
Graduation thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in Applied Sciences and Engineering: Computer Science

ENABLING THE GENERATION OF USER INTERFACES
FOR PERSONALISED IOT APPLICATIONS FOR
NON-DESIGNERS

BRENDA ORDOÑEZ LUJAN
Academic year 2022–2023

Promoter: Dr. Audrey Sanctorum,
Prof. Dr. Beat Signer

Advisor: Dr. Audrey Sanctorum
Faculty of Sciences and Bio-Engineering Sciences

©Vrije Universiteit Brussel, all rights reserved.

i

Abstract
In the past, when someone wanted to control smart home devices in a single
application, they had to belong to the same brand or platform. Nowadays,
there are IoT applications that can integrate and control different devices
from different brands in a single platform, and day by day this integration
improved, incorporating even more devices. However, we have noted that
some IoT applications do not let the user determine how the user interface
looks, while other applications that do, are targeted at users who have UI
design and/or programming experience.

Users should be allowed to make their own IoT user interface designs, as
it has been established over the years that the impact of the interface de-
sign is the most important and critical to its later use, but as we mentioned
above, current solutions do not consider users who do not have programming
or UI design experience. To solve this problem, the eSPACE authoring tool
along with its framework and conceptual model is presented. This tool is
part of the current solutions for integrating and controlling smart devices
and things on a single platform and enabling users to create their own user
interface for their respective IoT applications according to their own needs
and preferences. However, while the current option for creating applications
with the eSPACE authoring tool allows users to build any user interface they
want without programming, it still requires users to have UI design knowl-
edge, as a lack of these skills results in certain poor design choices. This fact
leads to a question on how can we provide a user interface generation module
that allows end users to create their own IoT application UIs without any
prior programming knowledge or UI design skills?

In this thesis we will present some related work in the field of automatic
user interface generation, which will serve as a basis for formulating the re-
quirements of our solution to address these problems along with the concepts
needed to extend the tool. This result will be implemented and evaluated by
our target user to confirm that our objectives have been met.

ii

Acknowledgements
I am profoundly grateful to have had the support and guidance of numerous
individuals throughout this journey, and I would like to take this opportunity
to express my appreciation.

First and foremost, I express my deepest and sincere gratitude to my su-
pervisor, Dr Audrey Sanctorum, for her time, dedication and insightful feed-
back. Her guidance has been crucial in determining the direction and quality
of this work. I am also grateful to Prof. Dr. Beat Signer, my promoter, for
their important contributions and expertise. His thoughtful observations and
constructive comments have greatly enriched this project.

I extend my heartfelt thanks to my family for their boundless love, encour-
agement and sacrifices. Without them I would not have had the opportunity
to step out of my comfort zone and find myself in this situation. Their con-
stant faith in me and their unwavering support is what makes me complete
my projects.

To my friends, thank you for being by my side through the ups and downs
of this journey. A special thanks to my boyfriend, together we embarked on
this journey, and his encouragement has been essential in keeping my sanity.
To his family, who took me in from day one, their support in every aspect
has allowed me to make my way through this beautiful country.

Finally, this thesis would not have been possible without the collective sup-
port of these remarkable individuals. Each of you has played an indispensable
role in shaping both my academic and personal growth, and for that, I am
truly thankful.

Contents

1 Introduction
1.1 Problem Statement . 2
1.2 Research Questions and Objectives 2
1.3 Research Approach and Methodology 4
1.4 Thesis Outline . 5

2 Related Work
2.1 User Interface Design . 7
2.2 User Interface Design Tools 9

2.2.1 Automatic User Interface Generation 11
2.2.2 Semi-automatic UID tools 12
2.2.3 Fully Automatic UID tools 17

2.3 Summary and Conclusions Drawn from Related Work 27
2.4 Resulting Requirements . 30

3 Background
3.1 The eSPACE Framework . 33

3.1.1 The eSPACE App Creation Process 37
3.2 Guidelines and Heuristics . 39

4 Design and Implementation
4.1 Generation of IoT Applications 43

4.1.1 App Generation Process 44
4.1.2 Front-end Design . 46
4.1.3 Default IoT Application Design 46

4.2 Implementation . 47
4.2.1 Technology . 47
4.2.2 Generate App View . 47
4.2.3 The Final User Interface 52

4.3 Use Case Demonstration . 54
4.4 Summary and Discussion . 59

CONTENTS iv

5 Evaluation
5.1 Setup . 65
5.2 Participants . 66
5.3 Protocol . 66

5.3.1 User Study Presentation 66
5.3.2 Tasks Execution . 66
5.3.3 Questionnaire and Interview 67

5.4 Results . 67
5.4.1 Questionnaires . 68
5.4.2 Observations . 71

5.5 Summary and Discussions . 73

6 Conclusion
6.1 Conclusion . 77
6.2 Future Work . 80

A Appendix A

B Appendix B
B.1 Scenario . 91
B.2 Task Document . 93
B.3 Post-Survey Questionnaires 95

B.3.1 Personal Information 96
B.3.2 Post-Study System Usability Questionnaire (PSSUQ) . 97
B.3.3 Post-Study Informative Questionnaire 98

C Appendix C

1
Introduction

From its earliest days to the present day, the Internet of Things (IoT) remains
relevant and continues to impact our daily life. It has revolutionised com-
munication and enabled new forms of control over smart objects. As a result
of this influence, new smart devices and things entered the market, requiring
the development of platforms for controlling and integrating them, such as
Smart Home applications and authoring tools. There are various IoT author-
ing tools that have been developed in this field, some more complete than
others. Some of them provide no control over the user interface (UI) that the
end user must use, while the remaining ones that do, are meant for end users
with an understanding of UI design or who have programming skills. There
is no solution that does not require training or prior knowledge to create
UI designs for IoT applications intended for end users.

The UI is crucial for end users because a well-designed UI enhances the
user satisfaction, usability, efficiency, increases productivity and reflects the
success of a product. Since it is difficult to predict the needs and preferences
of different users for the same application, the need to provide them with
solutions to create and customise their own designs requires no justification.
The closest solution to this lack of attention on end users without design
skills in the context of IoT applications was found in graphical recommender
systems, such as the recommendation system for the UI designer proposed by

Problem Statement 2

Ali [1], which effectively help the end user to create better UIs fitted to their
own preferences; however this solution takes a lot of time and effort from
the end users to improve their IoT user interface after it has been created;
not to mention that this solution does not integrate the functionality of the
application yet, meaning that it also requires another manual effort to finish
creating the IoT application. Because of this, it may cause frustration to-
wards end users who wish to create their own IoT applications with minimal
effort.

We therefore see a need to offer a solution that enables end users to generate
their own IoT applications based on their requirements, needs, and prefer-
ences with as little effort as possible and without the need for programming
knowledge or UI design skills.

1.1 Problem Statement
IoT keeps evolving as new devices enter the market. Developers are creating
or extending solutions to manage all technologies in one place; however, the
difficulty arises in designing the user interface. The effort devoted to the
user interface is substantially different from developing the functionality of
such solutions. Developers must take into account user needs, which are
complex, divergent and often evolve over time. Since user interface design
has a significant impact on the usability of applications, users should ideally
be able to design their own user interfaces and programmes. Taking into
account that not all users have the same skills as user interface designers,
we propose a solution by offering them the possibility to generate their own
IoT applications based on their preferences and needs.

1.2 Research Questions and Objectives
Main Research Question How can we provide a user interface (UI) generation
module that allows end users to create their own Internet of Things (IoT) ap-
plication UIs without any prior programming knowledge or UI design skills?

In order to structure our solution, we must create sub-questions in response
to this main research question. First, we will investigate the requirements
of a user interface design tool for an end user to be able to create their own
user interface capable of controlling IoT devices. To do this, we will look into
related work on generation of user interface design tools. This brings us to

3 CHAPTER 1. Introduction

the first research question, which takes into account the fact that our target
user has little or no knowledge in UI designs or programming skills.

Research Question 1 (RQ1) What are the necessary requirements for the
end user to generate a user interface without programming or UI design
skills?

In order to meet the requirements we will carry out an analysis of the related
work in the field of automatic user interface generation tools. As a result, we
will provide an overview of existing tools as well as their limitations, concepts
and techniques that can be useful to justify our later contributions.

The derived requirements from this analysis will give us a better under-
standing of what we need in our module for the end user to generate UIs but
we still need to think about how we can approach this for an IoT application
that controls smart devices, which brings us to the next research question.

Research Question 2 (RQ2) What are the necessary concepts needed for
creating a module that allows end users to generate their own UIs for con-
trolling their smart devices and things?

Instead of starting from scratch we want to start from an existing solution
that provides control over smart devices; however, as we will discuss later,
it is not an intuitive task to extend solutions that support the requirements
from RQ1. Therefore we must present the necessary concepts and compo-
nents that will form the basis of our module, and to show that it satisfies the
end user’s needs, we need to build a prototype, which brings us to the last
research question:

Research Question 3 (RQ3) How can we extend an existing UID tool with
UI generation options as a result of the requirements and new concepts gained
from RQ1 and RQ2?

The objective of this last research question is to create a proof-of-concept
prototype of a UID tool capable of controlling smart devices and that meets
the requirements and concepts discovered in RQ1 and RQ2. We will then
conduct a user study to evaluate and analyse whether the tool has achieved
our main goal and gain more insight to identify if adjustments or improve-
ments are needed.

Research Approach and Methodology 4

1.3 Research Approach and Methodology
We are adopting the Design Science Research Methodology (DSRM) for infor-
mation systems [32] for the development of our research. This methodology
consists of 6 sequential activities, which contribute to the structure of our
thesis.

1. Problem identification and motivation
The problem identified was described in Section 1.1, which identifies
the need for end users to create the interface of their own applications,
in this case IoT applications according to their needs and preferences.
An activity that is currently assumed by the developer or provided
with options that require prior training for their use. These current
solutions are limited to providing a manual process to the end user,
which can lead to new problems in the usability of the system.

2. Define the objectives for a solution
The main objective of this thesis is to research and develop a module
that can generate a user interface (UI) that enables users to develop
their own IoT applications in accordance with their own requirements
and demands without any prior programming or UI design knowledge.
In order to answer and build a solution that meets our main objec-
tive, we break down this goal into three research questions which are
developed in more detail in the previous section, see Section 1.2.

3. Design and development
To achieve our research objectives, we have introduced a new mod-
ule in the eSPACE authoring tool, designed specifically for generating
IoT applications. Full details of the design and development processes
for this module can be found in Chapter 4.

4. Demonstration
Once the prototype was developed, we conducted a user study with
a prepared scenario and tasks under a certain condition, the details
are covered in Chapter 5. Although the DSRM proposes to include
resources for demonstration of how to use the tool, this step was not
considered during the user study since in our particular case we wanted
to measure how easy and intuitive the tool is without any prior train-
ing. As a result, while completing the tasks for the user study, the
participants experimented with the tool. However, later in Chapter 4
we will demonstrate how our approach works and the possibilities it
offers in a use case.

5 CHAPTER 1. Introduction

5. Evaluation
After the user study, we move on to the evaluation stage which is
discussed in Chapter 5, although the evaluation is part of the method-
ology we are adopting, it was also done to satisfy one of our derived
requirements described in Section 2.4. In which we are interested to
see whether the prototype, as a UID tool, is of quality. For this, we de-
signed a user study including post-survey questionnaires, among them
the Post-Study System Usability Questionnaire (PSSUQ), which will
help us to observe the metrics corresponding to the quality of the soft-
ware. At the end of this activity, we were left with further improve-
ments and considerations to address based on the findings and obser-
vations of the user study, which we give in more detail in Chapter 6 as
conclusions and ideas for future work.

6. Communication
The main contribution of our thesis is the introduction of a new mod-
ule for generating IoT applications within the eSPACE authoring tool.
This module has been developed by analysing technologies in the field
of Automatic UI Generation and incorporating concepts for creating UI
to control smart devices and things. Our methodology, design, imple-
mentation, evaluation and conclusions are included in this dissertation,
which will be presented during the thesis defence in front of a jury.

1.4 Thesis Outline
This thesis contains six chapters. We start by explaining the general context
of the thesis in Chapter 1, identifying the problem to be solved, defining our
research questions, and introducing the methodology used for our research.
In Chapter 2, we present a brief history of user interface design, as well as the
categorisation of user interface design (UID) tools along with several related
work in the context of automatic UID tools. Additionally, we discuss the
techniques and mechanisms identified in the generation of UIs to understand
the general process, and derive the necessary requirements based on this
analysis that our module must satisfy. In Chapter 3, we introduce the main
tool that we will use as a basis to generate IoT applications. We provide both
the fundamental concepts and the technical components needed to model our
process. In addition, we also present a set of guidelines and heuristics that
are part of the requirements identified in the previous chapter. In Chapter 4,
we present the design and implementation of our IoT application generation
module, as well as a use case of this module. We further demonstrate how

Thesis Outline 6

our module satisfied the requirements derived from Chapter 2, and finish
with a discussion on the limitations of the module. In Chapter 5, we present
the evaluation of our module, share the results from surveys and observations
made during the user study, and identify areas where improvements can be
made.

Finally, in Chapter 6, we provide a summary of our entire study by answer-
ing to our research sub-questions, which are derived from our main research
question presented in Chapter 1. In addition, we end with the future work
that is inspired by the findings and observations of the user study, as well as
the limitations and issues raised during the implementation of the module.

2
Related Work

In this Chapter, we discuss the concept and development of user interface
design, as well as several user interface design tools related to the area of
automatic user interface design generation. We will focus on answering our
initial research question, for which we then provide an overview before con-
cluding with a discussion of the resulting requirements that emerged from
our analysis of related work.

2.1 User Interface Design
User interface design was not always as crucial as it is now. In fact, early
user interfaces were relatively simple with rather awkward textual inputs and
outputs, aimed at a single audience, in this case, scientists and engineers [18].
But as computers became more powerful and with the advent of new input
devices, the user interface design became richer and began to take on rele-
vance, as did the user interface design tools.
Let us first look at the purpose of user interfaces and what user interface
design is, before we look at how user interface design have evolved over the
years.

Purpose of user interface:
The purpose is to facilitate communication between the user and the com-

User Interface Design 8

puter by hiding the structure, techniques, relationships and sequential inter-
actions involving hardware and software [18].

Definition User Interface design:
"The general activity of user interface development, which consists of these
tasks undertaken in a partially parallel, partially serial, partially iterative
sequence: plan, research, analyse, design, implement, evaluate, document,
train, maintain and recycle/replace" [17].

At a conference in 2002, two well-known product designers, Bill Moggeridge
and Bill Verplank claimed that they invented the concept of user interface
design in the early 1980s. However, a year earlier, Alan Cooper, a well-known
programmer best known for creating the Visual Basic language, claimed that
he was the first to define the concept of user interface design in the 1980s [17].
While in both cases these authors were contributors to the development of
the concept, it cannot be denied that the term was already known to the gen-
eral public before the 1980s. As Aaron Marcus, a specialist in user interface
design and information visualisation, rightly points out that he was aware
about it in the late 1970s [17]. Additionally, Alan Kay, a pioneering scientist
whose work established the field of interactive computer graphics, explained
that from the early uses of computers in the fifties, there have been attempts
at user interface design without it being a concept yet. Such applications
were mainly for air traffic control, defence and ergonomic principles [31].
Clearly, we cannot attribute the relevance of UIDs to one particular person,
but we can identify the starting point when UIDs became essential and a
vital component of a product’s success.

The need for UID research and development became apparent in 1970 when
there were already many familiar components of modern user interface de-
sign, such as pointing devices, windows, menus, icons and hypermedia [31].
Then, in 1973, the first computer to support an operating system based
on a graphical user interface (GUI) appeared, the Xerox Alto. This was a
groundbreaking development that gave way to the first personal computer,
the IBM 5150 in 1981, then the second commercial computer, the Apple Lisa
Office System 1 in 1983, and the Macintosh in 1984, which was the first com-
mercially successful mouse-driven computer with a graphical user interface
developed by Apple [36]. As a result, the user interface transitioned from a
command line interface (CLI) to a graphical user interface based on windows,
icons, menus and a pointing device called mouse (WIMP user interfaces),
which is the legacy of Xerox PARC and was made popular by Apple [46]. In

9 CHAPTER 2. Related Work

the years that followed, as the computer evolved from a specialised tool to
a computer for personal daily use, the target user also changed. The non-
programming user also known as the end user joined the human factor. So
as commercial interest in the computer increased, the need to create easy-
of-use user interfaces began. In order to create an effective user interface,
developers must comprehend and analyse user tasks. As a result, models,
design guidelines, and principles based on the idea of user-centred design
started to emerge. At this point, the influence of technology made it possible
to explore and understand user needs, but it also presented new challenges.
Developers had to think about interactions techniques and all the possibil-
ities they offer as a result of the introduction of new input devices, such as
touch pens, haptic display, haptic devices, among others hardware devices.
This resulted in post-WIMP user interfaces that facilitate 3D designs and
improve the experience of 2D designs [46]. Then, with the emergence of the
Internet and creation of the World Wide Web, web user interfaces became
even more relevant today, and also drove the emergence of communities of
web designers and developers who actively adopt the user-centred approach.
Furthermore, standards, patterns, usability paradigms and new perspectives
are always being revised to provide a better end user experience [3].

2.2 User Interface Design Tools
Today’s applications are developed using some sort of user interface software
tool to help design and implement the user interface. Some of the tools that
were used back in the 1990s are Window managers and Toolkits, which pro-
vided a library of interactive components and a framework that made it easy
to build the user interface from scratch. Then, we find event languages for
direct manipulation of the interface, mapping each user action to the associ-
ated application response. Interactive Graphical tools or interface builders,
such as Visual Basic, which replaced conventional code with graphical con-
cepts, also allowed programmers to learn faster to implement interfaces with
this resource. Scripting Languages, with the popularity of C and C++ new
scripting languages such as Python, perl and tcl/tk emerged with the pur-
pose of simplifying code, this allowed non-professional programmers to create
sophisticated and interactive applications. Further, with the popularity of
the world wide web, Hypertext such as HTML became practical. Thus, with
the consistency of GUIs and the absence of changes, developers of UID tools
were able to redesign new concepts and techniques that required a lower level
of programming intensity to develop applications with the intention of em-
powering the user with easy-to-learn tools [22].

User Interface Design Tools 10

Automatic interface generation was one of the approaches of the time that
did not gain wide acceptance, even though it allowed developers to design
very high-level user interfaces with information about the end user. One of
the reason for this, is that these tools usually used heuristic rules to choose
interface details and components to build a user interface, which presented
the difficulty of understanding and controlling the final result. In addition,
some tools still required learning a new language in order to utilise them [22].
As the implementation and use of these tools was done by a developer, they
became uncommon because a developer could create flexible user interfaces
faster and with better results using conventional programming languages.
However, the model-based user interface community continued to research
and develop tools in this area not only for developers but also including the
end users, resulting in approaches with more significant development [24].
Therefore, we can take advantage of these model-based tools that automat-
ically generate a user interface design to comprehend and determine the
requirements of an end user.

First, let us demonstrate how the three categories below might be used to
group UID tools based on their level of automation in UI generation tech-
niques they provide:

• Fully manual: In this category, a fully manual tool does not provide any
mechanism to automatically generate a functional UI. In other words,
the user would need significant amount of knowledge, experience in UI
development as well as a strong understanding of design principles to
design and implement the entire UI. Some current tools that can be
considered in this category are, for example, Sketch [4], Figma [12] and
Adobe XD [49] which are the three most popular tools in the design
industry used for web design, wireframe, prototyping and mockups by
an experienced designer [51]. There is also the Axure RP [11] tool,
which can be used for the same reasons but can also be refined in
terms of functionality and management requirements [50]. It is impor-
tant to note that tools supporting the early stage of a user interface,
like those previously stated, are frequently found in this category to-
gether with code editors and IDEs such as Visual Studio Code [20],
Sublime Text [38], Netbeans [13], Intellij IDEA [16] and others.

• Semi-automatic: In this category, a semi-automatic tool can offer some
mechanisms to automatically generate part of the UI, but still requires
from the user to do some settings manually to complete the UI and/or
give it functionality, as a result, the target user is usually a designer

11 CHAPTER 2. Related Work

with at least little knowledge in programming. For example, some tools
in this category are Mickey [30], Jade [52], Trident [2], Mecano [35],
Mobi-D [34], XWeb [29] and DB-USE [45]. Further details about these
tools can be found in Section 2.2.2.

• Fully automatic: In this category, a fully automatic tool provides mech-
anisms to automatically generate a functional UI, have a high level of
automation to design and implement a UI with little or no manual ef-
fort on the part of the user. For example, some tools in this category
are Humanoid [41], PUC [27], Uniform [23], Huddle [28], Supple [7],
Arnauld [8] and Ability modeler [10]. For more information about
these tools, see Section 2.2.3.

Even though it may be subjective to classify tools based on the mecha-
nisms they provide as semi or fully automatic, we must keep in mind that
the main distinction between these two categories is the effort on the part of
the user to generate the UI automatically.

In this section, we focus on tools that provide semi-automatic and fully au-
tomatic generation of UIs. Although our focus is on the generation of UIs for
controlling smart devices and things, we broaden our scope to the generation
of UID in any context due to limited information on related work in the con-
text of IoT for this particular area. Similar to the previous case, our focus is
on tools for end users with no programming skills, but we also discuss some
tools for experienced designers due to the information constraints.

2.2.1 Automatic User Interface Generation
Automatic user interface generation is a sub-field of human-computer interac-
tion (HCI) that focuses on the process of developing techniques and tools for
automatically generating UIs, with the goal of offering advantages like low-
cost and rapid implementation [44]. Based on the research of Brad Myers [21],
he introduced a categorisation of user interface tools according to how design-
ers define the interface. This categorisation allows various automatic UI gen-
eration techniques to be classified into language-based tools that specify the
UI syntax in a special purpose language, interactive graphical specification
tools that allow interactive UI design, and model-based generation tools that
generate a UI from a high-level model or specification [14, 39].

The most advanced approach for fully automatic UI generation is the model-
based approach. This method involves using models to represent different

User Interface Design Tools 12

aspects of the UI, allowing for automated generation of code, layout, and
behaviour. In comparison, language-based and interactive graphical spec-
ification tools may require more manual effort to design and implement
the UI. There are several models commonly used in this approach according
to Schlungbaum and Elwert [39]. We will provide a quick summary of the
most representative ones:

• Task model: This model represents the tasks that the end user needs
to be able to perform with the system.

• Domain model: This model captures concepts, objects in a domain,
usually this model is combined with others such as the task model and
application model.

• User model: This model describes the characteristics and preferences
of the end user. This model, like the Domain model, is also combined
with others.

• Application model: This model is object-oriented and based on the
services provided by the system, the purpose is to facilitate the UI
behaviour.

• Dialogue and presentation model: The Dialog model describes the
human-computer conversation. It specifies all the mechanism (inputs,
buttons, labels, commands and others) used by the computer to query
and display information to the end user. The presentation model is con-
cerned with UIs visual representation and how objects are displayed in
different dialogue states. These models are usually linked together.

• Platform model: Specifies the characteristics of the platform for the
UI.

2.2.2 Semi-automatic UID tools
In this section we focus on semi-automatic UID tools for end users and devel-
opers. We provide an overview of the tools based on UI generation techniques,
as well as their limitations. Because an end user can also refers to a devel-
oper, in the next sections, the term "end users" will refer to people without
programming knowledge, while "designers" will describe those who possess
some basic programming skills. This distinction will prevent any confusion
and enable effective communication of ideas.

13 CHAPTER 2. Related Work

We start with some pioneering tools in the field of automatic generation
of UI dialog boxes such as Mickey [30] and Jade [52]. Jade is a rule-based
approach that makes use of predefined rules and heuristics established by
user interface design principles and best practices. These rules, combined
with a minimal textual specification provided by the user in an application
programmer, automatically create input dialogues such as menus, buttons
and dialogue boxes. The user is required to know markup languages to pro-
vide such a specification. Jade also offers a direct manipulation editor that
allows to modify the output dialog with multiple look-and-feels, giving the
user more control over the final graphical layout of the dialog. Jade does not
add any functionality to the dialog box; instead, it focuses on creating its
visual layout [52]. One limitation that is noted, but not addressed, is that
Jade was created for end users; however, adjusting rules, dialog boxes and
some styles that are not supported in the Jade editor requires the services of a
designer who knows the syntax and format used. On the other hand, Mickey
exhibits a similar behaviour where the designer’s textual specification was
used as the input to generate a dialog box; but this text was a new language
based on Pascal, so it required the user to be familiar with a new syntax. The
key of Mickey specification model is the mapping of user interface techniques
to a particular Pascal constructs. The distinction between Mickey and Jade
is that while Jade has multiple consistent layouts, a graphical editor, and is
geared toward end users, Mickey offers a single consistent layout for all dialog
boxes, lacks a graphical editor to modify the output, and is a low-level tool
designed for Pascal designers [30].

Other tools that can be considered semi-automatic are tools that provide
design assistance to a designer in order to generate automatic UI such as
Trident [48, 2], Mecano [35] and Mobi-D [34]. These tools provide a method-
ology and a supporting environment with a set of techniques and tools to
produce UIs. The TRIDENT Project introduces a tree-based AIO selec-
tion technique for generating a UI, this technique provides a classification
of UI components based on their interactions, known as Abstract Concrete
interaction Objects (AIO) and Concrete interaction Objects (CIO). These
classification, are used to set rules that are then mapped by a decision tree
to produce an automatic selection of the AIOs. These rules can be based
on screen space, data relevance, user experience level, among other guide-
lines provided. For example, we can create a rule based on the user’s level
of experience and state that a list box would be best suited for selection
by an intermediate end user, while an edit box would be best suited for an
experienced end user. Some benefits using this methodology include a good

User Interface Design Tools 14

visibility of rules, an easy explanation of the reasoning and backtracking;
nevertheless, there are also drawbacks such as redundancy of rules and the
possibility that it becomes too large [48]. In the case of Mecano, it provides a
framework for assisting the development of UI interfaces aimed at designers.
The strength of Mecano is the application of design rules to a domain model
to generate an application but it relies on the designer to specify this domain
model and review it in an editor as shown in Figure 2.1, which illustrates
an example of a procedure for a medical treatment generated from a domain
model, displaying a choice between x-ray therapy and chemotherapy.

Figure 2.1: Intelligent designer tool in Mecano [27]

The domain model is used to generate windows and dialog elements as
well as the dynamic behaviour of such an interface automatically. After the
generation of the interface, the designer has the option of customising. This
option is to involve the end user in the process. The limitations of this ap-
proach is that it is focused on domain-specific interfaces like medical forms,
but it does not support generic model types automatically, so the manual
effort is higher for these types [35]. Mobi-D is a successor tool to Mecano,
it similarly generates form-based interfaces from domain models aimed at
designers, but it differs from Mecano in that it also includes the user in an
iterative loop. The cycle therefore begins with the reception of an informal
textual description of the end user task. The designer will then be able to
use model editor tools to define the domain model from this description.
Mobi-D recommends some presentation and interaction techniques to guide

15 CHAPTER 2. Related Work

the designer during design using the user-task description and the domain
model. For example, if the user needs to enter a number, Mobi-D provides
UI elements consistent with the model for the designer to choose from. In
this final phase, the user can help the designer even more by offering feed-
backs on each choice before the final UI is obtained [34]. We can immediately
infer that Mobi-D solved Mecano’s limitation of not supporting generic UIs,
but it is still not suitable for end users.

High-level language-based approaches like XWeb [29] can also be categorised
here. These approaches often involve improving existing languages to facil-
itate the creation of descriptions or specifications of interface requirements;
however it may not always produce an optimal UI, because refining the UI is a
manual process. Such is the case of XWeb, a web-based tool, that it is aimed
at designers and the approach of this tool is the focus on development of a
high level of semantic language to produce UIs automatically. This formal
specification is based on XML. XWeb produces UIs that are adaptable to all
devices and is built on a WWW architecture with his own protocol XTP to
retrieve information. Their method for creating UIs starts with the definition
of XViews, which are XML descriptions of elements that must be included in
the UI (application model). The XViews is then mapped to possible values
and interactors, which are also structured in XML trees. Interactors can be
seen as a widget kit, and they must be designed manually by designers too,
like the XViews description. One limitation of XWeb is that it may experi-
ence issues with screen layout on small devices and, if there are any, it must
be solved manually by the designer [29].

A different approach is the DB-USE [45] tool, which combines the task,
domain and user models for generating user interfaces. It is made to as-
sist UI designers, and in addition to creating the Interface, it also creates
the functionality and the actual application. DB-USE consist of five phases:
model analysis, relation making, UI design, application function design, and
code generation as shown in Figure 2.2, which provide an overview of the
process. The process starts with three inputs: a task model in a XML file, a
database that represents the domain model and a diagram file that captures
the capabilities and limitations of the end user such as experience, cultural
and psychological characteristics. The Model Editor will load these inputs
so that the model analyst can check or modify them if necessary. The UI de-
signer must next provide the actions task from which he wants to produce
the UI in order to connect the task model with the domain model. DB-USE
supports this interaction by displaying its sub-tasks in accordance with RST

User Interface Design Tools 16

principles (Rules for selecting the Sub-Tasks). In the UI design phase, the
UI builder automatically creates interfaces using mapping rules from the task
and domain, as well as control types chosen from the CIOs (Concrete Interac-
tion Objects) that meet the user’s preferences. Then, during the application
function design, the Function Editor Agent builds the functions of the ap-
plication using the input from the domain model, and after that, the code
generation phase produces the UI and application’s code. A messages base
for errors, warnings, and information to be displayed to users is also included
in DB-USE.

Figure 2.2: An overview of the DB-USE process [45]

17 CHAPTER 2. Related Work

Overall, DB-USE is able to produce user interfaces (UIs) and application
code for carrying out database applications’ generic functions, including dis-
play, add-new-value, update-new-value, delete-new-value, search-for-values,
review-value, cancel-operation, and exit functions. An example of an edition
generated by DB-USE is shown in Figure 2.3. The limited support for com-
plex UIs, such as navigating between dialogue boxes, which may be necessary
for some types of applications, is a limitation that is addressed for this tool.
However, we can also find the dependence on designer expertise as a limita-
tion; the designer must translate the inputs into the necessary format and
depends heavily on him on configuring the mapping rules and the selection
of CIOs in the UI design phase for producing good results [45].

Figure 2.3: Edition of an employee information form generated by
DB-USE [45]

2.2.3 Fully Automatic UID tools
In this section we will focus on fully automatic user interface generation tools,
the only distinction with semi-automatic tools is that these tools can pro-
vide a complete design with all the necessary components of a user interface

User Interface Design Tools 18

automatically. We will give an overview of the tools based on UI generation
techniques.

We start with HUMANOID [41], an early tool from the 1990s aimed at
designers to experiment with possible scenarios and dialogues during UI de-
velopment, it supports multiple levels of specification to generate a UI and
it also gives functionality. The interface is specified by elaborating a seman-
tic description with information regarding five dimensions that HUMANOID
proposes: Application Design, Presentation, Manipulation, Sequencing and
Action side effects. The Application Design defines the commands, objects,
variables and data flow constraints of the interface. The Manipulation has a
template mechanism to refine the UI step by step, in this dimension you can
see the effects of the object interactions. Then, there is the manipulation,
where you specify the actions and the gesture to call the action, finally there
is the sequencing, where you specify the order of the different displays that
are on the screen. These specifications do not have a specific order and can
be called several times during the development of the UI. One limitation is
that it lacks an interactive interface for creating the application description
and it does not support the interface design customisation since by default
it uses predetermined basic templates.

A more advanced tool is PUC [27], which is a model-based approach that
generates UI for computerised appliances. PUC can automatically gener-
ate two different types of user interface: graphical and voice, based on a
high-level description of a device’s function as shown in Figure 2.4. This
specification is xml-based and does not contain details about the appearance
of the interface, which is left to the interface generator. The PUC interface
generator contains extensive information about the data type of each device
component, its respective tag, either in audio via a url or in text via mark-up
tags, the dependency between variables and information about the similarity
of user interface elements in a group tree. All of the data that the generator
uses to make design decisions (using a decision tree) was gathered through
a user study. A limitation about this approach is that it presents inference
problems with regard to particular UI element operations that are not sup-
ported by all devices. For example, the addition of list items in an MP3
player is arbitrary while in an answering machine message the addition of a
new item in the list is always at the end. PUC was not a model with a general
solution [27]. A new technique was developed two years later and integrated
into the PUC tool to improve its limitations, Smart template [25] technique
supports a number of different representations, which allows the interface

19 CHAPTER 2. Related Work

generator to create different arrangements for a layout. For example, when
it recognises that an element can have several interaction representations,
the interface generator together with platform-specific controls can improve
the interface by choosing the appropriate control, Figure 2.5 shows different
representation designs for the same Time element, and we can see the appro-
priate one according to the device. Smart Templates are defined in advance
by template writers, who specify the different representations that a com-
ponent is likely to use. This specification is presented as rendering code for
interface generators and contains two parts: Control choice and Data trans-
lation. Control Choice uses rule techniques to decide which control should
be rendered, while data translation translates the state values into a spe-
cific format to the chosen control, and since controls usually use the same
data representation, its data translation can be shared across multiple plat-
forms. This approach gives the impression that these smart templates are
hand-coded even when they are used to automatically generate better UIs,
because the tool does not offer support in developing this smart templates,
it is considered to be in a conceptual level. However, as a future work the
authors are planning to implement many new Smart templates and provide
a list of templates for common appliances to generate UIs [25].

Figure 2.4: A simplified overview of PUC generating a UI [27]

Figure 2.5: Representations for time using Smart Templates [25]

Another based-model approach is Uniform [26] which its main contribu-
tion is to provide consistent UI even if inconsistent specifications are pro-
vided. Uniform is developed on top of the PUC tool, so it shares the same

User Interface Design Tools 20

specification language and part of the UI generation process. Figure 2.6
shows more details of this integration, where it can be seen how Uniform
starts from the knowledge-base generated by PUC and also how the UI is
then processed in 4 phases.

Figure 2.6: Uniform generation process integrated with PUC [26]

The mapping phase compares the new specifications with those of the
knowledge base to find similarities, the functional phase ensures functional
consistency, the abstract structural phase ensures structural consistency and
the concrete phase ensures a similar visual appearance with others. For that
reason the knowledge base is important in this architecture, and the the
mapping of functions from different appliances is the most relevant. Every
mapping is represented by a graph and distinguishes the similarities between
the appliances. For example, in Figure 2.7, we can see this mapping of func-
tions for media control (play, stop and pause), where it shows that a Pana-
sonic VCR has been the basis for consistency 3 times: itself, the answering

21 CHAPTER 2. Related Work

machine and the DVD Player. Since Cheap VCR uses only commands, in
its case it cannot be base for the others just for itself; this is represented by
infinity cost. The rest of appliances count 0 because they were generated
to be consistent with Panasonic VCR. Uniform includes these cost edges to
guarantee consistency, in case there is no similarity with any appliance, it
can traverse infinite cost edges. A limitation of this mapping is that Uniform
does not know why two devices are similar or how they are related, so the
mapping design rules cannot be fully automatic, it needs a better structure
to receive this information [26].

Figure 2.7: An example mapping graph of functions in Uniform [26]

Another tool that is implemented on top of PUC is Huddle [28]. This
tool focuses on creating task-based UIs automatically for systems that need
to connect multiple appliances. The purpose of this tool is to reduce the time
and effort required to program multiple devices into a single authoring tool,
like the universal remote control. Huddle requires the wiring diagram, which
is currently specified manually in XML by the designer, the specifications of
each device from the manufacturers, and the knowledge base of Uniform and
PUC. These three inputs are necessary to generate the UIs that will enable
the end user to connect their devices. Figure 2.8, provides an overview of
the Huddle architecture in which we can see the three inputs and also the
intermediate processes that automatically generate two types of interfaces:
the flow-based interface (FBI) and Aggregate User Interfaces (AUIs). To
understand the purpose of both UIs, we can look at Figure 2.9, it serves as

User Interface Design Tools 22

an illustration of a home theatre setup where the FBI allows the end user
to configure their appliances and set their goals on a TV and speakers, then
the AUI which becomes the main interface that controls both appliances,
shows the common characteristics of the content flow described in the FBI,
also it does not provide the full set of each appliance functionality, but only
the meaningful ones. The key idea behind this design is the use of the
content flow model, a novel concept built on top of the PUC and Uniform
architecture, shown in Figure 2.8.

Figure 2.8: An overview of the huddle architecture [28]

23 CHAPTER 2. Related Work

Figure 2.9: The flow based interface (FBI) and the aggregate User Interface
(AUI) of Huddle [28]

The content flow contains details about each appliance, including whether
it creates content (source), whether it can show material (sink), and whether
it can accept and transfer content to other appliances (pass-throughs). The
purpose of the content flow along with the wiring diagram, is to show how
all the appliances are connected so that Huddle may figure out how to start
a flow automatically. For example, the movie should only be accessible when
the scan feature of the dvd is disabled. Huddle also uses the GraphPlan
planning algorithm to enable the AUI. Although this tool was only proved
for home theaters, some of its limitations include the limited correspondence
of the content flow with some desired tasks to perform. In addition, there
is no support for modeling the initial wiring description or trouble-shooting
issues with it, which makes it inevitable the need for a designer with techni-
cal knowledge of appliances to configure this tool for end users [28]. Another
advanced tool that goes a step further with respect to UI generation is Sup-
ple [9, 7]. The Supple tool approaches UI generation as an optimisation
problem. It searches to reduce the amount of effort required by the end user
to complete the desired UI tasks. Supple uses three inputs to accomplish this:
the functional interface specification, which must be provided by a designer
and contains the interface elements and constraints; the device model, which
details the device’s capabilities, including the UI widgets that are available;
the constraints on those widgets; and the estimated user effort required to

User Interface Design Tools 24

manipulate those widgets; and the user trace (a user model), which con-
tains the user’s manipulation patterns on a given interface element. Using
these inputs, along with their rendering algorithm and cost function, Supple
generates multiple UI options and selects the one with the minimum cost.
Figure 2.10 provides an illustration of this process by showing a hierarchical
tree that represents the functional interface specification of an application
that manages a set of devices in a classroom and the UI that was generated
using the algorithm, the model device, and the user traces. Overall, the key
contributions are the new functional interface specification, the rendering al-
gorithm, and the addition of user traces [7].

Figure 2.10: An automatically generated UI for controlling devices in a class-
room by Supple [9]

As an extension of Supple, two additional tools were developed: Arnauld [8]
and the Ability Modeler [10] tools. Arnauld focuses on end users preferences
and customisation, while the Ability Modeler tool is designed for end users
with motor impairments. Previously, Supple’s cost function had shown the
possibility of capturing almost all end user preferences by giving specific ele-
ments more weight on user traces. However, using different parametrisations
in the cost function generated different UIs. For instance, Figure 2.11 shows
two alternative UIs with the identical inputs but using different parametri-
sations, the first UI favours navigation and the second UI favours convenient
widgets.

25 CHAPTER 2. Related Work

Figure 2.11: Two UI for controlling devices in a classroom with the same size
constraint generated by Supple [9]

As a result, Arnauld was developed as a tool that learns the correct
weights based on end user preferences expressed through concrete UI ex-
amples resulting from question generation algorithms, see Figure 2.12. A
study [9] on Arnauld has shown that it can capture almost all subjective
aesthetic and concerns of end users. On the other hand, Ability Modeler was
developed to learn the weights of a person’s motor performance by observ-
ing actions repeated multiple times such as pointing, dragging, list selection,
and multiple clicking, as shown in Figure 2.13, which is the setup of how
they collected data from participants with motor impairments. Figure 2.14
is an example of the comparison between two UIs generated by Supple and
Ability modeler, where it can be seen how participants without motor im-
pairments prefer lists to combo boxes and default target sizes, while par-
ticipants with motor impairments prefer buttons, larger lists. Its general
method can select features from a custom regression model. Additionally,
Ability Modeler tool has manual options to make adjustments to the vision
capability of each end user, such as increasing the size of the labels once the
final UI has been generated. Some limitations of Supple and its extensions,
it is the lack of support in modelling the functional interface specification,
requiring the configuration of the tool by a designer before the end user can
build a UI automatically. Further, despite the fact that its tree-structured in-
terface representation makes it possible to design simple UIs like dialog boxes,
it has not been tested with more complex ones like Outlook or Word [9].

User Interface Design Tools 26

Figure 2.12: An example of a question used by Arnauld [9]

Figure 2.13: Setup of the performance of basic tasks for Ability Modeler [9]

Figure 2.14: Comparison of UIs generated by Supple based on preferences [9]

27 CHAPTER 2. Related Work

2.3 Summary and Conclusions Drawn from Related
Work

We have conducted a review of various tools that offer automation tech-
niques in the field Automatic User Interface Generation, with a focus on
model-based UI tools. Between the 1990s and 2016 there was a rich body
of work in this field, but as time goes on, there is a lack of new tools. We
found a recent review paper identifying and analysing 28 contributions of
UI design research for modelling tools between 1980 and 2017 within the
GUI category, and it came to the conclusion that there are very few studies
on how the design of the UI impacts the creation of conceptual models, as
well as that there are few design recommendations found in most publications
and that there is little focus on the usability of these tools. Future research
on the impact of the design of UIDs tools is recommended by this review,
along with the requirements and needs of the users of modelling tools and
convincing recommendations for the design of UIs in modelling tools should
be investigated [43].

From the model-based tools presented, we can observe that most of them
are aimed at designers, providing them with tools and models to support
the generation of UIs. Some of these tools take into account the end user
in the design process (e.g.Mobi-D [34], Huddle [28], Supple [9], Arnauld [9],
Ability Modeler [9]), while others rely on conventional designs for genera-
tion (e.g.PUC [27]). Both approaches have demonstrated positive results.
Another finding is that we did not identify any semi-automatic or fully auto-
matic design tools for generating UIs that provide control over IoT smart de-
vices and things. Instead, we found fully manual tools such as , ThingWorx1,
Blynk2, among others. It is important to mention that this is not an exhaus-
tive review of all available tools, but rather an exploration of key concepts
and techniques in automatic UI generation.

We can also infer that the process for creating an interface (UI) automati-
cally for these model-based tools that are semi-automatic and fully automatic
typically begins with a conceptual design specification of the application
(e.g.Mickey [30], Jade [52], XWeb [29], Humanoid [41], Smart template [25]),
the domain (e.g.Trident [48], Mecano [35], Mobi-D [34]), the functionality
of the device (e.g.PUC [27], Uniform [26], Huddle [28]), or a combination
of textual specifications as in the case of DB-USE and Supple that com-
bine domain, user, and task in the case of DB-USE, or domain, user and
device, such as Supple. Following this specification each tool uses different

Summary and Conclusions Drawn from Related Work 28

techniques depending on its requirements to design and develop UIs auto-
matically. In Table 2.3, we present an overview of the tools with their most
dominant techniques that have been identified.

Tool Category Target
Audience Model UI Generation Techniques

Mickey [30] Semi-
automatic Designer Application-based,

Rule-based
Pascal editor, Mapping code
blocks, Code generation

Jade [52] Semi-
automatic Designer Application-based GUI Builder, Code generation,

Mapping rules
Humanoid [41] Fully

automatic Designer Knowledge-based,
Application-based

Template mechanism, Top-down
design

Trident [48, 2] Semi-
automatic Designer

Knowledge-based,
Domain-based,
task-model

GUI Builder, Model editor based
on rules, Mapping interaction ob-
jects

Mecano [35] Semi-
automatic Designer Domain-model Model editor based on rules, GUI

builder

Mobi-D [34] Semi-
automatic

Designer and
End user

Task-model,
Domain-based

Model editor based on task, Do-
main and integrating models, GUI
builder, Code generator, Help gen-
erator, Design assistant, Knowl-
edge base

XWeb [29] Semi-
automatic Designer Application-based,

Web-based Protocol XTP, XML tree structure

PUC [27] Fully
automatic Designer Device-based

Interface generator using decision
trees to render, Mapping objects,
Smart templates [25]

Uniform [26] Fully
automatic Designer Device-based Mapping functions based on simi-

larity

Huddle [28] Fully
automatic

Designer and
End user Device-based

Interface generator, knowledge
base, System-wide content flow
model

Supple [9, 7] Fully
automatic

Designer and
End user

Optimisation-based,
Domain-based,
User-based,
Device-based

Cost function, Optimisation algo-
rithm

Arnauld [9] Fully
automatic

Designer and
End user

Optimisation-based,
Preference-based,
Domain-based,
User-based,
Device-based

Machine learning algorithms, Rea-
soning and query generation mech-
anism

Ability
modeler [9]

Fully
automatic

Designer and
End user

Optimisation-based,
Domain-based,
User-based,
Device-based

Machine learning models

DB-USE [45] Semi-
automatic Designer

Domain-based,
User-based,
Task-based

Mapping based on rules, Model ed-
itor, GUI builder, Function editor,
Code generator

Table 2.1: Overview of the automatic UID generation tools

The techniques used in the UI generation process that were repeated by more
than one tool are as follows:

• GUI Builder: It is a graphical editor and also called WYSIWYG editor.
It allows to manipulate visual elements directly on the UI, usually

29 CHAPTER 2. Related Work

by dragging and dropping elements onto a canvas. The GUI builder
generates the necessary code that represents the design of the final UI.

• Model editor: it is an interactive editor that defines the data model
and architecture of the system.

• Function editor: Defines the functionality and logic of the system, used
to define the actions (interactions) in the UI.

• Knowledge base: It is a repository of information containing data, facts,
standards and other information.

• Mapping: It is a management technique, it contains specifications that
determine how data should be represented, we find mapping based on
rules, code or abstract and concrete interactions objects.

• Template mechanism: It allows to reuse elements and layouts of an
existing UI as a starting point.

• Code generator: It translates the design into code that can be used to
build the application, the language output is directly dependent on the
tool.

• Help generator: It generates documentation, tool-tips, tutorials and
other useful components to guide the user in the development of the
interface.

There are also techniques developed for specific tools such as the system-
wide content flow model, a system using a planning algorithm developed by
Huddle [28] to link the physical ports of the devices. The optimisation al-
gorithm and cost function provided by Supple to render a UI. The protocol
XTP and XML tree structure by XWeb [29]. Machine learning algorithms,
Reasoning and query generation mechanism by Arnauld [8] and the design
assistant by Mobi-D [34]. As they are specific techniques their limitations
will depend on the tool and requirements where they are developed.

The choice of UI generation techniques can be subjective or based by related
work. Often, UID tools are designed based on existing tools, by experience,
or combining different model-based approaches. However, regardless of the
approach taken, the user studies provide important feedback on the usability
and effectiveness of the tools, which can help make the right decisions when
choosing a UI generation technique. In this case Supple [9] and PUC [27],
Uniform [23] provides a user study for analysis; other tools, to the best of

Resulting Requirements 30

our knowledge, do not supply this information. We can also give a general
process in the context of an automatic user interface design tool based on this
model-based tools. This general process is based on similar steps described
in the UID tools with the exception of machine learning techniques such as
Supple and its derived tools, see Table 2.3:

1. Define the UI specifications.

2. Identify and select the abstract and concrete interaction objects that
will be used in the UI.

3. Map the abstract interaction objects to concrete objects.

4. Define the default layout within the UI for materialising the concrete
interaction objects automatically. For instance, specifying sizes, posi-
tion, alignments to avoid overlap with each other, and others.

5. Define the flow of the UI and the interactions between the end user and
application.

6. Generate or Integrate the UI design with the application functionality.

Another important aspect to consider based on the related work is the func-
tionality of UID tools. While pioneering tools like Mickey and Jade generate
UI code that can be integrated into the application, modern UID tools now
provide both the necessary application functionality and UI interaction ca-
pabilities to enable end users to make applications that are both robust and
easy to use.

2.4 Resulting Requirements
As we discussed in Chapter 1, there is a need for end users to have more con-
trol over the design of their own user interfaces in the context of IoT authoring
tools. For those without programming skills, fully automatic UI design tools
offer a promising solution for creating IoT applications by empowering end
users with a module to design their own interfaces, we can make it more
accessible to a wider audience.

In this chapter, we analysed several model-based tools in the area of au-
tomatic user interface generation to identify the techniques and process to
arrive at this automation in order to gather various functional requirements,
we also relied on a research study presented by J. Wang et al [51] comparing

31 CHAPTER 2. Related Work

the three most popular UID tools to derive our non-functional requirements
that such module should meet. The requirements together with some re-
search papers or studies from which they are derived are listed below. These
requirements form part of the answer to our first research question (RQ1)
where we define as functional requirements: R1, R3 and non-functional re-
quirements: R2, R4, R4.1, R4.2.

Requirement 1 (R1). Support for end users to model the specification
of the UI.
Motivated by the inferred general process of the model-based tools (e.g.
Mickey [30], Jade [52], Humanoid [41], Trident [2, 47], Mecano [35], Mobi-D [34],
XWeb [29], PUC [27], Uniform [23], Huddle [28], DB-USE [45]) for automatic
user interface design tools described in the previous section. End users should
be provided with a module that allows them to specify which elements, con-
trols or components should be present in the user interface of their IoT ap-
plications that they will interact with without writing any lines of code.

Requirement 2 (R2). Generate a quickly and efficient UI design with min-
imal effort.
Motivated by many presented fully automatic UID tools (e.g. Humanoid [41],
PUC [27], Uniform [23], Huddle [28], Supple [7, 9], Arnauld [8], Ability mod-
eler [10]). The effort required by the end user to generate the desired user
interface in accordance with their specifications is one of the differences be-
tween fully automatic and semi-automatic UID tools and we are looking to
provide a fully automatic tool. Therefore, the module must be able to gather
specifications with the least amount of work and rapidly generate the UI.

Requirement 3 (R3). Integrate UI design with the application functional-
ity.
Motivated by all the fully automatic UID tools analysed (e.g. Humanoid [41],
PUC [27], Uniform [23], Huddle [28], Supple [7, 9], Arnauld [8], Ability mod-
eler [10]), where the generated user interface is aligned with the functionality
and capabilities of the application. The module must be able to demonstrate
the functionality of the applications created in the context of IoT authoring
tools, offering a complete user experience.

Requirement 4 (R4). Provide a friendly and simple user interface easy
to use.
This requirement is aimed to the user interface of the module that the end
user must engage with in order to automatically generate an IoT user inter-

Resulting Requirements 32

face (R1). The module must be straightforward, friendly, and simple to use.
This requirement is subdivided into two sub-requirements.

Requirement 4.1 (R4.1). Simplicity in design.
End users who have experience with software applications in any context
can find a way to interact with a complex user interface without prior train-
ing [45]. However, our target users are individuals with little to no knowledge
of programming or design skills, which may group end users with little ex-
perience in IoT authoring tools. Therefore, it is important for the module
to have a simple interface that allows any end user to interact with it, pro-
viding their specific needs and requirements mentioned in R1. Motivated by
the UID tool DB-USE [45] that groups users based on some characteristics
such as training and experience.

Requirement 4.2 (R4.2). The module should be of quality.
There are not many studies that concentrate on the usability and user expe-
rience of UID tools because the interest is in the evaluation of the generated
user interface rather than the tool at that initial stage [51]. However, our
interest is that the module (R1) not only generates the desired user interface
but can also provide satisfaction in usability and user experience, so we will
use the Post-study System Usability Questionnaire (PSSUQ), the same eval-
uation used by J. Wang et al. [51] to identify the strengths and weaknesses
of the module with respect to System Usefulness, Information Quality and
Interface Quality.

3
Background

This chapter will focus on our second research question (RQ2) along with
the principles and heuristics required to satisfy the requirements of the our
first research question (RQ1).

We first give a comprehensive overview of the eSPACE authoring tool, which
will be the solution that we will upgrade by including our module to allow
fully automatic UID. Next, we will discuss the eSPACE reference framework
we must use, to create a user interface (UI) for controlling smart devices and
things along with its respective functionality.

The chapter concludes with the section on guidelines and heuristics, which
presents new concepts we must consider in our module as well as solutions
and principles to adhere to in order to meet the functional requirement R1
and the non-functional requirements R2 and R4 of RQ1.

3.1 The eSPACE Framework
In the previous chapter, we presented and analysed several UID tools for
generating user interfaces automatically, which we classified as either semi-
automatic or fully-automatic. However, we have found that there are no
fully-automatic tools available specifically for end users within the context of

The eSPACE Framework 34

an IoT authoring tool. Instead of beginning from scratch to solve this prob-
lem, we start with a semi-automatic tool, which is the eSPACE authoring
tool [36].

The Smart PlACE (eSPACE) authoring tool is an existing IoT authoring tool
that unifies cross-device and IoT user interfaces under the eSPACE frame-
work enabling end users to control differents smart devices and things. Its
framework uses appropriate abstractions meant for designers or developers
to simplify the UID process. Based on this, the developer can create a user-
friendly authoring environment that can be used by end users to author their
own UIs and applications.

Figure 3.1: The eSPACE reference framework [36]

The eSPACE framework is composed of 4 layers as shown in Figure 3.1,
it follows an approach that enables the development of new compositions and
functionalities that can be extended over time:

• Task layer: It contains active components (AC), which are actions that
are part of an application. Examples of these actions are adjusting the
brightness of the TV, turning the light on or off, browsing the mobile
gallery, among others. An important feature of this layer is that the
ACs can be linked to each other to build more complex applications by
reusing code, such as browsing the mobile gallery and displaying it on
the TV.

35 CHAPTER 3. Background

• User interface elements layer: It contains UI elements (UIe) such as
buttons, text fields, containers, checkbox, sliders, navigation controls,
among others. Like ACs, UIes can also be linked with other UIes
to form more complex UI elements. For example, to create a video
player,we can combine a play, pause, and stop button UIe with a video
frame UIe.

• Distributed components layer: It contains Distributed Components
(DComps), consisting of at least one UI element, one AC element,
or both, in which case they are linked to form rules. The rules can
be considered as configurations in the application, such as turning off
the room light when the user turned on the TV. As a result, an appli-
cation can be made up of one or more DComps. The particularity of
DComps is that any DComp can be distributed across different devices
and applications.

• The final user interfaces layer: It contains the application aspect of
the Final User Interface (FUI) which is a DComp assigned to a de-
vice. Alternatively, it may also be composed of multiple DComps. As
illustrated in Figure3.1, it is noteworthy that an application could en-
compass multiple FUIs, and these FUIs are created on smart devices
equipped with display capabilities.

Employing this framework, the eSPACE authoring tool presents a valuable
solution for end users seeking to control all their smart devices and things
on a single platform that can cope with their individual needs. This solution
empowers end users to create and customise IoT user interfaces for their
applications through a GUI builder as shown in Figure 3.2 which corresponds
to the UI design view where the end user drags and drops UI elements onto
the canvas. Then, to provide the desired functionality, the end user moves to
the interaction view, as shown in Figure 3.3, and using the same technique,
the end user drags and drops the smart devices and things onto the canvas
to subsequently link them to add functionality to the created UI elements.
Another possibility for linking functionality to these buttons is to navigate
to the rules view, which offers a more textual interface. In the rules view
interaction rules are created by formulating IF-THEN statements, as depicted
in Figure 3.4.

The eSPACE Framework 36

Figure 3.2: eSPACE authoring tool - UI design view [36]

Figure 3.3: eSPACE authoring tool - interaction view [36]

37 CHAPTER 3. Background

Figure 3.4: eSPACE authoring tool - rules view [36]

3.1.1 The eSPACE App Creation Process
In the previous section we introduced the eSPACE framework and its re-
spective elements which we should focus on in order to upgrade the eSPACE
authoring tool. In our specific case it is not necessary to modify the existing
architecture and framework, but we must concentrate on how the applica-
tions are structured to recreate the development of an IoT application with
its respective functionality.

In Figure 3.5, we provide an example of a welcome home application to illus-
trate how to apply the eSPACE reference framework layers. In this example,
the welcome home app is used on the smartphone, which requires the creation
of a final user interface (FUI), the devices on which we can create the FUI will
be called screen devices. This application controls a smartTV (TV DComp)

The eSPACE Framework 38

and a smartLight (Light DComp) by switching their states from "on" to "off"
and vice versa. To control this action (AC) a button (UIe) is used which will
trigger the action by a click.

Welcome Home Application

TV DComp

FUI

Light DComp

Turn on/off ACon click
UIe button

ON
Turn on/off ACon click

UIe button
ON

smart Lightsmart TV

smart Phone

Figure 3.5: Simplified eSPACE model for a welcome home application

The process of the Welcome Home Application example within the
eSPACE authoring tool begins with the creation of the FUI on the Smart-
phone. First, the user goes to the UI design view, illustrated in Figure 3.2.
In this view, the user has full flexibility to design the user interface on top of
the smartphone by creating the corresponding UI buttons (UIe). Then, after
designing the UI, the user creates the TV DComp and Light DComp in the
interaction view or rules view, which is shown in Figure 3.3 and Figure 3.4.
When users define interaction rules in the interaction or rules view to assign
a functionality to each button, eSPACE is generating a model which links
the UI element (UIe) to an active component (AC) (which provides the
selected functionality) and saves this composition into a DComp. Once the
DComps are created they form a part of the FUI and the user can interact
with this FUI to trigger the desired interaction on their smartphone.

Although the steps within the eSPACE authoring tool was not thor-
oughly explained, it is clear that creating an IoT application requires several
steps over different views and demands some effort for the configuration of
each created UI button, not to mention that it relies on basic knowledge
in UI designs to create a well-designed UI. As a result this tool can be
considered as a semi-automatic solution within the context of UID tools.

39 CHAPTER 3. Background

For our purpose and requirements, we need the eSPACE authoring tool
to level up and become a fully automatic UID tool for the generation of
IoT applications.
To showcase the current functionality and features of the tool, in Figure 3.6,
we present the plan of a hypothetical smart home that was designed for
its evaluation. The house plan includes all the smart devices and things
configured in the eSPACE authoring tool together with their status. It
is important to mention that this house plan has only been created for
participants to see what happens in the smart home when using their self
created applications.

Figure 3.6: The eSPACE plan house: Simulation of a smart home

3.2 Guidelines and Heuristics

Our requirements R1 and R2 describe the need to provide a module
that allows the end user to specify UI elements, controls or components
with minimal effort and obtain the result quickly. Previous research in
fully automatic UID tools introduced many techniques and guidelines for
providing a module that takes as input this UI specifications. However,
those UID tools aimed at end users require an initial configuration by a
designer. Our goal is to give end users complete control without the need
for a specialist.

Guidelines and Heuristics 40

The closest solution and the one that motivates us, is found in AR-
NAULD [8], where dialog boxes are used to gather user preferences as shown
in the Figure 3.7.

Figure 3.7: Preference for light intensity control used by Arnauld [8]

Although this approach in ARNAULD serves more as a complement to
better understand the end user before beginning the UI generation process.
We can extend this method to not only gather user preferences but also user
requirements and to make sure that the module does not present usability
problems, we can follow the basic principles of UI design [6] listed below:

• Design guideline 1 (DG1): Make common elements (e.g. buttons, text
fields, checkboxes, sliders, progress bars) work in a predictable way.

• Design guideline 2 (DG2): Keep interfaces simple. Show only elements
that serve a user’s purpose.

• Design guideline 3 (DG3): Maintain high discoverability (e.g. shadows
for buttons).

• Design guideline 4 (DG4): Respect the user’s eye and attention
(e.g. proper alignment, avoid including colours or buttons excessively).

• Design guideline 5 (DG5): Minimise the amount of actions (clicks)
required to complete tasks.

• Design guideline 6 (DG6): Put controls near objects that users want
to control.

• Design guideline 7 (DG7): Provide feedback (e.g. messages after the
user performs an action).

• Design guideline 8 (DG8): Use conventional UI design patterns
(e.g. breadcrumbs design pattern).

41 CHAPTER 3. Background

• Design guideline 9 (DG9): Maintain consistency.

• Design guideline 10 (DG10): Provide next steps which users can deduce
naturally.

We already have the starting point for designing our module, but we
still need to incorporate another concept used in fully automatic UID
tools, which is the definition of a default layout for the UI they generate.
The default UI for our particular case would be the FUI in accordance
with the eSPACE reference framework and the same can be generated
for any device in which an interface can be created such as smartphones,
smart TVs, laptops, and other devices. Because of this, depending on
these devices, the size of the UI elements, the available space and the min-
imum size at which end users can still view them must be taken into account.

We found some web resources [15, 5] stating that the minimum possi-
ble font size for desktop and smartphone should be 16pt. We also found
a study of a responsive web design on a TV [33] indicating a minimum of
22pt for smart TVs and a study on the influence of the layout usability for
a smartwatch [19] pointing 12pt as a better font size but we did not find
information on other devices. This search leads us to a solution proposed
by Matthew James Taylor [42], an expert website developer since 1997,
who proposes the values Table 3.1, as a fluid font size according to the
corresponding screen width. These values are calculated with the function
calc(15px + 0.390625vw), where vw stands for the viewport of the screen
width.

Screen width Font Size
< 320px 12px

320px 16px
768px 18px

1024px 19px
1280px 20px
1536px 21px
1920px 23px
2560px 25px

Table 3.1: Minimum font sizes [42]

Guidelines and Heuristics 42

We adopt this solution to set the minimum font size for each device.
In essence, our approach sets the minimum font size as calc(15px +
0.00390625 * width). However, as explained above, the font size for
smartwatches is 12px, a value we do not obtain based on the function.
Consequently, we have adjusted the Table 3.1 to adapt this setting to the
screen widths of less than 320px that smartwatches may have. Now that we
know the minimum font size, the heuristic for determining the maximum
font size we will use is to first identify the minimum font size and from
there add 1pt as long as there is space available until the maximum is reached.

Finally, we can build some different default layouts for the FUI by
using these values and adhering to the principles of UI design described
above. Chapter 4 will go into further detail on the default layout.

4
Design and Implementation

The following chapter presents the proof-of-concept prototype for the
generation of IoT applications as a result of the derived requirements from
the research of the related work and the eSPACE reference framework fol-
lowing the principles and heuristics defined in the previous Chapter 3. Our
prototype has been constructed to answer our third research question (RQ3),
which will be the focus of a user study and whose evaluation is covered in
depth in the Chapter 5.

We start by explaining the modifications that must be made to the
current eSPACE authoring tool, then move on to the front-end of our proto-
type, its implementation and a use case that demonstrates its functionality.
Finally we end with a summary and discussion section that outlines some
considerations and limitations about the tool.

4.1 Generation of IoT Applications
We will add our module to the eSPACE authoring tool to create our proof-of-
concept prototype of the generation of IoT Applications, which means that
we will adopt its reference framework and existing functionality introduced
in the Section 3.1. For the present module we do not need to modify the
back-end of the tool. Instead, we will concentrate on a new fully automatic

Generation of IoT Applications 44

module that extends its current features by including a new option to gener-
ate applications following the principles described in Section 3.2. As a result,
we have to make some modifications to the current application creation pro-
cess and adjust it to replace the UI design and interaction processes that are
involved and turn it into a single fluid process.

4.1.1 App Generation Process
We illustrate the flowchart of the app generation process in Figure 4.1. This
"Generation of the app" starts by requesting the name and description of the
app, then requests the screen devices that will be used in the app, for which
the final user interface (FUI) will be created. The eSPACE framework can
contain several screen devices for the same application, therefore our first
loop begins:

1. For each screen device selected, it requests for the smart devices or
things that the user wants to control with that particular screen device.
At this point there is no distinction between screen devices and things,
we therefore refer to it as device. Then starts our second loop:

1.1 For each device or thing selected, it requests the actions (ACs) that
the user wants to perform, followed by a question where users can
choose to customise the representation (UIe) of the action or skip
this step. In case that the customisation is chosen, then the third
loop begins:

1.1.1 For each action, it requests to select the preferred representa-
tion (UIe).

1.2 For each screen device selected, the user is requested to select their
preferred FUI between two possible choices.

After this final loop is finished, the process can be redirected to three
different views. One option that returns to the main view, another option
that opens the application generated and the last option in case some
manual adjustments are needed on a particular FUI, it redirects to the
UI design view.

After defining this process, we moved on to designing the user inter-
face of the module in accordance with the guidelines and heuristics laid out
in the Section 3.2.

45 CHAPTER 4. Design and Implementation

Get name and
description of the App

Get screen devices to
be used in the App

[FUI]

For each screen device

Get devices or things
you want to control

via the screen device

For each device/ thing

Get actions you want
to perform for the
selected device or

thing

Yes

Customisation?

For each action

Select the UI element
of preference for the

selected action

Select the FUI of
preference for the
selected screen

device of the App

No

Begin: Generation of
the App

Home Manual adjustments

End: Go to home
page

End: Open the App
on screen device

End: Go to UI design-
view page

Test

Redirection?

Figure 4.1: Flowchart of the generation of IoT Applications

Generation of IoT Applications 46

4.1.2 Front-end Design
We briefly discussed ARNAULD’s method in Section 3.2 to gather user pref-
erences and how this solution serves our purposes. Therefore, we propose to
expand this solution to gather not only user preferences but also user require-
ments to generate an IoT application, as shown in Figure 4.1. Our module
based on this dialog box solution is presented in Appendix A, which contains
the mockups that we produced according to the app generation process as a
multi-step form wizard, following the basic UI design principles listed in the
Section 3.2.

4.1.3 Default IoT Application Design
There are several forms to represent the look and feel of the IoT Application
and the more elements and/or components it includes, the more options there
are. In this initial stage of our module, only two templates are being provided
as options for the user to choose their preferred final user interface (FUI).
The elements that are considered in the final user interface are the following:

• Name of the App: A text represented with a label.

• Name of the device or thing: A text represented with a label, with the
purpose of grouping the actions that can be performed for the smart
device or thing.

• Action: The text of the action represented with a label and the value of
the action represented as a button, slider, checkbox or other UI element
chosen by the user.

With these elements, we create the following two templates shown in
Figure 4.2, as the default options for the FUI. The first template, option A,
seeks to centre all elements vertically; while the second template, option B,
divides the actions into two columns, with the last action being centred if
the number of actions is odd. Both templates maintain the same element
size, following guidelines provided in Table 3.1 and the heuristics described
in Section 3.2.

During the creation of these templates, we followed the basic princi-
ples outlined in Section 3.2. However, DG5, DG8, and DG10 were not
considered, as the FUI is intended to be a single screen that controls all the
desired smart devices rather than a multi-stage process.

47 CHAPTER 4. Design and Implementation

Option A

Name of the App

Name of the device ot thing

Action #1

Action #3

Action #2

Option B

Name of the App

Name of the device ot thing

Action #1

Action #3

Action #2

W
W/2

W

W/4
W/2

Figure 4.2: Default templates for the Final User Interface

4.2 Implementation

4.2.1 Technology
The eSPACE authoring tool prototype is implemented as a web application
using the Spring Boot framework. As back-end it uses Java, and as front-end
it uses JavaScript, HTML5, CSS3 and additional libraries for app creation
such as canvasutilities and mxGraph. Our module uses the same front-end
technologies to recreate a multi-step form wizard shown in Appendix A.

4.2.2 Generate App View
We added the "Generate App..." option, which leads to the extension of
our module, to the main page of the eSPACE authoring tool. The module
view includes its own HTML page with all the tags that define the page and
the feedback messages, shown in Appendix A, with a separate stylesheet
(CSS file). The primary colours of the tool are preserved so that it does not
resemble an external option, as illustrated in the Figure 4.3, which is the
starting point of the Generate App view. We used JavaScript to dynamically
create blocks of HTML code and incorporate them into the HTML page, to
represent the elements involving loops within the flowchart from Figure 4.1.

As some steps of this view do not require the use of additional li-
braries and the code is relatively simple, in this section, we focus on the
more complex implementations details we had to deal with.

Implementation 48

Figure 4.3: Generate App view: Start

One of the complexities that we had to deal with was the representation
of the actions. Although we only used the UI elements that the tool had,
the problem was that conventionally not all representations were suitable for
a certain action. For example, to turn on or off a light, the checkbox is not
a conventional representation for that effect. Consequently, a designer must
decide which elements are better than others. During the analysis of the
related work, a technique known as Smart templates [25] was introduced.
It was developed on top of PUC [27], dealt with the same situation, and
used this technique to help its interface generator chose the appropriate
control. Based on that study we can use the same approach, employing
Smart Templates using XML.

We then define our own XML language to group the UI elements, in
order to identify the suitable representation to execute an action. For
example, when executing actions that require adjusting a value such as
changing the intensity of a light, adjusting the speed of a ventilator, it is
preferable to use representations such as sliders or counters. This grouping
is specified by the tag <group> that we can see in lines 3, 13, and 19 of
the Listing 4.1, the attribute group-type specifies the category that we
established, in this case default, toggle-buttons, and adjust-buttons
respectively. These categories were created based on our observations of the
tool’s most common actions. The adjust-buttons groups UI elements that
are suitable to adjust values, toggle-buttons groups UI elements that are
suitable to switch states back and forth, and default category was created
in case a particular action could not be captured by the previous ones, such

49 CHAPTER 4. Design and Implementation

as change the mode to silence, not disturb or loud.

Finally, the UI element is defined with the <UIe> tag, as seen on line
4, and the attributes required for this definition are the type, which
determines what type of UI element it is. The label, which is the name
used in the module to display the UI elements. The icon, which is the
image that represents the UI element. The id, which is an identifier. The
require, which can be text or image depending on the HTML attributes
of the UI element, for example a button needs a text or image to give it
context. The style, which is the CSS used for the UI element appearance
in the module. The customStyles and customLabel, based on the base
code of the tool, which are the categories used to identify the UI element.
To retrieve the data from this configuration file, we used AJAX, and to
provide an illustration, Figure 4.4 represents the default category.

1 <?xml ve r s i on=" 1 .0 " encoding=" utf −8" ?>
2 <groupTemplate>
3 <group group−type=" d e f au l t ">
4 <UIe type=" button " l a b e l=" opt ion ␣A" i con=" / images /UIe/ labe lButton . png "

id="UIe1 " r e qu i r e=" text " s t y l e=" width:120px ; padding−bottom:5px ;
padding−top:7px ; " customStyles=" labe lButton " customLabel=" Label ␣
Button ">

5 </UIe>
6 <UIe type=" button " l a b e l=" opt ion ␣B" icon=" / images /UIe/ labelRoundButton .

png " id="UIe2 " r e qu i r e=" text " s t y l e=" width:73px ; padding:4px ; "
customStyles=" roundLabelButton " customLabel=" Label ␣Round␣Button ">

7 </UIe>
8 <UIe type=" button " l a b e l=" opt ion ␣C" icon=" / images /UIe/imgRoundButton . png

" id="UIe4 " r e qu i r e=" image " s t y l e=" width:73px ; padding:4px ; "
customStyles=" roundimageButton " customLabel=" Image␣Round␣Button ">

9 </UIe>
10 <UIe type=" button " l a b e l=" opt ion ␣D" icon=" / images /UIe/ imgButton . png " id=

"UIe3 " r e qu i r e=" image " s t y l e=" width:120px ; padding−bottom:5px ; padding
−top:7px ; " customStyles=" imageButton " customLabel=" Image␣Button ">

11 </UIe>
12 </group>
13 <group group−type=" togg le−buttons ">
14 <UIe type=" button " l a b e l=" opt ion ␣A" i con=" / images /UIe/imgRoundButton . png

" id="UIe4 " r e qu i r e=" image " s t y l e=" width:73px ; padding:4px ; "
customStyles=" roundimageButton " customLabel=" Image␣Round␣Button ">

15 </UIe>
16 <UIe type=" button " l a b e l=" opt ion ␣B" icon=" / images /UIe/powerRoundButton .

png " r e qu i r e=" text " id="UIe17 " s t y l e=" width:73px ; padding:4px ; "
customStyles=" powerimageButton " customLabel="Power␣Round␣Button ">

17 </UIe>
18 </group>
19 <group group−type=" adjust−buttons ">
20 <UIe type=" s l i d e r " l a b e l=" opt ion ␣A" icon=" / images /UIe/ s l i d e r . png " id="

UIe19 " r e qu i r e=" text " s t y l e=" width:210px ; padding−bottom:6px ; "
customStyles=" s l i d e r " customLabel=" S l i d e r ␣Element ">

21 </UIe>
22 </group>
23 </groupTemplate>

Listing 4.1: Snippet of choice-buttons.xml example for grouping UI elements

Implementation 50

With this method, we can continue to create new groups, change some repre-
sentations, or even modify the option’s name without having to make changes
directly in the code view.

Figure 4.4: Generate App view: Representation (UIe) for the action

The implementation of the FUI was another issue at the time, and
its solution will be explained in two parts. The first part, which is the
implementation of the FUI, will be shown later in Section 4.2.3. In this
section, we assume that the FUI is already generated and we continue with
the discussion of displaying the two default FUI.

Once the process to gather all the user’s requirements and preferences
is completed, the two options for the FUI are generated and hidden in
HTML code blocks in the page. At this point, to display both options we
use the HTML2Canvas JavaScript library to take a screenshot of the HTML
content of both FUIs so that we can move it and resize it as needed in the
current step, as demonstrated in Figure 4.5. We provide a fragment of this
implementation in Listing 4.2, where it captures the contents of option A,
the first default FUI, and resize it to a scale Factor of 300, which is the size
of the container from Figure 4.5.

51 CHAPTER 4. Design and Implementation

1 var canvasOptions = {
// Set the width and he ight equal to the o r i g i n a l content he ight
width : pageContainerChoiceA . of f setWidth ,
he ight : pageContainerChoiceA . o f f s e tHe i gh t

5 } ;

html2canvas (pageContainerChoiceA , canvasOptions) . then (func t i on (canvas) {
var imageContainer = document . getElementById (’ image−conta iner−

choiceA− ’ + IdDevice) ;
var res izedCanvas = document . createElement (’ canvas ’) ;

10 var re s i z edContext = res izedCanvas . getContext (’ 2d ’) ;

// Clear the e x i s t i n g content in the imageContainer
imageContainer . innerHTML = ’ ’ ;

15 // Res i ze the canvas to the de s i r ed width whi l e mainta in ing aspect
r a t i o

var s ca l eFac to r = 300 / canvas . width ;
res izedCanvas . width = 300 ;
res izedCanvas . he ight = canvas . he ight ∗ s c a l eFac to r ;

20 // Sca l e and draw the o r i g i n a l canvas onto the r e s i z e d canvas
re s i z edContext . drawImage (canvas , 0 , 0 , res i zedCanvas . width ,

res i zedCanvas . he ight) ;

imageContainer . appendChild (res izedCanvas) ;
pageContainerChoiceA . s t y l e . d i sp l ay = ’ none ’ ;

25 }) ;

Listing 4.2: JavaScript code snippet for displaying the FUI options

Figure 4.5: Generate App view: Selection for the FUI

Implementation 52

4.2.3 The Final User Interface

Attributes selected by the end-user

Name of the App: Label Color

Name of the device/thing: Label Color

Action: Type of UI element (Round Button)

 Label Color or Background Image

 Background Color

Fixed attributes

Name of the App: Label Size, Height, Width, Left, Top.

Name of the Device: Label Size, Height, Width, Left, Top.

Action: Line Color, Line Style, Height, Width, Left, Top,

 Label Alignment and Label Size.

Figure 4.6: Default Final User Interface (Option B) viewed on a Tablet

In this section we focus on the implementation of the two default FUI options
from Figure 4.2 that our module generates. As the eSPACE authoring tool
is a web application, we used Bootstrap library to create both FUI options
in HTML code. Bootstrap’s predefined classes aligned with the structure of
our two default templates. In Figure 4.6, we illustrate the default option B
generated on a tablet, highlighting the attributes provided to the user for
customisation, along with the fixed attributes whose values are assigned by
the system.

Within the fixed attributes the system assigns the following default
values to lineColor as #2e6da4, lineStyle as solid and labelAlignment
as center. The remaining ones are calculated based on the LabelSize and
the dimensions of the screen device. The dimensions of each screen device
are retrieved from the database and to get the font size of the UI elements
in the screen device, we create a function getSizeUIelement() shown in
Listing 4.3, where it receives as parameter the screen device. It starts by
getting the minimum font size in line 6 according to the Table 3.1. The
margin variable from line 7, represents the underlying white space between
elements, initially set to 10 to get a separation of 20 pixels between two
elements, this value was chosen from our observations, we prioritised the
focus and attention of the end user based on our content, as recommended
by Mads Soegaard in The Power of White Space in Design [40]. After this
initialisation, we call the function getTotalPixelsChoiceA() to get the
total pixels that all elements of Option A occupy across the length and

53 CHAPTER 4. Design and Implementation

width of the screen device. This function helps us to check if there is a
blank space to further increase the font size, hence in lines 13 and 14, we
calculate the remaining space. If there is space in both height and width
then we increase the font size by 1 and recalculate the total pixel occupancy
as shown in line 22. With these values, we can calculate the new font size
based on the remaining space divided by the height and width difference
respectively as shown in lines 25 to 32. Finally, in line 34, we can see the
case where there is no space to grow, therefore we reduce the space between
the elements to a smaller margin and we keep the minimum font size of the
start. Although this last case indicates that the elements do not fit on the
screen, the FUI does not suffer from this because it automatically includes
a scroll to display all the items. The same procedure is used for option
B of the default FUI to compare it to option A’s maximum font size and
determine which font size fits in both templates.

1 f unc t i on getS izeUIe lement (sc reenDev ice) {
2 const idScreenDev ice = screenDev ice [0] ;
3 const width = screenDev ice [2] ;
4 const he ight = screenDev ice [3] ;
5 // get the minimum font s i z e
6 l e t f o n tS i z e = getFontS ize (width) ;
7 l e t margin = 10 ;
8 // F i r s t : Check i f everyth ing f i t s in the s c r e en
9 l e t output = getTota lPixe l sChoiceA (idScreenDevice , f on tS i z e , true ,

margin) ;
10 l e t to ta lP ixe l sHe ightCho iceA = output [0] ;
11 l e t totalPixe lsWidthChoiceA = output [1] ;
12 l e t remainSpaceH = width − to ta lP ixe l sHe ightCho iceA ;
13 l e t remainSpaceW = he ight − totalPixe lsWidthChoiceA ;
14 i f (remainSpaceH > 0 && remainSpaceW > 0) {
15 conso l e . l og (" not␣ over f l ow ") ;
16 l e t temp = fon tS i z e + 1 ;
17 // Second : Check i f we can i n c r e a s e the s i z e
18 l e t outputA = getTota lPixe l sChoiceA (idScreenDevice , temp , true ,

margin) ;
19 // We get the space that sums per one s i z e
20 l e t he ightPerSizeA = outputA [0] − to ta lP ixe l sHe ightCho iceA ;
21 l e t widthPerSizeA = outputA [1] − totalPixe lsWidthChoiceA ;
22 l e t remainSpaceHA = (he ight − to ta lP ixe l sHe ightCho iceA) ;
23 l e t remainSpaceWA = (width − totalPixe lsWidthChoiceA) ;
24 l e t fontS izeHeightA = Math . f l o o r (remainSpaceHA / heightPerSizeA) ;
25 l e t fontSizeWidthA = Math . f l o o r (remainSpaceWA / widthPerSizeA) ;
26 f o n tS i z e += Math . min (fontSizeHeightA , fontSizeWidthA) ;
27 } e l s e {
28 conso l e . l og (" over f l ow ") ;
29 // This does not a f f e c t the f u i as a d e f au l t s c r o l l i s c r ea ted
30 r e turn [f on tS i z e , margin] ;
31 }
32 r e turn [f on tS i z e , margin] ;
33 }

Listing 4.3: JavaScript code snippet for getting the size of the UI elements

Use Case Demonstration 54

Finally, the eSPACE authoring tool had all the necessary functions acces-
sible to manage and retrieve the data from the database through the RESTful
API, which made it easier to integrate this functionality on the FUI selected
by the user. It is also important to mention that because our flowchart is se-
quential and these functions were created for an asynchronous process using
promises, we had to use the keyword async along with the keyword await
within that function to pause the execution until it is resolved. As a result,
the performance may suffer if we create an application that uses a lot of
different smart devices or things.

4.3 Use Case Demonstration
In this section, we focus on demonstrating how to generate IoT Applications
using our module. In a previous section in Chapter 3, we showed a Welcome
Home Application example and how the eSPACE framework would be used
to model it in Figure 3.5. We use this example to demonstrate its creation
using our tool that is configured with the smart environment shown in
Figure 3.6.

Figure 4.7: Use Case: Selection of screen devices

We start by entering our module with the option "Generate App..." from
the main page of the eSPACE authoring tool, then we write the name of the
application and a description, in this case: Welcome Home. The view of this
first input is shown in Figure 4.3. The next step, as shown in Figure 4.7,
presents the screen devices contained in the tool and asks the user to select

55 CHAPTER 4. Design and Implementation

the device on which they will be running the application. In our example,
we selected Alex smartphone.

The module then displays the message "Let’s start with Alex Smartphone"
as the start of the loop, and asks for the colours that we want to use in this
application, by default we left the configured ones: blue for the title and
mustard for other labels. Next, we must select the smart devices or things
that we want to control with the application. Following the example, we
selected the Smart TV and Living Room Light as shown in Figure 4.8. Note
that we are in the initial step (1) of the first loop of Section 4.1.1.

Figure 4.8: Use Case: Selection of smart devices and things

The next step is to choose the actions (ACs) we wish to execute for each
selected smart device or thing. Note that we continue with the first step
within the loop (1.1) of Section 4.1.1. We choose the action toggle on/off
status for the Living Room Light, as shown in Figure 4.9, which will give us
control to turn the light on and off.

In Figures 4.8, and 4.9, we can also see a hierarchy-based breadcrumb
at the top of the container after the name of the App. This breadcrumb
is more informative than functional since we only display the top-level of
the hierarchy which are the screen devices followed by the smart devices or
things selected. This simplification was required because if we displayed all
of the levels, the breadcrumb would not fit on a single line and would even
show the complexity of the loops. After selecting the actions (ACs) for the
Living Room Light, we are given the choice to either choose which buttons

Use Case Demonstration 56

Figure 4.9: Use Case: Selection of actions for the Living Room Light

we want for triggering these actions or let the application module select these
buttons for us (by pressing the Try Luck option). In Figure 4.10, the two
options are shown. Note that this second option has been created with the
intention of giving a faster alternative in the selection of the UI elements,
where the system should be able to select an appropriate UI element at
random depending on the selected actions. However, for this initial prototype
of our module, it was left with default values. Therefore, if we select Try
luck, a button with the text Toggle on/off status will be the default
UI element.

Figure 4.10: Use Case: Customisation question for the actions selected

57 CHAPTER 4. Design and Implementation

In this use case, we select the first option and choose to customise our
application by selecting our preferred button per action. After selecting the
Choose buttons option, we navigate to the screen shown in Figure 4.11. This
screen asks us to choose between two button options for the toggle on/off
status action. As shown in Figure 4.11, we select the power button. Once
the option is chosen, then we must complete the UI element information,
such as choosing the background colours of the button and the label and
filling in a text to give context to the button. For this example, we left the
default values of the custom style and complete with the text: on/off. Note
that we are within the third loop (1.1.1) of Section 4.1.1.

Figure 4.11: Use Case: Selection of the preferred option for the actions
selected

After this selection, the Smart TV goes through the same process, start-
ing with choosing the actions to execute and the customisation for them.
We selected Turn on and Turn off to control the Smart TV and Try luck
for the customisation of the buttons. Following these steps, the module gen-
erates the application based on this set of requirements and provides us with
two possibilities for the FUI of Alex Smartphone, as shown in Figure 4.12.
Note that we are in the last step within the second loop (1.2) of Section 4.1.1.

Finally, after selecting our preferred FUI, we reach to the last ques-
tion of the module, which redirects to a different view from which we may
either continue editing the FUI (Modifications option), go to the home
view (Go to home page option) or open the application (Test App option),
as shown in Figure 4.13.

Use Case Demonstration 58

The Modifications option opens a dialogue box asking to choose the
FUI to be modified, as several FUIs can be created in the same application.
Once the FUI has been selected, we are then redirected to the UI design
view from Figure 3.2. We present the Figure 4.14 to show the generated
IoT Application for the Welcome Home where we chose option A as the
preferred FUI.

Figure 4.12: Use Case: Selection of the preferred option for the FUI

Figure 4.13: Use Case: Question to redirect to another view

59 CHAPTER 4. Design and Implementation

Figure 4.14: Use Case: Welcome Home Application viewed on a Smartphone

4.4 Summary and Discussion
We implemented the proof-of-concept prototype of the generation of
IoT Applications on top of the eSPACE authoring tool, following the basic
principles of user interface design presented in the Section 3.2. We discuss
each Design Guideline (DG) in order to demonstrate how it has been
validated.

DG1: Make common elements work in a predictable way. The only
interactive elements used throughout the design are buttons, scrollbars and
multiple select options. We respected their behaviour to not confuse users.

DG2: Keep interfaces simple. All displayed elements give a purpose
to the user, such as the name of the application, the options to choose and
the buttons to continue, cancel or go back steps.

DG3: Maintain high discoverability. We used conventional buttons,
we kept the scroll-bar visible, and we incorporate hover effects before and
after a user action for high discoverability.

DG4: Respect the user’s eye and attention. During the implementa-
tion of the mockups, we received feedback from the supervisor of this
thesis, which helped us to refine some of the designs. These were directly
adapted to the prototype. The first refinement is from the third image of

Summary and Discussion 60

the Figure A.3. It shows all buttons aligned at the same height beneath a
question for the user, because of this, the two options for that question lose
focus. this is fixed directly in the prototype in figure 2. Another change
was made to the buttons used to select the preferred option for a certain
action, as seen in the first and second image in Figure A.4. we changed it
to checkboxes to be consistent with prior selection methods, this change is
shown in Figure 2.

DG5: Minimise the amount of actions (clicks) required to complete
tasks. To minimise the number of clicks, the options within the multiple
select are visible by disabling the show/hide property with the exception of
the action selection for each smart device or thing as it contains a multiple
select inside another multiple select which can take up a lot of space, in this
case only the options of the first multiple select are visible.

DG6: Put controls near objects that users want to control. All de-
signs are compact without pretending to overload with options, the focus is
on providing a straightforward experience without unnecessary complexities.

DG7: Provide feedback. We present a message at the start of each
loop depending on the options selected to inform the user of the step they
are in. We also incorporate error messages in case the user forgets to fill or
select an option required.

DG8: Use conventional UI design patterns. We use a breadcrumb
navigation design pattern ilustrated in Figure 4.4 and Figure 4.5 to show
the current location; however this navigation lacks redirection capabilities
because the exhibited link trail is summarised due to the complexity of the
hierarchy.

DG9: Maintain consistency. To harmonise with the tool, we use the
primary colours of the eSPACE authoring tool.

DG10: Provide next steps which users can deduce naturally. We
use the conventional colours and templates for the buttons such as green for
"Next", red for "Cancel" and grey for "Back" buttons. They are centred in
the middle after each user action to be performed, as shown in the Figure 4.5.

In addition to the design guidelines, we also discuss how our tool ful-
fill the resulting requirements (R) derived from related work in Section 2.4.

61 CHAPTER 4. Design and Implementation

R1: Support for end users to model the specification of the UI.
Specifying the elements of the IoT user interface is possible with the
"generate App" option integrated in the eSPACE authoring tool, where
end users simply have to click on the elements they want to control. The
Section 4.1.1 details the specifications required for building the IoT user
interface. With our prototype, end users can develop their IoT Applications
without any programming or design knowledge.

R2: Generate a quickly and efficient UI design with minimal effort.
Our prototype is designed as a step-by-step form to break down the complex
process shown in Figure 4.1. With this series of manageable steps we intend
to prevent end users from getting lost in the loops. This method, which was
inspired by ARNAULD [8], a fully automatic tool, typically requires less
effort for end users compared to a long form, but we will get more insight
about this statement in Chapter 5.

R3: Integrate UI design with the application functionality. When
end users interact with the Final user interface (FUI), the functionality is
presented to them. The eSPACE authoring tool provides a simulation of
a smart home plan introduced in Section 3.1.1, that responds to the end
user’s actions on the IoT Application. This requirement is verified by the
end users during the evaluation of the prototype.

R4.1: Simplicity in design. This requirement is completed following
the design guidelines described above on the usability of the user interface
of our prototype.

R4.2: The module should be of quality. At this stage of implemen-
tation we cannot claim that our prototype is of high quality even if it follows
the design guidelines on usability, the end users should be the ones to judge
the quality. Therefore, this point is covered in detail later in the Chapter 5.

We end this section by stating the limitations of our prototype that
we had during the implementation. One of the limitations we encounter is
with respect to the eSPACE authoring tool. Since it is still a prototype,
the tool is not completely finished as not all the UI elements (UIe) that it
contains in the UI design view are functional. In this case, the tool offers the
option to incorporate sliders, checkboxes, and buttons (with text or images)

Summary and Discussion 62

when choosing UI elements. However, sliders and checkboxes cannot yet be
linked to functionality preventing their use in our module.

We now switch to our current prototype as we move on to another
limitation. There is a lack of differences between the two default FUI
templates (Option A, Option B) that it generates in a specific case. This
problem arises when only one action to execute is chosen. Both templates
share a common heuristic, that when there is only a single UI element then
it is placed in the middle. In a future version of our prototype it should be
evaluated if it is possible to design another template for a single selected
action or whether the absence of a distinct design in these circumstances
simply results in the generation of the only version that can be produced
without a question in between. This new design not only has to be different
from the first option, but it must also be appealing to the eye. We provide
an example in Figure 4.15 that illustrates this scenario and one approach is
to move the device name such that it is at the same height as the button
as shown in Figure 4.16. However, it remains to be seen whether this new
combination harmonises with the addition of more smart devices.

Finally, we plan to design a scenario where users do not face these
limitations that may affect the results, but rather focus on the usability of
our prototype and get better understanding of unexpected results.

Figure 4.15: Default Final User Interface templates for an action

63 CHAPTER 4. Design and Implementation

Desk Light

Test application

Desk Light

Test application

Figure 4.16: Different text alignment for the FUI of a single action

Summary and Discussion 64

5
Evaluation

In this chapter we present the evaluation of our proof-of-concept generation
of IoT applications integrated into the eSPACE authoring tool. First we
present our participants who took part to the user study, followed by the
protocol explaining our user study presentation, tasks execution and a
post-study questionnaires prepared for the evaluation.

Following the user study we analyse the results obtained from the re-
sponses of the participants in the post-study questionnaires and our findings
from process, observations and interviews conducted during the evaluation.
Finally we end this chapter with a summary of our findings and some
valuable insights to consider for future work.

5.1 Setup
The user study was conducted in two different locations: first, in our apart-
ment building in which we gave participants direct access to our computer
so they could use the system, and second, via a remote connection to our
computer because of the unavailability of some participants during the day.
We configured the fictitious smart home setup on our computer, shown in
Chapter 3, for the participants to use their IoT applications made using the
eSPACE authoring tool. Participants are expected to perform the user study

Participants 66

without prior training on the eSPACE authoring tool and without a tutorial
available. More detailed information is provided in the following subsections.

5.2 Participants
There were 10 participants in total, the majority of them were chosen from
our apartment building, people we are familiar with. The remaining partici-
pants were university colleagues from outside our study programme, includ-
ing 3 men, aged 27 to 58 years (M=35.1, SD=9.3). 7 participants indicated
that they have used Samsung SmartThings and Amazon Alexa as tools for
controlling their smart devices showing a certain level of expertise with smart
home authoring tools. However, none of the participants had any prior ex-
perience in UI design or programming, and none of them had developed
their own IoT applications before. Therefore, all of the participants were
representative of our target audience. Also, it is necessary to mention that
some participants were given access to the evaluation via remote connection
because most of them work during the day and were only available in the
evenings.

5.3 Protocol
The eSPACE authoring tool was configured and installed on our computer,
with our home environment running as localhost. All tasks assigned to par-
ticipants were completed on our computer, and after completing a series of
tasks, they were asked to complete a questionnaire and provide final feedback.

5.3.1 User Study Presentation
We started with a short oral introduction about IoT applications and a de-
scription of the scenario shown in Appendix B.1, we used the same scenario
as the author [36] because we wanted to make use of the initial configurations
such as the smart devices that were already entered into the system. The
explanation was available throughout the course of the study.

5.3.2 Tasks Execution
Our system was evaluated by 10 participants, they were asked to complete
two tasks as shown in Appendix B.2, which involved using the eSPACE
authoring tool to automatically create an IoT application. The first task
aimed to familiarise them with the tool without any prior instruction or

67 CHAPTER 5. Evaluation

training, and the second task aimed to use the options that were not selected
in the first task, so that they would have a full understanding of what the
system offers. Finally after completing the tasks they were asked to complete
a post-survey shown in Appendix B.3, and a short interview, which will be
described in more detail in the following subsection.

5.3.3 Questionnaire and Interview
Participants were asked to fill out a questionnaire comprising of three parts
as follow:

1. The Personal Information questions that help us know a little bit more
about our participants such as age, gender, highest degree and whether
they have experience with home application authoring tools as shown
in Appendix B.3.1.

2. The Post-Study System Usability Questionnaire (PSSUQ) v31 as shown
in Appendix B.3.2, which consists of 16 7-point Likert Scale ques-
tions to measure the system Usefulness (SYSUSE), Information Qual-
ity (INFOQUAL) and the Interface Quality (INTERQUAL).

3. The Post-Study Informative Questionnaire aims to evaluate if the re-
sulting requirements introduced in Section 2.4 were fulfilled; however,
since the PSSUQ already includes items that measure this require-
ments, we have focus on gaining more detailed insights regarding poten-
tial improvements in information and interface quality. The resulting
questions can be found in Appendix B.3.3.

These questionnaires were transferred using Google forms2 in order to gather
the responses from the participants. Finally, the participants were briefly in-
terviewed to know their last thoughts and/or recommendations on the system
and each study task they completed.

5.4 Results
In this section we first analyse the results of the PSSUQ then the informative
questionnaire and we will finish with some observations made during the user
study.

1https://uiuxtrend.com/pssuq-post-study-system-usability-questionnaire/
2https://www.google.com/forms/about/

https://www.google.com/forms/about/

Results 68

5.4.1 Questionnaires
The results of the PSSUQ measure the satisfaction perceived by our
participants when using our system and as mentioned before it consists
of 16 questions; however for our specific case the question 7 and 9 from
Appendix B.3.2 do not apply in our user study. Participants cannot rate
question 9 because we do not provide any documentation or online help for
using the system. Regarding question 7, the system displays error messages
when a participant forgets to choose an action or fill out a text box. This
was the case for 3 participants, while the rest of the participants did not
encounter this messages. Consequently, as they had no basis for rating, we
asked them to give a neutral score. For this reason, both questions are not
considered in these results to prevent affecting them.

The resulting Table 5.1, shows the overall score of all the answers of
our participants as well as the 3 sub-scales or categories for system use-
fulness, information quality, and interface quality. We also provide the
means determined by Sauro and Lewis [37] involving 21 studies and 210
participants for a better interpretation.

PSSUQ Sauro and Lewis [37] Avg Score
SYSUSE 2.80 1.58

INFOQUAL 3.02 1.55
INTERQUAL 2.49 2.07
Overall score 2.82 1.67

Table 5.1: PSSUQ results

To interpret the results of PSSUQ, we have to remember that the lower
the score the better the performance and higher the perceived satisfaction,
being 1 the minimum score that can be reached. Observing the Table 5.1,
we have an overall score of 1.67, an indicator that the end user is satisfied in
general with the system. The average score for the system usefulness is 1.58,
the score for information quality is 1.55 and for interface quality we scored
an average of 2.07. Indicators that allow us to infer that our system has a
good performance. If we compare with the means of Sauro and Lewis [37],
we observe even better results. However, it is important to know that the
results are based on a small size of 10 participants who we are familiar with,
so this combination could introduce biases. A more detailed visualisation is
presented in Figure 5.1, where we can see the error bars for each category
and question representing the standard deviation (S.D) of the data over

69 CHAPTER 5. Evaluation

this group of participants. We can observe that the error bar for Interface
Quality (INTERQUAL) is the one with the highest variability considering
only the final average scores; yet, because this is a prototype in its early
stages, the results are encouraging to continue with further improvements.

It is also interesting to analyse the results per question to see in de-
tail which aspects should be improved. These results are shown in
Figure 5.1, where the top rated questions are Q10, Q11 and Q12 related to
information quality which tells us that one of the strengths of the system is
the clarity, completeness, and accuracy of how the information is presented,
while the worst rated questions are Q8 related to information quality and
Q13 and Q14 related to interface quality.

Figure 5.1: Avg score results per question and PSSUQ categories

The Q8 refers to the ease of recovering from mistakes made while using
the system. It received an average score of 2.40, which generally suggests
good performance. However, it was observed that some participants found it
annoying when they forgot to select an action or smart device and reached
the final stage. They expressed frustration about having to go back and redo
the steps. Some participants mentioned that if they could create their own
applications instead of following the Task Document B.2, this issue would
not necessarily occur. Others suggested that it would be better to have the

Results 70

ability to return to that specific point and proceed to the final stage without
repeating the entire process. The addition of an overview page with editing
possibilities at the end before reaching the final stage would be a solution
for this, we will go into more detail on this later in Section 5.5.

In the case of Q13 and Q14, both refer to the pleasantness and enjoy-
ment of using the system interface, having an average score of 2.30 and
2.20 respectively. During the interview, most expressed that the design is
very simple and that they would like it to be more interactive and have the
images of each device to select from rather than just text.

Finally the last part of the questionnaire is the Informative Question-
naire, the participants answered 3 yes/no questions gathering comments for
each of them. First the results of the first question (IQ1) refers to whether
the participants found any challenge or complexity in the system, obtaining
as answer "No" by 100% of the participants indicating a positive system
performance, comments such as "It was straight to the point", "Everything
was clear and understandable" were consistent across participants. For
the second question (IQ2) which refers to the satisfaction with the FUI
of the IoT application generated, 90% of the participants answered "Yes",
however when capturing comments about if they would like to improve
it, 2 participants indicated that they would like different buttons, another
participant wanted the possibility to remove the name of the application in
the FUI, then another participant indicated that the FUI generated should
be more animated and more pleasant, while the rest of the participants
did not leave a response. For the third question (IQ3), we asked if the
tool provides enough options for customisation and 60% of the participants
answered "Yes". Some specific comments from the participants who answered
"No", were "It would be nice to have the possibility to change the font",
"Button and font size should be customise", "More icons and images" and
"more buttons type for example a slide button to turn on the lights so we
can control the intensity and font styles and size".
The last question (IQ4) measures the level of difficulty each participant felt
while performing the tasks. The results are shown in Figure 5.2, and it can
be seen that all participants found the tasks very easy and easy to complete.
This is the outcome that is consistent with IQ1, where participants did not
experience any complexity or difficulty during the tasks and left positive
feedback on this point as previously mentioned.

71 CHAPTER 5. Evaluation

Figure 5.2: Level of difficulty to perform the tasks

5.4.2 Observations
During the user study we observed some results and difficulties from the
participants that provide us with more information about various aspects of
the system that need to be taken into consideration. To understand these
observations, we summarise the steps that the participants performed during
the tasks below, but for more details about the steps, see Section 4.1.1:

1. Define the name and description of the application.

2. Select the smart devices to be used in the application for which GUI
can be created.

3. Select the smart devices or things with the actions you want to control
for each smart device selected in previous step.

4. Customise the buttons for each smart device or thing selected in pre-
vious step if desired or go straight to step 5.

5. Choose your preferred final user interface.

The steps are straightforwards according to the participants, however step 2
was the most complicated step for participants who are not familiar with
these IoT authoring tools; most of them were looking for the smart devices
and things they wanted to control and when they did not find them, they
had doubts about what to select and got confused. However, when we asked
how to rephrase it for a better understanding, they indicated that they
would not change it, that they just needed that context to understand the
difference and be able to move on.

Results 72

The average amount of time it took the participants to complete the
tasks was 29.17 minutes, but there were two factors that affected this,
one of them is the fact that some participants took more time to read
the Scenario B.1 and the Task Document B.2, while others simply went
to the system and started solving the tasks as they read. The other
factor we observed was a difference between both gender (female and
male) among our participants, the 3 men in our user study abused the
"try luck!, continue" button where the system chooses the values for
customisation. While the women in our study took their time choosing the
colours of the text and button. Therefore, the average time for men in our
study was 17.5 minutes, whereas the average time for women was 35 minutes.

Another observation is with respect to the Final User Interfaces (FUI) gen-
erated by the participants, for the first application the participants did not
know what to expect from the result so the choice of customisation during
the process was not always consistent with their previous choices, resulting
in FUIs lacking visual appeal, we share some examples in Figure 5.3, we
also share some examples in Figure 5.4 of participants with a clear vision of
the desired end result and designed their FUIs accordingly. It is important
to mention that once the FUI was generated, there was still the possibility
to go back and generate the FUI again; however, only one participant was
seen to go back and enhance their FUI.

Figure 5.3: Poorly designed FUI from the user study

73 CHAPTER 5. Evaluation

Figure 5.4: Better designed FUI from the user study

One final remark is that during the final stage of the system, the par-
ticipants were presented with a choice between two preference options (op-
tion A/option B). The majority of participants chose option A, as option B
was perceived as messy. In Figure 5.3, the right image, provides an exam-
ple of option B for reference. This observation highlights the preference for
elements vertically aligned in the centre.

5.5 Summary and Discussions
We conducted a user study with 10 participants who had little knowledge
of design skills or programming. It is important to note that the number
of participants is relatively low, so it may not accurately reflect a larger
population. Nevertheless, we can still gain insights and identify potential
improvements based on how the participants behaved and interacted with
the system.

We requested participants to complete the PSSUQ after using the
system, and by analysing their responses, we could infer that the results of
the user study was relatively positive, with a favourable perception by the
participants regarding the usability of the system and the information and
interface quality. Participants were also asked to complete the informative
questionnaire, which gave us more specific details on how to improve the
system, possible new requirements, among other specifications as they were
open questions. The most requested feature was to add more customisation
options such as the addition of more button types, the possibility to
change font and font size and the addition of icons. Additionally from this

Summary and Discussions 74

questionnaire we reaffirmed an observed behaviour, which is that none of
the participants encountered any complexity during the use of the system,
with the exception of the second step, where participants without experience
with home authoring tools were confused about the smart devices on which
FUIs can be created and the smart devices and things they want to control.
However, this exception only occurred in the first task and not in the second
task of the Task Document B.2. The same disparity in treatment was noted
in the generated FUI. The generated FUI of the first task was sometimes
poorly designed by some participants, but when using the tool for the
second task, some of them improved their FUI with more consistent colours
and buttons selection. This brings us to the next issue, which is that the
generated FUI was not always visually appealing. Some participants did
not know what to expect after completing all the steps of the process, so
their customisation choices were not always consistent with their previous
choices. A possible solution for this issue is shown on Figure 5.5, where a
preview of the FUI could be provided at all times to allow the end user to
have better control over the customisation options. Note that there is a
navigation bar at the bottom of the preview container, this is because the
system can offer more than one alternative for selecting a preferred FUI
during the final stage.

Home Page

 New App Alex Smartphone Smart Fridge

New Application

Cancel NextBack

Select the actions for Smart Fridge:

Change bluetooh to

Turn on/off

Do not disturb

Change mode to

Alex Smartphone Preview

New Application

Smart Fridge

Change mode to

Do not disturb

Turn

Figure 5.5: Mockup of the "Generate App" option showing the preview

Finally, the last observation was regarding the frustration of the partici-
pants with having to repeat the steps in case they forgot to choose a device or

75 CHAPTER 5. Evaluation

action. As a result, a new step can be added at the end, just before the final
question about which FUI to select, as shown in Figure 5.6. The overview is
shown as a horizontal tree view of the content on the active screen device.
ach node is an editable option that directs to that particular step and offers
tooltip messages when pointed at to provide more information about what
one can change. After editing, the same overview screen should be displayed
again as long as one needs to make further changes at that point.

Home Page

 New App Alex Smartphone Overview

New Application

Cancel NextBack

Edit Content in Overview

 Smart Fridge
 Turn on/off

 Change mode to: Do not disturb
 Smart TV

 Turn on/off
Click to add/remove actions

Alex Smartphone

Alex Smartphone Preview

New Application

Smart Fridge

Change mode to

Do not disturb

Turn

Smart TV
Turn

Figure 5.6: Mockup of the overview content with editable options

Summary and Discussions 76

6
Conclusion

In this chapter, we conclude the research of this thesis by summarising and
analysing the solution we proposed, to address the main research question
and its underlying research sub-questions. We also examine the areas for im-
provement that were identified during the evaluation of our proof-of-concept
prototype.

6.1 Conclusion
In this work we proposed the automatic generation of applications, for
controlling IoT devices as an answer to our main research question: How can
we provide a user interface (UI) generation module that allows end users to
create their own Internet of Things (IoT) application UIs without any prior
programming knowledge or UI design skills?.

We designed a proof-of-concept prototype based on the derived sub-
questions, which led us to the research of studies in the area of automatic
user interface generation and the implementation of our solution on top of
the eSPACE authoring tool, a semi-automatic tool that provides control
over smart devices and things on a single platform. Below, we present an
overview of our work by responding to each of the research sub-questions.

Conclusion 78

Research Question 1 (RQ1) What are the necessary requirements for
the end user to generate a user interface without programming or UI design
skills?

First, we identified the mechanisms and techniques required to gener-
ate a user interface (UI), by analysing the related work on a number of
model-based tools in the area of automatic UI generation in any context.
This analysis helped us to determine the requirements for end users without
programming or UI design knowledge. We listed these requirements in
Table 6.1.

Requirement 1 (R1) Support for end users to model the specifica-
tion of the UI.

Requirement 2 (R2) Generate a quickly and efficient UI design
with minimal effort.

Requirement 3 (R3) Integrate UI design with the application
functionality.

Requirement 4 (R4) Provide a friendly and simple user interface
easy to use.

Requirement 4.1 (R4.1) Simplicity in design.
Requirement 4.2 (R4.2) The module should be of quality.

Table 6.1: Requirements for end users to generate a UI

The first requirement reflects the need to provide the user with access
to a module that can help them gather all the specifications for the user
interface they want to generate and addresses our target user, which are
users who lack knowledge of programming and/or UI design. The second
requirement focuses on the fact that the process that generates the UI
must be a fully automatic solution, whose tools aim to simplify the effort
of the users, and provide the quickest possible process. It also seeks to
ensure that the UI that is developed is efficient, which brings us to our third
requirement, the generated UI must be functional. This requirement aligns
us to our specific context, which is IoT applications. Therefore the UI must
be designed for these applications and must offer a complete user experience.

Finally our last requirement focuses on the UI of the module in which
the user must interact to create their IoT application. This UI must have a
simple design as our target user can group users with no experience in these
applications and as any fully automatic tool, it should be of quality.

79 CHAPTER 6. Conclusion

Research Question 2 (RQ2) What are the necessary concepts needed for
creating a module that allows end users to generate their own UIs for
controlling their smart devices and things?

We previously indicated that instead of starting from scratch, we were
going to start from an existing solution. The eSPACE authoring tool is that
solution that will allow us to generate applications capable of controlling
smart devices and things. However, as discussed in our requirements, we
want a fully automatic solution, and since the eSPACE authoring tool is a
semi-automatic tool, then we need to level it up by extending it with a new
fully automatic module. As extending the tool is not an intuitive process,
in Chapter 3, we present the eSPACE reference framework that includes all
the components and concepts needed to create IoT applications. There was
no need to introduce new concepts to design our module.

Research Question 3 (RQ3) How can we extend an existing UID tool
with UI generation options as a result of the requirements and new concepts
gained from RQ1 and RQ2?

We created a new fully automatic module on top of the eSPACE au-
thoring tool in response to this question. The reference framework, which
we studied in response to RQ2, helped us model the fluid process of our
module to generate IoT applications. As our module should be based
on the resulting requirements of RQ1, we then introduced in Section 3.2,
additional concepts and guidelines that helped us to design an implement
our module in Chapter 4. As a result, our module that extends the tool
is a multi-step form wizard capable to gather the user’s requirements and
preferences and providing them with two different designs for the generated
UI at the end. The generation of the IoT final user interface is also func-
tional minimising the effort required by the user to create an IoT application.

After the deployment was complete, we conducted a user study to
evaluate our module. This study included three post-questionnaires to
get more data from the participants regarding their interactions with the
tool and any potential ideas they may have. Despite the fact that we did
not offer any training or tutorials on the tool during the evaluation, the
satisfaction with the perceived usability of the system according to the
PSSUQ is good. All participants agreed that there was no complexity
along the way and it was simple to create their applications. However,
despite the good results, there are several areas that need to be improved.

Future Work 80

For instance, we could observe that our current module does not always
generate a well-designed FUI, and also the participants agreed that they
would like more customisation options for the final user interface. In the
next section, we will discuss and provide more information on these points
and our suggestions for improvements.

6.2 Future Work
There were a few shortcomings found during the implementation and
evaluation of the module that should be taken into account for future
work. The first area of improvement that needs to be taken into account is
making sure that the default templates of the generated final user interface
options are always distinct from one another following the basic principles
of UI design, which is not always the case in our prototype. Given that this
problem arises when there are few elements on the FUI, then in a future
version we should add additional rules, that considers a different alignment
with respect to the device name label and its buttons or other UI element,
as shown in Figure 4.16.

Another area for improvement is to ensure that we always provide a
well designed FUI, although this last point depends on the end user,
our prototype can still facilitate this task by providing a preview of
the FUI during the entire process, Figure 5.5 is a mockup of how such
a solution can be implemented, which will give the user more control
over their customisation options. In addition, we should also implement
the recommendations and requests of the users, some of them stated
that they would like more customisation options. The next step would
therefore be to enable users to change the font and font size as well as
add more options for other representations used to execute the actions,
such as sliders, icons, toggle switches, checkboxes, among others. We
should also add icons next to the corresponding device name to make it
easier and quicker for users to find and select the devices they want to
control. Further, in response to another request in wanting to redirect
to the exact point to edit some selection without having to go back and
redo all the steps again, in Figure 5.6, we present an overview option
with editable options is presented as a solution to this problem, so that
only the editing of that element is allowed and all previous settings are saved.

Finally, to make our IoT applications more powerful, we should also
add the complementary elements of the eSPACE authoring tool that were

81 CHAPTER 6. Conclusion

not considered in this initial phase due to time constraints, such as the
following widgets:

• Weather: We can add the current weather at the location of the screen
device where the application is located. This is a simple UI element
that can be displayed on the FUI.

• Video player: This item must be able to support a full screen and also
be able to display static, live and streaming videos. This requires two
new UI elements in the FUI: a video frame (UIe) linked to a video
stream and a button (UIe) linked to an AC that can capture videos.

• Lists: As an IoT application can consist of multiple FUIs for different
devices, a list can be present in two FUIs and be synchronised across
the two FUIs. Therefore, if the list is edited on one of the devices,
these changes are also made on the next device.

It is important to note that we should add an additional step in the cur-
rent process of our module. This step would involve asking the user whether
they would like to incorporate widgets. Depending on the chosen widget, the
module should request the user for the necessary settings. Additionally, we
might need to add new design rules in the default FUI template to accom-
modate these new items and perform unit tests to check that a well designed
FUI is preserved.

Future Work 82

A
Appendix A

Mockups

Home Page

Applications
Grocery App
App 2
App 3
App4

Add App ManuallyGenerate App

Rules Add Rule

Devices Add Device

Users Add User

This is the main button for the generation

Figure A.1: Generate IoT Application - Mockup Part 1

84

Home Page

New Application

Cancel Next

Name of the App...

Choose a name:

Write a description for this App...

Write a description:

Step 1 - Choose a name and a description

Home Page

New Application

Next

On which device will this App be used?

Alex Laptop

Alex Smartphone

Alex Tablet

BackCancel

Step 2: Select for which screen device(s) the app will be used

Home Page

New Application

Let's start with
Alex Smartphone

Message Title

OK

Figure A.2: Generate IoT Application - Mockup Part 2

85 APPENDIX A. Appendix A

Home Page

New Application Alex Smartphone

Cancel Next

Select the devices you want to control in the Alex Smartphone:

Alex Laptop

Living Light

Smart TV

Back

Home Page

New Application Alex Smartphone Living Light

Cancel Next

Select the actions for Living light:

Change color light

Turn on/off

Back

Home Page

New Application Alex Smartphone

Cancel Choose buttons

Do you want to choose the kind of buttons
you want for performing the selected actions?

Try luck!Back

Adjust brightness

SmartWatch

Smartphone

Step 4: Select all actions to be performed from the selected devices. First the living light

Step 5: A question for customisation, in case the end user wants more control.

Step 3: Choose all the devices or things that will play a role in this App

Figure A.3: Generate IoT Application - Mockup Part 3

86

Home Page

New Application Alex Smartphone Living Light

Cancel

Option B

Select the option of your preference to Adjust brightness
for the Living Light:

Option A

100

Back

Home Page

New Application Alex Smartphone Smart Tv

Cancel Next

Select the actions for Smart Tv:

Change chanel

Adjust volume

Turn on/off

Back

Home Page

New Application Alex Smartphone Living Light

Cancel

Option D

Select the option of your preference to Turn on/off
for the Living light:

ON

Option C

Living light
on/off

Option A Option B

Back

Step 6: Choose between the posible representation for Living light

Now the case for Smart TV, repeat step 4, 5 and 6

Figure A.4: Generate IoT Application - Mockup Part 4

87 APPENDIX A. Appendix A

Home Page

New Application

Generating new App

Home Page

New Application Alex Smartphone SmartTv

Cancel

Option D

Select the option of your preference to Turn on/off
for the SmartTv:

ON

Option C

SmartTv
on/off

Option A Option B

Back

Case for SmartTv, since the action is the same as the
Living light then the options are similar

Home Page

New Application Alex Smartphone

Cancel Choose buttons

Do you want to choose the kind of buttons
you want for performing the selected actions?

Try luck!Back

Steps 4 to 6 are repeated for the next
device: SmartWatch

Figure A.5: Generate IoT Application - Mockup Part 5

88

Home Page
Step 7: Preview of two possible FUIs to choose

New Application Alex Smartphone

Alex Smartphone

ON

Living light

SmartTv

SmartWatch

ON

Display Alarms

Alex Smartphone

ONLiving light

SmartTv

SmartWatch

ON

Display Alarms

Option A Option B

Select the App of your preference?

Cancel Back

Home Page

New Application

Now let's continue with
Alex Tablet

Message Title

OK

Steps 3 to 7 are repeated for the next
device: Alex Tablet

Figure A.6: Generate IoT Application - Mockup Part 6

89 APPENDIX A. Appendix A

Interaction View -> UI Design Simple Control App

Alex Smartphone

ON

Living light

UI Elements

Buttons

Labels

...

Save changes

SmartTv

SmartWatch

ON

Display Alarms

Brightness

Home Page

New Application

Do you still want to make some adjustments?

Modifications Test App Go to Home page

Step 8: A question to redirect page.

Case: Redirect page to continue with modifications

Figure A.7: Generate IoT Application - Mockup Part 7

90

B
Appendix B

Evaluation

B.1 Scenario
In this studio you will impersonate Alex, a young student who wants to
create applications to control her Smart devices in her home that resemble
her routines. Below you can see the plan of her Smart home:

As can be seen the Smart home plan contains the following Internet of
Things (IoT) devices such as 4 smart lights, as shown below:

Scenario 92

2 smart power plugs, as shown below:

6 screen devices for which graphical user interfaces (UI) can be created.

The tool you will use to control and interact with the Smart devices
and Things is the eSPACE authoring tool. Instead of manually building the
applications for these particular tasks, you will use the "Generate App..."
option to create the applications, as shown below:

93 APPENDIX B. Appendix B

B.2 Task Document

User Study
For the following study you will have the opportunity to complete two tasks
using the eSPACE authoring tool, each task is intended to simulate Alex’s
daily routines. To make it easier to follow along, we use the color blue for
Alex’s smart devices and red for the actions to be executed.
eSPACE authoring tool gives the possibility to choose custom buttons, we
encourage you to make use of the various options available to you. Once you
have created your application, it is recommended that you try it out and see
its functionality.
If you have any questions, please don’t hesitate to reach out to your super-
visor, Brenda Ordonez.

Task 1: Home Arrival Application
Imagine you are Alex, and you want to make the following application called
“Welcome Home”. For this application you want to create two designs (user
interfaces), one for Alex Smartphone and the other one for the Smart TV.
For Alex Smartphone, the following actions should be possible to be exe-
cuted:

• Turn on the Living Room Light.

• Turn on the Water Boiler Plug.

• Control over the Smart TV (on/off).

For the Smart TV, the following actions should be possible to be executed:

• Control the colour and status of the Living Room Light by allowing
Alex to change the colour to blue, yellow and allow her to turn it on
or off.

Task 2: Bedtime Routine Application
Imagine you are Alex, and you want to make the following application called
“Bedtime routine”, where the following actions should be possible to be ex-
ecuted on her smartphone:

Task Document 94

• Control of the lights (Cat Room Light, Living Room Light, Bedroom
Light) to perform the on/off action for each light.

• Control of the Smart Fridge to change the mode to not disturb.

95 APPENDIX B. Appendix B

B.3 Post-Survey Questionnaires
User Study Informed Consent Form

Study administrator is: Brenda Ordonez
Participant is:
Participant number:

This is a study on the generation of IoT applications. Our goal is to
facilitate end users in creating customized IoT applications for a smart home
environment based on their specific requirements and preferences. Your
participation will help us achieve this goal.
In this session you will be working with the eSPACE authoring tool which
is running in the web browser. We will ask you to perform tasks a typical
user might do, described in the scenario that you will receive. The study
administrator will sit in the same room, quietly observing and taking notes.
This person will sit near you and help you if you are stuck or have questions.
All information collected in the session belongs to the VUB WISE lab and
will be used for internal purposes. We will record your screen and voice
during the session. We may publish our results from this and other sessions
in our reports, but all such reports will be anonymised and will not include
your name.
We are not testing you. We want to find out what aspects need improve-
ments, so we can make it better. You may take breaks as needed and stop
your participation in the study at any time.

Statement of Informed Consent

I have read the description of the study and of my rights as a partici-
pant. I voluntarily agree to participate in the study.

Print Name:
Signature:
Date:

Post-Survey Questionnaires 96

B.3.1 Personal Information
The following questionnaire has the purpose of gaining insight of the
people on this user study created in the context of the master thesis:
"Investigation of the generation of IoT application". Please fill with your
personal information.

Age: Gender:

Highest degree obtained:

□ High school diploma

□ Bachelor degree

□ Master degree

□ Ph.D

□ Other:

Education:
Do you have experience with Smart Home applications or similar Internet

of Things (IoT) applications? Yes| No.
If yes, please indicate which ones.

□ Amazon Alexa

□ Google Home

□ IFTTT

□ Philips Hue

□ Samsung SmartThings

□ Other:

97 APPENDIX B. Appendix B

B.3.2 Post-Study System Usability Questionnaire (PSSUQ)
Strongly agree Strongly disagree

1 2 3 4 5 6 7 N/A

On a scale between Strongly Agree to Strongly Disagree as shown
above, please rate the following statements:

1. Overall, I am satisfied with how easy it is to use this system.
2. It was simple to use this system.
3. I was able to complete the tasks and scenarios quickly using this system.
4. I felt comfortable using this system.
5. It was easy to learn to use this system.
6. I believe I could become productive quickly using this system.
7. The system gave error messages that clearly told me how to fix problems. (not
considered)
8. Whenever I made a mistake using the system, I could recover easily and quickly.
9. The information (such as online help, on-screen messages, and other documenta-
tion) provided with this system was clear. (not considered)
10. It was easy to find the information I needed.
11. The information was effective in helping me complete the tasks and scenarios.
12. The organisation of information on the system screens was clear.
13. The interface of this system was pleasant.
14. I liked using the interface of this system.
15. This system has all the functions and capabilities I expect it to have.
16. Overall, I am satisfied with this system.

Post-Survey Questionnaires 98

B.3.3 Post-Study Informative Questionnaire
Please complete the final set of questions.

1. Did you encounter any challenge or complexity using the tool?
Yes | No.
Can you give more details on your answer?

2. In general, are you satisfy with the generated app designs (UI)?
Yes | No.
is there anything you would like to im-
prove in the generated app design (UI)?

3. Did the tool provide enough options for customisation?
Yes | No.
If no, please provide more details about what additional customisation
options you feel are necessary?

In general, how did you find this tasks?

Very difficult(1) Quite difficult(2) Neutral(3) Easy(4) Very easy(5)

Thanks for your participation!

C
Appendix C

Evaluation Results
Participant: P1 - 07/07/2023

Personal Information
Age: 30
Gender: Female
Highest degree obtained: Bachelor degree
Education: Business administration
Experience with Smart Home applications or similar Internet of Things
(IoT) applications: No
PSSUQ
Q1: 4
Q2: 2
Q3: 3
Q4: 1
Q5: 1
Q6: 1
Q7: 4
Q8: 1
Q10: 1

100

Q11: 1
Q12: 1
Q13: 1
Q14: 1
Q15: 2
Q16: 1
Overall PSSUQ: 1.50
SYSUSE: 2.00
INFOQUAL: 1.00
INTERQUAL: 1.33
Post-Study Informative Questionnaire
IQ1: No. Comments: Everything was clear and understandable
IQ2: No. Comments: At the final design, the title is not on the center,
looked messy.
IQ3: No. Comments: I didn’t prove the customisation tool
IQ4: Easy

Participant: P2 - 07/07/2023

Personal Information
Age: 33
Gender: Male
Highest degree obtained: Master degree
Education: Msc in Management
Experience with Smart Home applications or similar Internet of Things
(IoT) applications: No
PSSUQ
Q1: 2
Q2: 2
Q3: 1
Q4: 1
Q5: 2
Q6: 1
Q7: 3
Q8: 3
Q10: 2
Q11: 1
Q12: 2
Q13: 3
Q14: 3
Q15: 2

101 APPENDIX C. Appendix C

Q16: 2
Overall PSSUQ: 1.93
SYSUSE: 1.50
INFOQUAL: 2.00
INTERQUAL: 2.67
Post-Study Informative Questionnaire
IQ1: No. Comments: It was straight to the point
IQ2: Yes. Comments: Easy to use and to test
IQ3: No. Comments: It would be nice to have the possibility to change the
font
IQ4: Very easy

Participant: P3 - 07/07/2023

Personal Information
Age: 34
Gender: Female
Highest degree obtained: Master degree
Education: MSc in Chemistry
Experience with Smart Home applications or similar Internet of Things
(IoT) applications: Yes, Samsung SmartThings
PSSUQ
Q1: 2
Q2: 2
Q3: 3
Q4: 3
Q5: 2
Q6: 1
Q7: 3
Q8: 2
Q10: 2
Q11: 2
Q12: 1
Q13: 3
Q14: 3
Q15: 2
Q16: 2
Overall PSSUQ: 2.14
SYSUSE: 2.17
INFOQUAL: 1.75
INTERQUAL: 2.67

102

Post-Study Informative Questionnaire
IQ1: No. Comments: The steps were very clear and the interface was
intuitive
IQ2: Yes. Comments: I would like more button options to choose from.
IQ3: No. Comments: Button and font size should be customizable.
IQ4: Easy

Participant: P4 - 09/07/2023

Personal Information
Age:29
Gender: Female
Highest degree obtained: Bachelor degree
Education: Industrial Engineer
Experience with Smart Home applications or similar Internet of Things
(IoT) applications: Yes, Amazon Alexa
PSSUQ
Q1: 1
Q2: 1
Q3: 1
Q4: 1
Q5: 2
Q6: 1
Q7: 1
Q8: 3
Q10: 1
Q11: 1
Q12: 1
Q13: 1
Q14: 1
Q15: 1
Q16: 1
Overall PSSUQ: 1.21
SYSUSE: 1.17
INFOQUAL: 1.50
INTERQUAL: 1.00
Post-Study Informative Questionnaire
IQ1: No. Comments: The interfaces were easy to understand according to
your requirements
IQ2: Yes. Comments: -
IQ3: Yes. Comments: -

103 APPENDIX C. Appendix C

IQ4: Very easy

Participant: P5 - 09/07/2023

Personal Information
Age: 39
Gender: Female
Highest degree obtained: Technician
Education: Administrator
Experience with Smart Home applications or similar Internet of Things
(IoT) applications: Yes, Amazon Alexa and Samsung SmartThings
PSSUQ
Q1: 1
Q2: 1
Q3: 2
Q4: 1
Q5: 1
Q6: 1
Q7: 1
Q8: 1
Q10: 1
Q11: 1
Q12: 1
Q13: 2
Q14: 2
Q15: 2
Q16: 1
Overall PSSUQ: 1.29
SYSUSE: 1.17
INFOQUAL: 1.00
INTERQUAL: 2.00
Post-Study Informative Questionnaire
IQ1: No. Comments: once the idea was understood, it became easier
IQ2: Yes. Comments: once in test you could modify a specific action
without having to go back one step at a time.
IQ3: Yes. Comments: -
IQ4: Easy

Participant: P6 - 10/07/2023

Personal Information
Age: 58

104

Gender: Male
Highest degree obtained: Ph.D
Education: Electronic Engineer
Experience with Smart Home applications or similar Internet of Things
(IoT) applications: No
PSSUQ
Q1: 1
Q2: 1
Q3: 1
Q4: 1
Q5: 1
Q6: 1
Q7: 2
Q8: 1
Q10: 1
Q11: 1
Q12: 1
Q13: 1
Q14: 1
Q15: 1
Q16: 1
Overall PSSUQ: 1.00
SYSUSE: 1.00
INFOQUAL: 1.00
INTERQUAL: 1.00
Post-Study Informative Questionnaire
IQ1: No. Comments: all clear
IQ2: Yes. Comments: No
IQ3: Yes. Comments: -
IQ4: Easy.

Participant: P7 - 10/07/2023

Personal Information
Age: 29
Gender: Female
Highest degree obtained: Bachelor degree
Education: Mining engineer
Experience with Smart Home applications or similar Internet of Things
(IoT) applications: Yes, Google Home
PSSUQ

105 APPENDIX C. Appendix C

Q1: 1
Q2: 1
Q3: 1
Q4: 2
Q5: 1
Q6: 1
Q7: 4
Q8: 4
Q10: 1
Q11: 1
Q12: 1
Q13: 4
Q14: 4
Q15: 3
Q16: 2

Overall PSSUQ: 1.93
SYSUSE: 1.17
INFOQUAL: 1.75
INTERQUAL: 3.67
Post-Study Informative Questionnaire
IQ1: No. Comments: -
IQ2: Yes. Comments: The interface to be more animated or more pleasing
to the eye
IQ3: No. Comments: More icons, images
IQ4: Very easy

Participant: P8 - 11/07/2023

Personal Information
Age: 27
Gender: Female
Highest degree obtained: Bachelor degree
Education: Biotechnological engineer
Experience with Smart Home applications or similar Internet of Things
(IoT) applications: Yes, Amazon Alexa
PSSUQ
Q1: 2
Q2: 2
Q3: 3
Q4: 3

106

Q5: 2
Q6: 4
Q7: 4
Q8: 3
Q10: 2
Q11: 2
Q12: 1
Q13: 2
Q14: 3
Q15: 2
Q16: 2
Overall PSSUQ: 2.36
SYSUSE: 2.67
INFOQUAL: 2.00
INTERQUAL: 2.33
Post-Study Informative Questionnaire
IQ1: No. Comments: It was easy to follow along, i just got confused trying
to accomplish alex’s instructions
IQ2: Yes. Comments: Maybe have the possibility to choose if we want to
display the name of devices
IQ3: No. Comments: More buttons type for example a slide button to turn
on the lights so we can control the intensity and font styles and size
IQ4: Easy

Participant: P9 - 11/07/2023

Personal Information
Age: 30
Gender: Female
Highest degree obtained: Bachelor degree
Education: Industrial Engineer
Experience with Smart Home applications or similar Internet of Things
(IoT) applications: Yes, Samsung SmartThings
PSSUQ
Q1: 2
Q2: 1
Q3: 2
Q4: 2
Q5: 1
Q6: 1
Q7: 4

107 APPENDIX C. Appendix C

Q8: 1
Q10: 1
Q11: 1
Q12: 2
Q13: 3
Q14: 2
Q15: 1
Q16: 1
Overall PSSUQ: 1.50
SYSUSE: 1.50
INFOQUAL: 1.25
INTERQUAL: 2.00
Post-Study Informative Questionnaire
IQ1: No. Comments: Every step is straightforward
IQ2: Yes. Comments: I would like more options to choose from, for the final
app
IQ3: Comments: Font style, more buttons
IQ4: Very easy

Participant: P10 - 11/07/2023

Personal Information
Age: 42
Gender: Male
Highest degree obtained: Bachelor degree
Education: Law
Experience with Smart Home applications or similar Internet of Things
(IoT) applications: Yes, Amazon Alexa and Samsung SmartThings
PSSUQ
Q1: 1
Q2: 1
Q3: 2
Q4: 1
Q5: 1
Q6: 3
Q7: 4
Q8: 5
Q10: 1
Q11: 2
Q12: 1
Q13: 3

108

Q14: 2
Q15: 1
Q16: 2
Overall PSSUQ: 1.86
SYSUSE: 1.50
INFOQUAL: 2.25
INTERQUAL: 2.00
Post-Study Informative Questionnaire
IQ1: No. Comments: Didn’t find any.
IQ2: Yes. Comments: no.
IQ3: Yes. Comments: -
IQ4: Very easy

Bibliography

[1] Hammad Ali. Helping End Users Design Better UIs, 2022.
https://wise.vub.ac.be/sites/default/files/theses/
ThesisHammadAli.pdf.

[2] François Bodart, Anne-Marie Hennebert, Jean-Marie Leheureuxa, Is-
abelle Provot, Benoît Sacré, and Jean Vanderdonckt. Towards a System-
atic Building of Software Architectures: the TRIDENT Methodological
Guide. In Proceedings of the Eurographics Workshop on Design, Spec-
ification and Verification of Interactive Systems (DSV-IS 1995), pages
262–278, Toulouse, France, January 1995.

[3] Letizia Bollini. Beautiful Interfaces. From User Experience to User Inter-
face Design. The Design Journal, 20(sup1):S89–S101, September 2017.
https://doi.org/10.1080/14606925.2017.1352649.

[4] Sketch B.V. Glow-Up: 10 New Sketch Features You Might’ve Missed in
2022. https://www.sketch.com/blog/new-features-2022/, Decem-
ber 2022. Accessed: 2023-02-15.

[5] Woorank by Bridgeline. How Does Mobile Font Size Impact SEO?
https://www.woorank.com/en/edu/seo-guides/mobile-font-size,
2023. Accessed: 2023-06-22.

[6] Interaction Design Foundation. User Interface (UI) Design. https:
//www.interaction-design.org/literature/topics/ui-design,
2023. Accessed: 2023-06-22.

[7] Krzysztof Gajos and Daniel S. Weld. SUPPLE: Automatically Generat-
ing User Interfaces. In Proceedings of the 9th International Conference
on Intelligent User Interface (IUI 2004), pages 93–100, Madeira, Portu-
gal, January 2004. http://dx.doi.org/10.1145/964442.964461.

[8] Krzysztof Gajos and Daniel S. Weld. Preference Elicitation for Inter-
face Optimization. In Proceedings of the 18th Annual ACM Symposium

https://wise.vub.ac.be/sites/default/files/theses/ThesisHammadAli.pdf
https://wise.vub.ac.be/sites/default/files/theses/ThesisHammadAli.pdf
https://doi.org/10.1080/14606925.2017.1352649
https://www.sketch.com/blog/new-features-2022/
https://www.woorank.com/en/edu/seo-guides/mobile-font-size
https://www.interaction-design.org/literature/topics/ui-design
https://www.interaction-design.org/literature/topics/ui-design
http://dx.doi.org/10.1145/964442.964461

BIBLIOGRAPHY 110

on User Interface Software and Technology (UIST 2005), pages 173–
182, Washington, USA, October 2005. https://doi.org/10.1145/
1095034.1095063.

[9] Krzysztof Z. Gajos, Daniel S. Weld, and Jacob O. Wobbrock. Automat-
ically Generating Personalized User Interfaces with Supple. Artificial
Intelligence, 174(12–13):910–950, August 2010. https://doi.org/10.
1016/j.artint.2010.05.005.

[10] Krzysztof Z. Gajos, Jacob O. Wobbrock, and Daniel S. Weld. Auto-
matically Generating User Interfaces Adapted to Users’ Motor and Vi-
sion Capabilities. In Proceedings of the 20th Annual ACM Symposium
on User Interface Software and Technology (UIST 2007), pages 231–
240, Rhode Island, USA, October 2007. https://doi.org/10.1145/
1294211.1294253.

[11] Axure Inc. Getting Started with Axure RP. https://docs.axure.
com/axure-rp/reference/getting-started-video/, 2023. Accessed:
2023-02-15.

[12] Figma Inc. Designing in the Cloud with Confidence. https://
www.figma.com/blog/designing-in-the-cloud-with-confidence/,
September 2022. Accessed: 2023-02-15.

[13] The Apache Software Inc. Apache NetBeans 16 Re-
leased. https://netbeans.apache.org/blogs/entry/
announce-apache-netbeans-16-released.html, December 2022.
Accessed: 2023-02-15.

[14] Reyes Juárez-Ramírez, Carlos Huertas, and Sergio Inzunza. Automated
Generation of User-Interface Prototypes Based on Controlled Natu-
ral Language Description. In Proceedings of the 38th International
Computer Software and Applications Conference Workshops (COMP-
SACW 2014), pages 246–251, Vasteras, Sweden, July 2014. https:
//doi.org/10.1109/COMPSACW.2014.44.

[15] Erik D. Kennedy. The Responsive Website Font
Size Guidelines. https://www.learnui.design/blog/
mobile-desktop-website-font-size-guidelines.html, August
2021. Accessed: 2023-06-22.

[16] Maria Kosukhina. IntelliJ IDEA 2022.3 Is Out! https://blog.
jetbrains.com/idea/2022/11/intellij-idea-2022-3/, November
2022. Accessed: 2023-02-15.

https://doi.org/10.1145/1095034.1095063
https://doi.org/10.1145/1095034.1095063
https://doi.org/10.1016/j.artint.2010.05.005
https://doi.org/10.1016/j.artint.2010.05.005
https://doi.org/10.1145/1294211.1294253
https://doi.org/10.1145/1294211.1294253
https://docs.axure.com/axure-rp/reference/getting-started-video/
https://docs.axure.com/axure-rp/reference/getting-started-video/
https://www.figma.com/blog/designing-in-the-cloud-with-confidence/
https://www.figma.com/blog/designing-in-the-cloud-with-confidence/
https://netbeans.apache.org/blogs/entry/announce-apache-netbeans-16-released.html
https://netbeans.apache.org/blogs/entry/announce-apache-netbeans-16-released.html
https://doi.org/10.1109/COMPSACW.2014.44
https://doi.org/10.1109/COMPSACW.2014.44
https://www.learnui.design/blog/mobile-desktop-website-font-size-guidelines.html
https://www.learnui.design/blog/mobile-desktop-website-font-size-guidelines.html
https://blog.jetbrains.com/idea/2022/11/intellij-idea-2022-3/
https://blog.jetbrains.com/idea/2022/11/intellij-idea-2022-3/

111 BIBLIOGRAPHY

[17] Aaron Marcus. Dare We Define User-Interface Design? Interactions,
9(5):19–24, 2002. https://doi.org/10.1145/566981.566992.

[18] Aaron Marcus and Andries Van Dam. User-Interface Developments for
The Nineties. Computer, 24(9):49–57, September 1991. https://doi.
org/10.1109/2.84899.

[19] Fan Mo and Jia Zhou. The Influence of Menu Structure and Layout
on Usability of Smartwatches. International Journal of Mobile Human
Computer Interaction (IJMHCI), 10(1):1–22, January 2018. https://
doi.org/10.4018/IJMHCI.2018010101.

[20] Brigit Murtaugh. Remote Development Even Better. https://code.
visualstudio.com/blogs/2022/12/07/remote-even-better, 2022.
Accessed: 2023-02-15.

[21] Brad A. Myers. User Interface Software Tools. ACM Transactions on
Computer-Human Interaction, 2(1):64–103, March 1995. https://doi.
org/10.1145/200968.200971.

[22] Brad Allan Myers, Scott Hudson, and Randy F. Pausch. Past, Present,
and Future of User Interface Software Tools. ACM Transactions on
Computer-Human Interaction, 7(1):3–28, March 2000. https://doi.
org/10.1145/344949.344959.

[23] Jeffrey Nichols, Duen Horng Chau, and Brad A. Myers. Demonstrating
the Viability of Automatically Generated User Interfaces. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems
(CHI 2007), pages 1283–1292, California, USA, April 2007. https:
//doi.org/10.1145/1240624.1240819.

[24] Jeffrey Nichols and Andrew Faulring. Automatic Interface Generation
and Future User Interface Tools. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI 2005), Oregon,
USA, April 2005.

[25] Jeffrey Nichols, Brad A. Myers, and Kevin Litwack. Improving Auto-
matic Interface Generation with Smart Templates. In Proceedings of the
9th International Conference on Intelligent User Interface (IUI 2004),
pages 286–288, Madeira, Portugal, January 2004. https://dl.acm.
org/doi/10.1145/964442.964507.

[26] Jeffrey Nichols, Brad A. Myers, and Brandon Rothrock. UNIFORM:
Automatically Generating Consistent Remote Control User Interfaces.

https://doi.org/10.1145/566981.566992
https://doi.org/10.1109/2.84899
https://doi.org/10.1109/2.84899
https://doi.org/10.4018/IJMHCI.2018010101
https://doi.org/10.4018/IJMHCI.2018010101
https://code.visualstudio.com/blogs/2022/12/07/remote-even-better
https://code.visualstudio.com/blogs/2022/12/07/remote-even-better
https://doi.org/10.1145/200968.200971
https://doi.org/10.1145/200968.200971
https://doi.org/10.1145/344949.344959
https://doi.org/10.1145/344949.344959
https://doi.org/10.1145/1240624.1240819
https://doi.org/10.1145/1240624.1240819
https://dl.acm.org/doi/10.1145/964442.964507
https://dl.acm.org/doi/10.1145/964442.964507

BIBLIOGRAPHY 112

In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI 2006), pages 611––620, Québec, Canada, April
2006. https://doi.org/10.1145/1124772.1124865.

[27] Jeffrey Nichols, Brad Allan Myers, Michael C. Higgins, Joseph Hughes,
Thomas K. Harris, Ronald Rosenfeld, and Mathilde Pignol. Generat-
ing Remote Control Interfaces for Complex Appliances. In Proceedings
of the 15th Annual ACM Symposium on User Interface Software and
Technology (UIST 2002), pages 161–170, Paris, France, October 2002.
https://doi.org/10.1145/571985.572008.

[28] Jeffrey Nichols, Brandon Rothrock, Duen Horng Chau, and Brad A.
Myers. Huddle: Automatically generating interfaces for systems of
multiple connected appliances. In Proceedings of the 19th Annual
ACM Symposium on User Interface Software and Technology (UIST
2006), pages 279–288, Montreux, Switzerland, October 2006. https:
//doi.org/10.1145/1166253.1166298.

[29] Dan R. Olsen, Sean Jefferies, Travis Nielsen, William Moyes, and Paul
Fredrickson. Cross-Modal Interaction Using XWeb. In Proceedings of
the 13th Annual ACM Symposium on User Interface Software and Tech-
nology (UIST 2000), pages 191–200, California, USA, November 2000.
https://dl.acm.org/doi/10.1145/354401.354764.

[30] Dan Reed Olsen. A Programming Language Basis for User Interface. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI 1989), pages 171–176, Texas, USA, March 1989. https:
//doi.org/10.1145/67449.67485.

[31] Randall Packer and Ken Jordan. Multimedia: From Wagner to Virtual
Reality. Norton paperback, December 2002.

[32] Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir
Chatterjee. A Design Science Research Methodology for Infor-
mation Systems Research. Journal of Management Information
Systems, 24(3):45–77, January 2007. https://doi.org/10.2753/
MIS0742-1222240302.

[33] Emmanouil Perakakis and Gheorghita Ghinea. Responsive Web Design
for the Internet Connected TV: The Answer to More Smart TV Content?
In Proceedings of the 5th International Conference on Consumer Elec-
tronics (ICCE 2015), pages 38–42, Berlin, Germany, September 2015.

https://doi.org/10.1145/1124772.1124865
https://doi.org/10.1145/571985.572008
https://doi.org/10.1145/1166253.1166298
https://doi.org/10.1145/1166253.1166298
https://dl.acm.org/doi/10.1145/354401.354764
https://doi.org/10.1145/67449.67485
https://doi.org/10.1145/67449.67485
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302

113 BIBLIOGRAPHY

[34] Angel R. Puerta. A Model-based Interface Development Environment.
IEEE Software, 14(04):40–47, June 1997.

[35] Angel R. Puerta, Henrik Eriksson, John H. Gennari, and Mark A.
Musen. Model-based Automated Generation of User Interfaces. In
Proceedings of the 12th National Conference on Artificial Intelligence
(AAAI 1996), pages 508–515, Washington, USA, June 1996. https:
//dl.acm.org/doi/10.5555/286013.286047.

[36] Audrey Sanctorum. Conceptual Foundations for End-User Authoring
of Cross-Device and Internet of Things Applications. PhD thesis, Vrije
Universiteit Brussel, 2020. https://wise.vub.ac.be/sites/default/
files/theses/PhDThesisAudreySanctorum.pdf.

[37] Jeff Sauro and James R. Lewis. Quantifying the User Experience: Prac-
tical Statistics for User Research. Morgan Kaufmann, March 2016.

[38] Benjamin Schaaf. Sublime Text 4 Build 4142. https://
www.sublimetext.com/blog/articles/sublime-text-4142, Novem-
ber 2022. Accessed: 2023-02-15.

[39] Egbert Schlungbaum and Thomas Elwert. Automatic User Interface
Generation from Declarative Models. In Proceedings of the 2nd In-
ternational Workshop on Computer-Aided Design of User Interfaces
(CADUI 1996), pages 3–18, Namur, Belgium, June 1996. https:
//api.semanticscholar.org/CorpusID:10448424.

[40] Mads Soegaard. The Power of White Space in Design.
https://www.interaction-design.org/literature/article/
the-power-of-white-space, 2021. Accessed: 2023-06-22.

[41] Pedro Szekely, Ping Luo, and Robert Neches. Facilitating the Explo-
ration of Interface Design Alternatives: The HUMANOID Model of In-
terface Design. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI 1992), pages 507–515, California,
USA, June 1992. https://doi.org/10.1145/142750.142912.

[42] Matthew James Taylor. Responsive Font Size (Optimal Text
at Every Breakpoint). https://matthewjamestaylor.com/
responsive-font-size#:~:text=The%20consensus%20is%20mobile%
20font,large%20devices%20is%2018px%20%2D%2020px., April 2023.
Accessed: 2023-06-22.

https://dl.acm.org/doi/10.5555/286013.286047
https://dl.acm.org/doi/10.5555/286013.286047
https://wise.vub.ac.be/sites/default/files/theses/PhDThesisAudreySanctorum.pdf
https://wise.vub.ac.be/sites/default/files/theses/PhDThesisAudreySanctorum.pdf
https://www.sublimetext.com/blog/articles/sublime-text-4142
https://www.sublimetext.com/blog/articles/sublime-text-4142
https://api.semanticscholar.org/CorpusID:10448424
https://api.semanticscholar.org/CorpusID:10448424
https://www.interaction-design.org/literature/article/the-power-of-white-space
https://www.interaction-design.org/literature/article/the-power-of-white-space
https://doi.org/10.1145/142750.142912
https://matthewjamestaylor.com/responsive-font-size#:~:text=The%20consensus%20is%20mobile%20font,large%20devices%20is%2018px%20%2D%2020px.
https://matthewjamestaylor.com/responsive-font-size#:~:text=The%20consensus%20is%20mobile%20font,large%20devices%20is%2018px%20%2D%2020px.
https://matthewjamestaylor.com/responsive-font-size#:~:text=The%20consensus%20is%20mobile%20font,large%20devices%20is%2018px%20%2D%2020px.

BIBLIOGRAPHY 114

[43] Benjamin Ternes, Kristina Rosenthal, and Stefan Strecker. User In-
terface Design Research for Modeling Tools. Enterprise Modelling and
Information Systems Architectures (EMISAJ), 15(4):1—-30, February
2021.

[44] Vi Tran, Manuel Kolp, Jean Vanderdonckt, Ives Wautelet, and Stéphane
Faulkner. Agent-Based User Interface Generation from Combined Task,
Context and Domain Models. In Proceedings of the 8th International
Workshop on Task Models and Diagrams for User Interface Design (TA-
MODIA 2009), pages 146–161, Berlin, Heidelberg, September 2010.
https://doi.org/10.1007/978-3-642-11797-8_12.

[45] Vi Tran, Jean Vanderdonckt, Manuel Kolp, and Yves Wautelet. Generat-
ing User Interface for Information Applications from Task, Domain and
User models with DB-USE. In Proceedings of the 1st International Work-
shop on User Interface eXtensible Markup Language (UsiXML 2010),
pages 184–194, Berlin, Germany, June 2010.

[46] Andries Van Dam. Post-WIMP User Interfaces. Communications of
the ACM, 40(2):63–67, February 1997. https://doi.org/10.1145/
253671.253708.

[47] Jean Vanderdonckt. Knowledge-Based Systems for Automated User In-
terface Generation: the TRIDENT Experience. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI
1995), volume 95, Colorado, USA, April 1995.

[48] Jean Vanderdonckt and François Bodart. Encapsulating Knowledge For
Intelligent Automatic Interaction Objects Selection. In Proceedings of
the INTERACT and Conference on Human Factors in Computing Sys-
tems (CHI 1993), pages 424–429, Amsterdam, The Netherlands, Jan-
uary 1993. https://doi.org/10.1145/169059.169340.

[49] Linn Vizard. What Does A UX/UI Designer Actu-
ally Do? https://xd.adobe.com/ideas/career-tips/
16-experts-explain-ux-design-and-what-they-do/index.html,
October 2018. Accessed: 2023-02-15.

[50] Dongyue Wang. Prototype Design of Landslide Forecast System Based
on Axure. In Proceedings of the 3rd International Conference on
Advanced Electronic Materials, Computers and Software Engineering
(AEMCSE 2020), pages 1–4, Shenzhen, China, July 2020. https:
//ieeexplore.ieee.org/abstract/document/9131237.

https://doi.org/10.1007/978-3-642-11797-8_12
https://doi.org/10.1145/253671.253708
https://doi.org/10.1145/253671.253708
https://doi.org/10.1145/169059.169340
https://xd.adobe.com/ideas/career-tips/16-experts-explain-ux-design-and-what-they-do/index.html
https://xd.adobe.com/ideas/career-tips/16-experts-explain-ux-design-and-what-they-do/index.html
https://ieeexplore.ieee.org/abstract/document/9131237
https://ieeexplore.ieee.org/abstract/document/9131237

115 BIBLIOGRAPHY

[51] Junfeng Wang, Zhiyu Xu, Xi Wang, and Jingjing Lu. A Comparative
Research on Usability and User Experience of User Interface Design Soft-
ware. International Journal of Advanced Computer Science and Appli-
cations, 13(8), January 2022. http://dx.doi.org/10.14569/IJACSA.
2022.0130804.

[52] Brad Vander Zanden and Brad A. Myers. Automatic, Look-and-Feel
Independent Dialog Creation for Graphical User Interfaces. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI 1990), pages 27–34, Washington, USA, March 1990.
https://doi.org/10.1145/97243.97248.

http://dx.doi.org/10.14569/IJACSA.2022.0130804
http://dx.doi.org/10.14569/IJACSA.2022.0130804
https://doi.org/10.1145/97243.97248

	Introduction
	Related Work
	Background
	Design and Implementation
	Evaluation
	Conclusion
	Appendix A
	Appendix B
	Appendix C

