
Graduation thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in Applied Sciences and Engineering: Computer Science

INTEGRATION OF USER-DEFINED GESTURE INTER-
ACTION INTO END-USER AUTHORING TOOLS

BRAM DEWIT
Academic year 2022–2023

Promoters: Prof. Dr. Beat Signer
Dr. Audrey Sanctorum

Faculty of Sciences and Bio-Engineering Sciences



©Vrije Universiteit Brussel, all rights reserved.



Afstudeer eindwerk ingediend in gedeeltelijke vervulling van de eisen voor het
behalen van de graad Master of Science in de Ingenieurswetenschappen: Com-
puterwetenschappen

INTEGRATION OF USER-DEFINED GESTURE INTER-
ACTION INTO END-USER AUTHORING TOOLS

BRAM DEWIT
Academiejaar 2022–2023

Promoters: Prof. Dr. Beat Signer
Dr. Audrey Sanctorum

Faculteit Wetenschappen en Bio-ingenieurswetenschappen



©Vrije Universiteit Brussel, all rights reserved.



i

Abstract
Gestures are a different way of interacting with an application that does
not have to involve the UI of the application. They can be seen as more
intuitive in certain use cases, but in current systems, gesture interaction is
often not uniform across different applications which can make the gesture
interaction less intuitive to the end user. A possible solution to this problem
is to allow the user to define their own gesture interaction. The focus of this
thesis lies on user-defined gesture interaction, where the user can choose a
gesture from a fixed set of gestures (gesture vocabulary) and define which
interaction gets triggered by performing the gesture. We also look at user-
defined gesture interaction in the context of end-user authoring tools, which
are tools that allow the user to author applications, which then subsequently
allows for more complex and richer interactions to be defined for each gesture.

In related work, we can find many challenges that one can face when
dealing with gesture interaction. For one, the gesture vocabulary and ges-
ture recognition come to mind. Gesture recognition is the recognition of a
gesture by the system, and its accuracy is highly dependant on the gestures
chosen for the gesture vocabulary. Not only the technical aspects are impor-
tant, but also the intuitiveness and recall of gestures in users is important, as
well as the ergonomics of performing the gesture. Keeping the best practises
of gesture interaction in mind is important when designing the interactions,
but when an end user is allowed to define the interactions, they might not
adhere to these best practises.

The customisation of the gesture interaction is an advantage in some ar-
eas, but it also creates some challenges that are important to keep in mind
when allowing user-defined gesture interaction. That is why in this thesis, we
identify these challenges, not only the existing ones, but more importantly,
the challenges that are inherent to the fact that the gesture interaction is
user-defined. After identifying the challenges and potential of user-defined
gesture interaction, some non-functional requirements are defined for cre-
ating a better way of allowing user-defined gesture interaction. We have
proposed a set of design principles for designing user-defined gesture inter-
actions, under which each of these requirements is categorised. This is done
based on solutions and best practises from different fields of research and
some problem-specific solutions are also proposed.

Next, these design principles are used to implement user-defined gesture
interaction in an existing end-user authoring tool called eSPACE, where the



ii

usefulness of the proposed solutions are tested. The eSPACE authoring tool
is focused on cross-device and Internet of Things interactions, which pos-
sibly introduces extra complexity into the process of the design. Before
implementing user-defined gesture interaction into eSPACE, a survey was
conducted where the preferences of respondents, in terms of the user inter-
face of the implementation, were assessed. The implementation itself was
then done according to the preferences of the respondents, in combination
with the proposed design principles.

After completing the implementation, an evaluation was done in form of
a user study. Participants of the study were given different scenarios in which
they were asked to complete certain tasks using the application. The system
usability of the implementation was then assessed in a quantitative and qual-
itative manner, to not only asses the current usability, but also to discover
further improvements that could still be made to the system. As it turns
out, the proposed design principles helped at giving the design direction and
at avoiding some of the earlier identified challenges. The results of the user
study were positive about the usability of the design, although a small flaw,
and consequently, a possible improvement to the system was found.

What we found from the survey is that in some cases personal preferences
of people can vary a lot, due to different reasons, which is why it might be
positive for the general user experience to allow the user to customise their
experience, through the customisation of gesture interactions, or other in-
teractions in the applications they use. Although the design we made was
not perfect, and there will always be a trade off between following best prac-
tises and allowing the user to customise their experience, the ideas provided
in this thesis can help at creating a more intuitive and easy-to-use gesture
interaction.



iii

Acknowledgements
First and foremost, I would like to thank my promotor and supervisor Dr. Au-
drey Sanctorum for the guidance throughout the process. Throughout the
year you have made time to meet and give feedback or guidance and tried
to put me on track with ideas of what to write or look up next. Whenever I
would ask for pointers on what to do next, you would provide me with ideas
to help me continue to move forward. I would also like to thank my other
promotor Prof. Dr. Beat Signer for providing feedback at multiple stages
throughout the process and providing solutions to guide me to a better the-
sis.

Next I would like to thank my parents for not only the moral support, but
also input, ideas and different perspectives on the work I was doing. They
provided me with the courage to move on with this and without them I would
not have brought this research to and end.

Last, but not least, I would like to thank my family and friends for the moral
support throughout the whole process. Everyone has been supportive and
mindful of the process and struggle that comes with writing a thesis and my
friends have provided me with much needed distractions at times where it
could all feel a bit overwhelming.



Contents

1 Introduction
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Question & Objectives . . . . . . . . . . . . . . . . . 3
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work

3 Design Principles
3.1 Incentive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Clarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Intuitiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Distinctiveness . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Interaction Level . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Survey
4.1 Setup of the Survey . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Questions . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Extra-UI . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Interaction Rules . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 Gesture Catalogue . . . . . . . . . . . . . . . . . . . . 35
4.2.4 Editing Gestures . . . . . . . . . . . . . . . . . . . . . 36

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Implementation
5.1 eSPACE Authoring Tool . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 App View . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Implementing Gesture Interaction . . . . . . . . . . . . . . . . 42

5.2.1 Gesture Support . . . . . . . . . . . . . . . . . . . . . 42
5.2.2 Incentive . . . . . . . . . . . . . . . . . . . . . . . . . . 43



v CONTENTS

5.2.3 Location of Definition . . . . . . . . . . . . . . . . . . 44
5.2.4 Interaction Levels . . . . . . . . . . . . . . . . . . . . . 45
5.2.5 Clarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.6 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Practical Implementation Details . . . . . . . . . . . . . . . . 48
5.3.1 Gesture Recognition Library . . . . . . . . . . . . . . . 48
5.3.2 The Gesture Vocabulary . . . . . . . . . . . . . . . . . 51
5.3.3 Implementing Gesture Interaction . . . . . . . . . . . . 52
5.3.4 Implementing the Extra-UI . . . . . . . . . . . . . . . 53

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.2 Post-Study System Usability Questionnaire . . . . . . . 59

6 Conclusion and Future Work
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A Survey



1
Introduction

In current systems, gesture interaction is often not uniform across different
applications which can be confusing and not very intuitive to the end user.
It might not be clear which gestures are possible to use and gestures that
are used for a certain purpose in one system might have a different purpose
in another. One possible solution would be to allow the user to define what
interaction they want to happen for each of the available gestures. A lot of
research already exists about gesture interaction and design. There is exten-
sive research on user preferences, gesture recognition, best practises, pitfalls,
and technical limitations. This knowledge can be used when designing the
implementation of user-defined gesture interaction to guide the user towards
a better interaction design, while still allowing the desired level of customi-
sation. Research on custom gestures created by users has already been done,
but this is outside the scope of this thesis, where we solely focus on letting
the user customise the interactions triggered by a gesture in a predefined set
of gestures.

In this thesis we focus on user-defined gesture interaction in end-user
authoring tools, which are tools that allow end users to create their own
applications. The users of these tools have experience defining interactions
in the applications they create and the addition of gestures creates more op-
portunities for customisation, but certain challenges also arise with it. To



2

create the best user experience, the authoring tool can implement features to
guide the user to a better design of their defined gesture interactions. Before
knowing how to guide the user, it is important to figure out which challenges
can arise when the user defines their own gesture interaction.

Some of the challenges we will face with user-defined gesture interaction
are also challenges of just gesture interaction in general. The disadvantages
and challenges of gestural interfaces, when compared to regular user inter-
faces, have been listed plenty of times by different researchers in different
publications, for example an article by Norman and Nielsen [21] calls gesture
interfaces “a step backward in usability”. One of the main disadvantages of
gestural interfaces is the invisibility of these interfaces. What is meant by
“invisibility” is that in regular user interfaces, the components that can be
interacted with, which trigger the interactions of the application, are visible
on the screen, which means that the user can see which actions are possible
with just a glance at the screen. Also, when a user interacts with one of the
components of a regular user interface, this component can give visual feed-
back that it is being interacted with. With gesture interfaces, this is not the
case. The possible gesture interactions do not have to be visible on screen,
which can be argued to be an advantage in terms of on-screen clutter, but in
terms of usability, the regular user interface will be easier to understand and
use. Especially because the gesture interactions will have to be remembered
by the user if there is no visual indication to identify them by. There are so-
lutions to these problems to improve the visibility of these gesture interfaces,
but in terms of visibility, the regular user interfaces will have an advantage
over gestural ones.

Even though there might be innate disadvantages to (user-defined) ges-
ture interaction, there are also advantages and these advantages could out-
weigh the disadvantages, especially for certain specific use-cases. The incen-
tive for implementing a gestural interface is therefore important and should
be considered on a case-by-case basis to see if the advantages outweigh the
disadvantages. With the identification of the challenges and the proposition
of solutions to these challenges, we aim to mitigate these disadvantages as
much as possible.



3 CHAPTER 1. Introduction

1.1 Problem Statement
The advantage of letting users define gesture interactions is that they can
choose how they will interact with the application they create, which allows
them to define the gesture interaction to be more intuitive to themselves. A
more intuitive gesture interaction allows for easier recall of the interactions
which can result in a speedup of the workflow of the user and a lower rate of
error in the usage of the gestures. One problem that arises is that the user
might not have any knowledge about the topic of gesture interaction, and
some of its pitfalls, thus it might not be trivial to create an easy-to-use and
intuitive way of defining gesture interactions for these users. That is why the
application should try to help them create good interactions and help them
avoid these pitfalls.

We will explore the challenges and possible solutions of not only gesture
interaction, but specifically user-defined gesture interaction. Not only do
gesture interactions bring challenges with them, the fact that they are user-
defined poses questions in terms of how the interactions will be defined,
where in the application they will be defined, how to prevent clashes between
certain interactions with the possible large number of combinations between
the gestures and the effects they can trigger. Although plenty of research
exists about gesture interactions, the user-defined aspect we will discuss, has
not been thoroughly covered, such that there are no guidelines on what could
go wrong when implementing user-defined gesture interaction, what to look
out for, and how to create an interface for the definition of these interactions
which is intuitive and easy-to-use. Also is there a discussion to be had about
when the implementation of user-defined gesture interaction should even be
considered in an application.

1.2 Research Question & Objectives
This thesis tries to provide an answer to the question “How to implement
user-defined gesture interaction in an easy-to-use and intuitive manner?” An-
swering this question is approached by identifying the challenges that arise
when the end user is allowed to define the gesture interaction of their appli-
cations, and by providing ideas to solve these challenges.

Besides identifying challenges and proposing solutions to these challenges,
we also want to propose a set of non-functional requirements to which imple-
mentations of user-defined gesture interaction have to satisfy in order to be



Thesis Outline 4

as intuitive and easy-to-use as possible. These requirements will be posed in
the form of design principles to consider when designing an implementation
of user-defined gesture interaction. Besides providing theoretical principles
which could improve the implementation, we also want to use these principles
in a practical implementation, where possible flaws or areas of improvement
can be discovered, either during the implementation, or when evaluating the
implementation afterwards on the basis of a user study.

1.3 Thesis Outline
In this thesis, first, related work on the topic of gesture interactions and user
interfaces is explored. As we already established, many challenges that occur
when implementing gesture interaction, will also occur when implementing
user-defined gesture interaction, which means that familiarising ourselves
with existing research on this topic will help us in finding all challenges that
may arise, and in coming up with solutions for these challenges. Because
of the user-defined aspect of our gesture interactions, different challenges
may be posed when trying to implement an intuitive and easy-to-use way of
defining and using these interactions. Therefore, we will identify the possi-
ble challenges when implementing user-defined gesture interaction next, after
which, for each of these challenges a set of solutions get proposed.

Because the optimal solution to certain challenges is different depend-
ing on the use case of the authoring tool, these challenges and solutions are
then used to distil a set of design principles, which should help at creating
a more intuitive and easy-to-use way of implementing user-defined gesture
interaction. Lastly, these ideas are applied to a specific use case, namely the
eSPACE authoring tool [26], to demonstrate these principles in a real life
scenario and to evaluate their usefulness.

Before starting the implementation, a survey was done where participants
were asked about their preferences in terms of some of the user interface de-
sign decisions, to asses what they think is intuitive in terms of an interface
used to not only define user-defined gesture interaction, but also to visualise
the gestures that can be used in the interactions, and to help remember the
interactions that were defined. After interpreting the results of the survey,
the implementation was done according to the results of the survey, but also
according to the earlier defined design principles. Each of the principles is
discussed in the context of our implementation, after which the more tech-
nical details of the implementation are discussed. After the implementation



5 CHAPTER 1. Introduction

was done, a user study was conducted to get quantitative and qualitative
feedback on the usability of the system. The results of this user study were
then used to evaluate the system that was implemented and to come up with
possible improvements that could be made.

Lastly, the conclusion summarises everything that was discovered during
this study, and answers to the posed research questions are provided, after
which, future work that could further build upon and improve our research
is discussed.



Thesis Outline 6



2
Related Work

When it comes to gestures, there are important distinctions to make and dif-
ferences to recognise. A gesture is a movement that expresses some meaning
or intent and in the context of (smart) devices, this gesture is an interaction
with such device. This gesture first has to be recorded and second it has to
be recognised by the system to know which gesture the user has performed.
Because of the many possible types of gestures, there are also many ways to
record and recognise these different types of gestures.

In general we can divide gestures into two broad groups, namely the so-
called “touch” gestures and “mid-air” gestures. Touch gestures are, like the
name suggests, gestures where the user touches a surface of the device, either
with their hand or a specialised tool like a pen, which records the movements
of the user’s finger or the tool. If multiple points of the surface are touched
at the same time while performing a gesture, these touch gestures are also
called “multi-touch” gestures. Mid-air gestures are gestures where the ges-
ture is not expressed by touching the device, but rather by making a mid-air
movement with one’s limbs, usually hands, which can be recorded using vari-
ous different sensors. Both mid-air and touch gestures have their advantages
and drawbacks, and it is up to the designer of the gesture interaction to de-
cide which type of gestures are more intuitive in their specific use case [7].



8

Often times, devices that use multi-touch gestures use a touch screen to
recognise the gestures, which has the advantage that the user can directly
touch the elements on the screen when they want to interact with them,
which makes the interaction more intuitive to the user. Another advantage
is that a touch screen replaces the need for several other buttons or another
touch surface on the device, which saves space. Touch screens are found on
devices such as smartphones. A disadvantage of using gestures is that it is
not easy to know which gesture can be performed as they are not shown in
the interface of the application, unlike buttons for example. The applications
for gestures we are focusing on in this research are applications with screen
interfaces, this does not mean the gestures of the end-user authoring tool
are only touch interactions via a touch screen, because recognising mid-air
gestures is still possible through other sensors in the devices, but it does
mean that virtual reality (VR) or Augmented Reality (AR) gesture interac-
tions [14, 9] are outside of the scope of this research.

With (multi-)touch gestures, the gesture starts when the surface is touched
and ends when the user stops touching the surface. This means the start and
end of the gesture are quite well-defined, which helps with the recognition of
the gestures. The recognition of gestures is usually not very straightforward,
this is something that a 1999 study already drew attention to [15] and even
though gesture recognition techniques have evolved since then, mainly thanks
to machine learning technology, the recognition of gestures still is not trivial.
Many gesture recognition algorithms and frameworks have been developed
over the years and advancements in accuracy and versatility have been made.
For (multi-)touch gestures, a recent survey by Magrofuoco et al. [18] discusses
the state-of-the-art recognition algorithms. The paper identifies 16 different
relevant recognisers and discusses the algorithm, performance and properties
for each of them. It points out that many recognisers classify gestures by us-
ing maching learning techniques, which makes sense as they are highly accu-
rate and robust to noise, but they require training with a significant number
of examples and domain knowledge, which is not always a given in situa-
tions like end-user gesture customisation and rapid prototyping of gesture
based UIs as the paper points out. The disadvantages of machine learning
approaches have also been researched and pointed out by others [11, 24]. For
these reasons, algorithms other than machine learning still exist as gesture
recognisers, which the paper by Magrofuoco et al. [18] divides into three cat-
egories (feature-based, template based, and metrics based recognisers), each
with their own advantages and disadvantages.



9 CHAPTER 2. Related Work

When it comes to mid-air gestures, there is more variation in the different
types of gestures and tools when compared to touch gestures. A mid-air ges-
ture can for example be an arm movement, which can be recorded in various
different ways using accelerometers in an armband, a glove, a handheld con-
troller, a smartphone, etc. An arm movement can also be recorded trough a
webcam, or even via electromyography, which is a technique used to measure
electrical activity in the muscles [25]. Besides arm movements, there is also
the option of recognising symbolic hand gestures like sign language, or even
full-body movements. The hand gestures can be recorded by a glove and the
full-body movements could be recorded via a body suit, but more convenient
is also if the movements are recognised by a camera. Webcams are common
and relatively cheap hardware with which many types of gestures can be
recognised, but it is hard to perceive depth using a normal camera. To solve
this problem, technology like the Microsoft Kinect can be used, which is a
device which combines an infrared laser projector with an infrared camera
and an RGB camera. The infrared laser and camera are then used to mea-
sure the depth of the image which allows for accurate gesture recognition [6].
Multiple other technologies exist for mid-air gesture detection, like for ex-
ample the Soli project by Google [13], which uses a millimeter wave radar to
detect gestures, but going over all of these technologies lies outside the scope
of this thesis.

When considering gesture recognition, another challenge arises for mid-
air gestural movements. In contrast to touch gestures, where a gesture starts
when the surface is touched and ends when the surface is not touched any-
more, it is harder to know when a mid-air gesture starts and ends. It is
important to know when a gesture starts and ends to know whether or not
a certain movement was an intentional gesture or not. For example when
mid-air hand movements are being recognised, we do not want to classify
a transitional hand movement as an intentional gesture. This can easily be
avoided by letting the user press a button for the duration of the gesture,
but that approach also limits the potential ways the user interacts with the
system. In certain situations, a more preferable approach would be that the
user’s movements are continuously being monitored, but that the system can
recognise an intentional gesture from an unintentional gesture. Those kinds
of systems exist [2] and new ones are continuously being made and improved
upon.

The quality of gesture recognition depends on the performance of the
gesture recognition algorithm, but this is not the only factor that affects



10

recognition. Another major factor in the recognition of gestures is the de-
fined gesture vocabulary. The gesture vocabulary is the set of gestures that
can be used. Even if a certain algorithm can recognise the use of a single
gesture with a very high accuracy, if the gesture vocabulary contains another
gesture which is really similar to that first gesture, the algorithm might con-
fuse one gesture for the other, which would be very bad for the recognition
accuracy. Because of this phenomenon, differentiation between gestures in
the gesture vocabulary is important, but not only is it important for the
recognition of gestures by the system, it also helps the user in differentiating
between different gestures. Other human aspects like intuitiveness of gestures
and fatigue play an important role in the design of gesture vocabularies, and
extensive research has been done on these topics [31].

Another possibility that is outside the scope of this thesis, but which is
still relevant as a possible extension to this work, is the possibility of adding
custom, user-defined gestures to the application. This end-user gesture cus-
tomisation would add more possibilities to the gestures that can be used, but
it would introduce many challenges as well [23]. These custom gestures could
be created and defined using different paradigms, like for example through
demonstration [16, 17], or even options like defining multi-touch gestures as
regular expressions are explored [10].
Knowing how gestures can be defined and what the challenges and potential
are of custom gestures is important when creating a paradigm for user-defined
gesture interaction in end-user authoring tools, because this paradigm will
have to be compatible with different kinds of gestures and possible extensions
like the custom user-created gestures. Knowledge of gesture recognition, and
its possible pitfalls, is important when selecting the set of gestures that the
user will be able to use for their custom gesture interactions. The selected set
of gestures has to be distinct enough to humans, but also to the computer,
such that a high accuracy and low false-positive rate can be achieved when
using the gestures in the application.

Although plenty of research on gestures created by users exists, most of
that research focuses on the creation and recognition of the gestures, which
is an aspect that introduces many challenges that for this research, we are
not interested in. That’s why in this thesis we focus on user-defined ges-
ture interaction with a predefined set of gestures, more specifically for end-
user authoring tools. This allow us to look at the interaction between the
user-defined gestures and the user-created applications, and lets us focus on



11 CHAPTER 2. Related Work

allowing and guiding the user to create good gesture interactions for the
applications they create.



12



3
Design Principles

In this chapter, design principles for user-defined gesture interaction are pro-
posed as a set of non-functional requirements used in the implementation of
the user-defined gesture interaction. This is done by identifying challenges
that can occur when implementing the user-defined gesture interaction into
an application and by providing possible solutions to these challenges based
on existing concepts from the field of gesture interaction, but also concepts
from different fields of research where solutions to similar challenges were cre-
ated. Each of the broader principles and topics are discussed in a separate
section where we will look at how allowing user-defined gesture interaction
affects these principles. Allowing the end user to define the gesture interac-
tion of their application has advantages, but we will also see that some of
the conventional principles for gesture interaction are harder to enforce once
the user is allowed to define their own interaction. Each of the discussed
principles and topics is summarised as a keyword that is used as the title of
the section, which makes it easier to refer to it later.

The focus will lie on customising the interactions of a predefined set of
gestures, meaning that the designer of the end-user authoring tool will pro-
vide the user with a set of gestures, which the user can then use to customise
which interactions will happen, depending on which gesture was performed.
This means the use of custom user-defined gestures is out of the scope of



Incentive 14

this thesis, because allowing the user to use custom gestures they invented
brings a whole new set of challenges with it, as it makes it hard to enforce the
best-practises and principles of gesture interaction design. In this chapter we
will discuss which properties a good gesture vocabulary has and why these
properties are important, after which it will be clear that these properties
are hard to enforce when the user can create their own gestures.

3.1 Incentive

The very first thing someone should think about while developing the gesture
interaction for a certain application is the motivation behind why gestures
should be used for these interactions altogether. The usage of gestures should
be motivated on why it would be better than for example just using a button
in the interface. There are multiple possible reasons why gestures would be
a better approach than using a user interface (UI) element. An example of
a reason why touch gestures would be better than using an element in the
UI is the fact that a gesture does not take up space in the UI. This could
leave more space for other UI elements, which in some cases is very desirable.
Another reason could be because a gesture could be faster to perform than
clicking on a UI element, for example, when this UI element takes multiple
clicks to activate, like when it is situated in another menu. The application
could in the case of this example even give the user both options, such that
if they prefer the faster gestural approach they can use it, or otherwise they
can use the slower, more conventional UI interactions.

This idea of having simple and obvious methods of interaction, together
with less obvious, but faster methods of interaction for more expert users, is
a familiar concept in user interfaces and can definitely be applicable when
designing gesture interaction, but the designer should facilitate the user’s
transition to the more efficient interaction methods [4, 12]. One could also
argue that if the UI is less cluttered because some interactions are performed
by gestures, it will be easier to find a certain button in a UI because there
is less visual clutter. While this might be true for some cases, gesture inter-
action has a learning curve, so instead of learning the gestures, a user could
learn the UI layout, which could nullify the need to use gestures for this
reason, but the gestures could be easier to learn to some users, and of course
the other advantages still apply.



15 CHAPTER 3. Design Principles

For mid-air gestures, some of the same principles apply, like using gestures
to save space in the UI or having faster interactions than when using the UI,
but these can be taken to another level as now the user might not need to
touch or get close to the device at all. Like already discussed in Chapter 2,
there are many different technologies for mid-air gesture recognition, either
with some sort of tool that needs to be carried like a controller or armband,
or with a device that captures the user’s movements from a distance like
a camera or radar sensor. Depending on the application, a certain amount
of interactions, if not all, could now be done without even touching the
device, which can have multiple advantages. In terms of speed, it could
again speed up the interactions in the application workflow, for example due
to the physical freedom of the device not needing to be touched, something
that has for example been a concept used in smart home technology [8].

The intuitiveness of using gestures over standard UI interactions is some-
thing that could be an incentive for using either touch or mid-air gestures.
For touch gestures, it could be more intuitive for a user to use a swipe gesture
to navigate between different virtual desktops on a laptop instead of remem-
bering and pressing an arbitrary keyboard shortcut. For mid-air gestures, it
is even more clear that they could be a more intuitive replacement of, or sup-
plement to, the conventional methods of interaction. When using gestures
in real life for conversation, these are mid-air gestures, using mainly the per-
son’s hands to indicate a certain meaning or message. This fact can be used
in the design of gesture interaction, as mid-air gestures might be more nat-
ural to the user than other forms of interaction, but the designer still has to
make sure that the interactions are intuitive and add value to the application.

Lastly, this thesis is not just focused on implementing gesture interaction,
but implementing user-defined gesture interaction, which means not only the
reason for using gestures in an application, but also the reason for making
this customisable to the user, has to be considered. There are obvious ad-
vantages to user-defined gesture interaction because if users can define their
own gesture interaction, it is made to their preferences, which will make it
more intuitive, easy to use and easier to remember to the user. In end-user
authoring tools, the goal might be to give the user as much possibilities as
possible, as they are the designers of their own creations and they should
be able to decide to use this feature or not. Even if this is the case, there
are disadvantages to this extra level of customisation. One example could
be the well-known “Paradox of Choice” [27] which introduces the idea that
more choice is not always better because it increases the effort needed to
make a decision which can lead a person to make the wrong choice. Like we



Clarity 16

have discussed, and will discuss more in this thesis, the design of gestural
interaction has certain best-practises, principles and pitfalls that should be
considered, but users with little to no domain knowledge might fall victim
to certain pitfalls and fallacies due to the fact that they have the option to
customise these interactions. While later in this chapter we discuss some
ways in which the designer of an authoring tool can aid users in creating
better gestural interactions, it should still be considered if the advantages of
user-defined gesture interaction outweigh the possible disadvantages.

3.2 Clarity
Earlier we already slightly touched upon the point that gesture interaction
is not always visible at first sight, especially when one of the advantages of
using gestures is that it can reduce the visual clutter in the UI. When design-
ing gesture interaction and especially with user-defined gesture interaction,
it is important to think about how to make clear to the user which gesture
does what and which possible gesture interactions there are. Another part
of clarity is that it should be noticeable to the user when a certain interac-
tion gets triggered, as this is not always evident depending on which kind of
interaction got triggered.

There are multiple solutions to solve or improve the first challenge of mak-
ing clear what the possible gesture interactions of the application are. One
that stands out are so-called “Extra-User Interfaces” (Extra-UIs). Extra-
User Interfaces (Extra-UIs) are separate user interfaces giving extra infor-
mation about the use of the current application interface. These Extra-UIs
could be used to show the current defined gesture interaction of the user’s
created application, and it would even be possible to let the user use this
extra interface to add, change or delete gesture interactions. When creating
such an Extra-UI, it is important to know some of the best-practises and user
preferences for Extra-UIs to be able to create an easy-to-use and intuitive
user experience. The topic of user preferences for Extra-UIs is studied and
evaluated in Melchior et al. [19].

Another use for Extra-UIs in the context of gesture interaction is the
demonstration of the defined gesture interaction through visualisations in
the interface. If a certain element of the application has certain custom
gesture interactions, it might not immediately be completely clear which
gestures will trigger a certain interaction and what that interaction would
be. There are multiple ways this could be communicated to the user, for



17 CHAPTER 3. Design Principles

example through text or icons in the Extra-UI, but another possibility is to
create visualisations that show the interactions by demonstration, a solution
that is explored in Vanacken et al. [28] and Walter et al. [29].

Showing the effect by demonstration might be hard to accomplish for
applications created via an end-user authoring tool because of the freedom
a user gets in creating gesture interactions. Explaining the interaction with
text or even icons seems like a more feasible approach. It would also be a
possibility to just show the gesture interactions in a list to the user, when
this user requests it, where the gestures and interactions have a name that is
written in text or is portrayed with an icon. Another consideration would be
how and when this Extra-UI is shown on screen. The most obvious approach
is to place a (small) button on the UI that shows the list when clicked, this
is an simple solution but it could work quite well. Another option is to let
the user use a gesture to reveal the Extra-UI, but this might not be a good
solution, as the Extra-UI is made to help people remember the gesture in-
teraction, but then an invisible interaction would have to be used to get to
the UI that shows which invisible interactions there are in the application. A
last approach is to show the interactions at certain points in the application
workflow where users might need the gesture, but this is again something
that is hard to impose on end-users who create their own applications and
even if they do use this feature, best-practises and design principles might
not be used.

One thing that also affects the importance of clarity when it comes to
gesture interaction in applications created using an end-user authoring tool,
is the target user of that application. If the tool is used by users to create
applications that will be used by other people, it might be in the interest
of the user if the tool allows them to type out a good description of the in-
teraction that triggers when each gesture happens. They themselves might
know which gesture does what, but the people using their applications might
not understand exactly what a gesture does, just from a few or a single key-
word(s). That is why in this case, it would be beneficial if the tool allows
the option of having a description for each interaction, but not only allowing
it, also suggesting or even obligating the user to do so.

In contrast, when the end-user authoring tool is focused on users who
will create applications for their own use, it would still be a useful feature
to allow the user to give a description of the interaction, but it becomes less
important than when the application is also used by others. In this case,



Intuitiveness 18

the user made the application, which means that they are more likely to
remember what a certain interaction does by just one or a few keywords.
Like already mentioned, it would still be desirable to give the user the option
to give a good description, as they could just completely forget what a certain
interaction does, or they could still share the applications with others. Like
for example when there is an end-user authoring tool that allows users to
create applications for their own smart home system, they would maybe
want to share the applications with the other people in their household.
Assumptions like this about the use of the tool should be avoided, even if
the large majority of users will use it in a certain way, there will always be
people who would suffer the consequences of our assumptions [5].

3.3 Intuitiveness
What is intuitive for one person, is not always intuitive to another. Factors
like culture, technological literacy and familiarity with certain technologies
can all play a role in how intuitive a certain gesture is to a person. Tech-
nological literacy is usually lower with older adults and several studies have
been done to find out how gesture interaction can be made more intuitive
for them [3, 20]. Gestures could be more intuitive if they are metaphorically
and iconically logical towards functionality, but due to different cultures, lan-
guages and their natural gestures, it is a challenge to come up with gestures
that seem intuitive to everyone. Although this is true, gesture interfaces al-
ready exist in many applications and fields, which means the designer of the
gesture interaction can follow common patterns that will be recognisable to
users who are already familiar with certain gesture interfaces. Even when
common patters exist, there will still be users who are not familiar with these
patterns, who could benefit a lot from good clarity on the possible gesture
interactions, like discussed in the previous section.

All of this is an argument in favour of user-defined gesture interaction,
if the user is the only person who will use this gesture interaction, because
the interaction they defined will feel intuitive to them. If some else than
the user who designed the gesture interaction can also use the application,
the gesture interaction might not be intuitive to this other user. This is
mainly because it is hard to enforce that the user defines gesture interaction
which uses metaphorically and iconically logical gestures for the defined in-
teractions, and of course also because like we discussed, different things are
intuitive to different people. Therefore, this again shows the importance of
providing the user with a good set of gestures that are easy to perform and



19 CHAPTER 3. Design Principles

remember. There is plenty of research on the topic and guidelines have been
made for developers of gesture vocabularies. Not only user preferences and
best-practises for intuitive gestures have been researched [1], but also the
ergonomics of gestures, to find out which gestures are easy to perform, and
perform for an extended amount of time or a large number of times.

3.4 Distinctiveness
Another important property to keep in mind when designing a gesture vo-
cabulary is the distinctiveness of the gestures between themselves. The main
reason why the gestures of the provided gesture vocabulary should be dis-
tinct enough is for gesture recognition by the system. It’s easier for a gesture
recognition algorithm to differentiate between two gestures if they are not
too similar to each other. Similar gestures lower the accuracy of the recog-
nition algorithm, but there are also other factors in play when it comes to
the accuracy of gesture recognition. Another important factor is the amount
of gestures in the gesture vocabulary. If the amount of different gestures in
the gesture vocabulary gets larger, at some point the accuracy of recognition
will start to suffer, but if the gestures are distinct enough, the system will be
able to reach the same accuracy at a larger amount of gestures. This allows
the designer of the authoring tool to provide the user with more gestures at
their disposal.

Having a gesture set with distinct enough gestures is not only important
for gesture recognition, but it might also help the user remember what each
gesture does [1]. Additionally, if two gestures are too similar, the chance
of the user performing the wrong gesture is also greater than if they would
be more distinct. Some other factors like familiarity with certain gestures
might play a bigger role than distinctiveness of gestures when it comes to the
user’s recall of the gestures and their perceived intuitiveness of the gestural
interactions, but it is still a factor that could be kept in mind to improve the
gesture vocabulary.

3.5 Consistency
When talking about consistency, we not only want to point to consistency
in the usage of gestures, but also consistency in the end-user authoring tool
when defining the gesture interactions. Consistency in the usage of gestures
is hard to enforce when a user can define their own gesture interaction. One



Consistency 20

possible way in which the tool could aid the user in creating more consistent
gesture interactions is by providing suggestions, similar to the idea used in
the DesignScape tool by O’Donovan et al. [22]. When the user would create
a gestural interaction, the tool could either suggest other interactions, or if
multiple interactions are made, it could suggest similar gestures for similar
purposes. This all seems like a great way to help the user create the interac-
tions, but practically it is not straightforward to implement such a suggestion
system, especially if the tool provides a wide set of possible gestures, maybe
even a combination of mid-air and touch gestures on possibly a combination
of different devices.

This again circles back to the point of incentive that was discussed in the
first section of this chapter. The consistency of gesture interactions might be
desirable in applications when considering user-friendliness, but in the case of
these end-user authoring tools, removing the option of user-defined gestures
will consequently remove certain gesture interactions altogether. Consid-
ering this, if the designer of the tool has enough incentive to let the user
define gesture interactions, the consistency of these interactions might be an
afterthought if it would otherwise mean there would be no custom gesture
interactions at all. However, even though it may be an afterthought in some
situations, it is still a factor to keep in mind and possibly improve on when
allowing user-defined gesture interaction.

The other point of consistency to consider is when it comes to how the user
can define the gesture interactions in the tool. The definition of gesture in-
teraction should be well-integrated into the tool, which means the designer of
the tool should consider not breaking the patterns that the tool has provided
the user with when designing other kinds of interactions. If the definition of
gesture interaction works the same as, or similar to the other forms of inter-
action design that already exist in the tool, it might be easier for the user to
learn how to design gesture interaction because of the similarity to the other
design methods they are already familiar with. Not only can the learning
process be sped up, but depending on how the tool is designed, defining ges-
ture interaction in the same interface as other interactions might speed up
the workflow as opposed to defining the gesture interaction in another inter-
face. Sometimes this is not possible, or maybe not even desirable because of
the design philosophy of the tool. It stays the responsibility of the designer of
the tool to preserve consistency, which sometimes means not making things
look similar because they are inherently dissimilar things. Lastly, there is
also the consideration between preserving consistency and speeding up the



21 CHAPTER 3. Design Principles

workflow by allowing the definition of gestures in places where, according to
some, they should not be allowed.

3.6 Interaction Level
Another important consideration to make when allowing user-defined gesture
interaction is on which level of the application the interactions will be de-
fined. Gesture interaction with an application can happen on multiple levels
of the application. For example, the user could define gesture interactions
for their application where they interact with certain UI components using
gestures, like for example “long pressing” a UI element to trigger a certain in-
teraction. In contrast, the user could also define gesture interactions that can
be used throughout the whole application and trigger their action whenever
or wherever they are used. Another option is that gesture interaction could
be defined for a single view in the application, if the authoring tool supports
creating applications with multiple views, such that the gesture triggers that
interaction when used in this particular view and not in another one. When
allowing users to define gesture interaction, the decision has to be made on
which of these levels the interactions will take place. Will the gestures be
used throughout the whole application, only in a certain view, only on (cer-
tain) UI elements, on multiple of these levels, or all of them?

This decision lies with the developer of the authoring tool and has an im-
plication on multiple factors which are discussed in this chapter and different
decisions could bring different challenges with it. First of all, depending on
which level the interactions happen, the place where to define the gesture
interaction might be different. This would be to preserve factors like intu-
itiveness or consistency in the interaction design. Especially when multiple
interaction levels are possible, it might be hard to design the definition of
gesture interactions in a way that is consistent to the other paradigms and
patterns used in the tool. Secondly, a challenge that may come with allowing
interaction in multiple levels of the application, is that clashes or overlap in
gesture interaction could occur. These clashes can be prevented, but it can
introduce complexity when trying to do so. Overlapping gesture interaction
could be prevented easily by letting a user only use a certain gesture once
throughout the whole application, no matter on which level it is used. The
thing is that, for example, if a user wants to assign a certain gesture to a UI
element when this gesture is already being used on an application or view-
level, it might not immediately be visible to the user where the gesture is
already in use. If all gesture interactions are defined in the same place, this



Safety 22

will not be a problem, but if UI or view-level gestures are defined somewhere
else than application-level gestures, it might take the user time to find where
the clash happens. This could be solved by, like mentioned before, defining
all gesture interaction in the same place, but if that is not desirable, the tool
could let the user know where the gesture is being used.

If it is known which device(s) the applications will be used on, it might
also be good to know what kind of gestures are already used in the device’s
gesture interaction to adapt the gesture vocabulary and prevent clashes with
these device-level interactions. Lastly, it might just be more complex and less
intuitive to a user if different levels of interactions are being used, especially
with view-level interaction, a user may not know that in a different view,
different gestures can be used. It might be inefficient and lead to frustrations
if in one view of the application certain gestures can be used, but not in
another one. The trade-off between providing the user with more possibilities,
but also guiding them to create better applications is one that reoccurs in
many of the topics discussed in this chapter.

3.7 Safety
In a programming context, safety could point to various different aspects of
the program, but what is meant here is if a gesture interaction gets triggered
by mistake, either by the user or the gesture recognition algorithm, the effect
of the interaction is non-critical and reversible. The same principle is appli-
cable to buttons in an interface, a button can be accidentally clicked, which is
not a problem for non-critical, reversible actions, but if an action is not (eas-
ily) reversible, this means that an accidental click can cause major problems.
This is why usually in an interface, when the user clicks a button which will
cause some action that is critical in the sense that it is hard or impossible to
reverse, a dialog window will pop up that asks the user for confirmation. This
does of course not solve the problem completely, because even then mistakes
could still happen, but it greatly reduces the chance of it happening. This
solution and others could also be implemented when designing gesture inter-
action to improve the safety of the intentional and unintentional interactions.

One could argue that it is even more important to implement this kind of
safety measures with gestures than it is with buttons, because with gestures
there is no visible clue of what gestures there are and if they are being per-
formed, accidentally or not. With a button in the interface, there is at least
some visual clue of the button being there and the accidental click happening,



23 CHAPTER 3. Design Principles

even if this can also go unnoticed by a user. Lastly, the gesture recognition
could also fail at recognising the right gesture. It might recognise a gesture
when no gesture has been performed (false positive), or it might inaccurately
recognise one gesture as another. This could be even more dangerous to the
user as they might be aware of an accidental gesture they performed, but
not of a gesture they did not perform, but is recognised by the system as
one. This is why it is very important to create a good gesture vocabulary
and recognition with gestures that will most likely not trigger by accident.

Just like before, we are not just focused on gesture interaction in general,
but more specifically on user-defined gesture interaction. With user-defined
gesture interaction we could force the user to create a message that pops up
whenever a gesture is performed, but this would not be desirable in some
cases. For example if we want some gestures to be performed quickly, like
when they are used a lot and do not trigger a critical action, an extra pop-up
asking for confirmation would slow down the usage of these gestures. How-
ever, more importantly, for mid-air gestures, sometimes one of the greatest
advantages is not needing to touch the device, which would be nullified by
having to confirm the action on the device. This confirmation could still be
done by another gesture, but the risk of accidentally performing the action
still exists, even though it will be significantly lower. If the mid-air gesture
is performed using a controller with buttons, these buttons could be used to
confirm the action as well, but as we know, there are many ways of recognis-
ing gestures without any other form of button controls. This means that for
gestures, but especially mid-air gestures, it might not be desirable to have
any critical actions as an effect triggered by a gesture, but if we do, the user
should have the option to create a confirmation window to prevent accidental
triggering of the interactions, because of a mistake made by either the user
or gesture recognition algorithm.



Safety 24



4
Survey

For the implementation of user-defined gesture interaction in the eSPACE
authoring tool, which is the real-world use case we have done our implemen-
tation for, we have not only implemented user-defined gesture interaction in
the applications, but we have also made an Extra-UI to help users remember
the defined interactions. In this Extra-UI, we do not only let the user view
the defined interactions, but we have also designed a UI to let them edit, add
and remove these interactions. Lastly, we also have implemented what we
call a “gesture catalogue”, which is a screen where all the possible gestures
are listed, together with their corresponding names which we use through-
out the application. With this gesture catalogue, the user can check which
gestures are available, but also what a certain gesture would look like, such
that they know how to perform that gesture. To make sure that our design is
intuitive to potential users and according to how they would envision using
the Extra-UI, we conducted a survey to assess the preferences of potential
users when it comes to multiple design questions related to the UI. The sur-
vey does not only cover the aspect of user-defined gesture interaction, but
any kind of interactions that are defined for the application, as these other
interactions could also be integrated into the Extra-UI, such that users can
more easily remember the interactions, and possibly edit them as well.



Setup of the Survey 26

In the first section of this chapter, the setup of the survey will be dis-
cussed, which includes giving a description of all the questions that are asked
in the survey, together with their possible answers. After that, we take a look
at the results of the survey, both the statistical evaluation of the responses,
as well as any qualitative evaluation of any written answers. Lastly, the con-
clusions we can formulate using these results will be discussed and evaluated
in the context of our implementation.

4.1 Setup of the Survey
In the survey we first ask some questions about the demographics of the
respondents and also about their experience with computer science related
courses during their studies. After responding to these questions, the respon-
dent will see a screen with an explanation about the context of our research,
explaining its purpose and some concepts that will be covered in the survey.
Next, a screen is shown explaining how behaviour is defined for applications
created using eSPACE, namely by defining interaction rules specifying which
event triggers a certain interaction. Next, an example of these rules is given,
together with a mock-up of a possible Extra-UI showing these rules. After
this, the main part of the survey starts, where questions about the Extra-UI
of our implementation are posed.

Figure 4.1: A mock-up of what the Extra-UI could look like with an example
configuration where a Triangle and Circle gesture turn a light on and off
respectively



27 CHAPTER 4. Survey

The survey starts with questions about what contents the respondents
would like to see in this Extra-UI and about their preferences in terms of
certain design decisions. Depending on the answers of the respondents, the
next questions and possible responses to these questions will be slightly dif-
ferent to elaborate on their earlier responses. The survey asks a maximum of
13 questions to the respondents ranging from the demographics questions, to
questions about the contents of the UI, and questions about the look and feel
of the gesture definitions. Some questions and explanations are also clarified
using images containing mock-ups of the different parts of the UI and their
variations.

4.1.1 Questions

Below we will discuss every question that a user can encounter in our survey,
together with the possible answers to these questions. The full survey can
be found in Appendix A

Demographic Questions

Like mentioned before, first we asked some demographic questions to get
some more information about the target audience of the survey. All responses
to the survey are anonymous, but knowing the age group and technological
background of the respondents can possibly provide interesting insights into
the data.

First we ask the year of birth and the gender of the respondent. After
that, we ask what the highest level of education is that the respondent has
completed. If the respondent has at least earned a bachelor’s degree, they
will be asked if they got in contact with programming and/or user interface
design during their courses. If the respondent answers positively to the pre-
vious question, they will see a question asking how many computer science-
related activities they followed. The possible responses are “Not much (1–2
courses)”, “A few (3–4 courses)”, “Many (I am a computer scientist)”.

After responding to this question, there is only one question left in this
part of the survey, namely in which country the respondent was born. Like
mentioned before, this was the last question of the demographic part of the
survey, after which a page with more information about the research is shown,
as an introduction to the more substantive part of the survey.



Setup of the Survey 28

Extra-UI

Like mentioned before, the next part of the survey contains questions re-
garding the Extra-UI in which the user can look at and configure the gesture
interactions of the application. The first question asks the respondent if they
would rather have a single screen in the Extra-UI for editing interaction rules,
where the defined rules can consequently also be looked at, or if they would
prefer a separate rule editing and rule viewing screen. The idea behind this
question is that second option would allow the rule viewing screen to have a
different layout than the rule editing screen, but from the responses we can
find out if the respondents think they would ever need a separate screen for
this.

The next question is only asked if the respondent selected the “separate
rule viewing and rule editing option”. It asks whether or not the user would
prefer the rule editing and rule viewing screen in different tabs of a single
pop-up window, or if they would prefer two different screens, one for editing
and one for viewing the interaction rules. Some respondents might prefer
two separate buttons that open different pop-up windows because the two
screens would be used in different contexts and they prefer a separation for
this reason, while the single pop-up has the advantage of taking in less space
in the UI, because there is only 1 button that is needed. The other advantage
of a single pop-up would be that it is easier to switch between the two views,
if the user would ever want to do so.

Interaction Rules

Next, we explain how the interaction rules defined in eSPACE follow a so-
called trigger-action pattern, which means a certain event (like a button click,
or a gesture that is performed) triggers a certain action by the application.
We also explain how currently rules are categorised by their triggers and
how user-initiated triggers (like a button click for example) and contextual
triggers (like a time or location) are defined. The user-initiated interaction
type could be divided further into categories like for example UI interaction,
gesture interaction, and device interaction. The reason why we explain this
concept and the different types of rules is because, to show a more structured
overview of the list of rules, they could be grouped into different categories.
Because the interaction rules are trigger-action rules, the respondent is asked
if they would prefer the rules to be grouped by the type of trigger or the type
of action of the rule. This division would be done in the rule viewing or rule
editing screen, depending on whether or not there would be a separate rule



29 CHAPTER 4. Survey

viewing screen. Figure 4.2 shows an example of how the interaction rules
could be divided by the different types of triggers mentioned earlier, which
is also used in the survey to demonstrate the idea of grouping the rules by a
common factor like the type of trigger. The question also has an option where
the respondent can respond that they don’t want the rules to be grouped by
type and they just prefer one list of all the rules, and also there is an option
for the respondent to select “Other:”, which allows them to type another
suggestion if they would have one.

Figure 4.2: A mock-up how the defined interaction rules could be grouped
by the type of trigger they are defined for

The interaction rules can be visualised in different ways. In the eSPACE
authoring tool there are two different views, used to edit the interaction rules,
namely the Rules view and Interaction view. The first one uses a textual
representation of the rules, where the rules can be edited using drop-down
menus, while in the interaction view, the rules are displayed in a graphical
way and they can be edited using a combination of drag-and-drop functional-
ity, together with pop-up windows where these interactions can be configured
further. For our Extra-UI we would go with a textual representation of the
rules and because of this, it might make sense to stay consistent with re-
spect to the notation already used in the Rules view. This notation uses “IF
trigger THEN action” as a format to display the rules. The survey explains
that this is the notation that is currently used and asks if the respondent
would prefer the “IF trigger THEN action” notation, or if they would prefer
another notation like for example a slightly more visual notation with an



Setup of the Survey 30

arrow like “trigger → action”. This question also has a third “Other” option
with a text box where the respondent can fill in their own suggestion.

Gesture Catalogue

The previous questions focused on the interaction rules in general and how
they would be displayed, but because this research is about user-defined ges-
ture interaction, the next questions are focused on the parts of the Extra-UI
that are specifically created for the gesture interactions. The first idea related
to gestures, is to add a gesture catalogue showing the name and a visuali-
sation of each of the gestures that can be used in the application. This is
a solution to the possible issue where the user might not know all possible
gestures that can be performed, or what they would look like. This idea is
also explained in the survey. In Figure 4.3 a mock-up of what such a gesture
catalogue could look like can be seen. This mock-up is also shown to the re-
spondents of the survey, but based on their previous responses, the amount
of tabs shown is different, depending on if the user wanted a separate rule
viewing and editing screen and if they wanted it in a separate screen or in
the same screen, but a different tab.

Figure 4.3: A mock-up of what the gesture catalogue could look like

The next question that is asked, asks the respondent whether they would
like to have a gesture catalogue and if so, where they would want it. The
question has two different sets of responses based on if the respondent wanted
two different screens in two different pop-up windows, one for viewing and
one for editing rules, or if they wanted a single pop-up window. If they



31 CHAPTER 4. Survey

wanted a single pop-up window, there are three possible responses, namely:
“I don’t want a gesture catalogue”, “Add it in another tab in the same pop-up
window”, and “Add a second button to the application opening a separate
screen with the catalogue”. If the respondent wanted two different pop-up
screens, there are five possible responses and the first and last responses are
the same as in the other version, except that a third button would be added
if the respondent would choose the last response. The other three responses
ask in which pop-up the user would like the gesture catalogue to be added,
namely the “View Rules” screen, “Edit Rules” screen, or both.

Editing Gesture Interactions

For the last question of the survey, the respondent is asked what type of
interface they would prefer to edit the gestures. The first possibility is to
use simple drop-down menus with the name of the gesture. This does not
take a lot of space in the interface, but gestures have to be recognised by
their name. Another option would be to use a button that opens a pop-up
window with the gesture catalogue, where the user can click on the gesture
they want to use. Lastly, icons could be added in front of each gesture
name in the drop-down menu, such that the user has both a more visual and
textual representation of the icon. Assuming that the application contains a
gesture catalogue, the user could still look up the exact shape of the gesture
in the catalogue. The question then asks which of these three variations the
respondent prefers.

4.2 Results
We received a total of 40 fully filled-in surveys. Of the 40 respondents,
21 identified as male, 18 as female, and 1 participant chose the “other” op-
tion, specifying they identify as “non-binary”. The average birth year of the
respondents was 1992 (meaning 31 or 32 years old at the time of filling in the
survey), with a standard deviation of 13.7 years. Among the respondents,
5 people reported having a high school degree as their highest achieved de-
gree, while 15 respondents stated they have earned a bachelor’s degree, and
20 respondents have earned a master’s degree. Out of those with a higher
degree (bachelor’s or master’s), 27 respondents responded that they have had
at least one computer science related course during their studies, while 8 of
them did not. Among the 27 respondents who took computer science-related
courses, 6 respondents indicated that they did not have many computer sci-
ence related courses during their studies (1 to 2 courses), while 8 respondents



Results 32

have had a few computer science related courses (3 to 4), and 13 respondents
responded to have had many Computer Science-related courses.

4.2.1 Extra-UI
For our first question “Would you rather have a single screen where the
rules can be edited (and consequently viewed)? Or would you prefer to have
separate screens, one for viewing and another one for editing these rules?”,
as we can see in Figure 4.4, 28 respondents preferred the first option and
12 respondents thought a separate rule viewing screen could be useful. A
clear majority of the respondents chose the option of a single screen, which
means they did not see a clear advantage of a separate screen to view the
rules if we can already view the rules in the rule editing screen anyway.

Figure 4.4: Graph of the results of the first question about the Extra-UI

For the follow up question, which was only asked if the respondent an-
swered that they would like a separate rules viewing screen, the responses
were more divided, although the smaller number of people who chose this
option also means a very small sample size for this question. The question
asked whether the respondent preferred to have the rule viewing and editing
screens in the same pop-up in different tabs, or if they would prefer to have
two separate pop-ups, and consequently two buttons in the user interface.
While seven people responded they would prefer the single screen, five people
responded they would like to see two separate screens.



33 CHAPTER 4. Survey

Figure 4.5: Graph of the results of the second question about the Extra-UI
asking whether the user would prefer to have a single tabbed pop-up screen
or two separate screens

The last question relating to the layout of the Extra-UI asked the respon-
dent if they would like to see the types of interactions grouped into different
categories, for a more structured overview of the rules, and if they would, by
which property of the rules they would like to group the rules. As illustrated
in Figure 4.6, five respondents responded they did not want the rules to be
divided into different categories, seven responded they would like to see cat-
egories based on the type of action of the rule, 27 responded that they want
to see categories based on the type of trigger of the rule, while one person
responded “Other” and wrote their own response.

For this question it is very clear that people prefer the rules to be grouped
based on the type of trigger that is defined for them, meaning gesture interac-
tions would be grouped, contextual interactions would be in another group,
and so on. The one “Other” response is also interesting as they suggested to
implement a feature allowing the user to select which grouping they prefer.
This is a good suggestion as, even though the responses are quite one-sided
for this question, personal preference always plays a role in the user expe-
rience and the implementation of this feature would not be too difficult, as
long as the types of both the triggers and actions have been defined.



Results 34

Figure 4.6: A graph of the responses to the question asking in which cate-
gories the rules should be grouped in the UI

4.2.2 Interaction Rules

In the next question of the survey, the respondents were asked which notation
they would prefer for the rules. Two options were suggested and there was
also an “Other” response allowing for free user input. For this question the
responses were very divided, 20 respondents selected the “IF trigger THEN
action” notation, 19 respondents selected the “trigger → action” notation,
while one person selected “Other” and wrote their own suggestion. It is clear
that the notation of the rules is very much a personal preference and we
do not know the exact reason why people chose one option over the other,
but for the IF THEN notation it was mentioned that this was the notation
currently used in the rules view of the eSPACE authoring tool, which might
have influenced the respondents into considering consistency across eSPACE
as a whole over their personal preference. Lastly, the person who selected
“Other” suggested to have an “WHEN trigger DO action” notation over the
IF THEN notation. They said they think it is more intuitive to an end user
than IF THEN, as IF THEN is a concept from programming languages and
“WHEN trigger DO action” would be more intuitive to a person without
programming knowledge.



35 CHAPTER 4. Survey

Figure 4.7: A graph of the responses to the question asking in which rule
notation the respondent would prefer

4.2.3 Gesture Catalogue
In terms of the gesture catalogue, the respondents were asked whether or
not they wanted a gesture catalogue, and if they did, where they would like
to access this catalogue. The survey contains 2 different questions regard-
ing this matter and the user would only get to see one of these questions,
based on whether or not they chose to have a separate rule viewing screen
or not. The possible responses to the questions were to either have no ges-
ture catalogue, to add it in a tab in an existing pop-up window, and to
add a separate button to the user interface. The difference between the two
versions of the questions is that for the option of adding the catalogue in
a different tab in an existing pop-up, the separation was made to see if the
user wanted to add the tab to the rule editing screen, the rule viewing screen,
or both. In Figure 4.8, the responses of the 2 questions have been aggregated.

Out of all the respondents, 2 people indicated they would not use a ges-
ture catalogue, 20 people indicated they would add it in another tab in an
existing pop-up, while 18 people would add a separate button for the gesture
catalogue. Out of the people with a separate rule viewing screen, 2 chose to
add the gesture catalogue to both the rule viewing and editing screens, while
1 person would like to add it to the rule viewing screen, and 2 respondents



Results 36

Figure 4.8: A graph of the responses to the question asking where to add the
gesture catalogue

would want the gesture catalogue in a separate pop-up. These responses
show a rather even distribution between the options of adding a separate
button in the interface or adding the gesture catalogue in another tab in an
existing screen. Again, we do not know the exact reasons for these choices,
but it shows that even if a person did not want a separate pop-up for the
rule viewing screen, they could still prefer to have the gesture catalogue in
a separate pop-up, either for easier access while using the application, or for
any other reason to choose this option.

4.2.4 Editing Gestures

For editing the gestures, 31 people responded that they would prefer to use
a drop-down menu to select the gesture, of which 29 people preferred the
version of the drop-down where, next to the name of the gesture, there would
also be an icon indicating what the gesture looks like. The other option of
selecting the gestures from a pop-up with the gesture catalogue received 9
responses. This shows that the large majority of respondents preferred the
faster and easier option of the drop-down menu over the more visual approach
of having the gesture catalogue pop up.



37 CHAPTER 4. Survey

Figure 4.9: A graph of the responses to the question asking which is the
respondent’s preferred method of editing gesture interaction rules

4.3 Conclusion
The results of the survey have provided some valuable insights into the pref-
erences of the respondents regarding the design decisions for the Extra-UI.
Some questions had responses that were picked by a large majority of people,
while for others the distribution of preferences among two different options
was almost completely evenly split. From these results, it shows that for
some design choices there might be options that are clearly liked by more
people than others, at least for the population of respondents to the survey,
while for other design choices, personal preference might play a bigger role.
From this, we can take away that these kinds of surveys can be useful in
the decision making process, where the designer of the user interface should
probably consider the most popular choice for the questions with a clear
favourite, while for the questions that were completely divided, the designer
will have to look solely at their own expertise, or the expertise of others
within the field, to decide on which interface design would be best. In the
case where opinions are divided, the designer could also offer both options
to the user, by implementing both options and allowing the user to toggle
between them, to suit their personal preference.

An example of a question where there was a rather clear favourite in terms
of the responses was for example the question asking whether or not the user
wanted a separate rule viewing and rule editing screen, where the “Single



Conclusion 38

rule editing screen” was preferred by 70% of the respondents. Another such
example was the question on how the user would prefer to select the gesture,
where 75% of the respondents preferred a drop-down menu (70% drop-down
with an icon of the gesture) over the more visual approach of having the
gesture catalogue pop up. For these design decisions we should strongly con-
sider these more popular options to implement in the final implementation.

An example of an almost completely divided question is the question
about the notation of the rules. Half of the respondents responded that they
prefer the “IF trigger THEN action” approach, while 47.5% of the respon-
dents preferred the arrow notation, and one respondent preferred a textual
notation, but with “WHEN trigger DO action” as keywords. In this case,
we have to decide for ourselves which of the options we implement, or like
mentioned before, it could be a possibility to let the user configure this for
themselves. Other questions that were rather split are the ones where the
respondent was asked where they would like to see different screens (like the
gesture catalogue and rule viewing screen) in a tab in the same pop-up, or if
they wanted a separate button in the interface, which would open a separate
pop-up window.

In conclusion, the survey findings provide valuable insight into the pref-
erences of potential users. By knowing what the most popular choices are for
questions with clear favourites, knowing on which questions user preference
was split, and by recognising the limitations of survey data, we are able to
make a more informed decision on what our Extra-UI should look like and
act.



5
Implementation

The design principles and ideas that we discussed in Chapter 3 will now be
applied to a real-world use case of an end-user authoring tool. First, an
overview of the presented tool is given where the purpose, different mecha-
nisms, views, and features of the tool are discussed. Second, we will present
an implementation of user-defined gesture interaction in the tool, how it uses
the solutions presented in Chapter 3 to solve different challenges, and how
the proposed design principles have or have not been useful in the design of
the implementation. Lastly, a discussion will be presented what the possi-
ble limitations, and thus also possible improvements, of the implementation
might be.

5.1 eSPACE Authoring Tool
The tool we will extend with user-defined gesture interaction is the eSPACE
authoring tool [26]. It is a tool focused on the design and development of
cross-device and Internet of Things (IoT) applications by end users. Cross-
device interactions are, like the name suggests, interactions between different
devices. An example of such an interaction is for example that a person’s
smartphone, when it gets into Bluetooth range of that person’s laptop, con-
nects to that laptop and automatically backs up its photos to that laptop.
The Internet of Things is the concept that physical objects are digitally



eSPACE Authoring Tool 40

connected to the internet and that they contain sensors and software that
measures certain statistics or allows the object to be controlled remotely.

The eSPACE authoring tool allows end users to create applications for
IoT and cross-device interactions. The tool is made up of four views which aid
in the creation of applications, namely the home, UI design, interaction and
rules view. The UI design view allows users to design user interfaces for their
applications, the interaction and rule view respectively provide a graphical
and a textual way for the user to define cross-device and IoT interactions for
their applications. These interactions are then saved as “rules”. The home
view then provides an overview of the applications, rules, devices and other
users, it further allows the user to navigate to the other views to edit the
applications or rules. Lastly, there is also an app view which allows the user
to see the final user interface for an application they created.

Figure 5.1: A screenshot of the interaction view of the tool

Figure 5.2: A screenshot of the rules view of the tool



41 CHAPTER 5. Implementation

5.1.1 App View
The view we will be focused on is the app view. Users can navigate to this
view by selecting the Open button of an application in the list of applications
in the home view. When opening the app view of an application, a new tab
will be opened for each UI that has been made for this application. An appli-
cation can have multiple UIs because there can be multiple devices involved
in the interactions of an application, with each device having its own UI.

Figure 5.3: A screenshot of the app view showing a simple application made
in the tool that can be used to turn smart objects on and off

Currently the tool provides the applications with one possible gesture in-
teraction, which can be used in the app view. The gesture that is currently
implemented is a long press on a UI element. When the user performs this
gesture, a popup window will appear, asking the user if they want to dis-
tribute the selected element to another device which currently has a running
instance of the eSPACE authoring tool. Once the target device selected, the
UI element will be added to the application that is currently running on this
device. This is currently the only gesture interaction that is possible in the
applications created by the tool, besides the standard on click/press event,
which triggers an interaction when a UI element is clicked.

The app view is the view to which we will work to implement user-defined
gesture interaction. Not only will the user be able to trigger gesture inter-
actions in this view, the Extra-UI containing the list of the defined gesture
interactions, together with the gesture catalogue will also be accessible from



Implementing Gesture Interaction 42

this view. In this Extra-UI, the users will not only be able to view, but also
add, delete, and edit the gesture interactions of the application.

5.2 Implementing Gesture Interaction
In this section, the implementation of the use case will be discussed. This
means that we will discuss the possible options that exist for integrating
user-defined gesture interaction into the eSPACE authoring tool and we will
present the actual implementation that was made. Different possible design
decisions will be discussed, after which each of the options will be evalu-
ated against the principles and ideas discussed in Chapter 3. The goal is
to find the best possible ways of implementing gesture interaction for this
specific use case, which is the eSPACE authoring tool and the goals it tries to
achieve. Multiple theoretical possibilities are discussed for each of the design
decisions will be discussed, after which we will present how we handled the
actual implementation, as decisions have been made for the feasibility of the
implementation in the context of this research.

5.2.1 Gesture Support
Because the eSPACE authoring tool is used to create cross-device and IoT
applications, in terms of supported gestures, it could make sense to allow dif-
ferent kinds of gestures for each of the different kinds of devices. For example,
touch gestures could be used on devices with touch screens, mid-air gestures
could be used on devices that can detect mid-air gestures, like for example
devices that contain an accelerometer, or the Soli radar sensor [13], which
was discussed in the chapter on related work. This allows for complex and
very personalised gesture interactions with the user’s devices, but the obvious
limitation here is that a gesture set for each of these different types of ges-
tures has to be created, together with a recogniser that accurately recognises
these gestures. With how many different devices exist, both smart devices
and things, it is practically impossible to do this for such a large amount of
devices. It would be possible to create gestures for a few specific devices and
technologies, which would still limit the use to these specific use cases, but
this could be enough depending on the goal we are trying to achieve with
these gesture interactions. One solution would be to crowdsource the gesture
sets and/or recognition for different devices by allowing people to create and
upload their gesture implementations for a certain device. This approach
brings a whole new set of challenges with it.



43 CHAPTER 5. Implementation

The other option is to support only a single kind, or a few kinds, of
gestures which are well-defined and implemented for a specific technology.
The most obvious kind of gestures to implement are touch gestures as the
applications use a screen interface on the devices, which often have touch
screen technology, but mid-air gestures could definitely also be used. This
approach is more realistic than the previous one, but it does mean that not
every device might have a gesture interaction interface, even though they
might have another way to detect gestures. In practise, only implementing
one or a few types of gesture interfaces could already improve the workflow
of the application.

This is the reason why, in our implementation, we chose to focus on
touch gestures. The applications created using eSPACE all have a screen
interface, and for many devices this screen will also be a touch screen, al-
lowing the implementation to be used on as many devices as possible. The
gesture recogniser we used in the implementation can even recognise ges-
tures performed using a computer mouse, which means the gestures can be
performed on virtually any device. Besides the aforementioned advantage,
touch gestures are also the most common type of gestures for which libraries
with recognisers can be found. As our research is not focused on the tech-
nology behind defining and recognising different gestures, we will use one of
these recognisers, and more choice of libraries means more chance of finding
a recogniser suited for our preferred criteria.

5.2.2 Incentive
The advantages and incentives for using gesture interactions in the applica-
tions that were discussed in Chapter 3 still apply to this use case. A first
advantage is saving space in the UI such that it is less cluttered, which makes
it easier to find UI elements. Especially in the current version of eSPACE,
this might be important as it currently only supports a single static view
per device for each application, which means that an application can get
cluttered rather quickly. Of course there are only a certain amount of ges-
tures that can be implemented per detection method (touch, camera, etc.),
which means this amount will not be too large, but it is not negligible, es-
pecially in the current eSPACE implementation. Another advantage is that
it can improve the speed of the user’s workflow. For mid-air gestures this
improvement can be made by removing the need to even touch the device for
certain interactions. Some gestures might also be more intuitive to perform
to some users than interacting with the UI elements of the application. This
could speed up the workflow, but even if the speedup in the user’s workflow



Implementing Gesture Interaction 44

is negligible or none, the intuitiveness might also be an advantage in itself,
as using a more intuitive way of controlling the application can increase the
user satisfaction when using the applications. As the eSPACE application is
mainly focused on users who create applications for their own devices, the
interactions they design for themselves should be more intuitive to them, so
giving them more customisation options in the form of user-defined gesture
interaction should only improve this.

5.2.3 Location of Definition

Another consideration to make is where in the tool the gesture interaction
will be defined. One option is to create a new view in the tool with the sole
purpose of creating gesture interaction for applications. This is an option,
but as the tool already has two views for designing interactions, namely the
interaction and rules view, integrating the definition of user-defined gesture
interaction into these views seems like the more apparent approach. Both
approaches have advantages and disadvantages, but integrating the gesture
interaction into the existing views is consistent with the current paradigm of
the tool. The gestures will be the trigger of the trigger-action rules created
to define the gesture interaction and in the interaction view, the possible
gestures could be added to a separate dropdown in the sidebar of the view.
Lastly, the gesture interaction could also be implemented into the UI view,
but this would be inconsistent with the current idea of separating the UI
design and functional interactions in the tool.

We have also decided to allow the users to edit, create and delete defined
gesture interactions in the Extra-UI that will be added in the app view. The
Extra-UI will already contain these interactions as information to the user,
as well as the gesture catalogue, which shows the set of possible gestures. In
terms of usability, it would be much easier for the user to edit the gestures in
the app view if they would be using the application and wanted to change a
gesture. Instead of navigating to the interaction or rules view, the user would
be able to change the gestures directly from the Extra-UI of the application,
as navigating to one of the former views could even mean having to use a
different device, as the app view is available on any device, but the other
views are not.



45 CHAPTER 5. Implementation

5.2.4 Interaction Levels

What is important to consider next are the levels of the application the ges-
ture will interact with. Because currently the applications created using the
eSPACE authoring tool are single view applications, the only levels of inter-
action are application level interactions, element level interactions and device
level interactions. It seems quite straightforward that application level ges-
ture interactions are a good idea, because applications are created to control
smart device and IoT interactions and the gestures are just another mode of
interaction. Because the application can or will be ran on multiple devices,
it should be considered that the application level gestures can be performed
through a technology that is shared between most devices, because not every
device can recognise the same type of gestures. That is why touch gestures
seem like a good choice for this kind of gestures, as the touch screens of
different smart devices can be used to perform these gestures. An impor-
tant detail that has to be considered when designing the gesture set is that
different devices might have a built in device level gesture set that the oper-
ating system provides to control different things on the device, which means
clashes with these gesture sets could occur if not chosen carefully.

If we would implement different gestures for different technologies it seems
like the option of having device level gestures for a certain application would
be a good idea. Certain interactions could then be triggered by interacting
with a certain device, with the gestures that are implemented for the sensors
of that device. This could make things more complicated for the user as it
introduces quite a lot of different options, which is a good thing for customi-
sation, but it can reduce the clarity of which gesture interactions are possible
in a certain application.

Lastly, there are already element level gesture interactions defined in the
current version of the tool. The first one is the on click event which triggers
a customisable interaction when a UI element is clicked. Second, there is
the long press on a UI element, which is not customisable, and which allows
the user to send the element to a different device. Adding user-defined UI
element level gesture interaction seems unnecessary for the purpose of the
eSPACE authoring tool, as the focus lies on cross-device and IoT interac-
tions, not on the UI of the application. Even if we would want to implement
element level gesture interaction, first we would have to find what interac-
tions would be possible besides the currently existing action of sending a UI
element to another device. Secondly, it is hard to think of gestures that can
be performed without having clashes with other levels of gesture interaction,



Implementing Gesture Interaction 46

or even just clashes with interactions that exist for the UI elements. Only
when gestures are found that are distinct enough from others and when mul-
tiple incentives for including them can be found, then we can only start to
let the users define their own element level interactions.

5.2.5 Clarity
In terms of clarity of gesture interactions, the user creates their own gesture
interaction, so this might be less important than it is for other use cases, but
it stays important to keep this aspect in mind. Not only because users can
share their applications with others, but also because users might forget the
interactions they have defined. A good gesture vocabulary and the fact that
the gesture interaction is user-defined might help to remember it, but this
is not a guarantee. If gestures are designed using the interaction and rule
view, the user can check these views of the tool to see which gestures are
defined. Realistically, it is not desirable and convenient to check the tool if a
user wants to know which gesture interactions exist, which is why some help
can be implemented. Earlier we have discussed options of doing this through
either demonstration or using an Extra-UI.

Like we already mentioned, showing gesture interactions through demon-
stration is hard because the demonstration has to be created and it has to
be shown at the right time to the user, but as the user can define their own
gesture interaction both of these things are hard to accomplish. Showing
the interactions of the user through text or icons seems like an easier and
sometimes clearer way of describing the interactions. For this we could create
an Extra-UI which can be triggered by a small button in the interface, and
which would list the gesture interactions that are possible in this application,
or for this device. This way the user can easily pull up the defined gestures
of the application. The tool could ask the user to write a description for
each gesture interaction when they are created to show them here, or the
interactions could be shown in the same rule format as in which they are
defined.

5.2.6 Safety
Lastly we can explain the measures that can be implemented to improve
the safety principle which was discussed in the previous chapter. One way
to minimise the amount of times gestures get accidentally triggered is by



47 CHAPTER 5. Implementation

designing a good gesture vocabulary. Some factors that indicate a good ges-
ture vocabulary have been discussed earlier. Factors like the intuitiveness
and consistency of the gestures let the user remember the gestures more
easily and possibly perform them more accurately. Distinctiveness between
gestures can also help with the recall of the user, but it will also help when
it comes to the accuracy of the gesture recognition algorithm.

All these factors and more will help at preventing accidentally triggering
a gesture, but the possibility of it happening still exists and it is probable
that accidents will happen. If a gesture triggers accidentally, it might be
an important factor to consider whether or not the action triggered by the
gesture is deemed critical or not. If the action is not deemed critical and is
easily reversible, the accidental trigger might not have the greatest impact
and can just be reversed by the user, but if this is not the case, it would be
desirable to have some system in place to prevent the effect from happening
in case of an accidental trigger. A common way to add an extra safety layer
is to ask for confirmation in a pop-up window when the user is performing
a critical action. This greatly decreases the chance of a critical action acci-
dentally happening, although it is still possible.

The design choice now lies in how to let the end user create these con-
firmation pop-ups when designing their own gesture interactions. We could
force the user to create a pop-up for every gestural interaction they design,
but this is generally not desirable as in some cases the incentive for gestures
is a speed up in the workflow, or in the case of mid-air gestures it could be the
fact that the user has no need to touch the device. These incentives are both
reduced or even nullified by the introduction of pop-up windows, because it
slows down the workflow with an extra action and introduces a need to touch
the device. Some technologies could allow for easy confirmation, for example
if the mid-air gestures are performed by a controller which has a button,
pressing the button could be used as a second confirmation of the intent of
the action. If the mid-air gestures are performed by using the accelerometer
of for example a smartphone device, it could be easy to confirm the action on
the screen. For our implementation of user-defined gesture interaction in the
eSPACE authoring tool, it seems better to allow the user to create pop-up
windows, but not to enforce it for every gesture. Especially due to the pos-
sible variation in devices, it would be hard to create a universal solution for
the aforementioned problem. As eSPACE applications are targeted towards
personal use, in the end it might be desirable that, the user can choose their
own preferences, the application should just guide them to a better design.



Practical Implementation Details 48

A challenge still lies in how to advise the user to create a pop-up for critical
actions, which could for example be achieved by creating a tooltip explaining
the use or function of the pop-up window.

5.3 Practical Implementation Details

In this section we will discuss the technical details of our implementation,
what that implementation looks like and how it behaves. First, the gesture
recogniser used in the implementation will be presented, along with why it
was chosen over other options. After that, we will present the implementation
of the Extra-UI in which the users can see the defined gesture interactions
and edit these interactions.

5.3.1 Gesture Recognition Library

The eSPACE authoring tool is a web app that uses a Spring Boot backend
that serves HTML pages with CSS and JavaScript. No frontend framework
is being used, which means that for easy integration into the current imple-
mentation, we would need a plain JavaScript implementation of a gesture
recogniser.

Quite a number of gesture recogniser implementations are available and
our main focus when selecting a recogniser to use was the amount and varia-
tion of gestures that are available. As we discussed in the previous chapters,
gesture recognition accuracy is influenced by the amount of gestures being
recognised, but also by the similarity between the gestures. Even if the
recogniser is proficient at differentiating between similar gestures, the ges-
ture vocabulary also has to be clear to the users of the application. This
might be affected by the similarity of gestures, the user’s familiarity with
the gestures and the amount of gestures. In Table 5.1 you can find a list
of gesture recognisers with a JavaScript implementation that could possibly
be integrated into the eSPACE authoring tool. Each entry in the table lists
the supported gestures, extra features and the URL to the home page of the
website of the library. The first entry in the table, namely the “$1 Unistroke
Recognizer” is the recogniser we integrated and used in our implementation.



49 CHAPTER 5. Implementation

Supported Gestures Notes URLs
$1 Unistroke
Recognizer Triangle, X, rectangle,

circle, check, caret,
zig-zag, arrow, left
square bracket, right
square bracket, V,
delete, left curly
brace, right curly
brace, star, pigtail

Allows custom
gesture definition http://depts.

washington.edu/
acelab/proj/
dollar/index.
html

HammerJS tap, doubletap, press,
horizontal pan, swipe,
pinch, rotate

Pan and swipe
in multiple

directions can
be activated

https:
//hammerjs.
github.io/
getting-started/

TouchSwipe swipe (up, down, left,
right), pinch (in, out),
single or double finger
touch events

Supports click
events on objects,
definable threshold
of when a swipe
is recognised

http://labs.
rampinteractive.
co.uk/
touchSwipe/
demos/index.
html

interact.js tap, doubletap, hold,
rotate, pinch, drag

https://
interactjs.io/

ZingTouch tap, rotate, pinch, ex-
pand, pan, swipe

https:
//zingchart.
github.io/
zingtouch/

QuoJS tap, doubletap, hold,
2-finger tap, 2-finger
doubletap, swipe (up,
down, right, left),
swipe, drag, rotate
(left, right), rotate,
pinch out, pinch

https:
//github.com/
soyjavi/QuoJS

Alloyfinger tap, doubletap, long
press, single tap, ro-
tate, pinch, swipe

Has a “pressMove”
event that returns

the travelled
distance

https://github.
com/AlloyTeam/
AlloyFinger

Table 5.1: The different gesture recognisers considered for the implementa-
tion along with the gestures they support and the URL to the homepage of
their website

http://depts.washington.edu/acelab/proj/dollar/index.html
http://depts.washington.edu/acelab/proj/dollar/index.html
http://depts.washington.edu/acelab/proj/dollar/index.html
http://depts.washington.edu/acelab/proj/dollar/index.html
http://depts.washington.edu/acelab/proj/dollar/index.html
https://hammerjs.github.io/getting-started/
https://hammerjs.github.io/getting-started/
https://hammerjs.github.io/getting-started/
https://hammerjs.github.io/getting-started/
http://labs.rampinteractive.co.uk/touchSwipe/demos/index.html
http://labs.rampinteractive.co.uk/touchSwipe/demos/index.html
http://labs.rampinteractive.co.uk/touchSwipe/demos/index.html
http://labs.rampinteractive.co.uk/touchSwipe/demos/index.html
http://labs.rampinteractive.co.uk/touchSwipe/demos/index.html
http://labs.rampinteractive.co.uk/touchSwipe/demos/index.html
https://interactjs.io/
https://interactjs.io/
https://zingchart.github.io/zingtouch/
https://zingchart.github.io/zingtouch/
https://zingchart.github.io/zingtouch/
https://zingchart.github.io/zingtouch/
https://github.com/soyjavi/QuoJS
https://github.com/soyjavi/QuoJS
https://github.com/soyjavi/QuoJS
https://github.com/AlloyTeam/AlloyFinger
https://github.com/AlloyTeam/AlloyFinger
https://github.com/AlloyTeam/AlloyFinger


Practical Implementation Details 50

The Selected Recogniser

The $1 Unistroke Recognizer is a single-stroke gesture recogniser. This means
that, like the name suggests, it recognises the shape of touch gestures that
are made using a single stroke on the screen. This is also immediately the
most limiting factor of the recogniser. Being only a single-stroke recogniser
means that gestures using two or more touch points on the screen cannot
be recognised by the recogniser. This means that gestures like a two-finger
touch or a pinch gesture, that can be recognised by some of the other recog-
nisers in the list, cannot be recognised by the $1 Unistroke Recognizer, which
at first does not seem like an insignificant limitation.

For the purpose of our implementation, this limitation is not as signifi-
cant as it might seem, mainly because of the cross-platform characteristics
of the eSPACE authoring tool. First of all, many smart devices reserve more
complex multi-touch gestures for their operating system features, like for
example performing a three-finger swipe up or down on certain versions of
Android takes a screenshots of the selected area1. As mentioned in Chap-
ter 3, it can be important to avoid clashes with other gestures to prevent the
user accidentally triggering a gesture interaction they did not intend, and for
this purpose, the single-stroke gestures might be our safest option. Not only
are single-stroke gestures an easy solution to the possibility of clashing with
predefined gestures from the operating system, like mentioned before in the
previous section, these gestures can be performed using a computer mouse.
This means that any device which uses a mouse pointer in its interface can
perform the gestures defined by our implementation, which means not only
touch gesture devices, but many other screen devices have a way of perform-
ing these gestures.

The other advantage of the $1 Gesture Recognizer is that it allows us to
define our own gestures. The recogniser recognises the performed gesture by
comparing the shape of the performed gesture to the shapes of the defined
gestures, which are defined as a single “template” gesture which is a set of
points tracing the stroke of the gesture. This means that gestures can be
easily defined by recording a stroke on the screen and adding its set of points
to the list of defined gestures. It uses a nearest-neighbour approach with
a Euclidean distance function to calculate the similarity between the points
defined by the performed gesture, in comparison to the points defined by the
predefined gestures. It uses techniques like resampling the points, rotating

1https://c.realme.com/in/post-details/1248444623907454976

https://c.realme.com/in/post-details/1248444623907454976


51 CHAPTER 5. Implementation

and scaling the shape to account for respectively differences in speed, angle
and size of the gestures. For more details about the implementation and the
mathematical foundation of the recogniser please refer to the paper written
by the creators of this implementation [30].

5.3.2 The Gesture Vocabulary
Ultimately, we did not define any custom gestures, as the implementation
of the recogniser on the website2, where a demo can be found, already in-
cludes a defined set of 16 gestures, which were used in the research done by
the creators of this implementation. From this set of 16 gestures, which can
be seen in Figure 5.4 we selected 8 gestures which are distinct enough for
an optimal gesture recognition performance, and which are, subjectively the
easiest gestures to perform out of the set of 16, without too many complex
shapes in the stroke. The gestures used in our implementation are the tri-
angle, x, circle, caret, left square bracket, right square bracket, v and pigtail.
We renamed the left square bracket and right square bracket to left bracket
and right bracket, as these were the only brackets in our set of gestures, and
the pigtail gesture was renamed to loop.

Figure 5.4: The set of 16 predefined gestures defined in the $1 Unistroke
Recognizer implementation

2http://depts.washington.edu/acelab/proj/dollar/index.html

http://depts.washington.edu/acelab/proj/dollar/index.html


Practical Implementation Details 52

5.3.3 Implementing Gesture Interaction

The original implementation of the $1 Unistroke Recognizer defines the pre-
defined gestures as a list of “Unistroke” objects which have a name and a list
of points describing the shape of the corresponding gesture. For our imple-
mentation, we have removed 8 gestures from the original list of predefined
gestures and renamed some of the remaining gestures, such that we are left
with the set of gestures mentioned earlier. When the user performs a gesture,
it will be compared to these 8 predefined gestures and the closest match, to-
gether with its similarity score will be returned. This modified version of the
gesture recogniser has been added to the code base of the eSPACE tool.

The gestures performed to trigger the interactions defined by the user
are performed in the app view of eSPACE. Consequently, the code of the
app view (in the app-view.html file) has been modified to recognise gestures
performed in this view. First of all, the area in which gestures should be
recognised is defined, which is in this case the entire body of the HTML
document. After this, multiple mouse or touch events are registered on this
area, to record any strokes made inside this area and possibly recognise
them as one of the defined gestures. Whenever the user clicks their mouse,
or touches their touchscreen inside the application, a list will be created in
which coordinates of points along the stroke of the performed gesture will be
stored temporarily. As long as the mouse click or touch is being held, every
movement will be recorded, and when the mouse or touch is released, the
performed gesture will be compared to the list of predefined gestures by the
gesture recogniser. A gesture will only be recognised if at least 10 points have
been recorded, as to avoid false positives on simple clicks or small accidental
movements.

When an existing gesture has been performed, the application will check
if any interaction has been defined for this gesture. Gesture interactions are
defined as objects, like the other defined interactions in the application, and
have 3 properties, namely gesture which contains the name of the gesture,
uiElement which contains an object referring to the UI element on which
the gesture needs to be performed to trigger the interaction, and action
which contains an object corresponding to the predefined action that will
be triggered when the gesture has been performed. If a gesture has been
performed and an interaction exists for this gesture, the defined action will be
triggered. The option of showing a message that tells the user which gesture
has been performed, and which action that triggered, has also been added to
the application. A so-called “snackbar” message with this information will



53 CHAPTER 5. Implementation

be shown to provide the user with more clarity about when a gesture, and
which gesture, has been triggered. In Figure 5.5 an example of a snackbar
message is visible that would pop up when the user performs the Triangle
gesture, which would toggle the Tree Light Toggle action.

Figure 5.5: An example of a snackbar message that would pop up at the
bottom of the application after a gesture was performed

5.3.4 Implementing the Extra-UI
In the current eSPACE application, the interactions of any applications cre-
ated using the tool are defined in the interaction view or rules view. Earlier
we already discussed the idea of adding an Extra-UI displaying the defined
interactions of the application, but not only can the Extra-UI be used for
displaying the defined interaction rules, it could also be used to edit them.
In the survey, discussed in Chapter 4, respondents were asked whether or not
they would like to view and edit rules in separate screens, or if they would
prefer to have one screen in which the rules could be edited and consequently
viewed. A majority of respondents preferred to have a single screen where the
rules can be edited, and this is also what we have implemented. The current
implementation shows only the gesture interactions and allows editing of the
gesture interactions, but not of all the other types of interactions, as these
are outside of the scope of this research.

Viewing and Editing Rules

For the creation of the Extra-UI, a modal was created using the Bootstrap3

library. The modal is defined in the HTML of the document and is also
displayed by showing its HTML on top of the rest of the application. This
modal can be opened by clicking a button on the top left of the application.
When the modal opens, all of the currently defined gesture interactions of
the current application will be shown in the modal. When the modal for
editing gesture interactions is open, none of the defined gesture interactions
can be triggered, to prevent accidental triggers of any gesture interactions

3https://getbootstrap.com/docs/4.1/getting-started/introduction/



Practical Implementation Details 54

when using the modal to edit, add or remove any interactions. The defined
interaction rules are shown in a vertical list where each line represents 1 in-
teraction. Every defined gesture interaction is shown as a trigger-action rule
written as “IF gesture: name_of_gesture on: name_of_UI_element THEN
name_of_action”, where the names of the gesture, and UI element it should
be performed on, specify the trigger of the rule and the name of the action
specifies the action that gets triggered.

Figure 5.6: A screenshot of the rule editing tab in the Extra-UI

Each of these lines is a custom HTML component with a drop-down menu
to select the desired gesture, UI element and action for the corresponding ges-
ture interaction rule. Using a drop-down menu to select the desired gesture is
preferred by the respondents of the conducted survey, discussed in Chapter 4.
The list of gestures is the list of possible gestures in our gesture vocabulary,
while the list of UI elements and actions are retrieved from the database,
where the UI elements and possible actions for the application are stored.
Note that for the UI elements, there is one extra option called Page, which
when selected, triggers the gesture interaction if the gesture is performed any-
where inside the application, instead of only when the gesture is performed
on a specific UI element. Not only can existing interaction rules be edited by
changing the selection of any of the drop-down menus of the corresponding
rule, new rules be added using the green Add button at the bottom of the
list, that will add a new empty component in which a new gesture interac-
tion rule can be defined. A rule can be removed by clicking the red “x” at
the end of the line corresponding to that rule, after which that line will be
removed from the UI. The changes that the user has made to the interaction
rules will only be saved after the “Save” button has been clicked. Any incom-
plete or empty rules will be ignored when the user saves the interaction rules.



55 CHAPTER 5. Implementation

Gesture Catalogue

In the survey, a proposition was made to add a “gesture catalogue” to the
Extra-UI which would be a page that shows all the possible gestures that
can be performed using an image of the shape of the gesture, together with
the name of the gesture. This feature could then be used to check which
gestures can be performed, but also what these gestures look like, as a user
might not know exactly how to perform a certain gesture, based on the name
of the gesture alone. Out of the respondents, only two people indicated they
did not want or need a gesture catalogue, and out of the people who did,
the opinion of where to show the gesture catalogue was almost evenly split
between the given options. The options being to either add the gesture cata-
logue in a separate pop-up window, opened by clicking another button in the
application’s interface, or to add the gesture catalogue in the same pop-up
window as the rule editing screen, but having both in different tabs of this
window.

Because the preferences of the survey respondents were very much split
between the two options, we have decided to go for the option where the
gesture catalogue is added in the same pop-up window as the gesture editing
screen. This choice was made, because having one button less in the interface
of the application saves possibly valuable space in the interface, but more im-
portantly, if the user wants to consult the gesture catalogue while editing the
gesture interaction rules, they can do so while not yet having saved the rules.
This means the catalogue can be consulted when in the process of editing
the rules, while, if the gesture catalogue was in a different window, either
this window should be accessible from the rule editing screen and should be
opened on top of the rule editing screen, or the user would have to close the
rule editing screen, possibly losing some of the progress of the rules they have
edited, or temporarily saving a possibly incomplete set of rules, before being
able to consult the gesture catalogue.

5.4 Evaluation
Possible advantages and disadvantages of the design decisions have been dis-
cussed while going over the possible implementations of user-defined gesture
interaction in the eSPACE application, but to know whether or not the right
decisions have been made, we have evaluated our implementation with po-
tential users to asses the usability of the system. This evaluation study was



Evaluation 56

Figure 5.7: A screenshot of the gesture catalogue tab in the Extra-UI

completed by five participants, of which three were female and two were
male. The female participants were 22, 25, and 53 years old, while the male
participants were 24 and 54 years old. The participants first received a brief
explanation of what our extension to eSPACE allows the users to do, and
which screens or features there are, without demonstration of those features.
They also received the information that each of the gestures was a single
uninterrupted stroke and that gesture interactions could either be targeted
on a certain UI element, or be available for use on the entire page of the
application. Then, the participants were asked to perform certain tasks in
the application according to different scenarios, of which the speed in which
they executed the tasks was measured. After they completed all of the tasks,
the participants were asked to fill in a Post-Study System Usability Ques-
tionnaire (PSSUQ). Besides the PSSUQ which quantifies the usability of the
system according to the responses of the participants, during the whole pro-
cess we also allowed qualitative evaluation from the participants in the form
of comments and suggestions.

5.4.1 Tasks
After a brief overview of the system and the purpose of our implementation,
the participants were told to complete a set of tasks to test the system. A
simple application with three buttons and images was used, and one gesture
interaction was already defined, namely an interaction triggered by perform-



57 CHAPTER 5. Implementation

ing the Triangle gesture anywhere on the page of the application, which
would trigger the Desk Light Toggle action, which would toggle a desk
light on or off. Because there was no connection to an actual desk light, the
option to show a snackbar message was turned on, indicating which gesture
was used and which action was triggered, after triggering a gesture interac-
tion. For each of the tasks, the participant started from the app view of
the application and the time they took to complete each of the tasks was
measured. Each of the tasks given to the participants is listed below in the
order they were completed.

• Task 1: “One gesture interaction is already defined. Explain which
gesture needs to be performed and what action will get triggered by
performing the gesture”

• Task 2: “Change this interaction to use the Circle gesture and then
trigger the interaction in the application”

• Task 3: “Add an interaction that uses any gesture, besides the Triangle
or Circle gesture, on the image of the water boiler to toggle the boiler
on or off. Trigger the interaction in the application and after that,
remove this interaction again”

Task 1

For the first task, none of the participants struggled to find the rule by
opening the Extra-UI. The main difference in completion time for this task
between the participants was due to the speed at which they interpreted the
rule written on screen and translated it to a sentence. The lowest time to
complete the task was 11s, while the highest time was 20s, and the average
time was 16s.

Task 2

Then, for the second task, the users started from the app screen again and
they had to change the gesture of the existing interaction to the Circle ges-
ture, save their change and trigger the interaction in the app screen. For
four of the participants, this task also went rather smoothly, but one partici-
pant struggled completing the task due to how our gesture recogniser works.
Changing the gesture to the Circle gesture and saving the interaction was
easy for all the participants, this took between four and seven seconds, but
one participant struggled to trigger the gesture in the app because they were



Evaluation 58

drawing their circle in the wrong direction.

For the $1 Unistroke Recognizer, the angle at which a gesture is per-
formed does not matter, but what does matter is the direction of the stroke.
Because we only had one Unistroke defined for this circle gesture, the circle
would only be recognised when performed in one direction, namely the an-
ticlockwise direction in which it was defined. We got rather lucky with this
test, because four participants did the gesture in the anticlockwise direction,
but who knows how many people would make the same mistake when using
the application. The participant eventually found the direction in which the
gesture had to be performed using the gesture catalogue, as it shows where
the gesture starts with a dot at the starting point of the stroke, but it took
them 52 seconds to complete the task, while the other participants took be-
tween six and ten seconds.

This issue is an obvious flaw of the current system, but it is also very
easy to fix. The only thing we have to do is to add another Unistroke to
the application describing a clockwise circle gesture and also recognise it as
the same Circle gesture. Another option is to make the gestures, or their
names, more specific. For example, we could have a separate Clockwise
Circle and Anticlockwise Circle gesture. The same issue might arise for
the Triangle gesture for example, but the same solutions can be used. Other
gestures might not be as ambiguous as long as you draw the gesture from
left to right, and top to bottom. For example the V gesture would in this
case probably be performed correctly by anyone drawing from left to right,
but as we already discussed in earlier chapters, what is intuitive has not only
a personal, but also a cultural attribute. There are languages and cultures
where people read and write from right to left, which means the gestures
we defined might not be performed correctly. This means that, although the
user has the gesture catalogue to check how the gesture should be performed,
implementing either of the proposed solutions might be an improvement to
the system.

Task 3

On the last task, each of the participants completed the task without any
issues. Four people used the X gesture for the rule they created, while one
person chose the V gesture. The four people who chose the X gesture also
looked at the gesture catalogue to see how the gesture had to be performed
in a single stroke, while the person who chose the V gesture did not look at
the gesture catalogue. When asked why the participants chose the gesture



59 CHAPTER 5. Implementation

they did, each of them who chose the X gesture said it was because it was the
first gesture in the list they were allowed to use, as it was the second gesture
in the drop-down, but the first gesture was the Triangle gesture which they
were not allowed to choose. The participant who chose the V gesture said
that it was the first gesture he saw, and that he was also certain about how to
perform the gesture, because “it’s a really simple gesture”. The completion
times were between 19s and 30s, with the fastest time being performed by
the person who chose the V gesture. One participant also commented that it
was really useful to have the gesture catalogue as a feature, but that while
some gestures were easy to perform, it might be good to add recognisable
gestures like a simple Swipe or Two-Finger Swipe gesture. While the first
one can definitely be added, the second one cannot, as this is a limitation of
using a single-stroke gesture recogniser

5.4.2 Post-Study System Usability Questionnaire
After completing the tasks, the participants were asked to fill in a Post-Study
System Usability Questionnaire (PSSUQ), which assesses the usability of the
system using 16 statements which the participant has to rate on a 7-point
Likert Scale. The overall score (average of all statements) was 2.04, while the
System Usefulness (SYSUSE) score was 1.73, the Information Quality (IN-
FOQUAL) score was 2.48, and the Interface Quality (INTERQUAL) score
was 2.00. Overall it seems like the system scores well on the PSSUQ, with
the SYSUSE being the best score and the INFOQUAL scoring the lowest. In
terms of the System Usefulness questions, there were no negative responses
(meaning from “slightly disagree” to “strongly disagree”), but the partici-
pant who struggled with the directionality of the Circle gesture mentioned
that they responded “slightly agree” to some of these questions because of
the issues they encountered.

For the Information Quality questions, while some participants were per-
fectly happy with the information, two others said that there could be a bit
more information. The participants indicated that the gesture catalogue was
a very useful feature, at least to learn which gestures there are and what
they look like, and one participant also mentioned they liked the snackbar
message that pops up when a gesture is performed. They mentioned it would
be useful in an IoT setting where you might not be able to see any visual
effect of an action you performed.

Lastly, the Interface Quality questions all got positive responses, with no
extra comments besides one participant mentioning that having the gesture



Evaluation 60

catalogue in the same pop-up as the screen to edit gestures is nice when
editing gestures, but when using the applications, they would prefer to also
have it in a separate pop-up for a faster lookup of gestures.



6
Conclusion and Future Work

Introducing user-defined gesture interaction allows for another level of cus-
tomisation in end-user authoring tools. The user can define interactions that
are more intuitive to them and can in this way improve their workflow in
the application and their satisfaction as a whole. Although it comes with
potential, certain challenges arise when allowing a user to define their own
gesture interactions. Either because this user might not have any knowledge
about gestures and how they they are recognised by the system, or because of
some inherent disadvantages of using a gestural user interface. Working with
a fixed set of gestures and not allowing the user to create custom gestures
allows us to focus on the problems that may arise with defining and using
the interactions, instead of focusing on the creation and recognition of the
gestures.

In this thesis, we have discussed related work that identifies challenges
that occur with regular, predefined gesture interaction and the solutions that
were proposed and used. From defining a gesture vocabulary with gestures
that are easy to be recognised by the system, to gestures that are metaphor-
ically and iconically logical towards their functionality. Next, we identified
different challenges that occur when trying to implement user-defined ges-
ture interaction in an easy-to-use and intuitive manner, that also guides the
user towards creating better gesture interactions. From these challenges, dif-



Conclusion 62

ferent non-functional requirements were stated that should help improve or
prevent issues that may arise and help create user-defined gesture interac-
tions that are not only intuitive to define, but also intuitive to use. More
user-centered aspects like intuitiveness and recall of gestures were discussed,
while also keeping aspects of the implementation like gesture recognition and
end-user authoring paradigms in mind. A set of design principles was pro-
posed with the intention to be general principles for a better implementation
of user-defined gesture interaction, but specific examples of solutions for cer-
tain problems were also provided for each of the challenges they address.

Lastly, the existing end-user authoring tool called eSPACE was used to
provide a use case for implementing user-defined gesture interaction, with use
of the earlier proposed design principles. Before starting the implementation,
a survey was done where participants were asked about their preferences in
terms of some of the user interface design decisions, to asses the design deci-
sion we have made and solutions we have come up with, but also to decide
between different possibilities we had not decided on yet. After interpreting
the results of the survey, the implementation was done according to the re-
sults of the survey, but also according to the earlier defined design principles.
Each of the principles was discussed in the context of our implementation
and the takeaways of this were used to improve our implementation. After
the implementation was done, a user study was conducted to get quantitative
and qualitative feedback on the usability of the system. The results of this
user study were then used to evaluate the system that was implemented and
to come up with possible improvements that could be made.

6.1 Conclusion
We were able to achieve our objectives of identifying challenges, proposing
solutions and creating design principles to help with the implementation of
user-defined gesture interaction into applications, more specifically focused
on end-user authoring tools. The proposed design principles helped at mak-
ing certain design decisions on a more global, conceptual level, but the earlier
research also helped at solving certain specific challenges that occurred dur-
ing the design process.

In terms of the type of gestures we chose to implement For the incentive
principle, we considered the advantages and disadvantages of implementing
gesture interactions, and more specifically user-defined gesture interactions
into eSPACE. Considering the advantages and disadvantages also helped



63 CHAPTER 6. Conclusion and Future Work

identify challenges in terms of our specific use case. After deciding that the
advantages outweigh the disadvantages, the location of definition of the ges-
ture interactions was considered. For consistency with the current system,
the gesture interactions are defined as rules, just like the other interactions
in eSPACE. These rules can be edited in the rules view and interaction view
of the tool, but we also decided to allow the user to edit the gesture inter-
actions in the app view because this is where the gestures will be used and
we already have the Extra-UI with a list of the defined gesture interactions,
so we allowed the users to edit this list by adding, removing or editing the
interactions.

This Extra-UI contains the list of all defined gesture interactions, and
the gesture catalogue, which shows drawings of all the gestures, such that
the user knows which gestures exist and how they should be performed. The
ideas of the Extra-UI and both the list of defined interactions and the gesture
catalogue were conceived in context of the clarity principle, which addresses
the “invisibility” of gesture interactions, where the user cannot visibly see
which gesture interactions are available in an application. Gesture interac-
tions also do not always provide visual feedback when they are performed.
For this, we thought of the idea to either show a drawing on the screen of the
gesture that was performed for a brief amount of time after it was performed,
or to show a snackbar message at the bottom of the screen, which tells the
user what gesture was performed and what action was triggered. We chose
the latter option.

In terms of the safety principle, we took this into consideration when
choosing the set of gestures. From the predefined set of gestures that were
included in the implementation of the gesture recogniser, we selected a set
of gestures that were as distinct as possible, such that the chance of wrong
recognition of a gesture is as low as possible. There is still the possibility to
add gestures, for example, someone in the user study suggested to add some
gestures, like a simple “swipe” gesture, which is definitely possible, but for
each gesture added, the recognition accuracy must be considered. Lastly, the
interaction levels is a concept where we consider on which level the gestures
interact with the application. For example, the gestures could be available
all throughout the application, only on a certain page, or only on a certain
device, or they could only be performed on certain UI elements. For eS-
PACE, the former two are the same, as there is only a single page in the app
view, which can have different UIs on different devices. We chose to allow
for both gestures that can be performed on the whole page, or targeted on



Future Work 64

a certain UI element, but left out the option of having different gestures on
different devices, as this would introduce extra complexity for the users and
the experiments.

All in all, even if the proposed principles can be improved upon and others
can be added, they did show merit at solving challenges that are introduced
by implementing user-defined gesture interaction and even showed useful
when trying to find solutions for specific problems introduced by a real-
world use case of an end-user authoring tool. There seems to be a trade-off
between giving the user more freedom to customise their experience in an
application and the perceived difficulty of the application, but if we provide
the user with sufficient tools to create interactions that are intuitive to them,
we can find a balance between the two that seems just right. To answer the
question of “How to implement user-defined gesture interaction in an easy-to-
use and intuitive manner?”, we can say that building a robust system that is
user-centered, which gives the user enough freedom to define the interactions
they deem to be intuitive, while also providing the user with enough tools to
overcome the weaknesses of gesture interfaces, like the invisibility of gesture
interactions, by having visual indications of what gesture was performed,
or which gesture interactions are available in the application. Allowing the
users quick and easy access to the Extra-UI where they could quickly look
up and change, add and remove gesture interactions seemed well appreciated
by the users in the user study. Choosing how much freedom to give to
the user depends on what the target user is of the application and what
the designer of the application is trying to achieve by allowing user-defined
gesture interaction, or in other words, their incentive for implementing it in
the application.

6.2 Future Work
In terms of future work, there is one theme that we avoided, which introduces
many opportunities, but also challenges when trying to design an easy-to-
use, intuitive and robust system, namely, allowing the user to create custom
gestures which they can use in their gesture interactions. With the gesture
recogniser we choose for our implementation, we left this option open, as the
$1 Gesture Recognizer allows for easy prototyping of gestures as it uses a
defined set of Unistrokes, which are sets of points that describe a gesture.
We could easily add gestures to this, which is also something that can be
done on the website of the implementation we used1, where there is a canvas

1http://depts.washington.edu/acelab/proj/dollar/index.html

http://depts.washington.edu/acelab/proj/dollar/index.html


65 CHAPTER 6. Conclusion and Future Work

embedded into the page, as depicted in Figure 6.1 which allows users to
perform gestures which can be added to the set of defined gestures.

Figure 6.1: A canvas with which custom gestures can be added to the set of
defined gesture

With our current implementation, we could allow the user to add, and
possibly remove, gestures from the defined set of gestures by drawing it on
a canvas and giving it a name, or we could allow them to directly draw the
gesture when defining a gesture interaction, without even adding it to the
list of defined gestures.

Other possibilities to build on the work we have done are to either imple-
ment the improvements that were proposed after doing the evalution of the
implementation, or to implement some of the other ideas that were proposed,
but not implemented. For example, showing all defined interaction rules in
the Extra-UI is an idea that was explored, and an idea we also asked the
participants of the survey about, but which was not implemented. When
all interactions are shown, and possibly edited, in the Extra-UI, it could
become a long list for certain applications, and the specific implementation
would still have to be thought out, but we suggested to group the rules based
on the properties of the rules. What we suggested, because the rules are all



Future Work 66

“trigger-action” rules, where when a certain trigger is performed, an action
gets triggered, was to group the rules either by their trigger or by their ac-
tion. A majority of people preferred to have the grouping done by the type
of trigger, while one person suggested to make this option configurable by
the user.

Adding options for the users to change the Extra-UI to their personal
preferences in terms of grouping of rules, or rule notation could also be ex-
plored. These options could also allow for the snackbar to show or not when
a gesture is performed, or any other design decisions which seem more like
personal preference than having an objective better or worse option.

We also mentioned the option to allow for different gesture interactions, or
even different gestures altogether for each device. There are many directions
in which one could go with this, for example, each device could have the
same set of gestures, but different gesture interaction rules. Some of the rules
could be shared among all the devices, or this idea could be combined with
the idea of custom gestures. Another option is to have different gestures for
each device, which could be all touch gestures, or they could even be different
types of gestures, based on the sensors available in the device. How these
gestures could be defined per device is already something we explored in our
discussion, but further depth into the topic is certainly possible, and testing
it in a practical setting could provide with more interesting insight than our
theoretical discussion did.



A
Survey



Demographics

Dear volunteer,

Thank you for participating in this research. We

greatly appreciate your interest and cooperation!

The questionnaire takes around 10 minutes to

complete.

In order to protect your opinions, your answers are

treated confidentially in accordance with the Belgian

and European privacy legislation (Cf. AVG or GDPR).

All your answers will be processed anonymously, so

your identity is never revealed.

Contact:

Name: Bram Dewit
Email: brdewit@vub.be

There are a maximum of 13 questions in this
survey.

A note on privacy
This survey is anonymous.

The record kept of your survey
responses does not contain any

identifying information about you unless
a specific question in the survey has

asked for this. If you have responded to
a survey that used an identifying token
to allow you to access the survey, you
can rest assured that the identifying

token is not kept with your responses. It
is managed in a separate database, and
will only be updated to indicate that you

Qualtrics Survey Software https://vub.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrin...

1 van 10 27-08-2023 21:29



have (or haven't) completed this survey.
There is no way of matching

identification tokens with survey
responses in this survey.

 

What is your year of birth?

Gender?

Highest level of school you have completed or highest degree you have received? 

During your studies, did you get in contact with programming and/or user interface
design (computer science-related courses)?

Male

Female

Other

Less than high school degree

High school degree or equivalent

Bachelor's degree

Master's degree

PhD degree

Yes

No

Qualtrics Survey Software https://vub.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrin...

2 van 10 27-08-2023 21:29



How much computer science-related activities did you follow?

In which country were you born?

Survey

First of all, thank you for taking the time to fill in this survey!
 
For my master's thesis I investigate how user-defined gesture interaction can be
intuitively integrated into authoring tools, and what the advantages and challenges
are of doing so.
 
End-user authoring tools are tools which allow users to create applications without
requiring any programming knowledge. These users can create user interfaces (UIs)
and define their behaviour, solely using the tool. The behaviour my research is focused
on, are the gesture interactions. These can be touch gestures (like swipes), or any
other type of gestures (like mid-air hand gestures).
 
Unlike UI elements (such as buttons and sliders), gesture interactions are not visible,
which can pose challenges in terms of clarity, like knowing which gestures are
defined, or knowing when a gesture gets triggered. In this survey, we will show you
different versions of a user interface which purpose is to show the available
interactions of a specific application and which allows users to edit these interactions.
 
The survey will query your preferences in terms of the structure and layout of this
interface.
 

The behaviour of the application is defined by certain "interaction rules". The special

Not much (1-2 courses)

A few (3-4 courses)

Many (I am a computer scientist)

Qualtrics Survey Software https://vub.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrin...

3 van 10 27-08-2023 21:29



user interface to view and/or edit these interaction rules will be opened by clicking a
button at the top of the application.

Below you can see a mockup of the layout of this UI, in this example 2 interaction rules
are defined. One where a "Triangle" gesture is performed on the page and turns a light
on, while performing the "Circle" gesture on the page will turn the light off.

*note that all images shown are drawn mockups and the actual UI looks different

Qualtrics Survey Software https://vub.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrin...

4 van 10 27-08-2023 21:29



We want to allow users to view and edit interaction rules. As potential user of this
application, would you rather have a single screen where the rules can be edited (and
consequently viewed)? Or would you prefer to have a separate screen, one
for viewing and another one for editing these rules?

Would you prefer to see both in a single pop-up screen with 2 tabs (one for viewing,
one for editing), or would you prefer 2 different buttons which open up the 2 different
pop-up screens?

The interaction rules follow a so-called "trigger-action" pattern, which means a certain
event (like a button click, or a gesture that is performed) triggers a certain action (such
as "Light on") by the application.
 
Currently user-initiated triggers and contextual triggers are defined. The first type can
be a button press or gesture, and the second one can be a certain time of day or the
location of the device.
 
To show a more structured overview of the list of rules, they could be divided based
on these types.
The "user-initiated" interaction type could be divided further into categories like "UI
interaction", "gesture interaction", and "device interaction".

Below graphic shows an example of the rules shown grouped by the type of trigger
they use:

Single rule editing screen

Separate rule viewing & rule editing screen

Single button opening tabbed pop-up screen

Two buttons opening different screens

Qualtrics Survey Software https://vub.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrin...

5 van 10 27-08-2023 21:29



Would you like to have these categories based on the type of trigger for each rule, or
would you prefer other categories?

No categories (just 1 list of all the rules)

Categories based on the type of trigger

Categories based on the type of action

Other:

Qualtrics Survey Software https://vub.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrin...

6 van 10 27-08-2023 21:29



Multiple notations of the rules are possible. Would you prefer to see the rules written as
"IF trigger THEN action" (current notation in the tool), with an arrow notation like
"trigger ➡ action", or do you have another suggestion?  

My research is focused on how to integrate gesture interactions, which introduces
multiple challenges.

One issue is that the user might not know all possible gestures that can be
performed, or what they would look like, one possibility is to add a "gesture
catalogue" showing the name and a visualisation of each of the gestures.

Example layout of the gesture catalogue:

IF trigger THEN action

trigger ➡ action

Other:

Qualtrics Survey Software https://vub.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrin...

7 van 10 27-08-2023 21:29



Example layout of the gesture catalogue:

Qualtrics Survey Software https://vub.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrin...

8 van 10 27-08-2023 21:29



Would you want a gesture catalogue, and if so, where would you add it?

Would you want a gesture catalogue, and if so, where would you add it?  

I don't want a gesture catalogue

Add it in a tab on the "view rules" screen

Add it in a tab on the "edit rules" screen

Add it to both screens

Add a third button to the application opening a separate screen with the catalogue

I don't want a gesture catalogue

Add it in another tab

Add a second button to the application opening a separate screen with the catalogue

Qualtrics Survey Software https://vub.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrin...

9 van 10 27-08-2023 21:29



 © Vrije Universiteit Brussel 2020

Powered by Qualtrics

For the last question, we would like to know what type of interface you would prefer
to edit the gestures. One possibility is, like in the previously shown designs, where the
gesture is selected using a dropdown menu.
 
Another option would be to use a button that opens a pop-up window with the
gesture catalogue, where the user can click on the gesture they want to use.
 
Lastly, we could add icons for each gesture to the dropdown, such that the user has
both a visual and textual representation of the icon. Assuming we have a gesture
catalogue, the user could still look up the exact shape of the gesture in the catalogue.

Which approach do you prefer?

Dropdown with only text

Dropdown with icon and text

Pop-up window with gesture catalogue

Qualtrics Survey Software https://vub.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrin...

10 van 10 27-08-2023 21:29



78



Bibliography

[1] Roland Aigner, Daniel Wigdor, Hrvoje Benko, Michael Haller,
David Lindbauer, Alexandra Ion, Shengdong Zhao, and Jeffrey Tzu
Kwan Valino Koh. Understanding Mid-Air Hand Gestures: A Study
of Human Preferences in Usage of Gesture Types for HCI. Microsoft
Research TechReport MSR-TR-2012-111, 2:30, 2012.

[2] Jonathan Alon, Vassilis Athitsos, Quan Yuan, and Stan Sclaroff. A
Unified Framework for Gesture Recognition and Spatiotemporal Gesture
Segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 31(9):1685–
1699, 2009.

[3] Anbarasan and Jeannie Su Ann Lee. Speech and Gestures for Smart-
Home Control and Interaction for Older Adults. In Susanne Boll,
Ramesh C. Jain, Noel E. O’Connor, Troy McDaniel, and Jochen Meyer,
editors, Proceedings of the 3rd International Workshop on Multimedia
for Personal Health and Health Care, HealthMedia@MM 2018, Seoul,
Republic of Korea, October 22, 2018, pages 49–57. ACM, 2018.

[4] Andy Cockburn, Carl Gutwin, Joey Scarr, and Sylvain Malacria. Sup-
porting Novice to Expert Transitions in User Interfaces. ACM Comput.
Surv., 47(2):31:1–31:36, 2014.

[5] David Garlan, Robert Allen, and John Ockerbloom. Architectural Mis-
match: Why Reuse Is So Hard. IEEE Softw., 12(6):17–26, 1995.

[6] Xiao-Li Guo and Ting-Ting Yang. Gesture recognition based on HMM-
FNN model using a Kinect. J. Multimodal User Interfaces, 11(1):1–7,
2017.

[7] Mikkel R. Jakobsen, Yvonne Jansen, Sebastian Boring, and Kasper
Hornbæk. Should I Stay or Should I Go? Selecting Between Touch
and Mid-Air Gestures for Large-Display Interaction. In Julio Abas-
cal, Simone Barbosa, Mirko Fetter, Tom Gross, Philippe Palanque, and



BIBLIOGRAPHY 80

Marco Winckler, editors, Human-Computer Interaction – INTERACT
2015, pages 455–473, Cham, 2015. Springer International Publishing.

[8] Daehwan Kim and Daijin Kim. An Intelligent Smart Home Control
Using Body Gestures. In 2006 International Conference on Hybrid In-
formation Technology, volume 2, pages 439–446, 2006.

[9] Minseok Kim, Sung Ho Choi, Kyeong-Beom Park, and Jae Yeol Lee.
User Interactions for Augmented Reality SmartGlasses: A Compara-
tive Evaluation of VisualContexts and Interaction Gestures. Applied
Sciences, 9(15):3171, 2019.

[10] Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh Agrawala.
Proton: Multitouch Gestures as Regular Expressions. In Joseph A.
Konstan, Ed H. Chi, and Kristina Höök, editors, CHI Conference on
Human Factors in Computing Systems, CHI ’12, Austin, TX, USA -
May 05 - 10, 2012, pages 2885–2894. ACM, 2012.

[11] Vassilis Kostakos and Mirco Musolesi. Avoiding pitfalls when using ma-
chine learning in HCI studies. Interactions, 24(4):34–37, 2017.

[12] David M. Lane, H. Albert Napier, S. Camille Peres, and Aniko Sandor.
Hidden Costs of Graphical User Interfaces: Failure to Make the Tran-
sition from Menus and Icon Toolbars to Keyboard Shortcuts. Int. J.
Hum. Comput. Interact., 18(2):133–144, 2005.

[13] Jaime Lien, Nicholas Gillian, Mustafa Emre Karagozler, Patrick Ami-
hood, Carsten Schwesig, Erik Olson, Hakim Raja, and Ivan Poupyrev.
Soli: Ubiquitous Gesture Sensing with Millimeter Wave Radar. ACM
Trans. Graph., 35(4):142:1–142:19, 2016.

[14] Wanhong Lin, Lear Du, Carisa Harris-Adamson, Alan Barr, and David
Rempel. Design of Hand Gestures for Manipulating Objects in Vir-
tual Reality. In Masaaki Kurosu, editor, Human-Computer Interaction.
User Interface Design, Development and Multimodality - 19th Interna-
tional Conference, HCI International 2017, Vancouver, BC, Canada,
July 9-14, 2017, Proceedings, Part I, volume 10271 of Lecture Notes in
Computer Science, pages 584–592. Springer, 2017.

[15] Allan Christian Long Jr., James A. Landay, and Lawrence A. Rowe.
Implications for a Gesture Design Tool. In Marian G. Williams and
Mark W. Altom, editors, Proceeding of the CHI ’99 Conference on Hu-
man Factors in Computing Systems: The CHI is the Limit, Pittsburgh,
PA, USA, May 15-20, 1999, pages 40–47. ACM, 1999.



81 BIBLIOGRAPHY

[16] Hao Lü and Yang Li. Gesture Coder: A Tool for Programming Multi-
TouchGestures by Demonstration. In Joseph A. Konstan, Ed H. Chi,
and Kristina Höök, editors, CHI Conference on Human Factors in Com-
puting Systems, CHI ’12, Austin, TX, USA - May 05 - 10, 2012, pages
2875–2884. ACM, 2012.

[17] Hao Lü and Yang Li. Gesture Studio: Authoring Multi-Touch Interac-
tions through Demonstration and Declaration. In Wendy E. Mackay,
Stephen A. Brewster, and Susanne Bødker, editors, 2013 ACM SIGCHI
Conference on Human Factors in Computing Systems, CHI ’13, Paris,
France, April 27 - May 2, 2013, pages 257–266. ACM, 2013.

[18] Nathan Magrofuoco, Paolo Roselli, and Jean Vanderdonckt. Two-
dimensional Stroke Gesture Recognition: A Survey. ACM Comput.
Surv., 54(7):155:1–155:36, 2022.

[19] Jérémie Melchior, Jean Vanderdonckt, and Peter Van Roy. A Compar-
ative Evaluation of User Preferences for Extra-User Interfaces. Int. J.
Hum. Comput. Interact., 28(11):760–767, 2012.

[20] Martin Mihajlov, Effie Lai-Chong Law, and Mark Springett. Intuitive
Learnability of Touch Gestures for Technology-Naïve Older Adults. In-
teract. Comput., 27(3):344–356, 2015.

[21] Donald A. Norman and Jakob Nielsen. Gestural Interfaces: A Step
Backward In Usability. Interactions, 17(5):46–49, 2010.

[22] Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. Design-
Scape: Design with Interactive Layout Suggestions. In Bo Begole, Jin-
woo Kim, Kori Inkpen, and Woontack Woo, editors, Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Sys-
tems, CHI 2015, Seoul, Republic of Korea, April 18-23, 2015, pages
1221–1224. ACM, 2015.

[23] Uran Oh and Leah Findlater. The Challenges and Potential of End-User
Gesture Customization. In Wendy E. Mackay, Stephen A. Brewster, and
Susanne Bødker, editors, 2013 ACM SIGCHI Conference on Human
Factors in Computing Systems, CHI ’13, Paris, France, April 27 - May
2, 2013, pages 1129–1138. ACM, 2013.

[24] Thomas Plötz. Applying Machine Learning for Sensor Data Analysis in
Interactive Systems: Common Pitfalls of Pragmatic Use and Ways to
Avoid Them. ACM Comput. Surv., 54(6):134:1–134:25, 2021.



BIBLIOGRAPHY 82

[25] Seema Rawat, Somya Vats, and Praveen Kumar. Evaluating and ex-
ploring the Myo Armband. In 2016 International Conference System
Modeling & Advancement in Research Trends (SMART), pages 115–120,
2016.

[26] Audrey Sanctorum. eSPACE: Conceptual Foundations for End-User
Authoring of Cross-Device and IoT Applications. PhD thesis, Vrije Uni-
versiteit Brussel, 2020.

[27] Barry Schwartz. The Paradox of Choice: Why More Is Less. Harper
Perennial, January 2005.

[28] Davy Vanacken, Alexandre Demeure, Kris Luyten, and Karin Coninx.
Ghosts in the Interface: Meta-user Interface Visualizations as Guides
for Multi-touch Interaction. In Third IEEE International Workshop on
Tabletops and Interactive Surfaces (Tabletop 2008), October 1-3 2008,
Amsterdam, The Netherlands, pages 81–84. IEEE Computer Society,
2008.

[29] Robert Walter, Gilles Bailly, and Jörg Müller. StrikeAPose: Revealing
Mid-Air Gestures onPublic Displays. In Wendy E. Mackay, Stephen A.
Brewster, and Susanne Bødker, editors, 2013 ACM SIGCHI Conference
on Human Factors in Computing Systems, CHI ’13, Paris, France, April
27 - May 2, 2013, pages 841–850. ACM, 2013.

[30] Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. Gestures with-
out Libraries, Toolkits or Training: A $1 Recognizer for User Interface
Prototypes. In Chia Shen, Robert J. K. Jacob, and Ravin Balakrishnan,
editors, Proceedings of the 20th Annual ACM Symposium on User In-
terface Software and Technology, Newport, Rhode Island, USA, October
7-10, 2007, pages 159–168. ACM, 2007.

[31] Wendy Yee. Potential Limitations of Multi-touch Gesture Vocabulary:
Differentiation, Adoption, Fatigue. In Julie A. Jacko, editor, Human-
Computer Interaction. Novel Interaction Methods and Techniques, 13th
International Conference, HCI International 2009, San Diego, CA,
USA, July 19-24, 2009, Proceedings, Part II, volume 5611 of Lecture
Notes in Computer Science, pages 291–300. Springer, 2009.


	Introduction
	Related Work
	Design Principles
	Survey
	Implementation
	Conclusion and Future Work
	Survey

