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Abstract

The Microsoft Kinect1, SoftKinetic DepthSense2 and other 3D cameras
allow to accurately track the movement of body limps. This enables devel-
opers to create a gesture recognition system without the need for additional
gadgets ( data glove or markers) to track human movements. Real-time ges-
ture recognition is challenging since it requires us to detect patterns in the
high-frequent streams generated from these cameras.

Complex gestures are hard to program manually due to the need for spa-
tial and temporal constraints. Therefore, developers are required to use ma-
chine learning to obtain good recognition results. However, machine learn-
ing approaches often render an incomprehensible intermediate format and
require a vast amount of learning data. Moreover, the resulting gesture def-
initions can not be programmatically extended or adjusted. On the other
hand, gesture-oriented graphical toolkits such as iisu3 or VolTra require a
lot of manual operations to define a gesture which consumes development
time. We argue that the development of full-body gesture definitions is still
too difficult and consumes a lot of time.

We propose an automated gesture recognition system with a visual repre-
sentation which allows for users to model a gesture by performing it once.
Our approach models gestures as a sequence of poses. For each gesture a
number of poses are generated which have to be matched in a specific order.
A gesture is recognized when all poses are matched in the right order.
Our approach automatically generates a gesture model with an external rep-
resentation which allows to visualise gestures in a 3D toolkit and enables
users to refine the gesture model.

From our evaluation we conclude that automatically generating a gesture
model reduces the development time compared to manually specifying the
gesture model. Few manual refinements are required, lowering the devel-
opment time of a gesture from minutes to seconds. Moreover, important
benefits from programmatically specifying a gesture model are maintained
such as extensibility and comprehensibility.

1http://www.microsoft.com/en-us/kinectforwindows/
2http://www.softkinetic.com/solutions/depthsensecameras.aspx
3http://www.softkinetic.com/products/iisumiddleware.aspx
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1 Introduction
For many years, the standard for human computer interaction (HCI) was a WIMP
style using mouse and keyboard to interact with a computer. With the rise of
new technologies in the past few years, there has been a growing interest in using
multimodal interfaces other than the standard mouse and keyboard. The biggest
advantages of multimodal interfaces are fewer errors, and an advanced usability
since multimodal interfaces are very intuitive.

Kendon[12] defines a gesture as follows:

A gesture is a form of non-verbal communication in which visi-
ble bodily actions communicate particular messages, either in place
of speech or together and in parallel with words. Gestures include
movement of the hands, face, or other parts of the body. Gestures dif-
fer from physical non-verbal communication that does not communi-
cate specific messages, such as purely expressive displays, proxemics,
or displays of joint attention.

Gestures are one of the most frequently used modalities. In the past years gestures
have become more and more prominent in our daily lives, especially since smart
phones with touch screens have become increasingly popular. To use these ges-
tures as input, we need to recognize them using a gesture recognition system.
Gestures can be captured using input devices such as a mouse or by using track-
ing cameras which allow using the whole body to perform gestures. Extensive
research is conducted on how to detect these gestures, especially for gestures us-
ing a wiimote [20], pen-based gestures [6] and gestures performed with our own
body [9]. The gestures used in this thesis are performed with our own body. The
data is skeleton data, which consists of the coordinates of joints in a 3D space.

In this thesis, related work on gesture recognition based of skeleton data is dis-
cussed, including Dynamic Time Warping (DTW), Hidden Markov Models (HMM)
and Neural Networks (NN). We find that current work lacks extensibility and feed-
back.
Therefore we propose a novel approach where gesture definitions are automati-
cally generated in a comprehensible and extensible format. A gesture definition is
automatically deducted from a single sample, and allow for manual adjustment if
needed. The gesture definitions both have a visual 3D representation as a declar-
ative intermediate format. The former allows to easily adapt generated definitions
while the latter provides the possibility to extend the definitions with custom con-
straints.
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1.1 Goal
Current automated gesture recognition techniques have limitations which are re-
flected in existing applications. Typically gesture definition shave no comprehen-
sible representation and can therefore not be easily extended by a gesture program-
mer. The lack of feedback and debugging can be frustrating for users which results
in a bad user experience. Existing research shows that declarative programming of
full-body gestures has important advantages over imperative programming. Ac-
cording to Hoste [21]:

A declarative rule-based language description of gestures in com-
bination with a host language increases the extensibility and reusabil-
ity of multi-touch gestures.

De Rooms [4] describes advantages of declarative gesture definitions over imper-
ative languages such as comprehensibility, accuracy and feedback.

Developing gesture definitions requires experts to model the gesture and can con-
sume a lot of development time for complex gestures. We argue this can be im-
proved by automatically proposing a gesture model which can be refined by the
gesture developer. We aim for the gesture recognition system to be able to recog-
nize gestures without prior segmentation and in real-time.
Our approach can be used in a variety of domains but is best suited for gestures
which can be divided into different steps that have to be followed, like dance ges-
tures. Since gestures can be recognized in real-time and no prior segmentation is
needed, our approach could also prove useful in activity recognition.

9



1.2 Microsoft Kinect
For tracking the human body, 3D sensors are generally preferred. There are var-
ious types of 3D sensors such as the Microsoft Kinect, Softkinetic’s Depthsence
and Asus Xtion4, but we will only discuss the Microsoft Kinect since it is the most
commonly available of all 3D sensors.

The Kinect is a input modality which was originally developed for gaming ap-
plications on the Microsoft Xbox 3605, but quickly found its way to the desktop
allowing developers to experiment with its possibilities.
The Kinect sensor uses technology invented by Primesense6 to generate a depth
image. It consists of a infra red (IR) laser emitter, an infra red camera and a RGB
camera. The IR laser projects a semi-random pattern of speckles onto the scene,
as shown in Figure 1.1, which is captured by the IR camera. The pattern is a 3x3
matrix of random dots with a centred registration dot in each square. This allows
the Kinect to calculate the distance of the speckles to the camera and thus gener-
ating a depth image.
This depth image is analysed using the approach of Shotton et al. [22], which
allows to generate skeleton data using a single depth image. Their approach con-
sists of 2 different stages, as shown in Figure 1.2. First the single depth image is
segmented into a probabilistic body part labelling, with each part to be spatially
close to skeleton joints of interest. In a second stage these parts are transformed
into skeleton data using a very large and varied set of training data (more than
100.000 samples).

4http://www.asus.com/Multimedia/Xtion_PRO_LIVE/
5http://www.xbox.com
6http://www.primesense.com/
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Figure 1.1: IR speckle pattern projected by the Kinect

Figure 1.2: 2 stages described by Shotton et al. [22]
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1.3 VolTra
Voltra [4] is a 3D editor which presents a novel concept to define gestures. The
3D gestures are described by using volumetric constructs and constraints between
these volumes. A volume is always assigned to a certain joint which can be con-
figured by the user. As a first step for the recognition, code is generated that
registers when this joint enters the volume. Each volume can be moved, rotated
and scaled as desired. Constraints such as an order and a time constraint can be
added to these volumes to help define a gesture.

VolTra compiles these visual definitions to declarative rules which are send to
Midas [21]. When a joint enters or leaves one of its volumes the event is reg-
istered as a fact in Midas. The gesture rules are matched against the enter and
exit volume facts and when all constraints of a gesture are satisfied the gesture is
recognized. VolTra also provides debugging by allowing to play samples. When
playing samples, VolTra simulates the gesture stream by sending point events to
Midas. By interweaving debugging code in the declarative rules, VolTra can ask
Midas to send information back on the matching process which allows for visual
feedback on the gesture recognition.

Figure 1.3 shows the GUI of VolTra with all major components denoted. The
Samples area gives a list of the currently loaded gesture samples. By choosing
a sample, the puppet in the Gesture scene can replay the selected sample. The
Gesture sliders can be used to manually move the puppet to a point in the selected
sample. The Menu allows to create new gestures, save them and let the puppet
replay the selected sample, among other things. When a gesture is created it is
shown in the Gestures list. To model a gesture the user should select a joint tra-
jectory and a parent trajectory from the Joints menu. The joint trajectory will
be drawn relative to the parent trajectory and new gesture volumes will snap to
the curve to aid the user. To add new volumes or constraints to the gesture, the
volume menu provides the option to create volumes for the selected joint, or put
constraints between volumes.

12



Figure 1.3: GUI of VolTra
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1.4 Midas
Midas [21] is a declarative framework which was developed for multi-touch ges-
tures. Midas receives gesture definitions from VolTra as rules and joint-volume
interactions are registered by Midas and asserted as facts. The gesture definition
rules are matched against facts by Midas and when a gesture is matched the rule is
triggered. To extract information from a stream of events temporal and spatial op-
erators are used. Midas automatically annotates all facts with timing information.
This timing can be used to check the relationship between the timing attributes of
different joints by using temporal operators. Spatial operators are used to check
the distance between facts. Each fact is annotated with its position from which the
distance can be calculated.

The syntax and rule-engine of Midas are inherited from the CLIPS7 language,
which provides continues incremental evaluation of rules by using the Rete al-
gorithm. The key insight in the Rete algorithm is that rules can contain similar
patterns in its left-hand-side (LHS), so we do not have to check the entire LHS of
every rule when a new fact is asserted.
The Rete algorithm builds a tree where each node (except the root) corresponds
to a pattern which occurs on the LHS of a rule. Each of these nodes keeps facts
which satisfy their pattern in memory. Since every node contains only a part of the
LHS of a rule, the path from the root to a leaf node contains the entire LHS. When
facts are asserted they are propagated along the tree and added to the memory of
matched nodes. When all nodes from the root to a leaf are satisfied, the entire
LHS of the rule is matched and the rule can be triggered. This system reduces
redundant processing to optimize for speed but sacrifices memory in return.

7http://clipsrules.sourceforge.net/
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1.5 Thesis Structure
Chapter 2 describes the desired requirements in automated gesture recognition.
The customizability, precision, extensibility, comprehensible representation, one-
shot learning and feedback requirements are proposed and their need in an auto-
mated gesture recognizer is motivated.

In chapter 3, a literature survey is conducted on the most popular gesture recogni-
tion methods such as Dynamic Time Warping and Hidden Markov Models. Their
issues are discussed and evaluated on the earlier proposed requirements for auto-
mated full-body gesture recognition.

Chapter 4 describes our approach to automate full-body gesture recognition. A
divide-and-conquer strategy is applied for gesture recognition by dividing a ges-
ture into a sequence of poses. When each pose is matched, the gesture is recog-
nized. The calculation of gesture confidence values is explained and we describe
how the sequence of poses is combined into a precise gesture definition.

Chapter 5 describes the implementation of the earlier proposed approach in VolTra.
VolTra lets us create an external representation of gestures and enables us to gen-
erate declarative rules for gesture recognition. The implementation of confidence
values is explained as well as the generated declarative rules for gesture recogni-
tion.

In chapter 6, our approach is evaluated with dance gestures. An overview of
the used dance gestures is given and the choice for these gestures is motivated.
Loose and strict gesture definitions are generated which are evaluated with dance
gestures and random movements to test for false positives.

Possible future improvements for our approach are proposed in chapter 7. Meth-
ods on how to automate full-body gesture recognition even more are presented
and suggestions on how to improve the confidence value of gestures are provided.
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2 Requirements
By researching related work, 6 requirements were found to be essential for an au-
tomated gesture recognition system: One-shot learning, Precision, Extensibility,
Comprehensible representation, Customizability and Feedback. These require-
ments are discussed and their need in an automated gesture recognition system is
motivated.

2.1 One-shot learning
Most gesture recognition methods require a vast amount of training data when a
new gesture has to be defined. This training data is hard to gather and a hassle
for users who want to add new gestures to the system. Adding gestures should be
easy and user-friendly, using only one training sample. For example Fei-Fei et al.
[8] propose a method to categorize images using no more than 5 training samples.
One-shot learning allows users to generate a gesture definition by using only one
training sample.

2.2 Precision
A slight deviation in the execution of a gesture can influence whether or not the
gesture is considered to be performed correctly. The user should be able to select
a threshold which determines when an error is no longer acceptable.

2.3 Extensibility
Most gesture recognition systems do not allow a gesture definition to be modified
after it has been created. If a small change has to be made or the definition contains
a flaw, the entire definition has to be recreated. To enhance the usability, users
should be able to modify generated gesture definitions to solve errors, or build
upon the gesture to create a new, more complex gesture.

16



2.4 Customizability
Most gesture recognition systems track the full body or only the hands of a user,
but some gestures only require specific joints to be matched. Users should be
able to customize a gesture definition by selecting which joints are relevant for
a gesture. Only these important joints should be used in the gesture definition.
For example, a slight deviation of the elbow in a high-five gesture is still a high-
five, but a deviation of the hand could become a different gesture. Figure 2.1
shows a high-five gesture performed in two different ways. On the right the arm
is completely stretched but on the left the arm is partially bent. Even thought the
execution of these two gestures is different they both are high-fives. In figure 2.2
the arm is stretched, but there is a small deviation of the hand which is directly
above the head instead of to the side of the head. This should not be considered as
a high-five gesture. By only selecting the right hand as an important joint we can
make sure the high-five gesture is matched in figure 2.1 and not matched in figure
2.2.

Figure 2.1: Two high-five gestures with a deviation in the right elbow
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Figure 2.2: Two high-five gestures with a deviation in the right hand

2.5 Comprehensible representation
Some gesture recognition systems do not provide the user with information about
the gesture definition. This means it is impossible to adjust the gesture, or see what
could go wrong with the current gesture definition. By creating a comprehensible
gesture representation we can provide the user with human-readable information
about the gesture and the gesture definition. This allows the user to understand
what is wrong with the generated gesture definition and to understand what has
to change to fix flaws. An external representation can also be used to provide
feedback to the user.

18



2.6 Feedback
Feedback is important for developers to understand the generated gesture defini-
tions. It helps the developer to see flaws in gesture definitions and to adjust them if
necessary. Most gesture recognition system provide no feedback, or very limited
(e.g. whether a gesture is matched). Feedback on which constraints fail and when
they do so could help developers to quickly detect flaws in the gesture definition.
Karam [11] divided feedback for end users into 3 different stages: Reflexive feed-
back, recognition feedback and response feedback.
Reflexive feedback is the first stage of feedback and occurs while the gesture is
performed. This stage provides users with information about the gesture they are
performing. Karam’s results showed false positive and system errors were signif-
icantly lower when reflexive feedback was used in tests.
Recognition feedback occurs when the gesture recognition process is over and
gives feedback about which gesture was recognized. Response feedback provides
the user with a notification that the task is complete. These stages of feedback are
also beneficial for developers to aid with debugging.
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3 Related Work
There have been different approaches to handle gesture recognition in the past
40 years. Most techniques rely on gadgets like a glove [14] or markers [13] but
in the past decade interest has grown in gesture recognition using a 3D camera.
Especially in the past few years gesture recognition has become a hot topic due
to new technologies like the Microsoft Kinect8. As already mentioned in section
1 the context for this work is skeleton tracking, so we will elaborate on some
techniques which also use skeleton data.

3.1 Imperative Coded Gestures
Imperatively coding gestures is the simplest form of gesture recognition. Gestures
are manually coded by an expert and can not be easily changed by non-expert
users. The gesture definitions typically consist of simple positional constraints
between joints. The code in figure 3.1 is an example of how these constraints are
coded in the Kinect for Windows SDK9. In this example we check if the left hand
is above and to the right of the left elbow by comparing the coordinates of the left
hand joint and the left elbow joint. When the left hand joint is above the left elbow
joint (compare the Y-values) and to the right of the left elbow joint (compare the
X-values), the method succeeds.

Figure 3.1: Hard coded gesture constraint for the Kinect for Windows SDK

8http://www.microsoft.com/en-us/kinectforwindows/
9http://www.microsoft.com/en-us/kinectforwindows/develop/

overview.aspx
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When detecting complex gestures there is a need for more complex constraints.
For example, a gesture that requires the right hand joint to move relative to the
right shoulder joint is already more difficult to code. The developer needs knowl-
edge of measurements and orientation in a 3D space to develop such constraints.
If temporal constraints have to be coded as well, the relative time between differ-
ent states in a gesture have to be checked which is very time-consuming to code.

There are some frameworks that try to deal with the complexity of manually cod-
ing gestures, for example FUBI (Full Body Interaction Framework)10. The FUBI
framework helps the developer to code more complex constraints by providing
useful information such as a confidence value and the movement speed of joints.
Figure 3.2 shows how an expert could define a constraint in FUBI where two
hands need to be above the head. In addition to the comparison of the Y-values
of hands and head, there is a control structure to check whether the joints reach
a certain confidence level before trying to recognize the actual gesture. Another
feature of FUBI is to keep states of gestures, which can be seen as poses. It is
possible to put constraints on the duration of states or the interval between them.
All constraints can be reused and a combination of linear movements and states
is possible. However, no visual representation is provided and there is no support
for an automated gesture definition.

Figure 3.2: Hard coded gesture in FUBI

10http://www.informatik.uni-augsburg.de/en/chairs/hcm/projects/
fubi/
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Another framework which tries to enhance the complexity of manually coding
gestures is SoftKinetic’s IISU Interaction designer11. Like FUBI, this framework
allows us to directly access joint information. Figure 3.3 shows an example of
how to code a Chinese bow gesture. A Chinese bow gesture consists of a bow in
a certain angle with the left and right hand on the torso, as shown in Figure 3.4.

To code this gesture, we first define some variables to represent joints, since it
makes the code more readable. The next part computes the current angle of the
upper-body based on the current position of the pelvis and the head. Next we test
the hands to be up. We should test whether they are up and in the same location,
on the torso, but for simplicity we only check if the hands are higher than the
pelvis with atleast a certain threshold. If the hands are in the right position and the
upper-body has a big enough angle, we recognize the Chinese bow gesture.

Figure 3.3: Chinese bow gesture in IISU

11http://www.softkinetic.com/en-us/products/iisumiddleware.aspx
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Figure 3.4: Chinese bow gesture
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Frameworks make it easier for developers to code constraints on gestures.
However, it still boils down to comparing coordinates of different joints which
becomes very complex when multiple joints are involved or when more advanced
gestures are required.
Furthermore, there is no possibility to automatically generate a gesture definition
with a visual representation. SoftKinetic’s IISU does provide a Unity3D12 plugin
where a simplified 3D avatar consisting of spheres can be used. Thanks to the
volumetric avatar, volumes can be used together with the collision detection of
Unity to program gestures. This provides a visual representation of the gesture
definition, but it can not be automated.

12http://unity3d.com/

24

http://unity3d.com/


3.2 Template-based
To recognize a gesture from spatio-temporal data, template based techniques such
as DTW (Dynamic Time Warping) or $1 recognizers can be used.
To recognize a gesture we first need a template which must be matched. A per-
formed gesture is recognized if it is similar enough to the template. The problem
is that two gestures can have a different timespan. The same gestures can be per-
formed at different speeds. To accommodate this problem, DTW can be used.
DTW finds the optimal match between two sequences of trajectories and takes
the possible difference in length of two sequences into account. The top part of
Figure 3.5 represents two gestures with a distance measure between them. Any
distance measure which aligns the i-th point of the first sample to the i-th point
of the second sample (Euclidean, Manhattan,...) will give a poor similarity. The
bottom half of Figure 3.5 depicts the same two gestures with an non-linear (elas-
tic) distance measure. Here similar shapes will be matched, even if they are out of
phase in the time axis, which gives a better similarity.

Figure 3.5: Linear and non-linear pattern matching
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DTW was a technique used in speech recognition, but also has applications
in gesture recognition. Corradini [3] uses DTW for off-line recognition of arm
gestures, and Doliotis et al. [7] to recognize hand gestures.
Most DTW implementations require that the start and endpoint of a gesture are
defined. In isolated samples we can define a special signal to mark when a gesture
is performed, but this is impossible for continuous gesture recognition. Li et al.
[16] propose a method to estimate the endpoint of gestures in a continuous video
stream by comparing the stream to training data. When the endpoint of a gesture
is estimated, the same point can be used as the starting point of the next gesture,
upon which a new endpoint is estimated. This cycle repeats throughout the video
stream.
Gesture recognition systems using DTW have been applied to dance gestures in
the past with very promising results. Raptis et al. [19] presented a method to
recognize dance gestures using a Microsoft Kinect camera with a recognition rate
of 96.9%. In dance gestures it is possible to use the DTW algorithm since the
gestures are typically synchronized with music. By applying beat-detection on
the music and aligning beats with sub-gestures we exactly know the start- and
endpoint of each gesture. This greatly simplifies the recognition process since
they can segment the sample based on the beat-detection and assume that only
a limited number of moves can span a predefined number of beats. Moreover,
these moves are predefined and well-known to the system. There are some DTW
approaches which do not need prior data segmentation. Bettens et al. [1] present a
DTW implementation which uses multiple DTW grids. Each grid hypothesizes a
different starting point, so no prior data segmentation is needed. To deal with the
heavy computation this implies, they use an iterative implementation where only
one column is evaluated in each grid at a given time.
DTW excels in comparing two sequences, but also has disadvantages. All points
in 2 sequences are compared so the input data needs to be segmented. Hoste [10]
presents a gesture spotting technique to automatically segment a trajectory which
could be used to counter this disadvantage. Due to the incomprehensible internal
matrix representation, a DTW gesture definition can not easily be extended or
customized.
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The $1 recognizer presented by Wobbrock et al. [24] is able to recognize
gestures with the same accuracy as DTW, but does not use complex mathematical
procedures. Their recognition algorithm re-samples the input sample to exclude
problems with different movement speeds of gestures, next the sample is rotated
to have an optimal alignment with the template gesture. After these steps, the
sample is scaled and matched to recognize the gesture. A disadvantage of the $1
recognizer is that it has no concept of time, so it is impossible to use constraints
such as time and speed to define a gesture. Furthermore, $ gesture recognizers are
focussed on 2D gestures. Even though some claim they can be easily extended to
3D gestures [23], the extension to bring multiple joints in relation with each other
is not trivial.

3.3 Declarative Approaches
A declarative approach brings all advantages of declarative programming to ges-
ture recognition. Developers can reason about gesture definitions instead of cod-
ing the control flow of a gesture.
Hoste et al. [10] present a novel gesture spotting approach that offers automated
reasoning over a complete motion trajectory. Major changes in a small section
of the trajectory are stored as potential control points. When the complete tra-
jectory has been parsed, the top m points are chosen. These points are visualized
and can be manually refined by the developer. Spatio-temporal constraints can be
relaxed by the developer to allow the matching of noisy gestures. Their approach
inherently supports overlapping submatches since it searches for a combination
of events which matches the gesture definition. The evaluation shows that their
approach allows for a high recall rate even though the current implementation is
not rotation invariant.
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3.4 Machine Learning
3.4.1 Hidden Markov Model

Hidden Markov Models (HMM) are known for their applications in temporal pat-
tern recognition, like speech, handwriting and gesture recognition. They use hid-
den states that correspond to different phases of an action. To keep the modelling
of joints tractable two assumptions are made: the values of any state are only in-
fluenced by the values of the state that directly precedes it. This is known as the
Markov assumption and greatly simplifies the model. The second assumption is
that observations only influence the current state, so subsequent observations are
independent. This means it is impossible to take long-range observations into ac-
count.

Yamato et al. [25] uses HMM to recognize different tennis strokes. For the train-
ing of the HMM, the Baum-Welch algorithm was used to find the unknown pa-
rameters. The Viterbi algorithm is used to find the most likely sequence of hidden
states that generate the observed sequence.
Bevilacqua et al. [2] present a HMM based system for real time gesture analysis.
Their approach continuously updates parameters of the performance of a gesture.
The focus lies on the time progression, which is the current state of the gesture,
and the likelihood, which gives a similarity value between the performed and the
pre-recorded value. With an accurate estimation of the time progression and the
likelihood it is possible to predict the evolution of the current gesture.
The system is developed with applications in performing arts in mind, where lit-
tle training data is available. This means a statistical training algorithm like the
Baum-Welch algorithm can not be used, in contrast with other HMM implemen-
tations. The learning procedure is simplified by using prior knowledge, which
makes it possible to estimate parameters from a single training sample. The writ-
ers of this paper choose this method because they found that is in impractical to
build a general gesture database, since the gesture data is dependent on the artistic
context.
The algorithm which is used for the deduction of the time progression and the
likelihood has a major disadvantage: long samples incur a large number of states.
To reduce this computational overload a sliding window is used. The computation
of the likelihood has to be computed on all the states, not just those in the sliding
window. Whenever the window is moved, values that were not considered in the
previous window are set to zero in the new window. This allows to compute the
likelihood without increasing the CPU load.
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3.4.2 Neural Networks

Lamar [15] defines a neural network as:

A massively parallel distributed processor made up of simple pro-
cessing units, which has a natural propensity for storing experimental
knowledge and making it available for use.

Several types of neural network can be used for gesture recognition. Maraqa [17]
compared two recurrent neural networks to recognize Arabic sign language for
static hand gestures, namely a fully recurrent neural network and Elman’s and
Jordan’s recurrent neural network. A digital camera and a coloured glove were
used for input data. This data is segmented into 6 layers by using the HIS color
model, 5 for the fingertips and 1 for the wrist. From these layers they extract 30
features, like angles and distances between fingers and wrist, which are grouped
in one vector to represent a single gesture. This features vector serves as the input
for the neural networks. Their results show that fully recurrent neural networks
systems have a better recognition rate than Elman’s and Jordan’s recurrent neural
networks.

Murakami [18] presented a Japanese sign language recognizer using a combi-
nation of two neural networks. Figure 3.6 shows the architecture of their system.
A data glove is used to capture input data, which is then normalized. To detect the
starting point of a gesture, each gesture has to start from a specific posture, which
is detected by a neural network for posture recognition. When this posture is de-
tected, it is considered as the starting point for a gesture, the data from the data
glove is send to the second neural network (Elman’s recurrent neural network)
which recognizes sign language. To determine the endpoint of a sample, the his-
tory of the result of each sampling point is kept. The current sampling points are
compared to the history, from which they determine if the sample is at an end.
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Figure 3.6: sign language recognition system [18]

Even though the results of gesture recognition using neural networks are promis-
ing, they require a vast amount of training data which makes it impossible to easily
add new gesture definitions. Maraqa [17] used 900 training samples to recognize
30 hand gestures.

Hidden Markov Models and neural networks are often referred to as a black box
since they do not provide information about the gesture definition. No compre-
hensible representation is used and due to the amount of training data needed these
techniques do not provide extensibility.
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4 Automated Full-Body Gesture Recognition

4.1 Introduction
Graphical toolkits for gesture specification enable users to define gestures based
on a recorded sample. However users still need to manually declare, scale an ro-
tate regions which joints have to match. These transformations are necessary to
let users choose which parts of the gesture are important and how precise or how
loose each part should be defined. While the visual approach of graphical toolkits
already help, manually transforming each region in a gesture can still take some
time for gestures with a lot of constraints, especially long gestures.
We introduce an approach to automatically generate these regions in a graphi-
cal toolkit based on a single recorded sample. The user merely has to select the
starting point and endpoint of a gesture in the recorded sample, upon which we
generate a visual definition for the selected gesture. Only one sample is needed as
training data and the generated gesture definition can be adjusted by users. This
ensures the extensibility of our gesture and allows users to manipulate the gesture
definition if desired.

4.2 Poses
Gestures can be defined as a sequence of poses, so recognizing a gesture boils
down to recognizing each individual pose and check if these poses were performed
in the right order. To determine the poses that compose to a gesture, the trajectory
of the gesture has to be known. This means one sample of the performed gesture is
needed and the user has to select the the starting point and the ending point of the
gesture in that sample. Poses are generated on a time interval between these two
points, each pose matching a certain moment in time between the starting point
and ending point of the gesture as is explained later. For each joint in a pose, a
matching region is determined. This joint region defines how close the joint has
to be to the original curve to match the pose and is represented as an ellipsoid, as
shown in figure 4.1.
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Figure 4.1: Joint region of the right hand joint represented by an ellipsoid

It is important that there is a significant overlap between the joint regions of
joints in subsequent poses, since the precision of the gesture definition depends on
it. For each joint the joint region of a pose should start before the joint region of
the previous pose ended. An example is shown in Figure 4.2, where a gesture to
raise both hands is depicted. The gesture takes 4 joints into account (right hand,
right elbow, left hand and left elbow) and defines 2 poses which are represented by
blue and yellow ellipsoids. Each ellipsoid represents the joint region of a joint per
pose. The time interval used between these poses is chosen in a way so that joint
regions partially overlap between poses for each joint. For explanation purposes,
the overlapping areas are denoted by red circles. Since the elbow joints in pose 2
remain in the proximity of their location in pose 1, the overlap between these joint
regions is much bigger than the overlap of the hand joints.
The movements performed outside of joint regions are not monitored by the ges-
ture recognition system, so a deviation which occurs outside of these regions is
not registered and will not affect the gesture recognition. This could lead to false
positives, so there should be as little space as possible between the joint regions
of subsequent poses. For each gesture a time interval to generate the poses should
be specified by the user. This time interval should be chosen in a way that there is
always a small overlap between joint regions.
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Figure 4.2: Two subsequent poses with overlap of joint regions of 2 different poses
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4.2.1 Pose Recognition

To match a pose all joints have to be near a certain position at the same time. By
checking if a joint is inside the joint region which was generated we know if the
joint is close enough to be matched. All joints have to be in their joint region
for at least a small amount of time, for example 100 milliseconds, for the pose to
be matched. Matching a pose is not as simple as just keeping track of when all
joints entered their joint regions. When a pose matching is in progress it can be
invalidated by a joint that enters its region but goes out of the region before the
other joints were in their regions for the given time interval. Several situations can
cause the pose to be invalidated, Figure 4.3 shows two possible situations where
the pose is matched and Figure 4.3 shows two situations where the pose is not
matched.

The ideal case is demonstrated in figure 4.3a : To match a pose each joint has
to enter its region and all joints have to be in that region for some time. This can
be controlled by keeping track of all points in time where a joint enters its region.
When the last joint enters its region (t) a timer is started to make sure all joints stay
in their regions for a small amount of time (x). When that time has passed (t+x)
we check if the joints did not leave their respective regions and recognize the pose.
If one or more joints left their region before the time has passed (t+x), the pose
was not performed and the matching will restart when the joint enters its region
again. This means a joint can enter and exit several times and the pose can still
be matched afterwards which makes it more robust to jitter. Such an example is
explained in figure 4.3b, where joint 4 enters its region, leaves it and enters again.
This is allowed since at time t all joints are in their respective region at the same
time. To accommodate for this exception we have to keep track of the time on
which a joint entered its region last, instead of keeping track of all times for each
joint. This means the situation depicted in 4.3b will be recognized as performing
the pose, since all joints are in their region from time t until time t+x.
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(a) All joints enter their regions and stay there

(b) Joint 4 enters its region, exits and enters again

Figure 4.3: Pose recognition with matched poses
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Two situations where the pose is not matched are shown in figure 4.4. Both
are similar cases, since they involve a joint leaving its position. Figure 4.4a shows
a situation where joint 4 enters a position but leaves it before the other joints are in
place. Since at no point in time all joints are in position the pose is not matched.
Figure 4.4b shows a similar case, only the joint exits its position after all joints are
in place, but before the time limit (t+x) has passed.

(a) Joint 4 exits its region before other joints are in place

(b) Joint 4 exits its region before the time limit has passed

Figure 4.4: Pose recognition with not matched poses
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4.2.2 Pose Confidence

As explained earlier, a pose is recognized when all joints are within a certain
region for a certain time interval. These regions are determined by an ellipsoid
shape that is automatically generated. However, checking whether a pose matches
in an ellipsoid shape only provides a binary value. Either the pose is in or not. In
order to provide a pose confidence level we divide the joint regions into different
sections according to how close a joint is to the center of the region. Each region
is divided into a number of sections which all have a joint confidence value. The
closer the section is to the center of the joint region, the better the joint confidence.
The joint confidence value is a number between 0 and 1 which changes each time
a section with a better confidence value is entered. The pose confidence value
is calculated by taking the mean of all joint confidences. This gives us a pose
confidence value between 0 and 1 which indicates how well a pose was matched.

4.3 Combining Poses
To combine these poses into a gesture we have to keep track of the time a pose was
matched. By comparing these times we can easily see if the poses were matched
in the right order, thus if the gesture was performed correctly. If one pose of the
pose sequence is not matched, or the poses were matched in the wrong order, the
gesture was not performed correctly and it is not recognized. When a gesture is
recognized we calculate a gesture confidence value by calculating the mean of all
pose confidence values of the pose sequence. This gesture confidence value gives
an indication on how good the gesture was matched overall.
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5 Automated Gesture Candidates

5.1 Poses
Before we generate the sequence of poses needed to recognize a gesture, the user
can select which joints are important and should be monitored by the gesture
recognition system. These joints are added to the set of important joints and are
the only joints which will have joint regions to be matched. This allows users to
customize gesture definitions. For each pose and for each joint in the important
joints set, a group of ellipsoids is generated. This group of ellipsoids consists of
a number of ellipsoids with different sizes. The ellipsoid with the biggest size
defines the joint region, while the other ellipsoids define the sections of the joint
region which give better confidence values.
As shown in figure 5.1, the smaller the size of the ellipsoid the better the confi-
dence. A pose is then defined as the collection of the ellipsoids from each joint
in the important joints set. To generate the sequence of poses we run through
the training sample and generate a pose on the time interval specified by the user.
Each pose has an visual representation so users know what the poses look like
and can adjust them by transforming the ellipsoids. Since positions are used as
the main feature, using absolute positions for the ellipsoids would make the poses
position dependent. Therefore we opted to use relative-positions as a feature by
placing the ellipsoids relatively towards a parent joint.
Every time a joint enters an ellipsoid of its group of ellipsoids an EnterEllipsoid
fact is asserted into Midas. This fact enables developers to construct rules which
depend on whether a joint entered an ellipsoid. The EnterEllipsoid fact keeps
track of useful information, such as the time a joint entered an ellipsoid and the
confidence value of the entered ellipsoid. When a joint leaves an ellipsoid of its
group of ellipsoids, an ExitEllipsoid fact is asserted which indicates a joint left an
ellipsoid.
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Figure 5.1: 5 ellipsoids on the right hand with different scales and confidence
values
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5.1.1 Pose Confidence

As mentioned before we generate a group of ellipsoids for each joint to indicate a
confidence value. The amount of different ellipsoids with different scales that is
generated can be specified by the user. By default each group of ellipsoids con-
tains 5 ellipsoids since this seems to give a good indication about the accuracy of a
pose. Smaller ellipsoids have a higher confidence value since they mark a smaller
region and are therefore only matched when the pose is performed accurately. Ev-
ery time a joint enters an ellipsoid from its group of ellipsoids, the confidence
level of the newly entered ellipsoid is compared to the confidence level of the pre-
viously entered ellipsoid. If the new confidence level is higher, the EnterEllipsoid
fact is modified with the new information.
These confidence values are always between 0 and 1 and are dependent on the
number of ellipsoids in a group of ellipsoids. The smallest ellipsoid always has
a confidence value of 1, while the confidence values of the other ellipsoids are
calculated by dividing 1 by the number of ellipsoids in a group of ellipsoids. For
example a user can opt for 10 ellipsoids which will yield a set A of confidence
values where

A = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

The user can adjust the size of these ellipsoids by setting a maximum scale size.
The scale size for all ellipsoids will then be calculated by dividing the maximum
scale size by the number of ellipsoids in a group of ellipsoids. This ensures the
distance between all ellipsoids is equal, as shown in figure 5.2 where the distance
is denoted by x. For example a user can select a maximum scale size of 0.5 and
choose to generate 5 ellipsoids which will yield a set B of ellipsoid sizes where

B = {0.1, 0.2, 0.3, 0.4, 0.5}

According to De Roover [5], fuzzy reasoning allows to model our world in a
more accurate way. By generating gesture definition with multiple ellipsoids, the
gesture definitions allow some fuzziness. Instead of declaring a gesture matched
or not matched, we allow a gesture to be matched with a certain degree of truth,
which is a more intuitive method since two gestures are almost never performed
exactly the same. This allows to create strict or loose gestures with a confidence
value. Strict gestures can be defined by choosing a small ellipsoid size, since small
ellipsoids require the gesture to be accurately performed. Choosing a big ellipsoid
size generates loose gestures, since a certain error in the performed gesture is
tolerated. This can be useful in different domains, for example to set the difficulty
level of a game.
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Figure 5.2: Three ellipsoids on the right hand joint with an equal distance between
the ellipsoids
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5.1.2 Pose Recognition

To recognize a pose we generate declarative rules which implement our strategy
as described in section 4. For each pose, we generate a rule that requires the pres-
ence of an EnterEllipsoid fact for each joint that is part of the important joints set
defined by the user. When a joint enters an ellipsoid, an EnterEllipsoid fact for
that joint and ellipsoid is asserted. If there is an EnterEllipsoid fact for each joint,
all joints have entered An ellipsoid. When an EnterEllipsoid fact is present for are
joints, we wait 100 milliseconds. If a joint leaves an ellipsoid, an ExitEllipsoid
fact is asserted. If there are no ExitEllipsoid facts for the joints used in the gesture,
all joints still reside within their ellipsoids so the pose is matched.

Figure 5.3 shows the generated declarative rule for recognizing a pose with 4
joints. We need an EnterEllipsoid fact for each joint to recognize the pose, so
line 2-5 checks if there are 4 EnterEllipsoid facts in Midas for the specified pose.
Moreover, each of these facts can only be matched by an EnterEllipsoid fact which
corresponds to an ellipsoid from the group of ellipsoids of a specific joint. For ex-
ample, the EnterEllipsoid fact on line 2 can only be matched by an EnterEllipsoid
fact which corresponds to an ellipsoid of the group of ellipsoids with id = 0, from
pose ’Pose1’. By checking the id of the group of ellipsoids an ellipsoid belongs
to along with the name of the gesture, we can make sure each EnterEllipsoid fact
on lines 2-4 is matched by an ellipsoid from different joints.

When each joint has an EnterEllipsoid fact we wait 100 milliseconds, starting
from the time the last EnterEllipsoid fact was asserted. This wait is enforced by
the test at line 8. When these 100 milliseconds have passed we have to make sure
no joint has left the ellipsoid it entered since we started waiting. This is enforced
by lines 9-24 where we check that there is no ExitEllipsoid fact which was as-
serted after the EnterEllipsoid fact for the same joint was asserted and before the
100 milliseconds were over. We ask Midas to check that there is no ExitEllipsoid
fact of the ellipsoids which have the same name as the EnterEllipsoid facts. If
there is an ExitEllipsoid fact with the same name we check if the time the ExitEl-
lipsoid took place was at least 100 milliseconds after the last EnterEllipsoid fact
was registered or before the EnterEllipsoid was asserted. If these conditions are
satisfied the pose is matched and the code below the ’=>’ on line 26 is executed.
Since we only need the pose which has the best confidence we check whether
the just matched pose has a better confidence than the previously matched pose
on line 27. If so feedback is given to the user in the form of a text message on
lines 28 - 29 and the PoseMatch fact is modified with a new recognition time and
confidence value on line 30.
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Figure 5.3: Generated rule to recognize a pose
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5.2 Gesture Recognition
For recognizing the complete gestures, we generate a rule that combines the Pose-
Match facts which are asserted by the code snippets that match the poses. In this
rule, we also test whether the poses were performed in the right order. Figure 5.4
shows an example of a declarative rule for a gesture which consists of 3 poses.
Line 2-4 check whether a PoseMatch fact was asserted for each pose. If all poses
are matched we can easily know if they were performed in the right order by com-
paring the time at which they were matched, as is done on line 5. When the poses
are matched in the right order, the gesture is matched and on line 10 a PoseGes-
tureMatch fact is asserted in Midas with a confidence value which is the mean of
the pose confidence values of the 3 poses used in the gesture.

Figure 5.4: Generated rule to recognize a gesture with 3 poses
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6 Evaluation
To evaluate the robustness of our approach, we implemented several gestures with
different ellipsoid sizes. We need gestures which have some similarity to test our
approach for false positives. We used dance gestures since they can be quite sim-
ilar and technical, which is ideal for our implementation since we can model each
technical stance separately by a pose.

The precision requirement is implemented by letting the user choose an ellipsoid
size. These sizes define a threshold at which errors while performing a gesture are
acceptable. The ellipsoids of each pose can be moved, scaled and rotated if de-
sired by the user. This allows to fix errors in the generated definition or to define a
new gesture definition which can be completely different from the generated one.
Constraints can also be refined by changing the generated declarative code. This
provides the extensibility needed for an automated gesture recognition system.
Each pose has a visual and a declarative representation. The visual representation
consists of the ellipsoids in VolTra and aids the developer with debugging and to
understand the gesture definition, while the declarative representation represented
by pose and gesture rules ensures the extensibility of the generated gesture defi-
nition. Since users have to choose which joints are important for a gesture, cus-
tomizability is implemented. Feedback is given to the developer using the visual
representation and text messages.
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6.1 Method
In order to test our gesture recognition approach, we created a data set of 6 ges-
tures each performed by 9 different subjects, resulting in 54 samples. The subject
group consists of 5 women and 4 men, the youngest subject is 17 years while
the oldest is 46. The subjects also vary in height and weight. The samples were
recorded using a Microsoft Kinect camera, Kinect SDK version 1.0.3.191 and
OSCeleton13. One expert set an example for the gesture, upon which the 9 sub-
jects copied the gesture performed by the expert. All samples were recorded at
the same time in a room with sufficient lightning. These samples are loaded into
VolTra where we select the starting and endpoint of the gesture using the reference
sample (of the expert) to generate the gesture definition.
The performed dance gestures are:

1. Y

2. M

3. C

4. A

5. Disco

6. Egyptian

13https://github.com/Zillode/OSCeleton-KinectSDK
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The first four gestures: Y,M,C and A are dance moves of the famous song
YMCA (1978), from the American disco group Village People. The fifth gesture,
Disco, is a famous disco dance move and the sixth gesture , Egyptian, is a dance
move from the famous song Walk like an Egyptian by The Bangles.
For the YMCA gestures the hands and arms have to be hold in such a way that
they depict the letter the move stands for, as shown in 1 - 4 in Figure 6.1. For
the Disco gesture the subject has to put his left hand on his right hip, after which
the left hand is moved up in a diagonal fashion to the left until it points to the
sky. This move is also known as ”The Point”. For the Egyptian dance move the
arms have to be bent in a specific way before moving the hands forward and back-
wards. Figure 6.1 presents the 6 gestures in VolTra, as performed by the expert.
We choose these dance moves since they have a lot of similarity (for example the
A and M move) and most people are familiar with the dances, which should make
is easier to perform these gestures.

We used our data set of 54 samples to test each gesture definition with 3 different
ellipsoid sizes: 0.3 , 0.4 and 0.5. We also evaluated other ellipsoid sizes but found
these values to be optimal. A smaller ellipsoid size than 0.3 makes the ellipsoids
very small and almost impossible to match, while an ellipsoid size larger than 0.5
makes the ellipsoids very big, matching every gesture in our dataset. We asked
3 different subjects than the aforementioned 9 subjects to perform a sequence of
movements which resembles some of the gestures, but do not match hem. As
shown in table 6.1, this random data shows that an ellipsoid size of 0.5 already
poses a small risk for false positives. A bigger ellipsoid size would only increase
this risk, while no false positives were found when conducting tests with the same
random samples and ellipsoid sizes of 0.3 and 0.4.

To generate our gesture definition we used a timespan of 1 second between each
generated pose for ellipsoid sizes of 0.5, 900 milliseconds for ellipsoid sizes of 0.4
and 800 milliseconds for ellipsoid sizes of 0.3. There is a difference in time for
each ellipsoid size since poses with smaller ellipsoids have to be generated closer
together in order to minimize the space between joint regions of subsequent poses.
Our evaluation gestures consist of 2 or 3 poses, depending on the gesture. For the
Egyptian gesture 2 poses are sufficient since only the hands need to move while
the elbows stay in the same place, however for the Disco gesture we need 3 poses
to rule out false positives.
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To calculate a confidence level of the performed gestures, we calculate the
mean of the best matched ellipsoids of each joint. Per joint we used 5 ellipsoids,
each with a different confidence level. We choose to use 5 ellipsoids since using
more ellipsoids makes the smallest ellipsoid very small and almost impossible to
match. Using less ellipsoids will relax the confidence value, resulting in a high
confidence level for badly performed gestures.

Figure 6.1: Overview of 6 dance gestures

Gesture Sample Confidence
A Random 1 0.75

Disco Random 3 0.667
Total false positives 3.70%

Table 6.1: False positives for ellipsoid size 0.5
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Figure 6.2: Overview of 3 random samples
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6.2 Results
An overview of the used gesture definitions is given in figures 6.4 and 6.5. For
each gesture definition, the generated poses are displayed.
These gesture definitions are the result of our approach used on the reference
samples. Whether a certain gesture definition is too strict or too general depends
largely on the size of the gesture ellipsoids. To determine the ideal size, we gen-
erated each gesture 3 times, each time with different ellipsoid sizes. This also
allows us to see how the scale of the ellipsoids influences the gesture accuracy.
A bigger ellipsoid size means it is more likely for a joint to match a ellipsoid,
whereas gestures with a smaller ellipsoid size are more difficult to match. This
implies we can easily adopt the strictness of our gestures to the needs of the user.
By merely changing the ellipsoid size we can make the gesture definitions very
strict or very loose, which allows our approach to be used in different situations.
For a fun game, the gesture definitions can be very loose with a big ellipsoid size,
whereas for a technical application the gesture definitions can become very strict
with a small ellipsoid size.
Our evaluation gave us 162 confidence levels (54 samples evaluated with 3 dif-
ferent gestures) which are shown in table 6.4. These confidence levels give us a
measure of how accurate the gesture performed by a subject resembles the origi-
nal gesture performed by the expert. Sometimes a gesture is not recognized, for
these misses we fill the table with a zero. These confidence values represent the
matched gestures without manual refinement of the gesture definition, since the
confidence of a refined definition depend on how it is refined (rescaled or moved).

Table 6.2 shows the amount of misses and matches of our evaluation. We can
clearly see that a strict gesture (ellipsoid size 0.3) is harder to match than a loose
gesture (ellipsoid size 0.5). Since our subjects are not expert dancers, the recog-
nition rate for strict gestures is lower than for loose gestures.

Recognition rate
ellipsoid size 0.3 0.4 0.5

Y 77.78% 100% 100%
M 55.56% 77.78% 88.88%
C 44.44% 88.88% 100%
A 55.56% 77.78% 100%

Disco 77.78% 100% 100%
Egyptian 100% 100% 100%

Table 6.2: Recognition rate of each gesture per ellipsoid size
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When a gesture is missed we manually adjust the gesture definition to match
the missed sample and record the time it takes us to do so. To adjust the definition
we simply need to move the ellipsoids to a different location in the 3D plane. Table
6.3 shows the approximate time in seconds it takes us to manually alter a gesture
definition to match all samples and the time it took us to manually create the same
gesture definitions. When manually creating these definitions the default ellipsoid
size was 0.5. For other ellipsoid sizes the size had to be manually adjusted. In
some cases, like the Y gesture for a gesture definition with ellipsoid sizes of 0.3, all
misses have the same cause. This happens when there is a difference between how
the expert performs a gesture and how other subjects perform the same gesture.
For example, Figure 6.3 shows a gesture which is performed correctly, but the
right hand joint misses an ellipsoid of the generated gesture definition. These
misses are easily fixed, since we can just translate the corresponding ellipsoids to
match the joint for one sample, and all misses with the same cause are recognized.
The time investment to correct these gestures is rather small since one ellipsoid
manipulation solves multiple misses.
Misses can also have very specific causes, which are impossible to solve by simply
adjusting the gesture definition for one sample. These misses have to be fixed
sample by sample, which increases the time to manually correct these gestures.

Automated with refinement Manual
Ellipsoid size 0.3 0.4 0.5 0.3 0.4 0.5

Y 22 0 0 123 132 108
M 122 42 15 136 142 96
C 23 10 0 102 113 87
A 107 50 0 146 135 117

Disco 69 0 0 97 106 65
Egyptian 0 0 0 95 101 89

Table 6.3: Manual and automated development time in seconds per ellipsoid size
and gesture for 9 samples
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Figure 6.3: Right hand joint misses a ellipsoid of the gesture definition

Figure 6.4: Disco and Egyptian gesture definitions with ellipsoid size 0.4. Each
row corresponds to a gesture definition.
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Figure 6.5: YMCA gesture definitions with ellipsoid size 0.4. Each row corre-
sponds to a gesture definition.
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Confidence
Scale 0.3 0.4 0.5

Subject 1 0.625 0.75 0.775
Subject 2 0.85 0.875 0.95
Subject 3 0.75 0.875 0.875
Subject 4 0.85 0.925 0.9
Subject 5 0.7 0.8 0.85
Subject 6 0 0.7 0.7
Subject 7 0.675 0.8 0.9
Subject 8 0 0.7 0.725
Subject 9 0.85 0.8 0.85

Mean 0.59 0.80 0.84

(a) Y Gesture

Confidence
Scale 0.3 0.4 .0.5

Subject 1 0 0.734 0.8
Subject 2 0.667 0.767 0.817
Subject 3 0 0.833 0.867
Subject 4 0.833 0.95 0.967
Subject 5 0.734 0.85 0.9
Subject 6 0.85 0.9 0.93
Subject 7 0 0 0.783
Subject 8 0.667 0.783 0.833
Subject 9 0 0 0

Mean 0.417 0.646 0.766

(b) M Gesture
Confidence

Scale 0.3 0.4 .0.5
Subject 1 0.7 0.733 0.817
Subject 2 0 0.6 0.8
Subject 3 0 0.767 0.867
Subject 4 0.93 0.95 1
Subject 5 0 0.717 0.8
Subject 6 0 0 0.83
Subject 7 0.7 0.767 0.883
Subject 8 0.683 0.8 0.85
Subject 9 0 0.75 0.767

Mean 0.335 0.676 0.846

(c) C Gesture

Confidence
Scale 0.3 0.4 .0.5

Subject 1 0.6 0.7 0.75
Subject 2 0.667 0.783 0.867
Subject 3 0 0.667 0.75
Subject 4 0 0.783 0.817
Subject 5 0 0 0.75
Subject 6 0 0 0.633
Subject 7 0.783 0.883 0.9
Subject 8 0.733 0.767 0.85
Subject 9 0.767 0.717 0.8

Mean 0.393 0.583 0.697

(d) A Gesture
Confidence

Scale 0.3 0.4 .0.5
Subject 1 0 0.767 0.9
Subject 2 0.8 0.8 0.867
Subject 3 0.9 0.967 0.933
Subject 4 0.8 0.7 0.833
Subject 5 0.767 0.8 0.867
Subject 6 0.567 0.733 0.833
Subject 7 0.8 0.7 0.8
Subject 8 0 0.9 0.7
Subject 9 0.967 0.93 1

Mean 0.622 0.81 0.86

(e) Disco Gesture

Confidence
Scale 0.3 0.4 .0.5

Subject 1 0.625 0.8 0.825
Subject 2 0.8 0.925 1
Subject 3 0.9 0.95 1
Subject 4 0.85 0.925 0.925
Subject 5 0.8 0.85 0.925
Subject 6 0.875 0.925 0.975
Subject 7 0.65 0.825 0.85
Subject 8 0.875 1 1
Subject 9 0.95 1 1

Mean 0.81 0.911 0.944

(f) Egyptian Gesture

Table 6.4: Confidence levels
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7 Conclusion and Future Work

7.1 Conclusion
We started with a overview of requirements which are beneficial for automated
gesture recognition systems while motivating why these requirements are im-
portant. Related work was discussed with the requirements for automated ges-
ture recognition in mind. Our approach is presented which allows for automated
full-body gesture recognition while maintaining the specified requirements which
enhance automated gesture recognition systems. An implementation of this ap-
proach is given as an extension of VolTra.
Our approach counters shortcomings of existing automated gesture recognition
methods:

• The generated gestures allow a great amount of customization by the user
after they have been generated. This improves the usability since a gesture
definition with flaws can simply be adjusted to fix the errors, while other
methods require the gesture definition to be recreated.

• Generated gestures have a comprehensible representation which helps users
to understand the generated gesture definition and debug them. Users are
also provided with a confidence value which gives an indication of how well
a gesture was matched.

• Only a single training sample is needed to generate a gesture definition.
This ensures users can add gestures in an easy and quick way.

• Control over the gesture definition stays with the user, which can use several
parameters to adjust the gesture definition like ellipsoid size, time interval
between poses and joint selection. This allows users to choose how strict or
loose a gesture should be.
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7.2 Future Work
7.2.1 Generate time between poses

Instead of letting the user select a time interval for pose generation, it could be de-
ducted from the gesture and the chosen ellipsoid size. As mentioned in chapter 4
the time interval on which poses are generated should make sure the joint regions
of each joint in subsequent poses are very close or partially overlap. This means
we could deduct when a pose should be created by calculating the euclidean dis-
tance between 2 positions of a joint. Since ellipsoids are generated with the joint
at the center, the ellipsoids should partially overlap when the euclidean distance
between 2 joint positions is smaller than the diameter of the ellipsoids.
The first pose could be generated at the starting point of the gesture, which is in-
dicated by the user. The next pose should then be generated when the euclidean
distance between the position of a joint in the last generated pose and the cur-
rent position of that joint is somewhat smaller than the diameter of the generated
ellipsoid.

7.2.2 Improve Confidence Value

The confidence of pose and gesture matches can be calculated in a smarter way
than calculating the mean of joint confidence values. Here are some suggestions
on how to improve the confidence values:

• Users could add weights to more important joints so a weighted mean can
be calculated for the confidence value. This would allow users to select
which joints are very important for the gesture and produces a confidence
value which reflects how well the gesture was matched in a more accurate
way then a normal mean.

• The pose confidence value could be influenced by whether joints enter their
joint regions at the same time. If all joints enter their joint region within a
small time interval, the confidence value could be higher. If a joint enters
its joint region some seconds after the other joints entered their regions the
confidence could be smaller, depending on what the user desires.

• If desired by the user, the confidence value could also take the performance
speed of gestures into account. The time at which poses are matched is
already registered so the performance speed of the gesture could be derived
from this data.
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7.2.3 Automated joint selection

Instead of letting users manually select which joints are important and should be
included in the gesture definition, a suggestion for these joints could be derived
from the training sample. By analysing the training sample we could derive which
joints are important for the gesture. Joints which barely move are probably not
included in the gesture, while joints which cover a large area of the 3D space
are probably very important in the gesture. The joints which are derived from
the sample should only be a suggestion to the user, who should be able to add or
remove joints from the important joints set.
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