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Abstract

This thesis focuses on trajectory prediction utilising historical data and contextual information
in indoor environments. The main objective of this thesis is to create a heuristic trajectory
prediction system using the MobilityDB, which is a spatio-temporal trajectory database that
excels at handling trajectory data. The basis of the prediction system is MobilityDB’s ability
to efficiently store and query trajectory data while considering both the spatial and temporal
dimensions. This approach allows for transparent and accurate predictions in indoor environ-
ments. By using graph link prediction and taking temporal habits into account, we improve the
prediction accuracy even more, and we can provide a thorough understanding of users’ movement
patterns and habits.

We have thoroughly tested the effect of the temporal habit factor and the addition of new habits
to the dataset to see how well the trajectory prediction system would perform. The results we
obtained show that taking the temporal dimension and temporal habits into account improves the
model’s prediction accuracy. However, due to the limitation of the physical space of the indoor
environment, some predictions were inevitably predicted inaccurately. Nonetheless, the model
still performed reasonably well, even when new (different) habits were added to the database
next to the already existing ones. The evaluation suggests that the model is not entirely able to
adapt quickly to changing habits. However, even when the database expands, it remains flexible
and maintains a decent prediction accuracy.
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1 Introduction

Because of its wide applications in fields such as transportation, security, and social networks,
trajectory prediction has become an important research topic in recent years. In this thesis, we
focus on the subject of trajectory prediction in indoor and outdoor environments using historical
data and contextual information.

Our approach is based on an intentional choice to not use traditional machine learning ap-
proaches. Although machine learning has great capabilities, it needs a large amount of training
data and can occasionally operate as a ”black box,” making it impossible to understand the
reasoning behind its predictions. Our problem is reliably predicting a trajectory in various sur-
roundings without relying on complex approaches that demand a lot of data, are challenging
to comprehend, and are unreliable. How can we predict trajectories with transparency and
accuracy?

Our heuristic methodology, on the other hand, is based on clear and traceable patterns, providing
transparency and flexibility. It allows for exact predictions based on observed behaviour without
the need for large datasets.

Our system utilises MobilityDB, a specialised database designed for trajectory data, to accurately
predict recurring trajectories (habits). By incorporating both spatial and temporal dimensions,
we can increase the precision of our predictions, ensuring accuracy in various real-world scenarios.
If someone habitually visits a certain place at a specific time, our system will recognise and use
this habit to anticipate their typical behaviour when they are near this location at that time.

One of the novel contributions of our study is the use of MobilityDB as a spatio-temporal
database for trajectory prediction, which has not been researched before. MobilityDB enables us
to store and retrieve trajectory data with geospatial and temporal dimensions, which is required
for accurate trajectory prediction in real-world scenarios.

In addition to these contributions, we aim to:

e research the various possibilities MobilityDB might bring for trajectory prediction.

e perform a thorough examination of how our heuristic prediction compares to other com-
monly used methods.

e evaluate our system’s robustness in a range of conditions, including the inherent errors or
"noise” found in real-world data.

e present a novel technique for trajectory prediction that combines graph link prediction
and takes temporal habits into account, providing a more complete picture of movement
patterns.
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2 Background

Knowing how an object or person will move in the future based on their prior movements is
known as trajectory prediction. The basic goal is to draw conclusions from historical data and
identify patterns in either human or object behaviour. These patterns make it possible to make
precise predictions about how these objects will move in the future.

2.1 Applications

The amount of the mobility data opens up new possibilities for identifying human motion patterns
and performing predictions on future trajectories [1]. To be able to understand and predict
human mobility is considered to be crucial for various applications such as urban planning, traffic
management and updates, suggested routes, location-based advertisement, collision avoidance of
air crafts and maritime ships and many more [1, 2, 3]. More concrete, Chen et al. [4] mention
an example where it is highly desirable to have a high accuracy regarding the prediction that is
made. It would be possible to estimate traffic conditions and give drivers more logical paths to
avoid or relieve traffic bottlenecks by anticipating where vehicles will be on the road next.

Although some researchers predict connectivity to GSM mobile phone towers, some concentrate
on predictions using Wi-Fi networks. In road networks, where movements are restricted to roads
on the map, trajectory prediction is utilised in addition to the mobility patterns of smartphone
users. In smart home environments, location prediction technologies are also employed to enhance
comfort and reduce unnecessary expenses [5].

2.2 Challenges

Depending on the application where trajectory prediction is used, the challenges will vary. Real-
time prediction is very important because autonomous vehicles must act quickly to prevent
collisions and guarantee passenger safety. Dealing with uncertainty, which can result in faulty
trajectory prediction due to inaccurate sensor data, is another difficulty. The difficulty of man-
aging complicated traffic situations, like intersections, where several vehicles must work together
to avoid collisions, is yet another important challenge [6, 7]. A study of trajectory-prediction
techniques for autonomous driving is provided by Huang et al. [6], who also noted the various
difficulties of trajectory prediction in this particular scenario. The authors classify popular and
known trajectory prediction methods in four different classes after looking into the various ex-
isting prediction methods over the past two decades, which can be seen in Figure 1. All the
methods, except for the physics-based approach, are mainly machine learning methods.
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Figure 1: Trajectory prediction categories [6]

The use of machine learning techniques and models is by no means the only option for trajectory
prediction approaches. Existing models such as the physics-based methods on Figure 1, Markov
chains, historical database querying, using data mining to find patterns (when a lot of data
is available). In Section 3, we will dive deeper into both the ML and non-ML methods and
techniques.

2.2.1 Uncertainty

Because many real-world settings are unknown, trajectory prediction is a difficult task. Many fac-
tors, including noisy sensor data, unpredictable human behaviour, and unforeseen environmental
events, might contribute to this uncertainty. The topic of uncertainty in trajectory prediction is
mentioned in several of the studies.

In the paper by Huang et al. [6] regarding autonomous vehicles, the authors point out that in
autonomous driving scenarios, it is challenging to precisely predict the trajectories of nearby cars
due to the presence of uncertainties. They suggest a technique that explicitly models uncertainty
and includes it into the trajectory-prediction technique using a Bayesian framework.

Similar to the previous example, Sadri et al. [5] emphasise the significance of taking uncertainty
into consideration when predicting the trajectory of pedestrians. To be able to predict future
movements and also take uncertainty into account, they suggest a technique that makes use of a
Markov model.

Chen et al. [4] cover the same issue by suggesting the use of a recurrent neural network, a
machine-learning model that learns from previous trajectories. They then make an effort to
produce probabilistic predictions of future trajectories.

The above-mentioned papers all highlight how essential it is to take uncertainty into account
when predicting future trajectories, and how crucial it is to create techniques that can deal with
this uncertainty. In order to produce predictions with a high accuracy that take this problem in
real-world contexts into account, effective trajectory-prediction approaches will need to be used
to deal with this.



2.3 Spatio-temporal Databases

In this section, we will shortly discuss spatial databases, temporal databases and the combination
of the two, namely spatio-temporal databases.

2.3.1 Spatial Databases

A spatial database is a database that is designed to store and query data about objects in space,
such as points, lines, and polygons. While most databases understand various numeric and
character data types, additional features are necessary to understand these geographical data

types [8].

While traditional DBMS (Database Management Systems) can manage large datasets and give
resilience against failures, they are inefficient for dealing with geographical data and queries.
Shukla et al. provide an example where a non-spatial query would return a list of bookshops
based on the book inventory, but a spatial query might return bookshops within a given distance.
A spatial database is required here to be able to understand and manage geographical data
types [9]. This is a straightforward example, but in today’s world, the importance goes far
beyond the example with a diverse range of applications ranging from location-based services to
Geographic Information Systems (GIS) and beyond.

2.3.2 Temporal Databases

Conventional DBMS are not suitable for storing and processing data that changes over time in
the real world as handling data values from the past, present and future that contain historical
information is not evident. Jaymin Patel mentions three different ”types” of data, namely current
data, past data and future data. Current data is referred to as data stored by the system that is
valid at the present time. Past data contains information that was stored at an earlier moment,
which used to be valid around that time. Future data is defined as data that will eventually
become true. Databases like Oracle and Postgres do not support query operations to handle past
and future data [10].

However, temporal databases are different in the fact that they are designed to handle time-
varying data. Allowing data storage with timestamps makes it possible to understand how the
data changes over time and query across various time periods. This is a necessity for applications
that need the tracking of historical changes, the prediction of future trends, the analysis of time
series data, location-based services and trajectory prediction, where understanding past patterns
aids in predicting future movements [11, 12].

Some of the unique features and characteristics of temporal databases include storage and man-
agement, time-based querying of temporal data and efficient handling of time series data.

Temporal databases allow users to query data based on time, which makes it possible to retrieve
information about the state of the database at a single point in time or across a period of time.
This functionality is especially useful for applications that require the analysis of changes over
time, such as financial analyses, traffic management, urban planning, trajectory prediction and
more [13].



A time series query is able to detect sequences of data points that occur at distinct increasing
times. These criteria can range from statistical rules to temporal patterns to time series sim-
ilarities. Particularly, similarity queries play an important role in real-world applications such
as stock research and weather forecasting, which deal with enormous amounts of time series
data [14].

2.4 Spatio-temporal Databases

After having discussed the various features and characteristics of spatial and temporal databases,
we now have a look at spatio-temporal databases, which combines the two. It is critical to
consider the unique properties of space and time when creating an efficient representation of
them. However, there are several viewpoints on how to see space and time. This is the key
problem in building a unified method that can serve a variety of applications [15].

Spatial data is any data item that is associated to space (location-aware or geotagged). His-
torically, recognised patterns of spatial data included raster data (e.g. satellite pictures), point
data (e.g. crime reports), and network data (e.g. road maps). However, with the widespread
availability of GPS-enabled devices and location-based services, the nature of spatial data has
changed. Check-ins, geotagged tweets, and GPS trajectories have now been added to the mix.
One obtains spatio-temporal data when combining spatial information with timestamps. It can
be divided into two types: discrete point data, which pinpoints specific occurrences at a certain
time and place (such as the position and timing of a traffic collision), and trajectory data, which
monitors movement over time, such as a taxi’s route throughout the day [12].

Where does the need for spatio-temporal databases come from? There exist many real-world
applications, in which this is a necessity. There are many applications which show us why spatio-
temporal databases are essential. We now show a couple of examples provided by Alam et al.
that show the importance and utility [12]:

Applications and Utility of Spatio-temporal Databases:

Epidemiology and Public Health:

— Track and analyse disease spread patterns.
— Enhance pandemic response by identifying outbreak origins and containment strate-
gies.

e Environmental and Climate Sciences:

— Analyse patterns in moments like bushfires, based on aerial and satellite images.
— Track and predict climatic events, e.g., cyclones, hurricanes.

— Study factors affecting various types of pollution using sensor data.

Emergency Management:

— GIS tools to analyse data from drones, satellites, and social networks for quick re-
sponses during crises, from hurricanes to local emergencies.

e Oceanic and Maritime Activities:
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— Use spatio-temporal datasets for safe maritime navigation, cargo shipping, and ad-
vanced weather forecasting.

— Monitor environmental changes and detect anomalies like smuggling.

— Ensure the efficiency and safety of global trade and manufacturing supply chains.
e Transportation and Urban Planning:

— Optimise transportation services like Uber, leading to reduced traffic congestion.
— Drive urban planning and design based on data from sensors, vehicles, and people.

— Support the shift towards intelligent, driver-less transportation systems.
e Agriculture:

— Implement precision agriculture techniques using data from drones and sensors.

— Maximize crop production by optimizing farming techniques based on soil and climate
conditions.

— Address the challenges of decreasing arable land and climate-induced threats to farm-
land.

e Emerging Fields of Study:

— Monitor and study phenomena like animal migration, space exploration, and neuro-
science.

— Opportunities in non-traditional areas, such as biology, chemistry, and astronomy.

Conclusion: Spatio-temporal databases are a powerful tool for understanding and tackling
complex global challenges in a variety of applications. We may rely on data-driven solutions that
are both exact and effective in addressing problems by combining these databases into diverse
applications and sectors.

2.4.1 MobilityDB

MobilityDB is a modern database system designed specifically for managing and analysing spatio-
temporal data, especially movement and trajectory data. MobilityDB, built as an extension to
PostgreSQL and its spatial module PostGIS adds specific features to efficiently manage large
amounts of spatio-temporal data. Before delving into the reasons why MobilityDB was chosen
as the primary database for this thesis, it is crucial to understand some of its main data types,
especially those relevant to trajectory prediction:

MobilityDB is a highly adaptable database that benefits from a strong type system that can
manage temporal data and track value changes over time. The base type and the time type are
the two most important components of this system. The base type can represent a variety of
numerical as well as spatial points, but the time type determines how time is represented, such as
exact timestamps or larger time periods. It provides a collection of abstract data types (ADTs)
designed for moving object data. For instance, tgeompoint is a temporal type that encapsulates
the movement of a geometric point across time, similar to recording a pedestrian’s trajectory
point by point. Combining these trajectory points into one sequence to represent a full trajectory
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can be achieved by combining them into a tgeompointSeq. Another example is tfloat, on the
other hand, tracks the evolution of a floating-point value over time, essentially representing
features such as a pedestrian’s walking or running speed. In essence, MobilityDB provides a
diverse set of temporal types, such as tgeompoint, tgeogpoint, tint, tfloat, tbool, and
ttext, which are smoothly mapped to their PostgreSQL and PostGIS equivalent base types,
such as geometry(point), geography(point), int, float, bool, and text[16].

MobilityDB excels in data compression thanks to delta encoding. This method takes advan-
tage of sequential data similarities, making it effective for moving geometries. Furthermore,
the interpolation mechanism in MobilityDB detects value transitions between timestamps and
presently supports both step and linear interpolation to handle both static and dynamic data
circumstances [17].
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3 Related Work

The related work section is organised to give a thorough overview of the research that has been
already done on trajectory prediction. We begin by talking about rule-based approaches, which
use domain-specific rules and heuristics to forecast trajectories. These techniques can be used
for certain purposes, including the modelling of pedestrian behaviour or predicting traffic flow,
and they often rely on hand-crafted rules based on geographical and temporal information. We
also investigate expert systems and decision trees for trajectory prediction, which are rule-based
approaches that make predictions using decision trees or knowledge-based systems.

We proceed to explore non-machine learning techniques. Statistical techniques like time series
analysis and Markov models, physics-based models like kinematic and dynamic models, and
analytical approaches like Gaussian processes and Bayesian networks. We discuss the benefits
and drawbacks of these methods in the context of trajectory prediction and offer details on their
practicality and constraints.

Then we delve into machine learning techniques, which have recently attracted a lot of interest for
trajectory prediction. These techniques use machine learning algorithms to forecast the future by
learning from prior trajectory data. We look at supervised learning techniques that use labelled
data to train predictive models, including k-nearest neighbours, decision trees, and support vector
machines. We also address unsupervised learning techniques that do not require labelled data
but group similar trajectories based on similarity indices, such as clustering and density-based
techniques. We investigate trajectory prediction approaches based on reinforcement learning,
where agents are trained to decide how to anticipate trajectories based on incentives and feedback.
We also examine deep learning techniques that have shown promise in capturing the temporal and
spatial connections in trajectory data, such as recurrent neural networks (RNN), convolutional
neural networks (CNN), and transformers.

We review spatio-temporal data mining techniques in addition to machine learning techniques
for trajectory prediction. These techniques make use of data mining tools to find trends and
connections in trajectory data.

3.1 Prediction Categories

A significant amount of work and research has been conducted within the field of trajectory
prediction. A trajectory is typically described as a sequence of locations arranged by timestamps.
Within this field, three main categories are the most frequent:

e Route Planning

e Long-range prediction

e Short-range prediction

Route planning is the process of building a complete route that travels between two points on
a geographic location, where the first point serves as the starting point and the second as the
destination [18]. All the intermediate trajectories together create a route. There exist various
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applications of route planning such as finding the most popular or the fastest route between 2
locations.

Long-range predictions attempt to forecast an object’s future trajectory over a wider time hori-
zon, such as that of a person or a vehicle. They are different from route planning in that the aim
is to forecast a moving object’s entire future trajectory. The sequential positions or motions of
the object over a longer period of time, frequently several minutes or even hours, are predicted
as part of these forecasts, which go beyond simple route planning [4]. The object’s velocity,
acceleration, interactions with the surroundings and potential future changes in the environment
must all be taken into account when making long-range forecasts. Naturally, the uncertainty of
this information will cause the prediction accuracy to decrease as the prediction time interval
increases. An example where this is compulsory is aircraft trajectory prediction. Zeng et al. [19]
mention that the prediction accuracy will inevitably drop as the predicted time interval gets
longer due to the complexity and unpredictability of this information.

Short-range predictions have already been widely investigated, where the main concern is the pre-
diction of only the next location. Some of these techniques exclusively use individual movements
for predictions, while others take into account all the moving objects’ historical movements [20].

The above-mentioned prediction strategies predict locations using past trajectories, however it
is obvious that when external data is utilised, it might increase the overall accuracy of the
prediction. These can vary from the length of trajectory, travel time, accident reports and road
work, which are then used to calculate the likelihood of the predicted locations in the related
context [20]. Similar to this, in order to increase the accuracy even more of the prediction model,
context data such as time of day, day of week, and velocity have been included as features [21].

3.2 Models and Techniques

As mentioned before, in the area of trajectory prediction, numerous distinct approaches, including
machine learning (ML) and non-ML methods, have been proposed. Understanding these current
approaches, together with their benefits and drawbacks, is essential for gaining insight into the
state of the subject today. In this section, a distinction will be made between non-ML and ML
methods, and then we will look into a couple of methods within each category. The following
techniques will be discussed:

e Non-ML

— Rule-based techniques & heuristics
— Markov modelling

— Graph-based mining (GBM)

— Link prediction

e ML

— Markov modelling
— Graph neural network (GNN)
— Long short-term memory (LSTM)
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3.3 Non-ML Approaches
3.3.1 Rule-based Techniques

Heuristics and rule-based methods are two different types of trajectory prediction techniques
that base predictions on known rules or patterns. These methods are based on the idea that
certain patterns or rules can be discovered in trajectory data and used to predict future locations
or routes. For example, it is expected that a person who continues to travel between two points
A and B will continue doing so in the future.

PrefizSpan is a sequential pattern mining algorithm, with a goal to uncover frequent subsequences
as patterns in a database. Morzy proposed a two-step process to mine frequent trajectories from
a large dataset. First, trajectory generation is performed and followed by trajectory clustering.

In the first step, sequential patterns are created by repeatedly adding new components from the
dataset to a sequence’s prefix, then calculating how frequently these extended patterns occur.
The candidate trajectories, which are further processed in the trajectory clustering step, are
represented by the frequent patterns recovered by the PrefixSpan method.

In the second step, a clustering algorithm is applied to group similar trajectories together based
on their spatial similarity. It’s important to not that even if common trajectories do not perfectly
match in terms of movement patterns, the clustering stage aids in finding those that do. This
makes it possible to record different object movement patterns while still detecting common ones.

After clustering the frequent trajectories, the writer applied a rule-based method for location
prediction. The rules that capture the spatial interactions between the various locations are
defined using the frequent trajectories. Based on an object’s present location and historical
trajectory, these criteria are then applied to forecast its future location. Using these created
rules, it is possible to offer insights into the spatial behaviour of objects and the underlying
patterns of movement, where the rule-based approach will then produce interpretable predictions.
The PrefixrSpan algorithm and rule-based techniques work together to produce precise location
predictions and allows for scalability for larger datasets [22].

It is crucial to remember that this whole methodology depends on the quality of the dataset
used and how representative it actually is. There also still might be shortcomings of rule-based
techniques in capturing even more complicated and dynamic movement patterns.

In the following example, a hybrid prediction model is proposed. Jeung et al. [23] opted for a
combination of a rule-based approach together with a machine learning approach. Association
rules are used to capture spatial relations between different locations, which is based on historical
data. The Apriori algorithm, which is an algorithm for frequent itemset mining, is used to extract
these association rules from the trajectory data. These are then used to perform predictions on
the future location of an object based on its current location and their past trajectory (historical
data). The crucial difference with the previous example is that a decision tree is used to model
the movement patterns. This tree is trained using previous trajectory data of the object. The
predictions are then performed based on other attributes such as speed, current location, direction
and more [23].

The last study that will be discussed, regarding rule-based techniques, aims to perform trajectory
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prediction for connected vehicles to create precise traffic management and route optimisation
systems. The Prefix-Projection technique is an extension of the previously-mentioned PrefizSpan
algorithm used for mining frequent patterns. Three essential steps are presented in the algorithm
PrefizTP. In order to communicate and exchange traffic data, connected vehicles equipped with
sensors form a grid of vehicles and produce a large amount of spatio-temporal data. Second,
the algorithm creates patterns of increasing length in this stage by projecting the shortest, most
frequent patterns onto longer patterns. In order to ensure that only the most relevant and
significant patterns are used for prediction, the algorithm prunes patterns that do not reach
specific support and confidence requirements. The final step is trajectory matching. In order to
determine how accurate the predictions are, the common patterns created in the previous stage
are projected onto future time periods. These predictions are then compared to the actual data
to be able to evaluate their accuracy [24].

Each of the three studies presented a different approach to trajectory prediction using rule-based
techniques in combination with other existing technology. In general, rule-based systems can
be efficient for heuristic real-time trajectory prediction since they are able to manage big and
complicated data and produce precise predictions. However, the accuracy and power of these
strategies rely on the quality and representativeness of the dataset utilised for mining common
trajectories. A disadvantage for real-time applications is that rule-based approaches may be
computationally expensive. Machine learning approaches, on the other hand, can assist in taking
into account new features and reacting to evolving data patterns. They may not function well
with small datasets, and they require a lot of training.

3.4 Markov Modelling

A Markov model is a mathematical tool that can be used to estimate the likelihood of a future
event. A Markov model can be used to forecast where someone will travel next, based on their
current location in the context of location prediction.

An approach that uses Markov models to improve location prediction is the Next Location Pre-
dictor with Markov Modelling (NLPMM). The system aims to predict the movement of objects
by analysing both individual patterns and group patterns over time. This is done by using two
separate models, namely the Global Markov Model (GMM) and the Personal Markov Model
(PMM). The GMM goal is to analyse the general movement patterns in all trajectories, while
the PMM focuses on the individual patterns of each moving object using the historical data that
is available. These are merged together using linear regression to perform predictions. Further-
more, the authors take into account that movement patterns or habits can vary depending on
the time. For instance, a user might have different habits during weekdays than at the weekend.
This is addressed by grouping up similar time periods together and creating a separate model
for each group. To evaluate their solution, they tested the approach on real-world data consist-
ing of real vehicle trajectory data. To conclude, NLPMM outperformed existing state-of-the-art
methods and proved to even be effective with sparse data [4].

3.4.1 Graph-based Mining

Lee et al. [25] present the Graph-Based Mining (GBM) algorithm as an effective method for
mining common trajectory patterns from spatio-temporal databases. Due to its ability to in-
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clude both spatial and temporal features, the GBM technique is important for applications that
require taking both dimensions into account. Every vertex in a mapping graph has a Trajectory
Information List (TI-list), which is an important component that the GBM algorithm uses to
log all trajectories that pass through it. Using the information in TI-lists, a depth-first search is
performed on the mapping graph to extract frequent trajectory patterns. This approach makes
use of the adjacency property of the mapping graph to reduce the search space and computa-
tional complexity and cost, making the algorithm more efficient and scalable compared to the
existing Apriori-based and PrefixSpan-based algorithms, which were mentioned in the previous
section. Nonetheless, the authors mentioned several limitations of their approach, including the
inability to mine patterns formed by non-adjacent points and challenges in handling TI-lists that
are too large to fit in main memory. Despite these drawbacks, the GBM algorithm outperforms
competing approaches in terms of efficiency and scalability and provides a new perspective on
the analysis of spatio-temporal data.

3.5 Time Series Analysis

The Holt-Winters Exponential Smoothing method is particularly used for time series data that
displays both trend and seasonality. In this specific context, Kalekar [26] refers to 'trend’ as the
long-term increase or decrease in data and refers to ’seasonality’ as changes caused by seasonal
factors, such as fluctuations in demand during holidays. The method consists of two distinct
models, namely the Additive and Multiplicative model. The former is used when seasonal changes
remain relatively constant over time, while the latter is utilised when seasonal changes are re-
flected by a certain factor. The following example is given by the author to further explain
the difference: When toy sales increase by a million dollars every December, the seasonality is
additive. If the sales increase by a certain percentage, e.g. 40%, the seasonality is multiplicative.
The model proposed by Kalekar uses three parameters. These are initially set on a specific time
period and are constantly updated as more recent data becomes available. This is very impor-
tant, considering it allows the model to adapt to changes in time series behaviour, which leads
to an increase in prediction accuracy. The Mean Absolute Percentage Error (MAPE), which
determines the average percentage difference between actual and predicted values, is used to
assess the model’s accuracy. Additionally, the technique also makes use of a certain look back
size, which stands for the amount of past data that is considered when performing a prediction.
This can help in identifying long-term trends and therefore improving the prediction accuracy.
In conclusion, the Holt-Winters Exponential Smoothing technique proves to be effective and
helpful in adjusting to changes in time series behaviour and improving the prediction accuracy,
especially when employed with a large look back size, especially when a large look back size is
used.

Although this technique was not discussed in the context of trajectory prediction, its adaptability
proves its importance as it allows the model to take into account both old and new habits, which
is essential for accurate trajectory prediction.

3.5.1 Link Prediction

Link prediction is an important task in network analysis, where the goal is to identify missing
links or even predict future links based on the network’s observed structure. It has a wide range

17



of applications, from recommendation systems to bioinformatics and social network analysis.
Traditionally, link prediction methods observe the network as static, using node similarities at
a specific point in time to predict links. The issue is that some networks, like social networks,
are dynamic and contain vertices and edges that may change over time due to changes in the
underlying social structure [27].

For instance, Figure 2 shows a depiction of the temporal link prediction problem. Divakaran and
Mohan [28] define it as follows: Consider a dynamic network G = (V,E) where V represents the
set of vertices and E the set of edges. Changes in the network are captured at specific moments
in time, resulting in a series of snapshots G1, G2, ..., Gt, for each time step from 1 to t. The
goal is to use these snapshots to predict the structure of the graph at the next time step, which
can be seen on the right-hand side of the figure at T+1.

.. O O

O Temporal Link
Prediction

t=T+1

Figure 2: Temporal link prediction goal [28]

Fang et al. [29] propose a dynamic approach to predict links and model individual behaviour in
temporal social networks. This is achieved by utilising a method that looks at the network at
several points in time rather than just at one moment. We refer to a ’snapshot’ of a network as
a photo taken of all the connections at a specific moment in time. Traditional methods usually
predict links based on how similar nodes are in one of these snapshots, but the approach suggested
by the authors is a type time series analysis. By making use of various snapshots, they can better
comprehend how the network changes over time. In order to make accurate predictions, the
authors embedded the network’s graphs into a space that can capture these changes. Performing
manifold alignment, which is a process that aligns each snapshot of the network over time,
helps the model to capture the network’s evolution and thus improve its predictions. Through a
number of time series experiments, they were able to show the importance of this alignment.

3.6 ML Approaches
3.6.1 Markov Modelling

Markov models can be also used and enhanced by the use of machine learning. A method created
by Ashbrook and Starner used GPS data to classify locations into meaningful places, which were
then added to a Markov model. They were able to predict someone’s future whereabouts by
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training the algorithm on their past movements. It is noteworthy that the authors discovered
that their method for position prediction demonstrated strong generality across various users.
However, they had not yet included time prediction in their Markov model at the time. This
means the variable of time, which is also an important factor, was not taken into account in
the prediction. In order to support time prediction, they intended to expand the model and
look at how variations in arrival and departure timings can reveal the significance of certain
occurrences [30].

3.6.2 Graph Neural Networks (GNN)

A specialised class of neural networks, named graph neural networks, offers the capability of
predicting which two nodes in a network are likely to be connected by an edge in the future.
A solution to this link prediction problem can be applied to many different use cases, such as
social recommendation systems and security. With such networks, it is vital to understand the
nature and context in which they occur. This means understanding which entities in the network
in question have the ability to create new links with other entities in the future. Reliable and
accurate link prediction plays a crucial part in our understanding and analysis of the complex
networks in which they occur.

A powerful link prediction approach that employs a deep learning framework Capsule Networks
(CapsNet) was proposed by Liu et al. [31] CapsNets are able to learn graph structures by lever-
aging their ability to recognize spatial hierarchies and relationships in complex data. Naturally,
combining this with the capability of GNNs to process this graph-structured data provides us
with a powerful new tool.

In contrast, earlier projects would tackle this link prediction problem more heuristically. Whilst
these methods are effective in practice, they rely heavily on making some strong underlying
assumptions about the existence of certain links. As an example, the Common Neighbours
technique makes the assumption that two nodes are more likely to be connected by an edge if they
share a lot of common neighbours. Due to its relative simplicity and potential for underestimating
the complexity of the overall network topology, this approach may only be appropriate for a
limited number of situations.

To go a little more into detail, we briefly compare Capsule Networks with a traditional convolu-
tional neural network (CNN). While CNNs represent their features using scalar values, CapsNet
opts for vectors. Vectors make it possible to collect additional information about various char-
acteristics of a specific entity. CapsNets also contain pooling layers that lead to information
loss, whereas CapsNets use capsules. Capsules are a group of neurons that work together to
capture the various properties of a certain entity. To decide which capsules in one layer should
be connected to which capsules in the following layer, CapsNets utilise a routing method. This
effectively allows for capturing part-whole relationships between entities, which are ideal for
object recognition and image segmentation tasks.

To forecast links in complicated networks, Liu et al. offer a two-stage architecture that combines
the advantages of GNNs and CapsNets. They learn node embeddings that capture the structural
characteristics of a network in the first stage with the GNN. In the second phase, they learn
feature embeddings that model the attributes of the nodes using CapsNet. The outputs of
the two different networks are then combined in order to make link predictions. According to
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the results of their tests, Liu et al.’s strategy is around 20% more effective than earlier, more
traditional approaches [31].

3.6.3 Long short-term memory (LSTM)

To represent sequential data, including time-series data, text, and audio, the long short-term
memory (LSTM) neural network architecture is used. Since Hochreiter and Schmidhuber first
introduced it as a technique for modelling sequential data in 1997, it has gained quite some
popularity [32]. The LSTM network is one type of neural network that can learn and duplicate
extended sequences. They have succeeded with various sequence prediction problems, including
speech and handwriting production [33]. Since LSTMs are capable of accurately capturing com-
plex correlations between current and future events, they have recently been used in multiple
articles to predict future trajectories.

In the research of Alahi et al. [33], a new approach is proposed to predict human trajectories
in crowded scenes using Long short-term memory (LSTM) networks. Their approach aims to
forecast the trajectories of all individuals in a scene by taking social norms and common sense
guidelines into consideration that people usually follow when navigating in communal spaces. The
authors suggest employing one LSTM for each person in a scene to predict their whereabouts
in the future. The LSTMs share weights, enabling the model to identify patterns that appear
frequently in the paths of various individuals. The authors create a Social pooling layer that
distributes data among the LSTMSs to take into consideration interpersonal interactions. This
allows for spatially proximal sequences to share their (hidden) states with each other. In essence,
this means that the model is able to pick up on common interactions across trajectories that
overlap in time. As an illustration, if two people are walking side by side, their trajectories are
likely correlated, and the Social pooling layer enables the model to capture this correlation.

On two publicly accessible datasets, the suggested model, dubbed ”Social” LSTM, beats state-of-
the-art approaches. Additionally, the authors demonstrate qualitatively how their Social-LSTM
effectively anticipates a variety of non-linear behaviours resulting from social interactions, such
as a group of people travelling together.

This technique may be used in autonomous cars because it is essential to predict human trajec-
tories for secure navigation precisely. By training on datasets with various moving objects, the
Social-LSTM model might be modified to forecast the trajectories of other moving things besides
people [33].

The final LSTM approach we will discuss introduces a new approach to pedestrian trajectory
prediction in crowded places. The technique, known as Bi-Prediction, uses a bidirectional LSTM
architecture and distinguishes itself from existing approaches by taking the intended destinations
of pedestrians into account rather than focusing on the influence of neighbours. A ’'neighbour’ is
referred to as "neighbouring pedestrians” who could influence a pedestrian’s trajectory. There
are two stages to how the Bi-Prediction approach works. First, it divides observed trajectories
into a variety of route groups. The model then creates numerous trajectory predictions with
varying probabilities towards various destination places. Evaluations against two baseline and
three cutting-edge approaches on benchmark datasets show that this two-stage strategy improves
trajectory prediction accuracy and lets the model generate numerous prediction trajectories with
different probabilities. This feature is particularly useful and applicable for situations where
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anomaly detection and space planning is of importance. Despite its benefits, the current Bi-
Prediction implementation requires manual region partitioning identification in the first stage.
The authors intend to overcome this issue in their future work by automating this. Additionally,
they intend to consider more contextual factors, such as people standing in groups and pedestrians
pausing at traffic lights, to improve the prediction accuracy. By using a bidirectional LSTM
framework to construct several prediction trajectories for various destination locations, which
surpasses existing approaches, the Bi-Prediction method represents a significant advancement in
trajectory prediction [34].

3.6.4 Spatio-Temporal Graph Attention Network

While the previous paper focused on adding social interactions into trajectory prediction, the
following research takes a somewhat different approach. Huang et al. [35] presents a spatio-
temporal graph attention network (STGAT) that incorporates spatial information by generating
a graph representation of the environment while using LSTM to simulate the temporal component
of trajectory prediction. Both authors recognise the importance of LSTMs in properly predicting
trajectories, and this study builds on this basis to increase the model’s overall performance.

STGAT employs a sequence-to-sequence architecture, which is a type of neural network that
accepts a sequence of inputs and generates a sequence of outputs. The inputs in this scenario are
pedestrian trajectories across time, while the outputs are predictions on their future trajectories.

A graph attention network (GAT) layer is combined with an additional long short-term memory
(LSTM) layer in the design. At each time step, the GAT records spatial interactions among
pedestrians by assigning priority to neighbouring walkers based on their relative locations and
velocities. The LSTM records temporal correlations between interactions across time by acquiring
the continuity of interactions. By combining these two layers, STGAT is able to model both
spatial and temporal interactions between pedestrians, leading to more accurate predictions of
their future trajectories.

STGAT has various benefits over other approaches for modelling spatio-temporal interactions.
Firstly, it directly models interaction continuity over time, which has not been done before
according to my current knowledge.Second, it employs GAT to prioritise neighbouring pedes-
trians based on their relative locations and velocities, resulting in more accurate predictions.
Finally, it outperforms two publicly accessible crowd datasets (ETH and UCY) and generates
more "socially” believable pedestrian routes. However, there are some possible disadvantages to
employing this method. Because of the usage of several layers and attention techniques, it may
be computationally costly. It may also be less successful in predicting trajectory in extremely
dynamic or unexpected conditions [35].

3.7 Overview

After having analysed various systems, models and techniques, we must carefully weigh our
options for the approach that we will choose. As mentioned before in the introduction, we have
decided not to use machine learning-based techniques for several reasons. We must gather and
analyse lots of data over a long period of time and at various intervals. Furthermore, for the
evaluation it is necessary that we integrate new data to be able to continuously test, experiment
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and evaluate the model’s performance. Machine learning, especially those that involve deep
learning architectures like LSTM and GNNs, requires lots of data for training, and whenever
new data is added, the retraining process becomes really time-consuming. This is not only
inefficient but also unsuitable for real-time applications as they require quick adaptation when
new data is presented. For the evaluation process, we prefer to rely on heuristics as they are
more straightforward and help us identify particular places where the model fails. This allows
for a more thorough examination of any potential inaccuracies or errors. On the other hand,
machine learning models can be challenging to evaluate due ”"black box” nature, as mentioned
before.

Considering all these factors, we have decided to use a graph link prediction approach with expo-
nential smoothing as proposed by Chen et al. [4]. The benefit of utilising graph link prediction is
that it can capture complex relationships between different entities, which can result in a more
understandable and precise representation of the underlying habits that effects the trajectory
prediction. This aligns with our requirements for efficiency, ease of evaluation, and the ability to
continuously incorporate and adapt to new data.
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4 Solution

Before delving into the specifics of the methodology, we will first give a brief overview of the
various components that can be seen in Figure 3, which represents the basic structured method-

ology.
B /\ c

Trajectory
Simulation

Graph Link
Prediction

Y

Graph from
GeoJSON

Figure 3: Overview solution

Initially, we create a spatial graph using an existing GeoJSON, which contains the various geo-
graphic features of a physical space. Hereafter, we follow arrow A’ which leads us to the next
step, trajectory simulation. The trajectory simulation process uses the GeoJSON-based graph
to generate trajectories within this graph. In Section 4.4.3, we further explain how these tra-
jectories are chosen with the use of a persona-driven simulation. The simulated trajectories are
then sent into MobilityDB, the database of our choice, as indicated by arrow 'B’. This specialised
database has been created to effectively store and manage spatio-temporal data.

As we move into the graph link prediction phase, arrow ’C’ shows us the simulated trajectories
being used by the graph link predictions. However, it is important to note that the graph link
prediction also makes use of the original graph created from the GeoJSON. This means that the
predictions are not exclusively based on the simulated habits but also take into consideration the
actual environment and infrastructure. By doing this, we ensure that the real-world network’s
structure and the simulated data are well aligned, which improves the forecasts’ accuracy and
reliability.

We will start by discussing a few example use cases that the system can handle, as well as
the functional and non-functional requirements that must be met to guarantee the system’s
effectiveness and efficiency.

4.1 Use Cases

There exist many use cases regarding this topic. In a variety of real-world scenarios, especially
those that require an understanding of movement patterns, the proposed predictive model would
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be very useful.

Indoor navigation and route planning: When visiting large indoor spaces such as shopping
malls, airports, or exhibition centres, it can be difficult to find the quickest route to your destina-
tion. The predictive model can assist in analysing the flow of individuals inside these buildings
to determine the places that may become overcrowded at particular periods. This data may be
utilised to create interior navigation apps that direct users along the least busy routes, enhancing
their experience and easing stress.

Retail stores: The predictive model could be used by retailers to examine client movement
patterns and behaviour inside the business. This aids them in understanding the most popular
goods and frequently visited areas. Retailers may enhance the shopping experience, increase
sales, and better control crowds during peak hours by optimising the store layout in this way.

Resource allocation: Large facilities like universities, hospitals and many other locations fre-
quently require the distribution of resources, including cleaning and maintenance services, secu-
rity employees, etc. The predictive model can analyse how people move through the facility’s
various spaces to predict which ones will be crowded or empty at certain times of the day. This
information may be used to better allocate resources, such as arranging cleaning services in
popular areas during less busy hours or placing security officers in the most needed locations.

While the current version of the model is designed for indoor applications, there are potential
extensions of this model for outdoor applications, which will be mentioned below. However,
modifications will be necessary to take into account the specific characteristics of outdoor envi-
ronments.

Urban planning: City planners and transportation organisations can plan public transit routes
in a more effective way by analysing commuting patterns and trends. By capturing and learning
about areas and their time of peak traffic, it is possible to improve their planning for more
effective urban transportation systems.

Traffic management: Whenever a prediction is performed, and it is possible to forecast when
a specific area will become crowded, it is possible to offer vehicles an alternative route. Using
historical data and trends to predict the traffic flow will lead to better traffic management, which
reduces both the overcrowding problem and the travel time of people.

Tourism: Finally, this technique can be used by travel agencies and tourism boards to predict
the most popular travel times and routes in the tourism and travel sector. If it is possible to
distribute visitor traffic fairly, it could help with improving some tour packages, being able to
regulate visitor flow to popular sites and more.

It is also important to note that the real applicability and effectiveness of the model for both
indoor and outdoor applications would depend on a variety of variables, including but not limited
to the type and quantity of data that is already available and the specifications of each use case.

4.2 System Requirements

In this section, the different requirements for the solution will be mentioned. We start with the
non-functional requirements, followed by the functional requirements.
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4.2.1 Non-functional Requirements
Here are the non-functional requirements for the system.

e Accuracy: Based on the historical data and contextual information that is provided, the
trajectory prediction system should produce accurate predictions. It is one of the most
important criteria for assessing the effectiveness of the system.

e Performance: It is crucial for real-world applications that the system will need to process
enormous volumes of data and complete computations quickly.

e Personalised prediction: Predictions that are specific to each individual user are produced
by the model using personal individual habits that it has learned from past data. Such a
method could be useful for planning, for instance, transportation and urban planning, and
personalised advertisements by predicting what the user’s future location might be.

e Generalisability: The generalisability of the solution is primarily due to its core concepts
and techniques, rather than its specific implementation. The use of geospatial and temporal
data, the graph-based approach, the learning of personal habits, and the incorporation of
semantic context are the fundamental principles that are broadly applicable across a variety
of contexts, even though the precise parameters and model specifics may need to be adjusted
depending on the use case.

4.2.2 Functional Requirements

These are the functional requirements for the system:

e Data management: The system must be capable of storing user trajectory data in a struc-
tured format as well as accepting, processing, and storing that data. This consists of
information about the user’s beginning and ending locations, their path, and any relevant
contextual data.

e Data Generation: The system is able to generate synthetic data based on a user their
preferences and/or habits. This includes creating believable trajectories and simulating
their habits for various personas.

e Contextualising Trajectories: Based on the time of day (morning, noon, afternoon, evening)
and other semantic context information, the system must be able to contextualise trajec-
tories. This contextual information has a significant role in trajectory prediction.

e Temporal Information Management: The system is built in a way that it has to deal with
the temporal information that is inherently present in the trajectory data. This involves
creating a mechanism which considers the sequence and timing of the trajectories, either
when generating new ones or when the predictions are performed.
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4.3 Database Schema

MobilityDB is an extension of PostgreSQL and PostGIS, designed to efficiently handle spatio-
temporal data. The schema given in this section outlines the relationships between the different
entities and attributes involved in the simulated trajectories for the graph link prediction.

e id: Thisis the primary key for the "user_trajectories’ table. The column is auto-incremented
(via 'nextval’) and guarantees a unique identifier for each trajectory record in the table.

e userID: This is another integer field corresponding to the user’s unique identifier whose
trajectory is being stored. This allows us to link trajectories to specific users and makes it
possible to study individual movement patterns. It is important to have a separate 'userID’
as a user can have multiple trajectories, and this field allows us to associate each trajectory
with the correct user.

e Trajectory: This column stores the trajectory data as tgeompoint type, a temporal
geometric point type in MobilityDB that allows us to store and manage spatio-temporal
data. This field essentially captures the user’s movement over time and space. The data in
the column actually consists of tgeompointseq, which contains the datapoints in the form
of tgeompoint.

e Semantic_context: This JSONB type column holds metadata associated with each tra-
jectory, such as the time of day the trajectory was recorded, which can be used in analysis
and prediction tasks.

e Additional_info: This JSONB type column is designed to hold any extra information that
might be relevant to a particular trajectory but does not fit into other predefined columns.

e Metadata: This is a JSONB (binary JSON) type column that provides additional contex-
tual information related to each trajectory. This could include information like the purpose
of the trip, the mode of transportation, and so on.

e Trajectory_seq-id: This UUID (universally unique identifier) column provides a globally
unique identifier for each trajectory sequence. This can be useful in complex queries or
analyses that span multiple databases or need to integrate with external systems.

e STbox: This column of type STbox (spatio-temporal bounding box) stores the spatio-
temporal extent of each trajectory. This is useful for optimising spatio-temporal queries
and helps to filter trajectories quickly based on spatial and temporal bounds.

The database schema has been made to effectively store and query user trajectory data, as well
as to support the functional needs 4.2.2 of our trajectory prediction system.

4.4 Data Simulation
4.4.1 Graph Construction

In this section, we will illustrate how to create a graph that represents the geographical space,
which we will use for the trajectory simulation in Section 4.4.2, as mentioned in the overview.
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The graph is built using the places visited by users as well as the relationships between these
sites. To provide a complete and accurate representation, the graph creation process takes into
account both the geographical and temporal properties of the trajectories. Once the construction
of the graph is completed, the following step will be to generate trajectories.

A pre-existing GeoJSON file, a common open-source format for storing a variety of geographic
data structures, served as the primary source of geographical data in our study. This file con-
tained information on geographical elements such as points, lines, and polygons, each of which
represented a unique spatial property of the physical environment. Including these pre-defined
geographical shapes and polygons made identifying the area of interest much more manageable.
However, in order to improve the granularity and accuracy of our trajectory prediction model,
”checkpoints” were introduced. These checkpoints, which were placed outside of each room or
polygon, function as nodes in our physical space graph model, which can be seen in Figure 4.

This design decision was made to provide for a more simplified implementation of graph-based
calculations, notably pathfinding algorithms, allowing for more accurate and efficient trajectory
predictions. The trajectory prediction model can achieve more accurate predictions by utilising
a graph-based model with checkpoints. This is because the model can utilise the graph structure
to calculate optimal paths between checkpoints, considering factors such as distance, obstacles,
and constraints. This enables the model better to capture the spatial context and potential
movement patterns.
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Figure 4: GeoJSON visualisation of Pleinlaan 9, Floor 3 containing rooms and checkpoints
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The nodes are represented by the various existing rooms in combination with the checkpoints.
In Figure 5, a representation of the graph can be seen with the various rooms and checkpoints
as nodes with their corresponding edges.

Constructing the graph in this manner will aid in heuristic trajectory generation, and it has also
established a solid foundation for later graph link prediction challenges. Link prediction, in the
context of our graph, essentially refers to anticipating future transitions or movements between
checkpoints. Our graph is excellently suited for this purpose because of its rich recording of
previous mobility patterns, allowing for more accurate predictions of future movements. In order
to guarantee that the model accurately captures the real-world constraints, such as avoiding
predictions in which users would be able to pass through walls, it is also essential to develop a
realistic representation of the physical space. To achieve this, our model is influenced by exist-
ing standards similar to, IndoorGML, which is designed to model indoor spaces for navigation
purposes [36].

Figure 5: Graph representation of Pleinlaan 9, Floor 3

4.4.2 Trajectory Simulation

The trajectory simulation methodology that we perform, is a comprehensive approach that pro-
duces accurate, context-driven, human-like trajectories in a given environment.

Whenever generating a trajectory between a start -and end location, a validation is performed
to check whether there exists a path between these 2 nodes. After the verification, the shortest
path is computed using Dijkstra’s algorithm. The trajectory is built by moving from one node
to the next following the calculated path. To offer a more complete depiction of the trajectory,
intermediary points, known as sub-nodes, are constructed for each edge along this path. The
reason for interpolation is to have a real-world representation of the data being collected. Simply
only having the nodes as data points would not be accurate enough, as the granularity level will be
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too low. Each sub-node indicates the user’s estimated position at a specific moment during their
trajectory. This fine-grained trajectory not only offers a comprehensive spatial representation of
the user’s movement, but also includes the trajectory’s time element within the spatio-temporal
model. This also allows us to really simulate a real-world experience.

As the detailed trajectory is created, the time is incremented based on the calculated travel time,
and the average speed. This temporal information in combination with the mode of transporta-
tion, in this case walking, forms the basis of the semantic context for a trajectory point. This
is further enhanced by classifying the day into four categories: morning, afternoon, evening and
night. This classification allows for a more human-like trajectory by tying the movement of users
to time-based contexts. Furthermore, when data would be collected in the real-world, it would
also allow for trajectory segmentation by splitting up the trajectories of a whole day into four
categories. This could possibly lead to interesting information after further analysation of the
data.

The trajectory points that have the same semantic context are then batched together. This
batching is critical for maintaining the distinctness of each time period and, as a result, ensuring
that the produced trajectory matches to the time-dependent context. Once these batches are
complete, they are stored in the spatio-temporal mobilityDB database for later analysis.

An extra feature that was implemented, is the use of spatio-temporal bounding boxes, also
called STBoxes. In essence, an STBox encapsulates a trajectory’s spatial extent and temporal
duration, defining the bounds in which the trajectory exists, in both space and time. It has
multiple advantages regarding the analysis of spatio-temporal data and trajectory prediction.
By associating each trajectory with an STBox, it becomes easier to both identify and acquire
trajectories that intersect with a certain spatial area within a given time interval. This saves the
computationally costly process of reviewing every single point on a trajectory, resulting in faster
and more efficient queries. Another interesting upside, is the detection of unusual trajectories.
Initially, a spatial-temporal bound can be set for a person or group, and any trajectory that falls
outside these bounds can be flagged as an anomaly within the data.

4.4.3 Persona-driven Simulation

The final section of this chapter is devoted to trajectory simulation utilising a persona with
habits. We define a ’persona’, which is a depiction of a user with certain characteristics and
behaviours, and explain how these personas are utilised to simulate realistic trajectories. This
step entails a thorough knowledge of user behaviour and makes use of the data offered by the
trajectories to develop rich, habit-driven personas.

This approach assumes that a person’s movements follow a predictable pattern that reflects their
daily routine. We focused on modelling an office environment, where each persona represents
an office worker with a fixed schedule. The workplace layout was illustrated through a graph as
mentioned in Section 4.4.1, which showed nodes representing different locations like individual
offices, conference rooms, break rooms, etc. and edges indicating possible routes for movement.

The daily habits of the persona were shown as a series of places they visited throughout the day.
Each habit was given a specific time frame when it was usually done. For instance, someone
might work at 'Office 3.58 from 9 a.m. to 11 a.m., then take a break in the break room from
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11 a.m. to 11:30 a.m., and so on. This predictable sequence formed the basis for each character’s
movement patterns. It is obvious that in the real world, a person will not always be 100%
consistent in their daily behavioural habits.

To make the persona’s movements more realistic and unpredictable, we added some randomisa-
tion to their habits. Humans tend to follow patterns, but they are not always predictable.

First, each habit’s execution time is randomised within a certain time span. For example, a ”toilet
break” habit may occur around 10:30 a.m. on average, although the specific timing varies. This
variability reflects the fact that although people might have a routine, the exact timing can vary
from day to day.

To simulate a person’s daily decisions, we also use randomisation. For instance, after taking a
coffee break at 11:30 a.m., the person may either go back to work or use the restroom. This
selection is made with a certain probability. This acknowledges that a person’s actions can be
influenced by various uncontrollable factors.

Apart from daily habits, there are weekly and monthly habits that are associated with certain
days of the week or month. These habits are also prone to variation. Sometimes the day of these
behaviours is changed, increasing the unpredictability and thus realism of the persona’s move-
ments and habits. Another component of the persona’s routine that varies is the introduction
of entirely random behaviours, such as visiting a random location or meeting with a random
member. These behaviours are triggered with a particular likelihood, so they do not happen
every day, but they bring unpredictability to the persona’s routine.

The semantic context was integrated into each created trajectory. This semantic context added
more information to the trajectory, improving its interpretability and use for future research. It
contains information such as the method of transportation (in this example, walking) and the
time of day (morning, afternoon, evening, and night), which was dynamically updated depending
on the current time during trajectory development.

After having successfully generated accurate trajectory data, we want to implement the graph link
prediction. This will be the following topic in Section 5, which contains the full implementation
on how the graph link prediction was tackled.

4.5 Graph Link Prediction

In the context of the research, graph link prediction is a technique for forecasting people’s future
trajectories. This is based on historical data containing people’s behaviours and movements in
the past. A brief theoretical overview will be given regarding the method, which is necessary
before delving into the specifics of how the graph link prediction is exactly used.

A network, more specifically a graph, consists of nodes and the relationships between those
nodes are called edges. Whenever predicting a trajectory, the graph is used as a representation
of the physical space where all the trajectories and movements occur, and each edge stands for
a potential path to take. The goal of graph link prediction is to predict new links/associations
between nodes in a network based on already existing links. Naturally, this is very important
when we want to anticipate what the following steps will be in a trajectory. If we think of each
location in a space as a node and the movement from one location to another as a link between
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these nodes, then the predicting of future locations of a user is equivalent to predicting new links
in the graph.

4.6 Exponential Smoothing

Exponential smoothing is a time series forecasting method. This method gives a greater weight
to recent observations while still valuing older ones. The key strength of this method is its
simplicity and its ability to adjust to changes over time.

Understanding that not all historical data is equally important is essential when analysing his-
torical data to forecast future trajectories. For instance, a person’s behaviour at the current time
may not be well predicted based on their movements and habits five years ago. There could be
multiple reasons for this. For instance, a user might have different habits on the routes they take
to work based on the season of the year. During the winter, they would take the shortest route
to work because of the colder weather. During spring, the temperature rises, there is less rain,
and the weather is overall better. As a consequence, the user might start taking detours to work
because they want to pass by a certain park. This is a very specific example, but there could be
changes in anyone’s habits for many other reasons.

In Section 5.4, you will see how we have added the idea of exponential smoothing into our
method of predicting movements. We have named this the 'decay’ feature. We can be more
certain that our predictions will be accurate if we make sure they are based on the most recent
and relevant patterns. The combination of both past behaviour and current habits is what makes
our approach effective.
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5 'Trajectory Prediction

This section will cover the complete implementation of graph link prediction to perform heuristic
real-time trajectory prediction.

5.1 Querying and Processing Data

Whenever performing trajectory prediction, we need to train the model for each user separately.
This is necessary considering each user has their trajectories with their own habits included. All
the trajectories are queried from a user, but we have to remember they were saved as tgeompoint.
Naturally, it is not possible to save geometric objects into the database without transforming
them into an accepting format. With the use of MobilityDB, which is built on top of PostGIS [17],
we are able to accept formats such as Well-Known Binary (WKB) or Well-Known Text (WKT),
which are formats used to represent geometrical data, such as points, lines, polygons and more.
The data points within the trajectory sequences will be of the following format [WKB@Timestamp].
These trajectories are initially split into the datapoints and timestamps, which are then stored
in a GeoDataframe'. This is an extension to the regular dataframe from pandas, but allows
for the storage of geometry columns and performing spatial operations on them. Furthermore,
the specific *time_of_day’ that corresponds to values such as 'morning’ or ’afternoon’ is also kept
within the GeoDataframe for each trajectory, which will be of use later.

5.2 Graph Construction

The initial graph that was mentioned in Section 4.4.1, is our basis for simulating trajectories.
After successfully querying and processing the data, we map each point along a trajectory to
the nearest node on the graph. This allows us to use the network’s structure for predictions by
lining up the raw location data with the existing network.

Hereafter, the data points of each trajectory are mapped onto the nearest edge in the graph.
There are two primary reasons for this. First, recording user trajectories taken in the real world is
crucial, as they may not perfectly match network edges. Real-world movement does not always
cleanly line up with a simplified network representation, such as a road network graph when
anticipating movement paths or mapping out trajectories. There could be several causes for this
difference. For instance, a user may deviate off the pavement, jaywalk, take a shortcut, or make
an unexpected turn depending on the user’s local knowledge, road closures, and other variables.
By mapping the points onto the respective closest edge, the route will be as closely aligned
with the actual road network as possible. Thus, even if the raw data indicates that a user has
strayed off the pavement or has taken a route that doesn’t exist in the graph network, we can
still extract a trajectory that more closely matches the most likely real-world route followed by
the user. Additionally, GPS data, frequently used to acquire these trajectories, is not perfect
and, due to the presence of noise, may even indicate a wrong location. Secondly, by mapping the
data points onto the edges of the graph, we can assign a weight to the edges on how frequently
the user has used them.

Thttps://geopandas.org/en/stable/getting_started/introduction.html
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Finally, by utilising the frequency of the edge usage by a user after having the data points mapped
to the corresponding edges, it is possible to use the frequency as a weight. These weights give
information on how often someone uses an edge, which is in our case very useful for predicting
future trajectories.

5.3 Assignment Edge Weights

After preparing the graph, the following step will be to assign a weight for each edge. The model
can better understand the frequency of travel between distinct nodes by assigning weights to the
graph’s edges, capturing movement patterns within the dataset.

At first, we have no information on the likelihood of a transition for all edges, considering the
initial weight for all edges is zero. After looping through the data points and mapping them to
the correct edge, the method will keep count of how many times each edge is used. Each edge in
the graph now has a weight consistent with the number of times the trajectories present in the
dataset traversed it. The higher the weight, the more frequently that path is used, indicating
that it’s a common route to travel (for a specific user).

While assigning weights to the edges, we keep track of more information. This will be further
discussed in the following Section 5.4.

5.4 Decay

Whenever performing a prediction for a user, it’s necessary to update the weights in the graph by
decaying them. This component adds some type of ”temporal memory” to the model by giving
more recent data an upper hand over older data. This is based on the idea that people’s most
recent habits are more informative of their future movements.

def calculate_decay(last_updated, most_recent_timestamp, time_of_day, decay_rate):
if most_recent_timestamp and time_of_day in most_recent_timestamp:
time_difference = last_updated - most_recent_timestamp[time_of_day]
time_difference_in_hours = time_difference.seconds / 3600
decay = 0.5 ** (time_difference_in_hours / decay_rate)
else:
decay = 0.5

return decay

Listing 1: Decay Calculation of Weights

In Listing 1, we can see the method responsible for decaying the weights. The goal here is to
decrease the value of the weights using a formula, which depends on the following parameters:
last_updated, most_recent_timestamp, time_of_day and decay_rate
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The first factor last_updated is the last timestamp at which a certain trajectory (or edge) their
weight updated. This can occur due to a new trajectory using that edge or a decay process
that periodically reduces all edge weights to account for the passing of time. The update does
not necessarily mean that the edge was used as it reflects the time that edge’s weight was last
updated. As time passes, the system’s perception of an edge’s importance gradually decreases if
there is no new data to support it. This decline in weight over time is achieved through the decay
process that affects all edges, which the last_updated field indicates. Nonetheless, this process
does not entirely remove the impact of older data, instead it is decreased to make it possible for
older, but still relevant data to influence predictions.

The following parameters that we are discussing are most_recent_timestamp and time_of_day,
which are closely related to each other, as the former is a dictionary and the latter are the
keys to access the values within the dictionary. This dictionary contains the latest timestamps
where an edge was used for each time categorisation, namely morning, afternoon, and evening.
By dividing the day into multiple time periods, we take into account that a user’s habits or
walking pattern can differ depending on the time_of_day. A path that is frequently used in
the morning may not be as busy in the evening. By keeping track of the most recent usage
during these different times, we can adjust the weights of the edges to match a person’s daily
routine better. This approach is based on the work of Chen et al. [4], but with a key difference,
namely the further splitting of the day into several time periods, that allows for a more precise and
personalised adaption of the model to a person’s daily routine This means that for the same edge,
we could have different most_recent_timestamp values depending on whether the pedestrian
typically uses it in the morning, afternoon, or evening. This makes the model more accurate and
better suited to each individual’s needs. To sum it up, the combination of last_updated and
most_recent_timestamp allows the model to balance the effects of respectively recent overall
activity and recent specific usage of each edge.

The last factor we will discuss is the actual decay_rate.

5.5 Decay Rate

The decay rate is a parameter, which allows us to determine the rate at which we reduce the
significance of older data. This can be seen as the factor that decides how quickly data should
”fade out”. In our decay function, the formula used is:

decay = 0.5~

where

X = time_di f ference_in_hours
N decay_rate

Here, the decay rate can be seen in the denominator. The larger the decay_rate, the smaller the
fraction becomes, making the overall decay value closer to 1 (less decay). Conversely, a smaller
decay_rate leads to faster decay as the fraction becomes larger, pushing the decay value further
from 1 and closer to 0.

We will illustrate the full decay method with a concrete example.
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5.5.1 Example

Imagine a user named X who typically takes a walk through Park A to reach their office. Over
time, the edge representing Park A accumulates a high weight due to frequent use of the edge.
The most_recent_timestamp for morning and last_updated are regularly updated as she walks
through the park each morning. One day, a new coffee shop opens up, and it lies on a different
route which does not include Park A. X will adjust their route and start taking the new one to
make a stop by the new coffee shop. As X starts taking a new route in the mornings that doesn’t
include Park A, the edge representing it accumulates less weight due to less frequent traversals.

To understand the effects of time and decay, let’s apply a decay_rate of 4 to this example.
Given time differences of 4, 8, and 12 hours, the decay can be calculated as:

decay = 0.57 = 0.5 = 0.5

ISE

=0.25

decay = 0.51 = 0.52
=0.5°=0.125

1

p\w

decay = 0.5

After the edge has not been used for

e 4 hours, the weight has decayed to 50% of its original value
e 8 hours, the weight has decayed to 25% of its original value

e 12 hours, the weight has decayed to 12.5% of its original value

While the last_updated for the edge is still being updated through the decay mechanism, the
most_recent_timestamp for the morning is no longer updated since X no longer uses this route.
In this scenario, both factors provide a different insight into the user’s behaviour. If we were only
looking at last_updated, we might overestimate the chance of X taking the Park A route in the
morning. On the contrary, if we only took most_recent_timestamp into consideration, there
would be no account for the decrease in weight in X’s morning routes through Park A. By incor-
porating both the last_updated and most_recent_timestamp values in our decay calculation,
we can create a model that is both adaptive (responding to recent changes in behaviour) and
robust (keeping valuable information about past habits). This allows us to offer more accurate
real-time predictions, taking into account both the current and past patterns of an individ-
ual’s walking habits. Furthermore, introducing a decay_rate of 8 would significantly adjust the
speed at which an edge’s weight decays, underscoring the importance of carefully choosing this
parameter to capture and predict user behaviour accurately. This will be further analysed in
Section 6.

5.6 Temporal Habits

When trying to predict a user’s future movements or habits, it is not enough to only consider
their physical location. The specific time when they tend to follow certain patterns can greatly
improve our predictions. In this section, we will explain how we include the temporal aspect in
our predictive model.
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Whenever performing a prediction in real-time, the model will take the current time and location
into account. The goal is to take create an interval that includes the time of the prediction. If
we perform a prediction at 12 sharp, we create, for example, an interval from 11:00 until 13:00.
Hereafter, we execute the query that can be seen in Listing 2:

SELECT
atPeriod(
trajectory,
period(concat(date, ' {timell}')::timestamp, concat(date, ' {time2}')::timestamp)
)
FROM
(SELECT trajectory, date(startTimestamp(trajectory))
FROM user_trajectories) AS result;

Listing 2: Temporal query

MobilityDB provides us with a way to query all the trajectories between 2 distinct times-
tamps, with the use of atPeriod. However, the current implementation has a drawback: while
it can easily retrieve trajectories within a specified date-time range (for example, between
atPeriod(Traj, '[2012-01-01 08:05:00,2012-01-01 08:10:00]') it is unable to natively
filter trajectories based solely on time intervals, separated from the date (for example, between
08:05:00 and 08:10:00 across all dates).

Our goal is to query all the trajectory data that falls within a particular time interval, no matter
the date. The workaround for this limitation is as follows: We break down the timestamp to
separate the date from the time component. This allows us to dynamically create the exact
datetime intervals, which atPeriod accepts, for every unique date in the dataset.

To reiterate, we first query the date from the startTimestamp of each trajectory (together
with the trajectory itself) on lines 7 and 8 of Listing 2. Hereafter, we use the date to con-
struct the full datetime interval by concatenating the acquired date with the time interval values
({timel} and {time2}) (line 2). Finally, atPeriod will return the trajectories that fall within
the constructed datetime intervals.

After acquiring all the trajectories within the desired time interval, the next goal is to count
the number of times the start location is followed by another specific node. A dictionary will
hold the frequency of each unique transition from the specified start location to any other node.
For instance, if the start location/node is Room 8.58, Pleinlaan 9, then the following dictionary
shows the frequency of each unique transition to another node within the time interval calculated
above:

{{Room 3.60: 8}, {Lobby - WISE Lab: 42}, {Elevators: 62}}

The dictionary serves as a pattern recognition mechanism, allowing the system to capture and
remember recurrent movements. Whenever lines 2 and 3 are executed in Listing 3, it multiplies
the already computed probabilities (from the decay function) by the historical transition fre-
quency from the dictionary. If a particular transition isn’t found in the dictionary, it will default
the value to 0 + 1, meaning the original probability is multiplied by 1, remaining unchanged.
We maintain a baseline chance for every possibility by adding 1, ensuring we don’t exclude
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possibilities just because they haven’t been observed before. This way, the model increases the
probability of places that were previously visited more frequently, encouraging the preference for
habits.

history_counts = find_previous_occurences(time, current_location)
probabilities = [p * (history_counts.get(str(node), 0) + 1)
for node, p in zip([edge[1] for edge in edges], probabilities)]

Listing 3: Adjust probabilities based on historical data

We will provide an example to clarify how the various elements in the prediction model work
together. First, a simplification will be given regarding Listing 3.

Adjusted Probability = Original Probability x (HistoricalCountfor Node + 1)

e Original Probability p: represents the probability derived from the decay function and the
current state of the graph (see Section 5.4)

e Historical Count (history_counts.get(str(node), 0) + 1): represents number of times
a transition from the current location to the node in question has occurred in the past

This means that for nodes with a high historical count, the initial probability will be signif-
icantly amplified, while nodes with a lower historical count won’t experience this as much.
Imagine we know the following information: we have 2 probabilities of 30% and 50% with re-
spectively a historical count of 62 and 35.

AdjustedProbability = 0.3 x (62 + 1) = 18.9

AdjustedProbability = 0.5 % (30 + 1) = 18

While the second node had a higher chance original probability, the first node had a histori-
cal occurrence. This brought the final probabilities much closer to each other, where the first
probability is slightly higher than the second.

While it is important to be able to recognise new patterns, it’s equally important to respect
frequently used paths. The multiplication we perform ensures that habits from the past are not
easily overshadowed by new ones.

5.7 Choosing Next location

Once the probabilities for the next location are calculated, we do not randomly select one, but
a deterministic approach is used. Whenever performing a prediction, a "top 3” is created, with
the three most likely locations to be the next one. Hereafter, the probabilities are adjusted as
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explained in Section 5.6. This approach provides a more deterministic and stable trajectory
prediction compared to a purely probabilistic selection.

It is important to note that we keep track of previously visited nodes within the prediction
sequence. This helps us avoid revisiting the same location and ensures that the trajectory is
more realistic and in line with typical human movement patterns.
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6 Evaluation

The purpose of the evaluation is to measure how accurate our predictive model is in various
scenarios. We will start by examining the modifications we covered in Section 5.6, particularly
the addition of temporal habits. This will be done by measuring how the prediction accuracy
changes when we take the temporal habits into account.

We divide our data into two portions: 80% is utilised to train the model, and the remaining
20% will be used as our test dataset. We will add new habits to the data after we get our initial
findings to evaluate how the model responds, as it is necessary to understand how the model will
respond to the change of having more recent, new habits. Finally, when using real-world data,
there is inherently noise present in the data. We want to see what effect the noise will have on
the prediction accuracy of our model. This will allow us to examine how well our model handles
imperfect data.

We aim to provide an in-depth analysis of our model’s performance and areas for improvement
in this chapter.

6.1 Data

In Section 4.4.2 we discussed the trajectory simulation methodology and in Section 4.4.3 the
persona-driven simulation. We introduce a persona, which essentially is a user, that has multiple
habits that they perform each day. Every time a habit is performed by the user, a trajectory
will be generated from start location to the end location. The trajectory is initially represented
as path, but by interpolating between nodes we aim to make the trajectory more realistic.

The dataset contains 600 trajectories. For the evaluations underneath, it remains unchanged
unless mentioned otherwise.

6.2 Temporal Habit Factor

In our initial implementation of the graph link prediction, we only took the spatial aspect into
consideration. However, in Section 5.6, we have incorporated the temporal dimension into our
predictive model. The ultimate goal is to detect recurring movements (habits) that occur at spe-
cific times. For instance, if a user goes to the Lobby - WISE Lab every single day around 12:00
midday, we have to take this into account. By analysing the trajectories around this timestamp,
we can extract the historic frequency of all locations the user has gone to from their current po-
sition, for example {{Room 3.60: 8}, {Lobby - WISE Lab: 42}, {Elevators: 62}}. These
frequencies are then used to adjust the probabilities that were returned from the graph link
prediction, which can be seen in Listing 3.

We now show the importance of the historical frequency by multiplying using a certain factor
which is smaller than 1. This is done by changing line 2 from Listing 3 from

probabilities = [p * (history_counts.get(str(node), 0) + 1)
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to
probabilities = [p * (FACTOR * history_counts.get(str(node), 0) + 1)

By underscoring the effect of the historical frequency, we aim to show whether it has a positive
effect on the predictions.

Table 1 shows 2 different measures of accuracy. The first row shows the percentage of 100%
correctly predicted trajectories from the start until the end, which we will refer to as perfect
predictions. The second row shows the overall mean prediction accuracy, which contains both
perfect predictions and non-perfect ones. On Listing 4, we can see how this accuracy is actually
calculated. This function compares each element of the actual trajectory to its counterpart in
the predicted trajectory iteratively. The accuracy is then calculated by dividing the number
of correct matches by the length of the shorter trajectory. The function quantifies how closely
the model’s prediction matches the actual trajectory. For clarification, Table 2 contains specific
examples.

def evaluate_predictions(actual, predicted):
num_correct = sum(a == b for a, b in zip(actual, predicted))
accuracy = num_correct / min(len(predicted), len(actual))
return accuracy

Listing 4: Accuracy Calculation

From the results, we can see a clear decline when comparing the percentages. The more we
underscore the historical frequency, the fewer perfect predictions we have. This suggests that
incorporating the temporal dimension and accounting for temporal habits enhances the prediction
accuracy of the model.

1 1/3 1/10 1/100 1/1000
Perfect Predictions | 73.44% 70.40% 48.80% 43.09% 32.00%
Mean Accuracy 89.51% 87.30% 83.77% 82.67 80.30%

Table 1: Accuracy comparison for various underscoring factors.

Underneath, I have provided 5 images of histograms showing the distribution of the prediction
accuracy using different factors to underscore the historical frequency. The x-axis shows the
various accuracies (binwidth is 0.1), and the y-axis the prediction accuracy.

Figure 6 shows the distribution of the prediction accuracy when no underscoring is performed,
using a factor of 1. It’s important to note that the values from Perfect Predictions in Table 1
match the percentage of the [0.9 - 1.0] bin for every figure. This is because all prediction
accuracies in this bin are exclusively 100%.
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Figure 6: Factor of 1 (no underscoring)

It is important to keep in mind that the prediction model does not predict full trajectories
based on a starting location and time. Everytime a prediction is performed, we only know the
following singular location the user will be at. By doing this multiple times, we’re able to predict
a full trajectory. For this reason we have added the Mean Accuracy in Table 1. The percentage
tells us how wrong the non-perfect prediction are. Figures 7, 8, 9 and 10 portray the effect of
underscoring the historical frequency respectively, with a factor of /3, 1/10, 1/100 and 1/1000.
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Figure 7: Accuracy Distribution - underscoring factor of 1/3
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Figure 8: Accuracy Distribution - underscoring factor of 1/10
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Figure 9: Accuracy Distribution - underscoring factor of 1/100
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Figure 10: Accuracy Distribution - underscoring factor of 1/000

42



It is clear on Figures 7, 8, 9 that some of the perfect predictions from the [0.9 - 1.0] bin move
to the [0.8 - 0.9] bin, while the rest remains identical. For Figure 10 this is also the case, except
that the [0.5 - 0.6] experiences a small increase.

There is a plausible explanation for this phenomenon. Figure 11 displays the physical office space
of the user, where also the trajectories are simulated. The middle corridor and right section,
marked in a red box, has a lot of rooms and checkpoints, in comparison to upper left area,
marked in a blue box, only contains 2 rooms and 2 checkpoints. The same counts for the lower
left area, marked in yellow, as this only contains 3 rooms and 2 checkpoints, not including the
user’s main office "X’ (Room 3.60). The red box is strictly reachable by passing by checkpoint 4.
the edge weight between points (4,7) keeps growing with each trajectory, every time a trajectory
is generated with the end location in the red area. We previously stated that by including the
historical occurrence factor in our probabilities, the amount of perfect predictions increases. The
reason the distribution for the rest of these trajectories remains the same is that the weight on
edge (4,7) has been accumulated to a certain point that the historical occurrence factor has no
effect on the outcome of the prediction. This is exactly what happens for trajectories 1 & 3 on
Table 2. Naturally, this also counts for the edges previous to (4,7), namely (2,3) and (3,4) as
this can be observed in trajectory 2.

Figure 11: GeoJSON Floor 3, Pleinlaan 9
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Trajectory Value

Predicted (2,3, °4, 7, ’8, "Elevators’]
Trajectory 1 Actual [2’, 3%, ’3.56]
Start location ~ Room 3.60
Accuracy 0.6667
Predicted (2,3, °4’, 7, ’8, "Elevators’]
Trajectory 2 Actual (2,1, ’3.60’]
Start location =~ Room 3.58
Accuracy 0.3333
Predicted (2,73, 4,7, ’8, "Elevators’]
Trajectory 3 Actual (2,3, ’4’, ’3.54’]
Start Location Room 3.60
Accuracy 0.75

Table 2: Comparison of Predicted and Actual Trajectories

Conclusion : The distribution consistency in some histograms is likely due to the physical
arrangement and constraints of the office. The red part, with its higher density of rooms and
checkpoints, provides more trajectory options than the blue or yellow sections, which have fewer
checkpoints or rooms. This has a significant impact on trajectory prediction and accuracy.

6.3 New Habits

In any real-world scenario, habits do not stay the same over time. Depending on a lot of
variables, these might change overtime. For instance, imagine a university student who usually
takes a shortcut through the campus to reach class during the winter due to the cold weather.
However, when spring arrives, they might take a detour because they prefer walking through
a park. This is a simple example that shows how habits change over time and how our model
should be able to adapt to changes to maintain performing accurate predictions.

The histogram on Figure 6 shows the accuracy distribution for 600 trajectories in our dataset.
While the user normally follows reoccurring habits, there are 6 that vary and have a certain
chance of occurring. While each habit has a designated time, it can fluctuate, occurring up to
45 minutes earlier or later, ensuring that it’s representative of a real-world scenario.

The newly added habits lead to new unique trajectories, but might contain some overlapping
intermediate locations with the regular habits. With the use of 6 new habits, a total of 300
trajectories were added.

The histogram shown in Figure 12 shows a small decrease in the number of perfect predictions.
This doesn’t mean per se that our model is adaptive to changing habits, but it still performs
fairly well.
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Figure 12: Accuracy Distribution - with new habits

The dataset currently contains 900 total trajectories. We will increase the number of regular
habits from 600 to 1800 and the new habits from 300 to 900. This will lead to a larger dataset,
where the difference between the regular and new habits is substantial. The results can be found

on Figure 13.
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Figure 13: Accuracy Distribution - larger dataset with new habits

The accuracy distribution has changed slightly, but we observe the same effect as in previous
Section 6.2. Some of the perfect predictions are lost and transferred over to the [0.8 - 0.9] bin.

6.4 Noise

The current evaluation is performed on purely simulated data. In the real word, positioning
systems are usually never perfect in data collection, leading to noisy data. According to [37]
et al, the average noise in positioning systems (especially indoor), is between 1-3 meters. This
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is very important considering our current solution relies solely on perfect, noiseless data. In this
section, we aim to evaluate how well the model handles inherent noise.

To simulate the noise, two different noise levels have been applied to the dataset. Figure 14
shows a variation ranging from -1 to +1 meters and Figure 15 another from -2 and +2 meters.

[ )

254

201 18.24%

15 A

12.58% 11 g5

Percent

11.32%

10 -

6.29%

5.03%
51 3.14% 3.77%

1.26%

0.0 0.2 0.4 0.6 0.8 10
accuracy

Figure 14: Accuracy Distribution - Noise level (-1,41) meter
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Figure 15: Accuracy Distribution - Noise level (-2,+2) meter

If we compare the accuracy distribution from the previous two Sections 6.2 and 6.3 with the
current section, it becomes clear that the model struggles to adapt to the inherent noise present
in real-world data. This primarily due to the node mappings applied to the database trajectories
as mentioned in Section 5.2. It describes how each point on a trajectory is mapped onto the
closest node on the graph.

Because of the layout of the floor and the proximity of points of interest such as rooms and

checkpoints, even minor deviations caused by this noise can result in faulty node mappings. As a
result of these node mappings, the trajectories created are chaotic and meaningless. The model
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is limited in its adaptability because of the actual space’s compactness, mixed with real-world
noise. This was an expected result, as the model was initially designed without taking real-world
noisy data into consideration.
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7 Conclusion

From our research study we found that both transportation, security, and social networking all
have received a lot of attention for their use of trajectory prediction. Our major goal with this
thesis was to analyse and predict trajectories inside indoor spaces, utilising historical data and
contextual information that was automatically obtained by a positioning system.

Rather than using typical machine learning approaches which dominate the field of trajectory
prediction, we relied on simple and easily recognised patterns. While machine learning provides
numerous solutions, it often requires a lot of training data and can be computationally expen-
sive. Our heuristic model which we discussed in our solution chapter is straightforward, easy to
understand, and does not require large training datasets that have to be retrained whenever new
data is available. As a result, it is suitable for making accurate predictions based on observed
behaviours in controlled contexts. The indoor space is fixed, external factors like the weather or
traffic are not present, and people’s movements often revolve around habits or routines. Such
environments are a good setting for making accurate predictions based on observed behaviours.

A central aspect of our research was the use of the spatio-temporal database system MobilityDB.
We focused on comprehending movement patterns and drawing meaningful insights from them,
rather than being entangled by the complexities and technicalities of the spatio-temporal data.
MobilityDB provides significant advantages when used to manage spatio-temporal data. It speeds
up the process of retrieving trajectory data, which consists of both a spatial and temporal
element. More importantly, MobilityDB’s organised storing and querying techniques simplified
the analysis of temporal habits, which was a key component of our research.

8 Future Work

As we move forward, there are a few more areas we think can push our research even further.
One of the main challenges is extending our model from indoor to outdoor trajectory predictions.
Indoors, our approach takes advantage of rather constant patterns. Considering how people
travel around a building, hallways, rooms and communal areas are all connected to each other
via fixed routes. People frequently take the same route from their office entrance to the lab
or restroom. Our model is intended to learn from these recurring actions, creating predictions
based on historical data and the constraints of the geospatial layout.

Once outdoors, the number of possible routes and variations increases significantly. Instead
of a fixed passageway to guide travel, there are streets, parks, shortcuts, and plenty of other
options. The environment is more dynamic, with factors such as weather, traffic, and special
events impacting how one chooses to go from point A to point B.

Another challenge we want to tackle is the use of real-world data. We’ve seen good results
with our simulated data, but real-world setting combined with the inherent noise is always more
unpredictable.

On the performance side, there’s a feature within MobilityDB, namely spatio-temporal boxes.
These have been mentioned before in Section 4.4.1, but have not been used yet. Improving
the query processing will result in more efficient and faster predictions, which is essential for
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real-time trajectory prediction.

In conclusion, our research has laid a fundamental foundation for exploring the trajectory pre-
diction field without resorting to machine learning. However, there are still various challenges
and opportunities that can be addressed in future studies.
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