann-Christoph Freytag. Foundations of Traversal Based Query
Execution Over Linked Data. In Proceedings of Hypertext’21, June 2012. doi: 10.
1145/2309996.2310005.

Sergio Garrido-Jurado, Rafael Mufioz-Salinas, Francisco José Madrid-Cuevas, and
Manuel Jesis Marin-Jiménez. Automatic Generation and Detection of Highly


https://doi.org/10.1145/3544216.3544232
10.1145/3544216.3544232
https://doi.org/10.1145/3544216.3544232
10.1145/3544216.3544232
https://doi.org/10.1145/1090191.1080102
10.1145/1090191.1080102
https://www.w3.org/TR/activitystreams-core/
https://www.w3.org/TR/activitystreams-core/
https://medium.com/@Maximvdw/putting-an-artificial-brain-in-my-sumo-robot-9bdb5e8671d
https://medium.com/@Maximvdw/putting-an-artificial-brain-in-my-sumo-robot-9bdb5e8671d
https://doi.org/10.1145/2493432.2493459
10.1145/2493432.2493459
https://doi.org/10.1109/IPIN.2015.7346967
10.1109/IPIN.2015.7346967
https://doi.org/10.1109/IPIN.2015.7346967
10.1109/IPIN.2015.7346967
https://researchportal.vub.be/en/publications/anonymous-contact-tracing-fusion-2
https://researchportal.vub.be/en/publications/anonymous-contact-tracing-fusion-2
https://doi.org/10.1007/978-3-031-78952-6_52
10.1007/978-3-031-78952-6_52
https://doi.org/10.1007/978-3-031-78952-6_52
10.1007/978-3-031-78952-6_52
https://doi.org/10.1007/978-3-030-00668-6_15
10.1007/978-3-030-00668-6_15
https://doi.org/10.1007/978-3-030-00668-6_15
10.1007/978-3-030-00668-6_15
https://doi.org/10.1145/2309996.2310005
10.1145/2309996.2310005
https://doi.org/10.1145/2309996.2310005
10.1145/2309996.2310005

BIBLIOGRAPHY 335

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

Reliable Fiducial Markers Under Occlusion. Pattern Recognition, 47(6), 2014.
doi: 10.1016/j.patcog.2014.01.005.

Tobias Kafer, Andreas Harth, and Sebastién Mamessier. Towards Declarative Pro-
gramming and Querying in a Distributed Cyber-Physical System: The i-VISION
Case. In Proceedings of the 2nd International Workshop on Modelling, Ana-
lysis, and Control of Complex CPS (CPS Data 2016), Vienna, Austria, 2016.
doi: 10.1109/CPSData.2016.7496418.

Maribel Acosta, Amrapali Zaveri, Elena Simperl, Dimitris Kontokostas, Soren Auer,
and Jens Lehmann. Crowdsourcing Linked Data Quality Assessment. In Proceed-
ings of the 12th International Semantic Web Conference (ISWC 2013), Sydney,
Australia, 2013. doi: 10.1007/978-3-642-41338-4_17.

Weimin Mou, Frank Biocca, Charles B Owen, Arthur Tang, Fan Xiao, and Lynette
Lim. Frames of Reference in Mobile Augmented Reality Displays. Journal of
Experimental Psychology Applied, 10(4), 2004. doi: 10.1037/1076-898X.10.4.
238.

Wallace S. Lages and Doug A. Bowman. Walking With Adaptive Augmen-
ted Reality Workspaces: Design and Usage Patterns. In Proceedings of the
24th International Conference on Intelligent User Interfaces (IUI 2019), 2019.
doi: 10.1145/3301275.3302278.

Michail Kalaitzakis, Brennan Cain, Sabrina Carroll, Anand Ambrosi, Camden
Whitehead, and Nikolaos Vitzilaios. Fiducial Markers for Pose Estimation:
Overview, Applications and Experimental Comparison of the ARTag, AprilTag,
ArUco and STag Markers. Journal of Intelligent & Robotic Systems, 101, 2021.
doi: 10.1007/s10846-020-01307-9.

Juan D. Gutiérrez, Antonio R. Jiménez, Fernando Seco, Fernando J. Alvarez,
Teodoro Aguilera, Joaquin Torres-Sospedra, and Fran Melchor. GetSensorData:
An Extensible Android-based Application for Multi-Sensor Data Registration.
SoftwareX, 19:101186, 2022. ISSN 2352-7110. doi: 10.1016/j.softx.2022.
101186.

Janne Parkkila, Filip Radulovic, Daniel Garijo, Maria Poveda-Villal6n, Jouni Ikonen,
Jari Porras, and Asuncién Gomez-Pérez. An Ontology for Videogame Interop-
erability. Multimedia Tools and Applications, 76(4):4981-5000, February 2017.
doi: 10.1007/s11042-016-3552-6.

Robert Shirey. RFC 4949: Internet Security Glossary, Version 2, 2007. doi: 10.
17487 /RFC4949.

Sarven Capadisli, Tim Berners-Lee, and Henry Story. Web Access Control. Spe-
cification, W3C Solid Community Group, June 2024. URL https://solid.
github.io/web-access-control-spec/.

Harshvardhan J. Pandit, Beatriz Esteves, Georg P. Krog, Paul Ryan, Delaram
Golpayegani, and Julian Flake. Data Privacy Vocabulary (DPV) — Version 2, 2024.
doi: 10.48550/arXiv.2404.13426.

Christian Esposito, Ross Horne, Livio Robaldo, Bart Buelens, and Elfi Goesaert.
Assessing the Solid Protocol in Relation to Security and Privacy Obligations. In-
Jformation, 14(7), 2023. ISSN 2078-2489. doi: 10.3390/info14070411.


https://doi.org/10.1016/j.patcog.2014.01.005
10.1016/j.patcog.2014.01.005
https://doi.org/10.1109/CPSData.2016.7496418
10.1109/CPSData.2016.7496418
https://doi.org/10.1007/978-3-642-41338-4_17
10.1007/978-3-642-41338-4_17
https://doi.org/10.1037/1076-898X.10.4.238
10.1037/1076-898X.10.4.238
https://doi.org/10.1037/1076-898X.10.4.238
10.1037/1076-898X.10.4.238
https://doi.org/10.1145/3301275.3302278
10.1145/3301275.3302278
https://doi.org/10.1007/s10846-020-01307-9
10.1007/s10846-020-01307-9
https://doi.org/10.1016/j.softx.2022.101186
10.1016/j.softx.2022.101186
https://doi.org/10.1016/j.softx.2022.101186
10.1016/j.softx.2022.101186
https://doi.org/10.1007/s11042-016-3552-6
10.1007/s11042-016-3552-6
https://doi.org/10.17487/RFC4949
10.17487/RFC4949
https://doi.org/10.17487/RFC4949
10.17487/RFC4949
https://solid.github.io/web-access-control-spec/
https://solid.github.io/web-access-control-spec/
https://doi.org/10.48550/arXiv.2404.13426
10.48550/arXiv.2404.13426
https://doi.org/10.3390/info14070411
10.3390/info14070411

336

BIBLIOGRAPHY

[255]

[256]

[257]

[258]

[259]

[260]

[261]

[262]

[263]

[264]

Omid Mirzamohammadi, Kristof Jannes, Laurens Sion, Dimitri Van Landuyt, Aysa-
jan Abidin, and Dave Singelée. Security and Privacy Threat Analysis for Solid. In
Proceedings of the IEEE Secure Development Conference (SecDev 2023), pages
196-206, 2023. doi: 10.1109/SecDev56634.2023.00033.

Ahmed Abid, Alexey Medvedev, Ali Hassani, Franck Le Gall, Giuseppe Tropea,
Juan Antonio Martinez, Lindsay Frost, and Martin Bauer. Guidelines for Modelling
with NGSI-LD, January 2021.

J Odmins, K Slics, R Fenuks, E Linina, K Osmanis, and I Osmanis. Comparison of
Passive and Active Fiducials for Optical Tracking. Latvian Journal of Physics and
Technical Sciences, 59(5), 2022. doi: 10.2478/1pts-2022-0040.

Martin Kaltenbrunner and Ross Bencina. reacTIVision: A Computer-Vision
Framework for Table-based Tangible Interaction. In Proceedings of the Ist In-
ternational Conference on Tangible and Embedded Interaction (TEI 2007), Baton
Rouge, USA, February 2007. doi: 10.1145/1226969.1226983.

Lilian Calvet, Pierre Gurdjos, Carsten Griwodz, and Simone Gaspar-
ini. Detection and Accurate Localization of Circular Fiducials Un-
der Highly Challenging Conditions. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR 2016),
2016. URL https://openaccess.thecvf.com/content_cvpr_2016/html/
Calvet_Detection_and_Accurate_CVPR_2016_paper.html.

Charles E Kahn Jr, Curtis P Langlotz, David S Channin, and Daniel L Rubin. Inform-
atics in Radiology: An Information Model of the DICOM Standard. Radiographics,
31(1), 2011. doi: 10.1148/rg.311105085.

ISO Central Secretary. Information technology — Automatic Identification and
Data Capture Techniques. Standard ISO 18004:2015, International Organization for
Standardization, 2021. URL https://www.iso.org/standard/62021.html.

Evalds Urtans and Agris Nikitenko. Active Infrared Markers for Augmented and
Virtual Reality. Engineering for Rural Development, 9:10, 2016. URL https:
//api.semanticscholar.org/CorpusID:29944026.

Edwin Olson. AprilTag: A Robust and Flexible Visual Fiducial System. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA
2011), Shanghai, China, May 2011. doi: 10.1109/ICRA.2011.5979561.

Francely Franco Bermudez, Christian Santana Diaz, Sheneeka Ward, Rafael
Radkowski, Timothy Garrett, and James Oliver. Comparison of Natural Feature
Descriptors for Rigid-Object Tracking for Real-Time Augmented Reality. In Pro-
ceedings of the 34th Computers and Information in Engineering Conference (ASME
2014), Buffalo, USA, August 2014. doi: 10.1115/DETC2014-35319.


https://doi.org/10.1109/SecDev56634.2023.00033
10.1109/SecDev56634.2023.00033
https://doi.org/10.2478/lpts-2022-0040
10.2478/lpts-2022-0040
https://doi.org/10.1145/1226969.1226983
10.1145/1226969.1226983
https://openaccess.thecvf.com/content_cvpr_2016/html/Calvet_Detection_and_Accurate_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/Calvet_Detection_and_Accurate_CVPR_2016_paper.html
https://doi.org/10.1148/rg.311105085
10.1148/rg.311105085
https://www.iso.org/standard/62021.html
https://api.semanticscholar.org/CorpusID:29944026
https://api.semanticscholar.org/CorpusID:29944026
https://doi.org/10.1109/ICRA.2011.5979561
10.1109/ICRA.2011.5979561
https://doi.org/10.1115/DETC2014-35319
10.1115/DETC2014-35319

Index

acceleration, 29, 122
accessibility, 5
accuracy, 29, 84, 123
actor
calibration, 79, 238
computing, 79, 238
data consumer, 240
data processor, 239
data producer, 239
data store, 239
tracked, 78, 238
tracked subject, 238
tracking, 78, 238
Akka Streams, 95
angle of
arrival, 39, 42
departure, 39, 42
angles
axis, 28
euler, 28
quaternions, 28
rotation matrices, 28
angulation, 125
AnyPlace, 70, 126, 286
Apache Kafka, 95
Apple, 163
Arduino, 202, 223, 293
asset tracking, 241
augmented reality, 3, 241
azimuth, 28

beacon, 39

337

AltBeacon, 161, 166, 223
Bluetooth IPS, 166

Eddystone, 68, 161, 164, 223

iBeacon, 161, 163, 223
SemBeacon, 223
UriBeacon, 165

bearing, 28
Bluetooth

location tracking, 39

Bluetooth Low Energy

advertising, 167
scan response, 171

CapacitorJS, 105

CCpos, 46, 60, 222

cell identification, 39, 40, 123
centric

data, 103
process, 103
service, 54
user, 3, 152

Chord, 180

CNNLoc, 60

cobots, 241

computer vision, 47, 193
Comunica, 218
CoolTown, 67
coordinate reference

frame, 27
system, 27, 121

course, 28

data



338

INDEX

discoverability, 67
granularity, 121
retrieval, 174
semantic, 56
sovereignty, 5
dead reckoning, 47, 124
digital twin
registry, 70
discoverability, 6, 21
global, 69
local, 73
discovery
local, 179
distributed hash table, 185

ESP32, 175
ESP8266, 202

FidMark, 125, 226, 288
findability, 5, 21
fingerprinting, 42, 124, 208
fog computing, 71

Geolocation API, 103
geospatial, 88
GoodMaps, 31
Google, 73, 260
GPM, 25

heading, 28
HyLocSys, 25

IMDF, 54
Imogl, 161
IndoorAtlas, 31, 126

inertial measurement unit, 48, 49,

194
accelerometer, 107
gyroscope, 107
magnetometer, 107

Inrupt, 139

internet of things, 71, 223

interoperability, 5, 50, 115
process, 59, 115

processing, 50

semantic, 50, 115

syntactic, 50, 115
ISO

17438-4:2019, 23

18305:2016, 52, 78

19116:2019, 23, 78

13249, 28, 53, 121

17438, 6

18004, 290

18305, 6

19111, 121

19136, 53, 121

19162, 52

JSON

GeoJSON, 52, 176, 210, 225

JSON-LD, 95

TypedJSON, 134, 136
JSR-179, 25, 26, 100
JSR-293, 26

Kademlia, 180
KOMMA, 134, 139

landmark
visual, 231
lateration, 125
LDO, 134, 139
LearnLoc, 31
linked data, 55, 72, 116
agent, 259
event stream, 150
fragment, 151
hash table, 301
platform, 150
resource, 247
location, 27

privacy protection mechanism,

61

cryptography-based, 61

obfuscation-based, 61
transparency-based, 61

symbolic, 88



INDEX

339

location-based service, 26, 103
LOCgram, 162

mapping

object-document, 134
marker

AprilTag, 290

ArUco, 226

CCTag, 288

fiducial, 231

reacTIVision, 288
MobilityDB, 100
MongoDB, 72, 101
MQTT, 95
multilateration, 41, 105, 125, 224

NativeScript, 105, 207
navigation system, 240

indoor, 23, 240
Nimway, 37

odometry, 124
ontology, 117
OpenCV, 113, 196, 256, 289
OpenHPS, 76, 263
DataFrame, 89
DataObject, 86, 202
ProcessingNode, 96
Service, 100
SinkNode, 97
SourceNode, 96
SymbolicSpace, 88
OpenLS, 50, 117
OpenStreetMap, 54, 184
Overpass API, 184
orientation, 28, 83, 122

Pastry, 180
personal data vault, 62, 247
place, 27
pose, 25, 27, 227
position, 27
absolute, 26, 83
relative, 26, 85, 206

positioning
geomagnetic, 31, 44
magnetic, 44
offline stage, 42, 44, 79, 100
online stage, 42, 44, 80, 100
RF-based, 40
seamless, 38

positioning system, 22
hybrid, 8, 23
indoor, 2, 23, 30, 206, 241
inertial, 23
integrated, 22
interoperable, 116
linear, 23
optical, 22, 196
satellite, 22

POSO, 117, 279

PostgreSQL, 72

precision, 29

ProtoBuf, 109

proximity DNS, 73

React Native, 105
received signal strength, 40
reference space
global, 27
local, 27
Regulation
DGA, 5, 66
DMA, 5
GDPR, 5, 66
reusability, 5
ROS, 25

scanning
active, 173, 251
passive, 173, 250
SemanticLBS, 117
SemBeacon, 160
sensor fusion, 24, 48, 121, 125
artificial intelligence, 49
high-level, 49
low-level, 48



340

INDEX

SignalSLAM, 24
simulataneous localisation and
mapping, 125
SLAM, 125
Solid, 147, 214
Pod, 64, 147, 214, 229, 247
storage provider, 147, 247
Solid project, 63
SOSA, 118, 215
Soukai, 134, 139
SPARQL, 58, 72
GeoSPARQL, 59, 72, 123, 219
SSN, 118, 215

TensorFlow, 95, 220, 222
things

physical, 160
time difference of arrival, 41
time of arrival, 41
TREE, 248
triangulation, 125
trilateration, 41, 125

TypedJSON, 93
TypeScript, 14, 76, 106

user access control, 63

velocity, 29, 84, 122
angular, 29
angulary, 122
linear, 29, 122

Web

Bluetooth Scanning, 107
Physical, 6, 68, 73, 164
Semantic, 55, 72, 116

WebRTC, 108
WebXR, 108
Web of Things, 53
physical things, 53
WeblD, 64, 177, 249
Well-known Text, 52

yaw, 29



About the Author

Maxim Van de Wynckel was born in Belgium in 1995. He obtained a Bachelor of
Applied Computer Science from the Erasmushogeschool Brussel in 2016, graduat-
ing with great distinction. He subsequently earned a Master of Science in Applied
Computer Science from the Vrije Universiteit Brussel in 2019, also with great dis-
tinction. His Master’s thesis, titled Indoor Navigation by Centralised Tracking, was
supervised by Prof. Dr. Olga De Troyer. During his Master’s studies, he identified
the fragmented landscape of indoor navigation systems and the challenges arising
from their heterogeneity.

Following his Master’s studies, he pursued a PhD at the Web & Information Sys-
tems Engineering (WISE) Lab under the supervision of Prof. Dr. Beat Signer.
His doctoral research focused on the interoperability of these systems to facilitate
their deployment. This work on interoperable and discoverable indoor positioning
systems resulted in eight peer-reviewed publications, nine presentations at interna-
tional conferences, and media coverage.

During his time at the Vrije Universiteit Brussel, Maxim played a key role in
the development of OpenHPS, an open-source hybrid positioning system released
in 2020, which constitutes a major contribution to this dissertation with many
established extensions. In 2023, he introduced the SemBeacon Bluetooth Low
Energy specification, enabling semantic beacons to describe and track people,
objects, and environments.

In addition to his research, Maxim served as a teaching assistant for several Bach-
elor’s and Master’s courses, including Web Technologies, Databases, Next Gen-
eration User Interfaces, Information Visualisation, Advanced Topics in Big Data,
and Open Information Systems. He supervised four Bachelor’s thesis students and
six Master’s thesis students, all within his research domain.

Personal website: https://maximvdw.be
Academic Curriculum Vitae: https://maximvdw.be/cv/academic/
Dissertation website: https://phd.maximvdw.be

341


https://maximvdw.be
https://maximvdw.be/cv/academic/
https://phd.maximvdw.be




	Introduction
	Privacy and Transparency Problems
	Towards FAIR Positioning Systems
	Problem Statement
	Research Questions
	Objectives
	Methodology
	Contributions

	Background and Related Work
	Basic Terminology
	Positioning Systems and Services
	Absolute and Relative Positions
	Coordinate Systems
	Orientation
	Velocity and Acceleration
	Accuracy and Precision

	Indoor Positioning Systems
	Use Cases
	Seamless Positioning
	Indoor Landmarks

	Positioning Techniques and Algorithms
	RF-based Positioning
	Fingerprinting
	Magnetic Positioning
	Noise Filtering
	Machine Learning
	Computer Vision
	Dead Reckoning
	Sensor Fusion

	Interoperability of Data and Services
	Location Data
	Indoor Environments
	Semantic Web

	Privacy and Transparency of Positioning Systems
	User Transparency
	Personal Data Vaults
	Regulations

	Discovering Positioning Systems and Services
	Global Discovery
	Local Discovery
	Open World Assumption


	An Open-Source Hybrid Positioning System
	Methodology
	Requirements
	System Actors
	Functional Requirements
	Non-functional Requirements

	Architecture
	Data Structure
	Orientation
	Absolute Position
	Relative Position
	Data Object
	Reference Space
	Data Frame

	Measurement Units
	Serialisability
	Graph-based Stream Processing
	Data and Processing Services
	Querying
	Post-processing Data
	User Actions

	Location-based Service
	Modularity
	Web-based Modules

	Performance
	Distributed Processing
	Parallelism and Workers
	Native Library Bindings

	Discussion

	Interoperable Positioning Systems
	Methodology
	Positioning System Ontology
	Ontology Design
	Observable Properties
	Observations and Accuracy
	Positioning Algorithms and Techniques
	Common Algorithms and Systems
	Demonstration
	Implementation and Technical Evaluation
	Conclusion

	Object-Document Mapping for Semantic Data
	Namespace Generation
	Class and Field Decorators
	Object Change Log
	Serialisation
	Deserialisation
	Data Shapes
	Querying
	Conclusion

	User-centric Storage Using Solid
	Architecture
	Solid Pod Properties
	Linked Data Event Streams
	Communication Broker
	Adapted Solution
	Implementation in a Positioning System
	Conclusion


	Discovering Positioning Systems
	Methodology
	Semantic Bluetooth Low Energy Beacons
	Architecture
	Related Specifications
	Advertisement Specification
	Semantic Description
	State and Discovery Flow
	Service Ranking
	Libraries and Application
	Conclusion

	Linked Data Hash Table
	Related Work
	Architecture
	Hashing Function
	Storage and Lookup
	Network Actions
	Implementation in a Positioning System
	Conclusion


	Applications and Technical Evaluations
	Multi-Sensor Ball Tracking
	Input Control
	Visual Positioning
	Internal Sensors
	Model Creation
	Evaluation

	Robot Obstacle Detection
	Positioning Model and Custom Nodes
	Conclusions

	Indoor Positioning Server and Application
	Dataset
	Test Data Points
	Trajectories

	Collaborative Positioning Systems
	Properties
	Applications
	Querying

	Fingerprint Accuracy Prediction Using CNN
	Training
	Testing
	Future Work and Conclusions

	Discoverable IoT Devices and Environments
	Dataset
	Device and Environment Discovery

	Discoverable and Interoperable AR
	Usage
	Reference Frame

	Discussion

	Integrated Solution
	User Analysis
	End Users
	Building Owners
	Developers and Technicians

	Requirements
	Functional Requirements
	Environment Requirements
	Data Requirements

	Actors
	Use Cases
	Navigation System
	Indoor Positioning System
	Asset Tracking
	Collaborative Robots
	Augmented Reality

	Architecture
	Linked Data Vocabulary
	Positioning Data Vocabulary
	Sensor Data Vocabulary
	Positioning System Vocabulary
	Access Control Rights and Discovery Vocabulary
	Authentication and Consent

	Personal Data Vault
	Data Structure

	Tracked Subject Discovery
	User and System Flow

	Distributed Registry
	Discussion

	Discussion and Future Work
	Discussion
	Future Work

	Appendix OpenHPS
	UML
	Data Objects
	Sensor Objects
	Sensor Values
	Absolute and Relative Position
	Graph
	Services
	Units

	Dependencies
	Examples
	Fiducal Markers as Reference Spaces
	Beacon Classification
	Protocol Buffers
	Data Owner in Solid

	Garage Fingerprinting Dataset
	Impact


	Appendix POSO
	Version 1.0
	Extensions
	Common Positioning Systems and Algorithms
	Crowdsourcing via Solid (WiP)
	FidMark


	Appendix SemBeacon
	Specification 1.0
	Arduino Library
	Hardware
	PCB
	Schematic
	Bill of Material

	Ontology

	Appendix Linked Data Hash Tree Specification
	Appendix Survey on the Privacy and Transparency
	Questions
	General Awareness
	Privacy Concerns
	Transparency of Applications and Systems
	Valuation of Location Data
	Demographic Information

	Pseudonymised Results

	Bibliography
	Index
	About the Author

