
Graduation thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in de Toegepaste Informatica

OPPORTUNITIES FOR DISTRIBUTED PHYSICAL/DIGITAL USER
INTERFACES

DAVID CINO
Academic year 2017 - 2018

Promoter: Prof. Dr. Beat Signer
Advisor: Audrey Sanctorum
Sciences and Bio-Engineering Sciences

c©Vrije Universiteit Brussel, all rights reserved.

i

Abstract
In this thesis we present a project combining two current research fields
namely Distributed User Interface and the Internet of Things. The main
purpose of this project is the creation of a web application distributed across
multiple devices. The web application called InteHome aims the manage-
ment of home appliances such as the lighting, speakers, smart TV and the
security appliances that are parts of the Internet of Things technology. The
system is built especially with connected devices and sensors. Even more,
the application is a multi-user system, we tried to demonstrate the potential
of these research fields by making the application distributed across various
devices but also across different users. With this application we tried to have
a positive contribution to this new research field. Furthermore, we provided
at the end of this thesis short guidelines for other persons who want to create
this kind of application. Finally, in this thesis one can see the methods we
used in order to create such systems and the benefits it generates.

ii

Acknowledgements
This thesis would not have been possible without the help of several persons.
Firstly, I would like to express my gratitude to my supervisor Mrs Audrey
Sanctorum. She was always present to guide me, and her guidance helped me
to realise my project. Her patience, comments and corrections were precious.
Thank you.

Last but not least, many thanks to the people who supported and encour-
aged me during these years: my girlfriend for her presence, my parents and
the rest of my family for their encouragement and support.

Contents

1 Introduction
1.1 Contributions . 2
1.2 Thesis Outline . 2

2 Related Work
2.1 Distributed User Interfaces . 3
2.2 Internet of Things . 9

3 Solution
3.1 System Infrastructure . 19
3.2 Administration Panel . 21
3.3 Security . 21
3.4 Lighting . 22
3.5 Audio . 23
3.6 Video . 24

4 Scenario
4.1 Security . 27
4.2 Lighting . 28
4.3 Audio . 28
4.4 Video . 28
4.5 Administrator Panel . 29

5 Methodology
5.1 Goal . 32
5.2 Users . 32
5.3 Requirements . 34

5.3.1 Functional Requirements 34
5.3.2 Non-Functional Requirements 35

5.4 Style Guide . 35
5.5 Prototyping . 37

CONTENTS iv

6 Implementation
6.1 Important Hardware . 41
6.2 Technologies . 42
6.3 Application Infrastructure . 43
6.4 Database . 45
6.5 InteHome . 47

6.5.1 Login System . 48
6.5.2 Audio Section . 50
6.5.3 Lighting Section . 53
6.5.4 Video Section . 54
6.5.5 Camera Section . 54
6.5.6 Administrator Panel 55

6.6 Fitbit Ionic Application . 55
6.7 Issues . 57

7 Guidelines
7.1 System Infrastructure . 59
7.2 Technologies . 60
7.3 Style Guidelines . 60
7.4 Implementation Recommendations 61

8 Future Work & Conclusion
8.1 Future Work . 63

8.1.1 Framework . 63
8.1.2 Notifications . 64
8.1.3 Speech Commands . 64
8.1.4 Go Beyond the Local Network 64

8.2 Conclusion . 64

1
Introduction

Nowadays new technologies take a great part of our daily life. A lot of re-
search is done trying to make users’ life easier. People want an easier and
faster way to perform daily actions since they are more occupied and have
less time to lose with daily actions. With the expansion of the World Wide
Web the number of connected devices increased drastically. This evolution
created new horizons to let people manage their life in a faster and eas-
ier way. On the other side, the evolution of web technologies also increased
monstrously. RESTful APIs made the development of complex systems, with
different physical objects, easier and more powerful.

In this thesis we try to create new opportunities with existing technology
fields. We focus on two research fields, namely distributed user interfaces
and the Internet of Things and try to show the potential of these technolo-
gies in an innovative manner. Therefore, we created a home automation
system that combines distributed user interfaces and the Internet of Things.
The potential of distributed user interfaces in an Internet of Things envi-
ronment is the most important aspect of this thesis. The goal of this thesis
is to combine both fields of research by creating a web application that is
distributed across multiple devices and integrates the concepts of IoT. Dis-
tributed user interfaces are nowadays almost not involved at all in home
automation systems. This was exactly the challenge of this project.

Contributions 2

Our solution can manage the audio, TV videos, lighting and the security of
the home using directly the web application called InteHome. The system is
used by different users. So, it is necessary to create a multi-user system in
which their interfaces are distributed. We also developed the system in a way
that data is produced by the users and the devices available in the system.
Finally, in the administrator panel, we provide statistical information with
the data that the system produces making this thesis as complete as possible.

1.1 Contributions
In this thesis we present the web application InteHome which contributes to
the distributed user interface and the Internet of Things research fields. We
made investigations in both research domains to acquire knowledge to build
an innovative web application for an Internet of Things environment. The
goal of the application is to facilitate some daily actions at home. Currently a
lot of researches are done in both research domains separately. This thesis is
to the best of our knowledge the first research that combines both fields and
home appliances, in order to make an innovative home automation system
where the user interface is distributed across multiple users.

1.2 Thesis Outline
The remainder of this thesis is structured as follows. First, related work in
the domains of distributed user interfaces and the Interface of Things have
been investigated. After the related work, our proposed solution is presented
incorporating multiple aspects learned during the exploration of related work.
In the fourth chapter meaningful scenarios for the different sections of the web
application are presented. The most important part of this thesis is presented
in the sixth chapter, after describing the methodology, the implementation
of the system as well as its technical details, technology choices, hardware
and database are discussed. After the implementation chapter we present
also some guidelines and recommendations for such systems. Next, other
interesting functionalities and ideas for future work are given in the last
chapter. Finally, we give some conclusions for this thesis.

2
Related Work

Before the implementation, related existing works needed to be investigated.
We investigated works in the domain of distributed user interfaces (DUIs)
and the domain of Internet of Things (IoT). Both research domains are the
core of the final prototype.

2.1 Distributed User Interfaces
A lot of new devices emerged with modern technologies, and this leads to
new interaction designs. Distributed user interfaces are nowadays an active
field for research. All references have another definition for distributed user
interface. A definition given by Elmqvist is synthesising DUI definitions of
follows [5]:

‘A distributed user interface is a user interface whose components are dis-
tributed across one or more of the dimensions input, output, platform, space,
and time’

Elmqvist’s work gives an overall overview of the concept of distributed user
interfaces. He describes DUIs as a subarea of the human-computer interac-
tion (HCI), where the components are distributed across one or more dimen-
sions.

Distributed User Interfaces 4

He gives five dimensions namely, input, output, platform, space and time.
Input, means computational devices which can give input into the system,
for example, a computer with a keyboard also called input redirection. Out-
put is mostly the graphical device who displays the results to the user also
called the content redirection. Next to these two basic dimensions we have
the platform dimension: a distributed user interface can work on one or mul-
tiple computing platforms (i.e. operating systems or networks). The space
dimension is also very important, DUIs can work in the same physical space
or in different spaces all over the world. Finally, the time dimension describes
either that interface components are working asynchronously (distributed in
time) or synchronously. While Elmqvist lists the multiple dimensions for dis-
tributed user interfaces, Paternò and Santoro’s research [6] provides a logical
framework with a set of aspects that helps people to analyse the potential of
applications in a multi-device environment. This is useful for the evaluation
and the creation of new multi-device environments.

Paternò and Santoro’s analysis is divided in several aspects. Most of these
aspects are not limited to distributed user interfaces but they address multi-
device user interfaces in general. The first aspect proposed in this proposal is
the user interface distribution. This aspect analyses the ability to distribute
the user interface across different devices at a given time even if it is dupli-
cated. The second aspect is the user interface migration. Here the continuity
of an application when switching from one device to another is analysed. A
user should be able to change from one device to another without losing
the current application state. Migration and distribution are two different
concepts. The user interface granularity is the aspect which analyses which
part of the user interface is distributed. It can be the whole user interface
or parts of it. Components (inner functionality of a user interface) can also
be distributed. For example, instructions given in a command line interface
with the result shown on a large screen. The dimension Trigger Activation
Type analyses how the distribution of the interface has been triggered. In
the domain of distributed user interfaces, the time is also an important di-
mension to consider. Here two different time effects can occur, it can be
immediate or deferred. The user interface adaptation is the faculty of a user
interface to change when the device is changing too, and the transformation
done by the interface to make this adaptation possible. This aspect is also
bound with the user interface granularity as explained previously. Finally,
the architecture of the application is also important in this domain. It is
important to know which architecture the application is running. Mostly the
architecture can be either peer-to-peer or server/client.

5 CHAPTER 2. Related Work

A well-known project which illustrates the concepts of distributed user in-
terface and migration is the Deep Shot framework from Chang and Li [2].
Chang and Li have focused on one important scenario, namely how to go
from one device to another without leaving the task that people are perform-
ing. They firstly need the internal state of the application or website using
e.g. the URL. Then copying it by hand or use another medium like email.

The problems with these methods are that desktop applications do not pro-
vide the current state and website URLs may also not give the state, you
should navigate through the website to find the right state. Deep Shot gives
a solution to these problems.

With the Deep Shot application users can migrate tasks by exchanging the
state of applications between mobile phone and computer using the phone’s
camera. The user must install Deep Shot’s software on the phone and the
desktop and then take a picture using the camera, the software can deter-
mine what the application or website state is and open it on the other device
using a digital vision algorithm. This scenario is demonstrated in Figure 2.1
.

Figure 2.1: Deep Shot application interface and workflow

Four scenarios, explaining the different manners to interact between de-
vices using the Deep Shot application are given. The first scenario is the
migration of information from a computer to a mobile phone.

Distributed User Interfaces 6

Secondly, the reverse of the first scenario, here information is also sent but
from the mobile phone to a computer. The third scenario is exchanging infor-
mation between two computers by using a mobile phone as a bridge. Finally,
it is possible to distribute content between two phones by taking a picture
of the other phone screen.

The interaction between a phone and a desktop is very useful. The Uni-
fied Remote Project is like Deep Shot a popular application founded by
Bergqvist and Berglund1. They are two Swedish students that began the
project in 2010. Their initial goal was to create a mobile application to con-
trol remote desktop programs.

The first version of the application was an Android application that con-
tained more than ten remote controls for programs like Spotify, VLC, Win-
dows Media Player, PowerPoint, and so on. The second version released in
April 2011 was a full version with a lot of new features like computer mouse
and keyboard control, screen viewer and remote Wi-Fi/Bluetooth connec-
tion. A last update was in 2014, the user interface is more user-friendly and
the application is available on different platforms and support for control-
ling all possible operating systems. In Figure 2.2 we can see the new user
interface.

Figure 2.2: Unified Remote Project

1https://www.unifiedremote.com/

7 CHAPTER 2. Related Work

The PowerPoint remote controller is a very useful and well-known applica-
tion in this domain. This is also what Demeure et al. did in their project [1].
CamNote is a distributed plastic slide viewer (presentation software).

CamNote is like the Microsoft PowerPoint software, with extra features, it
has been developed during the CAMELEON project. CamNote can be dis-
tributed across a computer and/or a pocket computer and is composed of
three main components.

The first component is a slide viewer with the possibility to insert translucent
videos provided by cameras. This component is working only on computer.
A note editor and viewer is also a component only available on a computer.

The user can enter comments on each slide. The remote controller com-
ponent is distributed across the computer and the pocket computer. This
component allows the user to navigate through the presentation.

CamNote’s interface can be rotated (Figure 2.3), which makes the user in-
terface more flexible and makes transitions between computer and pocket
computer more effective and realistic. The user can wave the slide viewer
window until it disappears from the computer and appears into the pocket
computer. The opposite is also possible, when the window is shrunk, it
returns automatically to the base configuration.

Figure 2.3: CamNote interface

Distributed user interfaces can be used to improve collaboration meetings.
Co-interactive table is a system founded by de la Guía et al. to facilitate the

Distributed User Interfaces 8

group work process in a collaborative environment [3]. Co-interactive table
is composed of A4 format panels, each panel shows the different operations
that the user can do during a meeting.

The operations are illustrated by pictures and the functionality offered by a
RFID tag is hidden under the picture. Each user has also a mobile device
equipped with a RFID reader and the co-IT application.

Figure 2.4: Co-IT, the shared interface and the private interface with all
their functionalities

The functionalities are provided by the panels. The user must first log
in to associate the panel with them, in Figure 2.4 we can see the interface a
user gets after the login. The user can then share files with one or multiple
participants and save information. Users can see information and files from
other participants by selecting them on the panel, the idea is to facilitate
the communication between participants when they do not know each other.
The user is also able to see all files received during the meeting and send their
interface to the projector making their screen visible for all participants. At
the end of the meeting the user can simply log out to end their association
with the panel.

9 CHAPTER 2. Related Work

2.2 Internet of Things
The Internet of Things is nowadays a very popular research field. Some
works around the Internet of Things were explored. The Internet of Things
is actually a network of physical devices which are connected to the internet
such as lamps, vehicles and home appliances. In this work investigation we
try to get important information about this research domain, and acquire
knowledge for our own prototype.

Smartwatches can be interesting devices to use in office spaces to support
and digitally augment interactions. Bernaerts et al. [12] designed and devel-
oped an application running on smartwatches to make employees’ life easier
by giving them the possibility to lock and unlock office doors, get office room
information and notify when the employee wants to enter in the office. The
founders set the focus on precise use cases, namely how employees enter an
office room and how they get information about the room. Based on these
use cases the developers implemented three physical gestures to perform the
three most important actions in an easy and fast way (Figure 2.5). The first
gesture is a virtual knock the gesture is the same as a real knock. Second
gesture is turning the wrist, like turning a key to open or close a door, this
gesture is used to open and close the doors. The last gesture is swiping the
arm to go to the home screen and scan the room.

Figure 2.5: Different gestures

The system also provides a lot of feedback necessary to make the system
useful. For example, when a user wants to open the door of a room the

Internet of Things 10

owner of the room can see which action was performed and he can choose if
he lets the user enter or not. The owner can also be in the room and send
a message to the user’s smartwatch if they are busy or occupied. All these
kinds of actions are also sustained with audio feedback in order that the user
can perfectly know if the gesture was executed or not.

Smart TVs also play an important role in IoT-environments. In the sur-
vey from Yusufov and Kornilov [10] the potential of Smart TVs is analysed.
Smart TVs can be used for data storage, for example, to save films and series
and freeing disk space on the laptop. Of course, smart TVs can act as a
visualisation device for external resources, for example, to share video con-
tent from a smartphone using a ‘share to TV’ button. For interacting with
the IoT-infrastructure a Smart TV can also be interesting. A Smart TV
can be used as remote, voice or gesture input controller. To manage some-
thing at home, such as the temperature or room lighting. Due to his large
dimension a Smart TV can also be an external data processor for other de-
vices. It can be interesting for making computations faster for other devices.
Another way to use Smart TV’s is to let them in charge of numerous routines.

An example given in this survey [10] goes as follows, a person comes to the
home at 6 o’clock and has the habit to make some coffee. The Smart TV can
automatically launch a command to the coffee machine at 17:55 to prepare a
coffee, and thus freeing the user from this routine. Smart TVs can also collect
and distribute precious data via sensors, these sensors can be added exter-
nally or embedded in the TV. TVs can collect various data like temperature,
sound, smoke and water, which is then sent to the server. Camera streams
are often used by TVs for security purposes, using them, for example, as face
recognition device or as surveillance device.

After the analysis of the different functionalities that a Smart TV can pro-
vide, the authors give an overview of the platforms and middleware available
on the market.

A middleware acts as a layer between the hardware and software and is
determined by the platform, which is different from vendor to vendor. The
platforms API’s based on the middleware provides different roles that a smart
TV can perform.

11 CHAPTER 2. Related Work

Figure 2.6: Platforms and middleware’s rating [10]

In Figure 2.6 platforms and middleware are rated depending on the roles
that they can perform. Good means that the platform can act in all use
cases according to the role. Average means that the platform is limited in
a particular role. And bad means that the platform cannot act in this role.
From the table above, we can conclude that the Google TV is most suitable
to act in an IoT-environment. Note that the Google TV’s operating system
also allows to run applications in background. Which makes notifications
easier and makes the data processing very efficient.

Retrieving data from smart objects is nowadays very easy with the expan-
sion of the World Wide Web. RESTful APIs are suitable for systems to
communicate with each other, using a request and response communication
over the internet. Vukovic [8] did a study about API’s that makes the ex-
tendibility of IoT environments effective. RESTful API’s power is that they
provide highly consumable services that can be used and reused by differ-
ent clients. They also create interconnectivity between different services and
applications making developing across different application domains possible.

Vukovic describes firstly the main benefits of the IoT. IoT is useful for ana-
lytics that is derived by monitoring and analysing the information generated
by the physical world. Our physical world is going to be actuated by these
smart devices. These objects are also useful for security purposes, for exam-
ple, in transportation road system and railway.

RESTful application programming interfaces (APIs) are for many developers
a rapid manner to program highly consumable services. The power of reuse
of these services is also a non-negligible aspect of APIs. APIs are meaningful
for IoT since it provides a lot of benefits like data access and data normal-
isation, adding additional layers of security for IoT devices, versioning and
management of devices.

Internet of Things 12

The role of humans in the Internet of Things environment is often ne-
glected. But humans can also use their own sensors in an environment.
Humans can use their senses in three different ways: automatically, explic-
itly and implicitly. Vukovic explains that humans can also provide different
sensing data. Automatically, with their devices sensors. Explicitly through
manual data input of low-level sensors, such as the temperature. And finally,
also implicitly in this case also through manual input. An example given by
Vukovic is when a user is swiping a RFID tag pass on a gate, it can generate
useful data. From the Internet of Things’ perspective, the focus lies on the
incredible amount of data produced by millions of sensors. The data is then
processed, filtered and analysed. The result of the analysed data, provided by
both mobile devices from people and IoT devices, influences people, systems
and organisations by gaining insights in these data. RESTful APIs play an
important role by unifying these data access through different sources and
give us the capability to make context-aware and adaptive applications.

The Internet of Things has a lot of benefits in this world but a lot of do-
mains are overlooked. One of the domains that is often neglected and where
technology can provide a considered solution is the Internet of Things for
people with disabilities. Domingo [9] made a research about and for people
who are dependent of their families and are not economically active and so-
cially included due to their handicap and a lack of services/support for these
persons. In 2011 the World Health Organisation (WHO) estimates that 15%
of the wold population are living with disability. Domingo believes that the
Internet of Things can offer the assistance and support necessary for a good
quality of life.

The Internet of Things architecture is divided in three layers. Each layer
has their own proper main functionality. The first layer is the perception
layer. This layer is responsible for identifying objects and gathering infor-
mation. In this review assistive objects are introduced. They try to gather
information from the environment of the disabled person. One of the future
components is nano-sized artificial retina implants which will capture images
from the visually disable person and send the data back to the smartphone.
In the perception layer the RFID technology can be very useful. Another
given example that helps blind persons is the smart RFID cane. The cane
can help blind people to find their way by distributing RFID tags in areas.
It can be used to direct the disabled person to walk into the centre of the
pavement for example. Data from the cane is then processed and sent back
as a voice message. Obstacle detection based on ultrasonic sensors can also

13 CHAPTER 2. Related Work

be added to the cane. For people who are hearing impaired, there also exist
RFID-based objects. One example given in the review is RFID-tagged games
for children to learn how to use sign language. Also, for hearing impaired
there exist external or internal assistive implants that improve the hearing
quality. Finally, a lot of sensors like smart doorbells, smoke detectors, for
example, can help deaf persons to notify them when an event occurs or when
there is a danger. Persons with physical problems can also have solutions
thanks to the technology. A lot of new body sensors, actuators and neu-
rochips make movements for paralysed persons possible. Some sensors are
attached to the nerves and can detect the intention of the disabled person.
Thanks to micro-implants some region of the body can be stimulated by
electrical impulses and digital command data. Another solution is the ex-
oskeleton for humans, intentions of the user are recorded and the skeleton
can perform the action that the user was thinking.

The second layer discussed is the network layer. This layer is made up of pri-
vate wireless networks, Internet and network systems. The goal of this layer
is to transmit the information from the previous layer. Most of our Internet
protocols are made for classic networks and not for mobile networks. There
is a need that communication protocols fit the requirements of the Internet
of Things.

The last layer is the application layer. This layer is accessed by applica-
tions and monitoring stations. They provide services like RESTful APIs
where data can be accessed. The most important operations are performed
in this layer and it also provides important functionalities like authentication,
billing and service management.

Internet of Things 14

Figure 2.7: Three-layer architecture for the IoT

Next, some application scenarios for disabled persons are given based on
this three-layer model. For people who are visually impaired an RFID based
system can help while doing shopping. The smart cane introduced previously
can help blind persons to navigate through the supermarket. The floor of the
shop must provide RFID tags for navigation information. Also, products can
provide RFID tags to get some information about the product itself but also
from the ingredients, temperatures, etc. The data provided by the database
is then sent to the monitoring station and returned as a vocal message.

15 CHAPTER 2. Related Work

The school scenario gives some examples where young persons with a hand-
icap can learn and play in an interactive and intelligent environment. Also
in this scenario the RFID technology is very useful. They can be used for
blind people to find the right book in the library and then read them thanks
to the text-to-speech module. Mentally disabled persons can also use the
RFID technology to scan some objects and get the sound it emits. With the
technology of augmented reality screens, we can imagine using them to make
some objects much more real, for young persons with mental problems it can
be very positive.

The last scenario which is given in this survey is at home. In this scenario
RFID tags are also suitable for blind persons. You can attach RFID tags on
different elements such as clothes to get information about colours, material,
washing program and so on. Other goods like washing machine, refrigerator,
thermostat, TV with their embedded computers can help disabled persons.
These persons can use voice commands to enable some apparatus at home.
Robotic systems are also a solution for physically disabled persons making
everyday movements easier.

While Domingo focused his research on the Internet of Things for disabled
persons, Parkash et al. [11] set their focus on smart street lights. The public
service can also have great benefits using technology to maintain and to man-
age the street lighting. This research proposed an intelligent street lighting
system which can decrease costs to -70%. In this research they find out that
street light is one of the biggest energy expenses for cities. One of the reasons
is that street lights are still working with a manual switch system. Lights are
turned on the evening and turned off the morning, between the on-and-off
timing a lot of energy is wasted. The authors of the research find a solution
to this problem using the Internet of Things technology. The principle of this
project is simple. It consists in using IR sensors when an obstacle is passing
by the street is detected the lights turns on. When the lights turn on the
resistance decreases and in the dark, it increases. The data produced by the
system is displayed on a webpage in real time.

The current system needs more manpower for manually switching on/off
the lights and it consumes more energy while the intelligent street lighting
system requires less manpower and there is a real diminution of the energy
consumption, CO2 emission, light pollution and maintenance costs.

Internet of Things 16

This research helped us a lot to acquire the knowledge needed for the re-
alisation of our project. Now, we know what distributed user interfaces are.
We know the various ways to perform the distribution of user interfaces. The
technologies used by other researchers were analysed to know what and how
to use it. We walked over various smart home appliances such as a smart-
watch and a smart TV. We will also use these appliances in our system.
Finally, we read some papers about APIs. This software architecture is pow-
erful for the communication with smart objects. So, it was necessary for us
to know how to implement this architectural structure.

3
Solution

The proposed solution of this thesis integrates the two research domains
presented in the related work, namely the domain of distributed user inter-
faces (DUIs) and the domain of the Internet of Things (IoT). We created
a prototype of a web application for managing an entire home automation
system that includes IoT devices as well as the user interface distribution
functionality. The goal of this prototype is to show new opportunities and
the power of distributed user interfaces combined with the Internet of Things.

InteHome is the name that we gave to the prototype. InteHome is a web
application and it stands for ‘Intelligent Home’. With this web application,
we provide a fully innovative manner to work with devices at home. We
tried to regroup different physical objects to make one central system. The
application is split up into five different parts: the administration panel, the
security part, the lighting part, the audio part and the video part. Each part
will be explained later in more details.

The web application is used to perform multiple tasks at home by man-
aging different devices. Of course, not everyone can have access to the web
application and manage these objects. Therefore, to secure our system we
have a login page (see Figure 3.1).

18

Figure 3.1: Login page

The login is composed of the email and password. If the users are regis-
tered in the system, they have access to the application. There exist three
different account types. The administrator account, which has only access
to the administration panel. Next, there is the complete account and the
minimal account. The difference between both is the content of the appli-
cation. The complete account has access to the security section while the
minimal account has not. Imagine you have children, you do not want the
child playing with the security settings. This is the reason why there are dif-
ferent account types. Notice that this multi-user system has a considerable
influence on how the user interface is distributed according to the account
type. The application is also distributed across different devices. The only
constraint is that the device must contain a browser to access the web ap-
plication. This multi-user system with different account types is innovative
in the home automation domain. Other systems do not provide multiple ac-

19 CHAPTER 3. Solution

count types that can manage one instance of an object. Generally, one has to
make a single account in the application. Next, we will discuss the hardware
that was used and the global infrastructure of this prototype.

Figure 3.2: Home screen of the web application with the two different ac-
count types: the top picture demonstrates the complete account type and the
bottom one demonstrates the minimal account type

3.1 System Infrastructure

For the comprehension of the system and the devices available in this system,
in Figure 3.3 one can see the system infrastructure explaining the composition
of the local network with their available hardware, objects and devices.

System Infrastructure 20

Figure 3.3: System infrastructure with their devices, objects and sensors

To make the video and audio part working properly, the system needs to
be connected to the internet. Therefore, we have a router who is connected
to the Internet and who gives to the devices a private IP address. The central
unit and brain of the system is a raspberry pi model 31. It contains the web
server, the database and the storage. The raspberry pi is connected to the
home Wi-Fi. The speakers are directly connected to the raspberry pi with an
auxiliary cable. The camera can be connected with USB 2.O cable or via the
local network. Finally, the PIR motion sensor is connected to the raspberry
pi using GPIO connectors.

For the lighting system, we use TP-Link HS1102 smart plugs. The smart
plugs are connected via Wi-Fi to the local network. Thus, we send requests
from the raspberry pi to these smart plugs over the local network. We also

1https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
2https://www.tp-link.com/en/products/details/cat-5258_HS110.html

21 CHAPTER 3. Solution

have multiple devices that are used to access the application such as smart-
phones, tablets and desktops. Smart TVs are a little bit different since they
can only be used to display videos (see video section). Finally, the Fitbit
Ionic smartwatch is used to manage the home lighting. This smartwatch
works only if it is coupled to a companion (smartphone).

3.2 Administration Panel
The administration panel can only be accessed by the administrator. The
user interface is accessible from different devices thatwho contains a browser.
The main functionalities of the panel are managing the users of the system
and displaying important data produced by the devices and sensors. Some
devices, such as, smart plugs produce useful data and are easily accessible
using their APIs. In the panel we display data like light consumption that
was provided from the smart objects, further we also display data retrieved
from the database which provides data about users, requests and events.
Finally, the administrator can add, delete and update a user. One of the
most important roles of the administrator is to give the right account type
to the user.

3.3 Security
This section contains the security of the home. The only account type who
has access to this section is the complete account type. From this section the
user can activate or deactivate the alarm system. When the alarm system is
activated by a user, the motion sensor turns on. When the sensor detects a
movement in their view angle, it fires the siren on the home speakers. Auto-
matically, a picture is taken by the camera and distributed with information,
such as the timestamp, to all InteHome users. The user can then view the
pictures on their device and delete them when finished with this notification.
The user interface is distributed since each user can manage the single mo-
tion sensor instance. On top of that, the picture is distributed to all users
connected to InteHome.

Users can also watch the stream of the camera. Each user can have access to
the camera stream at the same time. The camera stream is thus distributed
across multiple interfaces and devices. The user who is looking to the cam-
era stream has the possibility to take a picture and distribute it with other
users. The interface has three different compartments: the camera stream,

Lighting 22

the alarm switch and the notifications. In the notification compartment we
show only the last five notifications whether from the alarm system which
is sent automatically when the motion sensor detects a movement or from
another user who sent a picture from the camera.

3.4 Lighting
This part of the system allows users to access the home lighting system. The
user can turn on/off lights. Each user who has access to this section can
see the power state of each light in real time like in Figure 3.4. Thus, here
we also have a distribution of the interface. The physical object, which is
the light in this case, has only one instance and this instance is distributed
across the different user interfaces. Furthermore, this part of the system is
distributed to a smartwatch application. This feature is new for the home
automation domain, from the smartwatch you can also manage lights and get
the real time power state. Even better, when swiping on the light that we
want to manage, the interface is directly distributed to the smartwatch. The
smartwatch opens the application like in Figure 3.5, with the appropriate
light that we want to manage. This is a nice feature that shows the power
of distributed user interfaces.

Figure 3.4: Light section with the switch to turn on/off the bed room light

23 CHAPTER 3. Solution

Figure 3.5: Smartwatch application to manage home lights

3.5 Audio
This part of the application is also a great part showing different aspects of
distributed user interfaces and physical objects playing an important role.
The user searches for a music in the search bar and the result comes to a list
view. The list view is composed of a response from the YouTube API. So,
we receive a list of songs or more properly audio streams. When the user
clicks on the audio stream in order to listen to it, it he wants to listen one
instance is played on the home speakers. Each user who has this section part
of the application open on his their device can see an icon appearing on the
interface, it means that an instance of a song is playing. The instance of
the songs is thus distributed across multiple devices and users. The icon has
two utilities, firstly informing users that a song is currently playing on the
speakers and secondly allowing each user to stop the song by can clicking on
this icon to stop the song instance. If the song finished ends,of course this
icon disappears. While the song is playing users can search for another song
and play this new instance, the previous instance is then overridden with the
new one.

Since all requests for a song are recorded in the database we also estab-
lished for each user a top five favorites list we can see this list in Figure 3.6.
The user can click directly on one of these songs to play it on the speakers.
On the right side we also provide also a button to distribute the favourite list
with other users. So, when one clicks on the button their favourites come to
the search list view of other users.

Video 24

Figure 3.6: Audio section

3.6 Video

This section works a little bit like the audio section. In this section the user
is searching for a video, the YouTube API is then queried and the result
is shown in a list view like in Figure 3.7. When the user clicks on one of
the videos, the YouTube video is automatically distributed to the smart TV
interface. Of course, the user should be connected to the application on their
smart TV. The system detects automatically that the device is a smart TV.
Therefore, no account is required, it displays the correct interface automat-
ically. The smart TV interface can be seen in Figure 3.8. Each user can
then change the instance of the video by searching for a new one and then
launching the desired video.

25 CHAPTER 3. Solution

Figure 3.7: Video section with one result in the list view

Figure 3.8: Smart TV interface with a video distributed by a user

Video 26

4
Scenario

The scenario is a strong tool making the complexity of a system more un-
derstandable. Telling stories about the system ensure that people have a
global perception of the system requirements and functionalities. In order
to write coherent scenarios, we needed a good understanding of the system
requirements. Another aspect that was important when writing scenarios
is to know on which kind of users we want to focus. That is why we used
fictive users that are in accordance with our focus users. In these scenarios
we made a story about a family using our system. Marc is the father of the
family and the administrator of the system. With his wife Clelia, they have
two children Arnaud and Sophie. Arnaud is 20 years old and Sophie is 19
years old. Finally, Marc also has a 20-year-old nephew named Bruno.

4.1 Security
Sophie, the daughter, wants to connect to InteHome. She gives her identifiers,
and she goes to the security section of the system. In this section she can
watch the live stream. She takes a picture because she sees a strange person
in front of the home’s door. By swiping on this picture, she distributes
the picture to her brother, mother and father. While she is occupied with
the camera, she can also check the notifications (pictures) that the system
and her brother sent/are sending. She decides to activate the alarm system

Lighting 28

because there is nobody at home and her father has forgotten to activate
it. Yesterday, the siren turned on because the system had detected a thief
forcing the doors lock. The thief was scared and so left the house.

4.2 Lighting

Marc works late every day. When he comes home he first wants to turn
on the light of the living room and not the light of the hallway because
his wife is sleeping. In order to do this, he goes to the platform on his
smartphone and he can turn on the light. He wants to take a shower before
sleeping but his phone battery is low, so he distributes the light interface to
his smartwatch and he puts his smartphone to recharge. He can now easily
go to the bathroom, turn on the light of the bathroom and turn off the light
of the living room with his smartwatch.

4.3 Audio

Sophie and Clelia have the habit to listen to songs on Sunday mornings while
Marc and Arnaud are not at home. With InteHome they can listen to the
songs using the platform. Sophie goes to the platform and goes to the audio
section. In this section she can see which music she has listened to previous
Sunday but now she wants to listen to some new songs, she can search on the
platform and select a new title. Clelia wants to listen to Sophie’s favourite
songs. For that, Clelia asks Sophie to distribute their favourite songs. Sophie
clicks on the distribute button, and their favourite songs are displayed in
Clelia’s interface. Clelia can now simply click on the desired song and listen
to it on the home speakers.

4.4 Video

Arnaud is a fan of the soccer player Cristiano Ronaldo and just like him,
he plays soccer. Before every game, he likes to watch videos of their idol.
With InteHome he can easily watch videos on their Smart TV and search
for videos on the web application on their smartphone, when he found the
desired video he clicks on it and the video is distributed on the TV screen.

29 CHAPTER 4. Scenario

4.5 Administrator Panel
Marc is the administrator of the system, only him has access to the admin
panel. Every month he looks to the dashboard to see if all goes well. He
looks to the number of lights’ request that were done this month in order to
estimate his electricity consumption. Today Marc decides to add Bruno, his
nephew to the system, because he often comes during the week. He accesses
the administrator panel with the right credentials, he goes to the user section
and adds Bruno as an user. Marc allows Bruno to access the light and audio
system section by giving him the right permission. He also set Bruno’s email
and password. Bruno is now able to manage the lights and audio system at
home.

Administrator Panel 30

5
Methodology

Before beginning with the implementation of this project a lot of work has
been done to brainstorm about the methodology to adopt to begin with the
perfect mindset and with a clear method of work.

The research and analysis of other works in the same domain is necessary to
understand what it is about. We did a lot of investigation in order to under-
stand the principles of distributed user interfaces and get crucial information
about the working of such technology. Other works explaining the Internet
of Things were investigated and were very beneficial for the progress of the
project.

For such project it is very important to know what the project is about
and what the goals of the project are. To know perfectly what the project
should do, it was important to define and to break apart the requirements of
the project.

One of the methods used to know what the different functionalities of the
application are, is to make mock-ups of the user interface. With these graph-
ical illustrations of the user interface it is easy to see what the application
will look like and what the different functionalities are that the application
must provide. It also provides a guideline when building the application, we

Goal 32

know perfectly how to navigate through the application and how to organ-
ise them. Derived from the mock-ups we split the application in different
sections. That offers a better global vision of the application. These sec-
tions are also the base in the making of use cases and scenarios. You can
easily imagine what the user can do with the app and describing meaningful
scenarios and use cases.

5.1 Goal
The goal of this thesis is to demonstrate the potential and the opportunities
when we combine distributed user interfaces and the Internet of Things. By
combining these two research fields, we wanted to create an innovative web
application that can be used in a certain environment, in our case the IoT en-
vironment. The purpose of our system is to make our users’ life easier. Partly
this is what the Internet of Things stands for. Internet of Things appliances
want to make their users’ life easier and faster to manage. But we want to
go a step further, by combining this research field with distributed user in-
terfaces. We can create systems that change people’s way of living.

InteHome is the name we give to our system. It is a home automation system
which user’s interface can be distributed. The management of home appli-
ances can be distributed across different users and devices. We added innova-
tive functions to the application, making user’s life easier. A good example,
which demonstrates the potential of this research, is when a person wants to
watch a video on his smart TV. The way a person looks for a video nowa-
days is too long and boring. It is mainly due to the remote controller that
takes a lot of time to write a search tag. With our system users can easily
search on their smartphone or tablet and distribute the desired video on their
smart TV. It is precisely this kind of feature we want to develop. But with-
out the combination of distributed user interfaces and the Internet of Things
it would be not possible.

5.2 Users
We developed a multi-user system, which means that the user is central.
For this, it is very important we know precisely what kind of users we focus
on. Concretely, we focus on users who have a house and who need a system
making the management of home appliances easier. Our users must not have
any disabilities such as blindness, deafness or significant mental disabilities.

33 CHAPTER 5. Methodology

However, our application can provide an advantage for users who have slight
physical problems since they have to move less in the house to perform daily
actions like turning on a light. In general, the application aims users that
want to perform daily actions easier and faster. Furthermore, the application
is beneficial for users who want more security at home. Since our application
is a multi-user system it can be beneficial for a family. Children too are
potential users since the application provides an alternative account for chil-
dren or users who cannot access more serious functionalities like the home
security management.

Finally, we made a persona representing a typical user of our application.
Despite the fact that the application has a wide range of potential users.
Our persona in Figure 5.1 is a typical user where we focus on. The persona
helped us to be always concentrated on the end-user. Furthermore, personas
help decision-making in the design of the system.

Figure 5.1: Persona

Requirements 34

5.3 Requirements
Functional and non-functional requirements need to be carefully selected in
order to ensure a good course of the development phase. Before we began
with the implementation, we took long brainstorm sessions to define the
requirements of the web application.

5.3.1 Functional Requirements
Functional requirements will describe different functionalities of the applica-
tion. They describe what the system should do depending on the situation.
The requirements of our web application are listed as below:

• A user must be connected into the right platform when logged in with
the right email and password.

• The right interface must be displayed when the user clicks on a section.
• When the user clicks on the logout button, the user must be discon-

nected and the login page must be displayed.
• In the security section the camera stream must be displayed.
• When the user clicks on the ‘distribution’ button, the picture must be

distributed to all users.
• The notifications in the security section must be deleted when the user

clicks on the delete button.
• The alarm system must turn on or off when switching the alarm system

state.
• The user should be able to change the light’s power state.
• The power state must be automatically updated for each user.
• When a search tag is entered, results from the YouTube API must be

shown.
• The home speakers must be playing the song, when the user clicks on

this song.
• Each interface must be automatically updated with the state of the

home speaker.
• A user should be able to watch their top 5 favourites.
• A user should be able to distribute their favourites with other users.
• A user should be able to change the current audio stream.
• A user should be able to stop the audio stream.
• A user should be able to search for a video.
• A user should be able to launch a video on the smart TV using their

device.

35 CHAPTER 5. Methodology

• A user should be able to change a video on the smart TV using their
device.

• The administrator should be able to add, modify or delete a user.
• The system must generate various information about the data in the

database.

5.3.2 Non-Functional Requirements

Non-functional requirements describe how the system will behave when per-
forming a functionality or what the limits of this functionality are. Non-functional re-
quirements will also specify the quality or characteristics of the system. Our
non-functional requirements are listed as below:

• When a user is logged in, the information is saved in sessions.
• When a user distributes a picture, other users should have the picture

within 3 seconds.
• Each request from a user must be saved automatically in the right table

of the MySQL database.
• When a user changes the light’s power state, the light must react within

the 5 seconds.
• The system should automatically detect which interface to show ac-

cording to the device type and screen.
• When the user set the wrong credentials an error message must be

shown.
• When a user browses the wrong page a 404-error page must be shown.
• Users with a minimal account type should not be able to access the

security section.
• The system should manage up to 5 requests at the same time.
• The alarm system must detect an intrusion in less than 1 second.
• The system should be available 24/7, it means all and every day.
• The system should make a difference between user requests and system

requests.

5.4 Style Guide
When implementing the user interface, we followed some style guidelines to
ensure a user-friendly interface. For the user interface design, we principally

Style Guide 36

based on the Google Material Design1. However, our application must be
designed for completely different platforms also such as IOS and Android, so
some modifications have been done to let our user interface fit for different
platforms and devices. Material Design uses movement of elements as feed-
back for the user. We also tried to implement this principle. For example, in
the home page when a user goes hover a section with their mouse the caption
of the picture animates until it takes 100% of the picture size.

More generally, Material Design adopts the ‘card’ motif as the main motif
for user interfaces. This motif is also recurrent in our application. Nowa-
days with the expansion of different devices types there exists a wide range of
screen sizes. So, it is very important that our application fits within all device
screens. One of the most important principles from Google’s Material de-
sign is the grid-based layout. This design principle aims to change the user
interface depending on the screen size. To fulfil this principle, we used the
twelve columns grid system of the well-known CSS framework Bootstrap2.
This allow us to create a responsive design for small and large screens. All
interface elements such buttons, containers, layout are made using Bootstrap
components which are surely responsive.

The colours of the application are also a design principle that we not ne-
glect. We used a consistent colour palette for all pages and components of
the application. Our interface is principally consisted of the colour light blue.
We also used a flashy yellow colour for search buttons, setting the focus on
the search functionality. Google’s Material Design devote importance to us-
ability guides for persons who not perceive colours well. We also take care of
the usability of the interface by creating a contrast between design elements
or text with the background. It makes the application comfortable and pleas-
ant to use. Icons are also important, we used Material icons from the iconic
text and CSS toolkit Font Awesome3. Their icons are scalable and perfect
for any screen types. Their icons are adapted to the Bootstrap framework
and meet the guidelines of Google’s icons. Our application respects also the
layout of Google by providing a header at the top of the page. Left of the
header we set the application title and right the logout icon.

Furthermore, our application is designed in accordance with various style
guides for distributed user interfaces provided by Elmqvist et al. [4]. Elmqvist

1https://material.io/
2https://getbootstrap.com/
3https://fontawesome.com/v4.7.0/icons/

37 CHAPTER 5. Methodology

said that a distributed user interface should not require more affordance
than a non-distributed user interface. Nevertheless, some design guidelines
were respected when implementing the interface. Consistency is one of the
challenges when making a distributed user interface. Our application also
has a consistent interface, each instance has the same interface and share
mainly the same states. Elmqvist presents the synchronisation between dif-
ferent interfaces as an aspect not to neglect. Each instance of our applica-
tion is continually synchronised with the most up-to-date state. Melchior,
Vanderdonckt and Van Roy did also some research about the design of dis-
tributed user interfaces [7]. We agreed most of their sayings. Each interface
shares the same instances of the interface or objects. For example, when a
song is playing on the speakers each user can stop the song or change the
song since the instance of the song is distributed and shared in a consistent
way in each user’s interface.

5.5 Prototyping
Such application should be easy to understand. For this, it is important
that the different views are consistent. The navigation through the different
pages is very consistent since we provide only one way to navigate through
the pages. The user can access each section from the home page. To ac-
cess another section the user has to go back to the home page, this way of
navigation is very intuitive for users. In Figure 5.2 one can notice that the
navigation through the different pages is straightforward.

Figure 5.2: Sitemap of the application

Prototyping 38

Many other graphical elements were added to make the application intu-
itive and enjoyable to use. Firstly, we provide a lot of feedback to let the user
know what should happen. When music is currently playing we add a floating
animated icon to the bottom left of the page. Text elements are also added
to critical places in the application. For example, in the smart TV interface
we added the text ‘click on a video’ to let the user know that he must click
on a video to display it on the TV screen. These kinds of little details make
the application intuitive to use and therefore faster to understand. Secondly,
we provide a sticky back-to-top button in the video and audio section when
the user looks for a video or song. This feature is especially useful for long
search lists in small screens. This feature is an example making the applica-
tion attractive.

Since our application is running on different Internet of Things devices such
as a smartwatch and smart TV, the interface automatically adapts to the de-
vice that request the application, for example the home page of a smart TV
is different from the home page of a smartphone. Furthermore, the smart TV
does not require any login.

Finally, with all knowledge and inspirations we acquired from the Google’s Ma-
terial Design guides and research, we made firstly on paper the sketches of
how the user interface of our application will look like. In Figure 5.3 we
present the mock-ups that we did before implementing the application.

Figure 5.3: Drafts of the user interfaces and their graphical elements

39 CHAPTER 5. Methodology

One can notice that these mock-ups are very similar to the final version of
our application. Most of design guides that we found interesting were imple-
mented. We also set the focus on a responsive design making our application
available on different devices. We also tried to be consistent in our choices
for example always the same icon to go back. We also always used the same
icon to distribute something with other users.

Prototyping 40

6
Implementation

In this chapter we present a crucial part of this thesis. We tackle the question
“how to actually build the InteHome web application and global system?”
Details, choices and issues about the development are explained in detail in
this chapter. Important libraries and source code elements are highlighted
in order to understand on what the project focus namely distributed user in-
terfaces and the Internet of Things.

6.1 Important Hardware
The infrastructure of the system is composed of several devices and objects.
The central unit of the system is a Raspberry Pi model 3 with Raspbian
running on it. The Raspbian operating system is a lightweight distribution
from Linux especially for the Raspberry Pi. We installed NodeJS for the web
application and MySQL for the database. The Raspberry Pi also has two
devices connected to it, the camera and the speakers.

For the lights we used a smart power plug from TP-Link. To let the smart
power plug work properly we need to connect it to the local Wi-Fi connec-
tion. We made this connection using the Kasa1 application from TP-Link.

1https://www.tp-link.com/us/kasa-smart/kasa.html

Technologies 42

Once the connexion established, the smart plug receives an IP-address. Us-
ing tplink-smarthome-api package, we can send requests to the power plug
to perform some actions such as turning the power plug on or off and to get
information such as the current power state.

Another important device in our application is the passive infrared (PIR) mo-
tion sensor. This sensor detects movement in an angle of 120 degrees. This
sensor detects motion by measuring the infrared light radiating from objects,
in other words, it detects the heat energy that objects produce. The mo-
tion sensor is a module that we connect to the Raspberry Pi GPIO pins.
When the sensor detects heat radiation it sends a 5V to the Raspberry Pi.
The output sent by the sensor can be 1 or 0. Furthermore, the sensitivity
and the detection delay is modifiable on the sensor itself.

6.2 Technologies
In this section we present the technologies we used for the implementation
of this project.
Initially, we hesitated between two completely different programming lan-
guages namely PHP and NodeJS. PHP is a very popular server-side script-
ing language that can be used for general purposes but more particularly for
web development since HTML content can be written in PHP files. NodeJS
is also a server-side runtime environment which is actually JavaScript for
servers. Initially JavaScript was a programming language for the Front-End (client-side)
only. But this event-driven programming language is now also available for
the Back-End. Some important differences between these two server-side
languages are listed in Table 6.1. The origin of these information is from the
official website of PHP2 and NodeJS3.

PHP 1 NodeJS
Single thread Multithread
Packages difficult to find through the web NPM packages directly accessible
Synchronous (blocking I/O) Asynchronous (non-blocking I/O)

Table 6.1: Differences between PHP and Nodejs

2http://www.php.net/
3https://nodejs.org/en/

43 CHAPTER 6. Implementation

The technology choice depends above all on what we need in the solu-
tion. In our case NodeJS is more suitable since it provides a lot of packages
which gives a lot of innovative solutions. One of these packages written in
JavaScript, which is very important for us, is Socket.IO4.

It gives us the possibility to send messages from the server to the client
but also from the client to the server. This technology is very useful for
sending real-time information between clients and thus a great solution for
distributing the user interface.

Based on the requirements we previously defined, NodeJS has been chosen
to implement our system. NodeJS is an event-driven non-blocking environ-
ment, which means that a user could perform different tasks at the same
time. The callback function is triggered when the task is completed with the
status successful or unsuccessful. Once the callback is called, the returned
data can be processed in this function and return a result or call other tasks.
This concept is interesting for the web application that we developed since it
gives us the possibility to manage various objects at the same time. Finally,
NodeJS can manage dynamic web pages efficiently.

6.3 Application Infrastructure

The web application has been made with the open-source framework Ex-
press.js5. Express is a lightweight web application framework for NodeJS.
This framework generates automatically a folder structure and an applica-
tion architecture. The folder structure can be seen in Figure 6.1, notice that
we add two additional folders namely background and models.

4https://socket.io/
5https://expressjs.com/

Application Infrastructure 44

Figure 6.1: Folder structure of the application

The root of the application is the app.js file. In this file we initialise the
server on port 8080 and we initialise the routing system. This file is actually
the starting file of the whole application. In The package.json file we can
retrieve all NPM packages we installed with their version. We can also add
some application configurations.

When the user requests a URL, the request is redirected to the appropri-
ate file in the routes folder. We have five possible routes, namely index,
camera (for the security section), audio, light and video. In these files the
request will be processed and then the views will be rendered according to
the request.

In Figure 6.2 we can see the different EJS files which are the views (pages)
of our application. Some pages like the index page are split up in different
files making the code easier to understand and to maintain. In the compo-
nents folder we can retrieve different parts of a view like the header and the
footer, these parts are included in all pages of the application. Addition-
ally, note that the error.ejs file is the view that will be rendered when a
user makes a mistake such as requesting an inexistent URL or when a fa-
tal error occurs. These pages also include JavaScript and CSS files from the
public folder.

45 CHAPTER 6. Implementation

Figure 6.2: View files, split up into different EJS files

Finally, the background folder contains the files motion-detection.js
and tplink-smart-plug.js. These two files are separated from the core
of the application because they run separately from the application. The
models folder contains two files namely Database.js and User.js. These
files contain the schema for the database and for a user object. They will
determine how the data will be saved in the application. The database class
is also used to initialise the connection to the MySQL database and perform
SQL queries.

6.4 Database
The database design for this kind of application is very important. Our
database is a MySQL relational database. Before designing the database, we
must know which kind of information we want to save. Our database model
is entirely designed to make the multi-user system easy to manage. A long
time has been spent thinking about the different tables and their columns.
The database allows us to access, update and delete data within its tables
using a structured query language named SQL. The relations between the
tables are designed so that important queries for our system are easy to build
and to maintain.

Database 46

Figure 6.3: Entity Relationship Diagram

From Figure 6.3 we can deduce that the most important table is tbl_users.
This table is the cores of our database and of our application. Since there
are three different account types, each user need to have permission. In
tbl_permissions we saved these three account types with a unique identifier
as primary key and extra comments to explain what this account type is
about. From the user we need a unique primary key identifier, the name of
the user, their password, their email address and finally their phone number.

Notice that we only save information that is essential for the functionali-
ties of the system. Even better, the database was modelled according to
the functionalities of the web application. This is also why there are rela-
tionships between the user which is central and the various requests we can
do in our application. The only one who is not available in our database is
video requests since saving video requests in the database is not relevant for
our requirements. Of course, this database model can be expanded, saving
and making more complex data available. However, we only save the data
that we really need for the web application.

When a user switches the light’s power state, we create a new light request.
This request is automatically saved in tbl_light_requests. We create a new
unique identifier and we save the date and time of the request together with
the status which is actually the power state (0 for off and 1 for on) and the
user identifier (user_id) to know which user made the request. The attribute
light_id is a foreign key associated with the table tbl_lights which is actually
a table where all available lights are listed. At this moment we have only

47 CHAPTER 6. Implementation

one light available in our system, but imagine we could add another one. It
is easier to manage the system this way.

Since using the smartwatch do not require any login, we cannot know which
user made the request. To handle this problem, in tbl_users we set the
user_id on 0 which is the user_id of the system administrator. So, when we
see that a light request was made with user_id 0, it means that the request
was made using the smartwatch.

Just like light requests, users can make an audio request when listening to
songs using our system. When the user clicks on a song, an audio request
is created in tbl_audio_requests. Here, we also save some information about
the request. Firstly, general information such as ID, user identifier to know
who made the request, the date and time, the search tag the user used to
obtain the link to the song and the most important is the video_id. Which
is the unique ID from YouTube for a video. Why video_id and not audio_id
will be clear in the next Section 6.5. Finally, we save other information
about the video that is provided by YouTube such as title, thumbnail link
and description. We save this information in order to make the creation of a
top 5 favourite songs possible without requesting again the YouTube API.

The last request a user or the system can do is a security request. This
table saves, like every table, the ID, the date and the time. Even if we have
the same table two different requests can be saved in this table. The request
can be made by a user, this means the user took a picture from the camera
and distributed it to other users, or the request was made by the system itself,
when the alarm system was on and the motion sensor detected somebody.
We used the column user_id to make the difference between both requests.
When the automatic alarm system makes a request, the user_id will be set
on 0. Otherwise the user_id will be the user’s identifier which means that a
user made a request. In these two situations a picture will be taken, so with
the image_id we can retrieve the corresponding picture in our image folder.

6.5 InteHome
For a good implementation structure, it is important to split the list of func-
tionalities in phases. Each phase corresponds with a section of the application
and regroups functionalities and requirements that belong together. During
the implementation we adopted an agile development process. Each function-
ality and requirements were developed independently from each other. After

InteHome 48

the implementation, the functionality/requirement was tested and changed if
necessary. This work cycle was done until the functionality was complete and
running correctly. After, the same work cycle is applied on the next func-
tionality. After the implementation of the phase each functionality is again
tested, reviewed and corrected if necessary. The testing phase was mainly
done using exploration testing, trying to cover all different possibilities and
issues of the feature. When an issue was encountered it was fundamental to
find an alternative. In this kind of project, it is very important to always find
a solution to any potential problems. Most of the time further investigation
is required to find the right solution.

6.5.1 Login System
When the user wants to connect, he goes to the index page. The router goes
to the index routes and makes a GET request asking for the index page.
This request method can be seen in Listing 6.1. One important thing occurs
here, we firstly check if someone is already connected. For this we check the
session.user, if this session is empty it means that nobody is logged in. In
this case we give the variable connected the Boolean value: false. Otherwise
it means that the user is already connected, the connected variable will have
the value: true. After checking if the user is already connected or not we
render the index page. When rendering this page some data are transferred
to the EJS view, namely the title of the page, the connected variable, the
device type, and the user object in the session. Notice that we used external
packages for using sessions and gather information about the requesting
device. These packages are client-sessions and express-device.

rout e r . get (’ / ’ , (req , res , next) => {
var connected = (req . s e s s i o n && req . s e s s i o n . user) ? t rue : f a l s e ;

var ag = agent . parse (req . headers [’ user−agent ’]) ;
c on so l e . l og (ag) ;
c on so l e . l og (ag . dev i c e . t oS t r i ng ()) ;

r e s . render (’ index ’ ,{ t i t l e : "Home" , connect : connected , dev i c e : req . dev i c e .
type , user : req . s e s s i o n . user }) ;

}) ;

Listing 6.1: GET method for the index page

In the index page we check various parameters. Firstly, we check the
connected parameter. If the value is true it means that the user is connected
to the application. So, in this case we check the user object’s permission_id.
Depending on the permission_id we know which interface we have to render

49 CHAPTER 6. Implementation

either the administrator panel if the permission_id is 1 or the home page
with its menu. Otherwise, if the connected variable is false it means that
nobody is connected. So, then we have to check to the device type. If the
device type is a ‘TV’ then we have to display the interface for the smart TV
otherwise we display the login page.

When the user clicks on the ‘login’ button, a POST request is sent to the
/index/login URL that can be seen in Listing 6.2. Here we will check if
the user who wants to log in sets the right email and password. We make
firstly a database instance, then we query the database asking if a user with
this email and password combination exists. If it returns a user object, we
save it in the session and we redirect the user to the index page which will
again perform the actions that we described previously. If the user does not
exist, we render again the login page with an appropriate error message. This
workflow can be seen in Figure 6.4.

rout e r . post (’ / l o g i n ’ , (req , r e s)=>{
var db = new Database () ;
var user = db . getUser (req . body . email , req . body . password) . then ((user)=>{

db . c lo seConnect ion () ;
i f (user) {

req . s e s s i o n . user = user ;
r e s . r e d i r e c t (’ / ’) ;

} e l s e {
r e s . render (’ index ’ ,{ t i t l e : "Home" , connect : f a l s e , dev i c e : req . dev i c e .

type , user : req . s e s s i o n . user , l og in_er ro r : " Email␣ or ␣password␣ i s ␣
i n c o r r e c t ! " }) ;

}
}) . catch ((e r r)=> setImmediate (()=>{throw e r r ; })) ;

}) ;

Listing 6.2: POST method when the user wants to log in

InteHome 50

Figure 6.4: Sequence Diagram for login POST method

When the users wants to log out, he has they only have to click to the
‘logout’ button. It will make a POST request to index/logout. The session
is then reset and the user is redirected to the index which will then render
the login view.

6.5.2 Audio Section
When the user clicks on the audio button of the home page’s menu. The
user makes a GET request to /audio. Just like other requests we check if
the user is connected, if not he is redirected to the index page. If the user is
connected, the audio page is rendered. Here the isPlaying is an important
parameter that is passed to the audio view. This parameter always has the
state of the home speakers. Passing this parameter to the view permits to
the interface to know if a song is currently playing or not.

When a POST request is submitted to /audio, it can have different mean-
ings. Firstly, we look to the request body’s id parameter. If it is undefined,
it means we are searching for a song. Otherwise, if the id is set it means
we want to play a song. This can be seen in Figure 6.5 In the case that the
user is looking for a video, he posted the search tag. With this search tag
we browse the YouTube API. We use the package youtube-search, after
passing the options like personal key, type of data and the number of re-
sults. We can pass our search tag and it returns a JSON object with a list

51 CHAPTER 6. Implementation

of video information. This JSON object is then passed to the view so that
he can organise and display the results. If the request body’s id parameter
is not undefined,hen it means that the user wants to launch a song. In this
case we have to first check if a song is currently playing, if it is the case we
must reset the audio stream by removing all event listeners, resetting the
decoder and set the Speaker and isPlaying variables to false. After this
we can play a new YouTube stream from the requestURL which is composed
of the concatenation of the YouTube URL “https://youtube.com/watch?v=”
and the request body’s id variable. A YouTube audio stream is created by
using the NPM package youtube-audio-stream. The audio stream is then
piped to a new speaker object and then we finally save the request in the
database and we emit to all sockets the message startPlaying. In the client
side, the interface knows that a new song instance is created. This process
can be seen in Listing 6.3.

i f (Speaker && audioStream && i sP l ay ing) {

audioStream . removeAl lL i s t ener s () ;

audioStream . emit (’ end ’ ,{ e r r o r : ’ ending ␣music ’ }) ;
decoder = new lame . Decoder () ;
audioStream = nu l l ;
Speaker = f a l s e ;
i sP l ay i ng = f a l s e ;
}

i f (! i sP l ay i ng) {
audioStream = youtubeStream (reques tUr l) . p ipe (decoder) ;
audioStream . on (’ format ’ , f unc t i on (format) {

Speaker = new speaker (format) ;
i sP l ay i ng = true ;
t h i s . p ipe (Speaker) ;
r e s . j s on ({ i sP l ay i ng : i sP l ay ing }) ;

saveRequest (searchTag , req . body . id , req . body . t i t l e , req . body . d e s c r i p t i on ,
req . body . thumbnail , req . s e s s i o n . user . id) ;

req . app . i o . s o cke t s . emit (’ s t a r tP l ay ing ’) ;
}) ;

Listing 6.3: Process occuring when the user make a request for a new song

InteHome 52

Figure 6.5: Sequence Diagram for audio requests

In the audio section we also retrieve the favourite songs. When the user
clicks on the ‘favourites’ tab, a POST request to the server is made. Then
the user can query the database to get a list of audio requests that the user
made in the past and where the user_id is equal to the user who made this
request. To distribute the favourites to other users we use web sockets. In the
client side, we send the data to the server and the server makes a broadcast
to all sockets which will then receive the data containing a list of songs.

53 CHAPTER 6. Implementation

6.5.3 Lighting Section

In the lighting section we demonstrate that Express is very efficient for cre-
ating a little API. This section is composed of two GET methods and two
POST methods. The first one is the /light this will render the view and it
will transfer the light power state to the view in order that the view set the
right state to the switch button.

In order to get the power state, we created an object named tplink. This
object uses the NPM package tplink-smarthome-api, the goal of this ob-
ject is to provide some functionalities that we can call from everywhere in
our code such as on, off and isDeviceOn. The package is mainly used to
communicate with our smart power plug, firstly to discover the smart plug
in the network and secondly to send or get information.

The second GET method is /light/API/bedroom/getPowerState. This
request will send a JSON object, the current state of the smart power plug
by using the isDeviceOn function of the tplink object. This request is
mostly used by the smartwatch in order to get the current power state when
the smartwatch application is launching.

The two POST requests are /light/bedroom/on, this method can be seen
in Listing 6.4, and /light/bedroom/off. The goal of these two requests
is very similar. One is used to turn the light on and the other to turn the
light off. The request is first saved in the database. After that, the tplink
function on or off is used accordingly. Finally, a message is emitted to all
sockets in order to update each interface with the new state.

rout e r . post (’ /bedroom/on ’ , (req , res , next) => {
conso l e . l og (req . dev i c e . type +"−−−−>reques t ␣ f o r ␣ l i g h t ␣ api ␣on ") ;

var uid = (req . s e s s i o n . user) ? req . s e s s i o n . user . id : 1 ;
var db = new Database () ;
db . in s e r tL ightReques t (1 , 1 , uid) . then ((r e s) =>{ // 1 = lamp id , 1 =

s t a t e o f the lamp (1 = true = on)
t p l i n k . on () ;
req . app . i o . s o cke t s . emit (’ br−l i g h t ’ ,{ powerState : t rue }) ;

}) ;
r e s . j s on ({ s t a tu s : ’ ok ’ }) ;

}) ;

Listing 6.4: API URL for turning the light on

InteHome 54

6.5.4 Video Section
This section is very similar to the audio section. The /video GET method is
only used to render the video view. When the user enters a search tag,
we use, just like for the audio part, the youtube-search NPM package
to make a query to the YouTube API. Next, we will receive a JSON ob-
ject from YouTube containing information about the video. We then render
this data object to the view which will organise them using jQuery on the
client side.

When the user clicks on the desired video, we emit from the client side a
message using sockets to the server, the server will then redirect this mes-
sage containing the video ID to the smart TV socket. In Listing 6.5 we can
see what occurs when the socket receives the message, it will namely extract
the video ID and create the HTML iframe object or replace the current
source with the new YouTube URL.

$ (document) . ready (func t i on () {
var socke t = i o . connect (’ http : / / 1 0 . 4 2 . 0 . 1 6 0 : 8 0 8 0 ’) ;
socke t . on (’ launchVideo ’ , f unc t i on (resp) {

$ ("#videoCadre ") . a t t r (" s r c " , " https : //www. youtube . com/embed/ " + resp .
video_id) ;

}) ;
}) ;

Listing 6.5: Smart TV client receives a message from the server containing
the video ID

6.5.5 Camera Section
The camera section is a little bit more complex due to their the different func-
tionalities. The Back-End is mostly done but we did not finish the Front-End
yet. The alarm system is mainly dependent of on the motion sensor. For
the communication with the GPIO pins of the Raspberry Pi we used the
NPM package rpi-gpio. This package provides functions that we can use
to work with the sensor such as the setup and destroy function. Using the
setup function, we can initialise the pin we want to listen to. Once the setup
function is called, it means that the sensor is on. When the input pin detects
an electric charge, it means that the sensor has detected someone, and the
event can be called. In the callback function we firstly save this request into
the database, we take a picture from the camera, we emit a message to all
sockets and finally we launch the siren audio file into the home speakers.

55 CHAPTER 6. Implementation

When we call the destroy function, it means that we turn the sensor off.
We made an object motion, who actually uses these functions to make an
abstraction and use it everywhere in our application. We created then the
function isActivated which returns true or false and this value will deter-
mine the state of the sensor. When a change is done, we use web sockets to
broadcast the new state of the sensor to all users, just like in the light section.

Finally, pictures taken either automatically from the system or from a user,
are saved into the image storage. Each week we call the deleteImage func-
tion who will delete all images from the storage that are out dated.

6.5.6 Administrator Panel
The administrator panel is the less complex section of this application. When
the page is requested, we query the database to get all relevant information
such as requests amounts, users and alarm system information. When he
users wants to create, delete or update, the user does a POST request which
will then generate the appropriate query, with the data obtained from the
request, for the MySQL database.

6.6 Fitbit Ionic Application
The Fitbit Ionic smartwatch is used to manage the lighting system of the
home. Since the Fitbit do not has a browser to launch the web application,
we had to built an application in JavaScript. Before explaining the develop-
ment of the application, it is necessary to understand how this smartwatch
works.

The smartwatch needs to be coupled with the smartphone via Bluetooth.
The Android or IOS Fitbit6 application needs to be installed on the user’s
smartphone. Once the security code is introduced into the Fitbit application,
the smartwatch is recognized and the first synchronisation occurs.

Actually, the smartwatch does not have access to the internet. It is the
companion that uses their Internet connexion for browsing some resources
from the internet and send it to the smartwatch via the Bluetooth connexion.

6https://www.fitbit.com/be/setup

Fitbit Ionic Application 56

To develop an application for the Fitbit we did a Fitbit account for Fit-
bit Studio7. Fitbit Studio is an environment where we can create applications
for Fitbit’s smartwatches. Once we are logged in we can create a new applica-
tion. The application that we did for the smartwatch is called FitbitThesis.
The application’s folder architecture is important when building a Fitbit ap-
plication. First, the app folder, it contains the index.js file who will run into
the smartwatch. The companion folder should also contain a index.js file
who will run into the smartphone. Next, we have the common folder, this
folder is used for some code that can be shared between the application code
and the companion code. It prevents to write duplicate code. The last folder
is the resources, it contains the index.gui, widgets.gui, styles.css and
icon.png files. This folder is used for the graphical content of the application
such as text, buttons, images etc. Finally, we have also a package.json file,
it is generated automatically when you create an application and contains
various application settings.

Fitbit provides also to the developers a large list of APIs for the smartwatch
and smartphone. When we are coding, we just need to import the right
package and you can use the API. In the index.js that runs on the smart-
watch we import two packages namely document and messaging. Document
is necessary to get elements from the interface. Messaging package is used
to send data from the smartwatch to the smartphone. In our application
the document.getElementById function is used to get the buttons from the
interface and save it into a variable. With this variable we can listen to the
click event, and send data from this socket to the companion socket. In the
index file for the companion, we listen to message entries from other sockets.
When a message is caught, we look to the JSON data, the data provides the
status that we wanted, depending on the button that was clicked.

Afterwards, depending on the status, the functions fetchOn or fetchOff
will be called. These functions make a simple web request to the URLs of
our web application which will then turn the light on or off. The fetchOn
and fetchOff functions can be seen in Listing 6.6. Notice also that when the
application launches the function fetchGetPowerState is requested which
returns the current power state of the light.

7https://studio.fitbit.com/

57 CHAPTER 6. Implementation

f unc t i on fetchOn () {
conso l e . l og (" in ␣ f e t ch ␣ func t i on ␣on ") ;
f e t ch (‘ http : // 192.168 .1 .39 :8080/ l i g h t /bedroom/on ‘ , {

method : "POST"
})
. then (func t i on (r e s) {

re turn r e s . j son () ;
}) . catch (e r r => conso l e . l og (’ [FETCH] : ␣ ’ + e r r)) ;

}

func t i on f e t chO f f () {
conso l e . l og (" in ␣ f e t ch ␣ func t i on ␣ o f f ") ;
f e t ch (‘ http : // 192.168 .1 .39 :8080/ l i g h t /bedroom/ o f f ‘ , {
method : "POST"

}) . then (func t i on (r e s) {
conso l e . l og (r e s . j s on ()) ;

}) . catch (e r r => conso l e . l og (’ [FETCH] : ␣ ’ + e r r)) ;
}

func t i on fetchGetPowerState () {
conso l e . l og (’ in ␣ f e t ch ␣ func t i on ␣ get ␣ powerstate ’) ;
f e t ch (‘ http : // 192.168 .1 .39 :8080/ l i g h t /bedroom/ getPowerState ‘) . then (

func t i on (res) {
conso l e . l og (r e s . j s on ()) ;
l e t data = r e s ;
i f (messaging . peerSocket . readyState === messaging . peerSocket .OPEN) {

messaging . peerSocket . send (JSON. s t r i n g i f y (data)) ;
} e l s e {

conso l e . l og (’ send␣ powerstate ␣−>␣ e r r o r ␣ socket ␣not␣open ! ’) ;
}

}) . catch (e r r => conso l e . l og (’ e r r o r : ␣ ’ + e r r)) ;
}

Listing 6.6: Fitbit Ionic web requests

The application’s interface is composed of a text element and two square tog-
gle buttons. The interface is a SVG file where elements we want to use are
defined in the widgets.gui file.

6.7 Issues
This section presents the issues we encountered during the development pro-
cess of the system. The first issue we encountered is in the InteHome’s
audio part. Initially, the goal was to pick up audio streams and information
from the SoundCloud API8. SoundCloud is a website specialized in music
tracks. But during the implementation we were unlucky because the API
was not more available anymore for clients. Thus, we had to find an al-
ternative to this problem. The solution was to use, just like the video sec-
tion, the YouTube API. Users of our application should search for a title

8https://developers.soundcloud.com/

Issues 58

or artist and then the YouTube API is queried. With the NPM pack-
age youtube-audio-stream. We can extract the audio stream from the
YouTube video and distribute it with the home speakers.

With the smartwatch Fitbit Ionic we also encountered two different issues.
The application in the smartwatch works only if it is coupled to a smart-
phone. Furthermore, the smartphone must be synchronised with the smart-
watch continually to let the application work properly. The problem is that
the synchronisation does not work every time.

So, it is pretty hard to launch the application without problems. Another
issue related to the smartwatch is that we wanted to distribute the user in-
terface from the smartphone to the smartwatch by clicking on a button or
swiping on the screen. However, with the Fitbit Ionic it is not possible to in-
clude this feature, since it does not provide a service to get requests from the
outside. Request can only be sent from the smartwatch, via the companion
(smartphone), to the server (unidirectional).

7
Guidelines

Before and during the development phase we followed a lot of guidelines for
such projects. For both research fields, whether it was for distributed user
interfaces or the Internet of Things, most of the research provides guidelines
for other developers. We also give some specific guidelines for persons who
want to develop these kinds of systems.

7.1 System Infrastructure
The first thing to know is what the system must do. Based on the system
requirements, one can think about different hardware that must be present in
order to accomplish these requirements. A lot of smart objects are available
nowadays, but one must always think about how this object works in our
own system. Some objects do not provide an API which makes the object
difficult to access from an application, or they use other communication pro-
tocols such as Bluetooth, radio frequency, RFID and NFC. Sometimes one
can see that the smart object desired is not existing already. In this case,
one can create it with all available micro-sensors and micro-computers such
as the Raspberry Pi or Arduino.

So, it is important to know how smart objects work and to analyse the
communication protocol and the accessibility from outside. However, always

Technologies 60

try to find an alternative solution. Nowadays each problem can have one or
more solutions, always try to find the best way to solve a problem. Commu-
nication between a web application and a smart object is better with Wi-Fi.
The application is easily accessible on the local network using the IP-address
or using a local domain name. Furthermore, when one is working on a web
application we recommend connecting it through the Wi-Fi because Wi-Fi
is used by all devices.

7.2 Technologies
We highly recommend making good choices about technologies to use, such
as the right programming languages. Generally, we recommend using NodeJS
for the back-end technology in addition with Socket.IO. For such system the
combination of NodeJS and Socket.IO is very powerful, resolving real-time
problems in an efficient way. So, we used a server-client architectural pattern
but one can even use a peer-to-peer architecture, which is as well suitable
for distributed user interfaces. NodeJS is suitable for this kind of project,
because it has a lot of NPM packages who are well documented and can be
easily used directly in the application.

7.3 Style Guidelines
When designing an application, one must hold in mind that the design must
be intuitive and easy to understand. We suggest following the Google Ma-
terial Design guides, most of their design guidelines are based on usability.
Following their guidelines ensure an effective, intuitive and enjoyable user
interface. Furthermore, one needs also to reflect about how to distribute el-
ements of the application across different devices. One needs to think about
what will be distributed and how. Create always an area in the user interface
where distributed elements can end up. The best way to handle distributed
user interface is to create transitions and feedback so that the user knows
what happens. In general, one does not invest more effort to a distributed
user interface than a non-distributed user interface, because principles and
style guides are the same for both kind of interfaces.

61 CHAPTER 7. Guidelines

7.4 Implementation Recommendations
For the implementation of a distributed user interface in an Internet of Things
environment, we firstly suggest thinking about how to communicate from the
client to the server in an efficient way. Most of our actions are triggered from
a HTTP post request from the user, for example, switching the light’s power
state triggered from a post request. In general, this way of working is very
similar to APIs. We provide some requests that the different users can do to
trigger an action in the server side. Since we are speaking about distributed
user interfaces it is important that the instances of the physical objects are
in the server side and not in the client side. In this way it is easier to access
the instances of the object, and also more efficient.

Concerning the user interface, when one wants to synchronise their inter-
face with someone else’s, sockets are necessary to make the communication
faster. Furthermore, sockets allow to send data to the server and the server
can then propagate it to other devices creating the illusion that devices are
communicating directly together. In this way, one can change the instance
of an object and other interfaces are automatically up-to-date. Another op-
portunity is to send data from one device to another so that it can change
its interface depending on the data that it receives.

In these kind of applications, it is important to generate data. These data can
then be used for different purposes such as tracking the number of requests.
Even more, data can eventually be shared with other users or systems. With-
out a well-designed database it is not possible. So, it is important to reflect
a lot of time when designing the database. Different devices and objects,
configurations and user’s information can be saved in the database. The
database is a paramount part of the application. Also for redundancy pur-
poses the database can be useful. When the server is interrupted, we can
save current states of the objects and of the interface making the application
more reliable.

Finally, the best suggestion we can give is to make a lot of research about
these technologies and about the devices and objects one wants to use.

Implementation Recommendations 62

8
Future Work & Conclusion

In this chapter, we discuss some new ideas that can be added in the future.
Finally, some conclusion about the work performed in this thesis is given.

8.1 Future Work

While this project has demonstrated the potential of distributed user inter-
faces in the context of the Internet of Things, many other opportunities are
left principally due to a lack of time. In this section we present other features
that could be adopted in this project, which will certainly have a positive
impact on this project.

8.1.1 Framework

Currently all different sections are static, which means that you cannot add
or delete some sections. In the future we can imagine that the administrator
can add or modify some sections, for example, by adding a new section for
the thermostat directly from the administrator panel without modifying any
source code. Another example using the administrator panel, is adding new
lights and smart power plugs into the system.

Conclusion 64

8.1.2 Notifications
A nice gain could be notifications for security purposes. In the current pro-
totype the user must be logged in and in the right section to see some noti-
fications such as camera pictures from other users or the alarm system that
switched on. But we can imagine in the future that users can have real notifi-
cations from the system which alert them that something occurs. Moreover,
by clicking on the notification we could distribute the message and see more
information on the smartwatch or open directly the web application without
login needed.

8.1.3 Speech Commands
Speech commands are nowadays common in home automation systems. So,
in our system we can also imagine adding speech commands to make the
users’ life easier. We could add speech commands to switch lights on and off.
Another example using the voice is to stop the audio stream that is currently
playing.

8.1.4 Go Beyond the Local Network
The prototype works currently only in the local network. We could later
make the application available on the internet. So, we do not have to be
connected to the local network to manage the different parts of the system.
With this new requirement we could see the camera stream from everywhere,
for example.

8.2 Conclusion
We presented an innovative system for home automation integrating the two
research domains of Internet of Things and Distributed User Interfaces. Our
system, InteHome demonstrates how user interfaces can be distributed across
different devices using different applications introduced in the Solution Chap-
ter 3. Making physical object instances such as speakers available in the in-
terface of any user.It demonstrates the potential of distributed user interfaces
since this only instance is distributed across different interfaces. IoT devices,
such as a smartwatch, Smart TV and a smart power plug, have been inte-
grated to the system as well. However, the most challenging part of this
thesis has been to distribute the web application with these smart objects.
Very few research were done on the combination of these two fields presented
in this thesis. Therefore, based on the experience acquired when building the

65 CHAPTER 8. Future Work & Conclusion

InteHome system,in Chapter 7 we introduce some guidelines for developers
of such hybrid systems combining IoT and DUIs. With this, we hope to
create new horizons in the world of technology.

To make this project possible, we first adopted a clear methodology by list-
ing the different requirements and functionalities that must be implemented
in the web application. It helped to make a planning of work and a clear
vision of the system to implement. Secondly, a lot of research was done to
gain insight about the technologies in the scope of this thesis. The research
was divided into two parts, one for distributed user interfaces and another
for the Internet of Things. This was necessary to understand some aspects
of distributed user interfaces and the working of the Internet of Things. The
way the project looks like is defined in the solution Chapter 3 of this the-
sis. We described the different sections of the system. With this description
other persons should understand the purposes of the system and its benefits.
The major part of this thesis is the implementation of the system. A lot of
new technologies was used to make the system work properly. The choice
of the programming languages, libraries, user interfaces and hardware are
fully presented in this chapter just like the details of the source code and
the issues encountered during the implementation phase. During the long
brainstorm sessions and implementation, we found new interesting ideas and
functionalities that could be developed in the future.

Finally, the results of this thesis and project demonstrate the power of
both research fields, Distributed user interfaces and the Internet of Things.
Thanks to the work delivered before the implementation phase, we had
enough knowledge about the subject since we had implement most of the
functionalities and requirements defined previously in the methodology chap-
ter 5. We demonstrate that NodeJS and Socket.IO are powerful tools for
developing distributed user interfaces. And since NodeJS provides a lot of
packages to manage IoT objects, it is even more effective for an Internet of
Things environment.

Conclusion 66

Bibliography

[1] Demeure Alexandre, Calvary Gaëlle, Balme Lionel, and Coutaz Joëlle.
CamNote: A Plastic Slides Viewer, January 2005. supported by the
European CAMELEON R&D Project IST-2000-30104.

[2] Tsung-Hsiang Chang and Yang Li. Deep Shot: A Framework for Migrat-
ing Tasks Across Devices Using Mobile Phone Cameras. In Proceedings
of CHI 2011, Conference on Human Factors in Computing Systems,
pages 2163–2172, Vancouver, Canada, May 2011.

[3] Guía E., Gallud J., Tesoriero R., Lozano M., and Penichet V. Co-
Interactive Table: a New Facility to Improve Collaborative Meetings. In
Proceedings of the 12th International Conference on Human-Computer
Interaction with Mobile Devices and Services (MobileHCI 2010), pages
3–6, 2010.

[4] Fisher Eli Raymond, Karthik Badam Sriram, and Elmqvist Niklas. De-
signing the Distributed User Interface: Case Studies on Building Dis-
tributed Applications. International Journal of Human-Computer Stud-
ies, 72(1):100–110, January 2014.

[5] Niklas Elmqvist. Distributed User Interfaces: State of the Art. In
José A. Gallud, Ricardo Tesoriero, and Victor M.R. Penichet, editors,
Distributed User Interfaces: Designing Interfaces for the Distributed
Ecosystem, pages 1–12. Springer-Verlag, London, 2011.

[6] Paternò F. and Santoro C. A Logical Framework for Multi-device User
Interfaces. In Proceedings of the 4th ACM SIGCHI Symposium on En-
gineering Interactive Computing Systems - EICS 2012 , pages 45–50,
Copenhagen, Denmark, June 2012.

[7] Melchior Jérémie, Vanderdonckt Jean, and Van Roy Peter. A model-
based approach for distributed user interfaces. In Proceedings of the
3rd ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS 2011), pages 11–20, Pisa, Italy, June 2011.

BIBLIOGRAPHY 68

[8] Vukovic Maja. Internet Programmable IoT: On the role of APIs in IoT:
The Internet of Things (Ubiquity symposium). ACM Transactions on
Computer-Human Interaction, 2015(3), November 2015.

[9] Domingo Mari Carmen. An overview of the Internet of Things for peo-
ple with disabilities. Journal of Network and Computer Applications,
35(2):584–596, March 2012.

[10] Yusufov Murad and Kornilov Ivan. Roles of Smart TV in IoT-
environments: A survey. In Proceedings of the 13th Conference of Fruct
Association, pages 163–168, Petrozavodsk, Russia, April 2013.

[11] Bapurajan S., Yoshiura N., Prabu V., Rajendra D., and Nirosha K. In-
ternet of Things Based Intelligent Street Lighting System for Smart City.
International Research Journal of Engineering and Technology(IRJET),
3(2):7684–7691, 2017.

[12] Bernaerts Yannick, Druwé Matthias, Steensels Sebastiaan, Vermeulen
Jo, and Schöning Johannes. The Office Smartwatch âĂŞ Development
and Design of a Smartwatch App to Digitally Augment Interactions in
an Office Environment. In DIS Companion 2014 Proceedings of the 2014
Companion Publication on Designing Interactive Systems, pages 41–44,
Vancouver, Canada, June 2014.

