
Graduation thesis submitted in partial fulfilment of the requirements for the
degree of Master of Science in Applied Sciences and Engineering: Toegepaste
Informatica

INTERACTIVE MUSIC VISUALI-
SATIONS WITH P5.JS AND
REACTIVE PROGRAMMING

Hanne Sips

Academic year 2022–2023

Promotor: Prof. Dr. Beat Signer
Supervisor: Jorge Isaac Valadez Mora

Sciences and Bio-Engineering Sciences

2

Acknowledgements

I would like to express my sincere gratitude to Prof. Dr. Beat Signer and supervisor Jorge Isaac
Valadez Mora for providing me with the opportunity to delve into my proposed research topic,
while granting me the autonomy and freedom to shape its scope. A special thank you goes
to Isaac for his invaluable guidance during the process of my thesis. I am also grateful to my
boyfriend and study buddy Jeroen for his unwavering enthusiasm about my project and web
application, as well as his mental support. My thanks also extend to my friends and colleagues
who generously dedicated their time to test the tool, thereby enriching this work with their
insights.

3

Abstract

This study explores the fusion of p5.js and reactive programming to create interactive music
visualisations. A user-friendly web application is developed, combining p5.js and RxJs to enable
real-time visualisations with interactivity. The study demonstrates the synergy between these
technologies, allowing for rapid iteration and easy creation of visuals. The integration of reac-
tive programming enhances responsiveness and flexibility, although performance limitations and
learning curves are noted. Overall, this research provides a foundation for newcomers to delve
into the world of interactive music visualisations through a powerful, versatile and accessible
approach.

4

Chapter 1

Introduction

1.1 The art of data visualisation

Data visualisation brings data to life. It has proven its value in identifying trends, facilitating
decision-making, and presenting information in an understandable way to diverse audiences. A
first and well-known example is the NASA global temperature anomaly animation (Figure 1.1)
([1]). It shows monthly global temperature anomalies (changes from an average) between the
years 1880 and 2022 in degrees Fahrenheit, where whites and blues indicate cooler temperatures,
while oranges and reds show warmer temperatures. This animation serves as a visual represen-
tation of the ongoing climate change and its impact on global temperatures. It helps viewers
understand the increasing trends and raise awareness about climate change and its consequences.

Figure 1.1: NASA global temperature anomaly animation

Other examples of data visualisation can be found in the geographical context. A Strava
heatmap, shown in Figure 1.2, highlights the most popular biking routes on the map. Figure 4
shows a project created by Aaron Koblin, called ”Flight patterns”: This visualisation interprets
flight data in North America and animates them on a map, uncovering human behavioural
patterns over time [2].

In the visualisations shown in Figure 1.1, 1.2 and 1.3, the reader with an eye for art can already
see an additional potential that goes beyond the boundaries of presenting trends and statistics:
data visualisations can lead to true digital art pieces. More than ever, data visualisation has found
its way into the art world. It is now part of the discipline called creative coding, which involves
coding primarily for an expressive purpose rather than a functional one [3]. Creative coding and

5

6 CHAPTER 1. INTRODUCTION

Figure 1.2: Strava heatmap
Figure 1.3: Aaron Koblin, Flight Pat-
terns Computer Application (2008)

data visualisation come together in a domain called data art. According to Luke Treder, data
art ”often involves the use of algorithms, software, and technology to turn data into something
that can be seen, such as a graph, chart, or animation. The goal is to convey emotions to the
audience by sharing insights, patterns, or stories hidden within the data in an accessible and
creative way.” ([2]) Data artists can build art installations on any kind of input data, like static

Figure 1.4: Data art, where creative coding and data visualisation come together

data sets, input streams coming from IoT, or real time user interactions ([4]). A captivating
example of a data artwork is the Bosphorus Data Sculpture created by Refik Anadol. This
unique piece showcases the fusion of real time data flows and artistic expression. Through this
sculpture, Anadol transforms complex data related to the Bosphorus Strait water movements in
Turkey into a tangible and visually striking form. This work demonstrates how artistic creativity
can be intertwined with information visualisation. A snapshot of this interactive artwork is shown
in Figure 1.5. ([5]

This thesis zooms in on the visualisation of a specific kind of input data: music. Music can
be thought of as a stream of data information over time which, just like other data streams, can
be processed and transformed into visualisations. Visuals in the domain of music offer exciting
possibilities for enhancing musical or artistic performances by integrating moving animations
and captivating visuals that interact with sound or musically instruments. These visual elements
serve to augment the auditory experience, creating a multi-sensory spectacle. Moreover, music
visualisation extends beyond live performances. Artists have been leveraging the power of visual-
isation to create digital art pieces like music video clips and immersive audio-visual installations.

1.1. THE ART OF DATA VISUALISATION 7

Figure 1.5: the Bosphorus Data Sculpture - Refik Anadol

By synchronising visual elements with audio signals, artists can take their audience on a visual
journey that complements and enhances the sonic experience. A snapshot of an example of a
digital art animation, made by Memo Akten, is shown in Figure 1.6. It is an animation of a
harmonic motion of a symmetric figure that produces sound as if it were a digital instrument.
[6]

Figure 1.6: Memo Akten - Simple harmonic motion

An example of an interactive art installation is the installation ”Flux” of a group of french
artists named Scale Collective (Figure 1.7). It is build from 48 beams of light that are each
individually motorised and controlled by musical input and by input of the audience through
an interface, allowing for a synchronised performance of twisting and coiling patterns. [7] In
summary, this thesis explores the intersection of data visualisation and music. The next section
delves into the state of the art in music visualisation tools, presenting an overview of the existing
methodologies, tools, and technologies available to creators.

8 CHAPTER 1. INTRODUCTION

Figure 1.7: Collectif Scale: Flux

1.2 Music visualisation tools

Although real time music visualisation is a rather modern development, there is a large and very
diverse range of tools and technologies available, developed by programmers and creators all over
the world. These tools serve both non-technical artists and artists with a technical background.
For non-technical artists, there are numerous drag and drop tools and drawing applications
that facilitate the creation of visual artwork and interactive animations. These user-friendly
tools offer intuitive interfaces that enable artists to express their creativity without requiring
in-depth programming knowledge. Examples are Magic Music Visuals 1, VZX Music Visualizer
2, MilkDrop 3, Synesthesia 4 and many more.

Creators with technical knowledge and a programming background can find music visuali-
sation technologies in multimedia programming languages, libraries, and packages. Compared
to the visualisation tools with prebuilt visuals and effects discussed above, these more technical
tools provide a deeper level of control for the creator and make it possible to create visuals and
art installations on music data flows from scratch. In what’s next, we dive deeper into three kind
of technologies: visual programming languages, multimedia specific programming languages and
general purpose programming languages.

A visual programming language (VPL) is a programming language that allows users to create
programs or applications by manipulating visual elements or graphical representations instead
of writing traditional textual code. It is a common technology in music processing applications,
as it allows users to process and transform audio and MIDI streams, enabling the creation of
synthesizers, visualisers or other sound and visual artworks. By manipulating incoming data
streams, users can generate modified audio streams, such as equalisers or filters, or process and
transform the streams to visualisation output. The flow of data is often represented visually in
a graph structure, making it easier to understand and manipulate. An example of how a VPL
looks like, is given in Figure 1.8. [8, 9]

Max MSP 5 and Pure Data 6 are twe VPL’s that are both widely used for creating interactive
multimedia applications (more on this in Chapter 2). Because of the visual nature of these
languages, and the ease of creating new processes in the UI, VPL’s are more intuitive and less

1https://magicmusicvisuals.com
2https://www.vzx-visualizer.com/
3https://www.geisswerks.com/milkdrop/
4https://synesthesia.live/
5https://cycling74.com/products/max
6https://puredata.info/

1.2. MUSIC VISUALISATION TOOLS 9

Figure 1.8: Visual Programming Language: Max MSP

10 CHAPTER 1. INTRODUCTION

technical than textual programming languages. On the other hand, there is a learning phase for
technical users to getting used to a new programming style and getting to know the building
blocks and features of the language. [10]

Next to VPL’s, many text-based programming languages are developed with the goal to fa-
cilitate the creation of interactive multimedia applications. Most of them are heavily used in
the development of synthesizers, and are also applicable in the creation of dynamic visualisa-
tions of sound. A first example is CSound 7, which is an open source, powerful language for
creation and modification of music and sound effects in real-time. A second example is Super-
Collider 8, an open-source programming language and environment for real-time audio synthesis
and algorithmic composition. It is commonly used for creating interactive music and sound
design applications. Both CSound and SuperCollider can also be used for creating real-time
visualisations of a music data flow. [11]

In addition to languages and tools dedicated to multimedia purposes, more general purpose
text-based programming languages like Python, C++, and JavaScript offer packages and libraries
that empower users to create sound applications, visualisations and animations. JavaScript, in
particular, provides a large variety of packages, including popular ones like p5.js 9 and Three.js
10. These libraries enable the creation of visualisers and interactive multimedia applications in
the browser. [3, 12]

The availability of these diverse technologies offers artists and creators the freedom to choose
the tools that best suit their needs, skill level, and artistic vision. Each technology has its own
target audience and varying levels of technical complexity and extensibility. In the following
sections, we will delve into these solutions, with the main focus on Javascript and it’s p5.js
library. Further, we will investigate how we can combine p5.js with the principles of a visual
programming language to create interactivity of the visual on music data streams. We do this
by zooming in on the use of the reactive programming paradigm and find a way to visualise the
flow in a graph structure.

1.3 Problem statement and contribution

As stated in the overview above, that only barely touches the surface of all available technologies
in the domain of multimedia tools and packages, it is clear that a developer has many options
when starting creating music visuals and live performance installations. This variety of tools can
be overwhelming to start off. Does the creator want to go in technical detail? Should the creator
start learning a new, specified programming language or stick to the more general, widely known
programming languages that he/she might already have experience with? If so, which packages
suit best the requirements of the project? Is it worth trying a Visual Programming Language in
this context, or will it lead to less flexibility and customisability?

Keeping in mind the learning time and costs of getting a true feel for a new tool, technology or
language structure (like VPL), there is something to say for choosing a programming language
that the creator is already trusted with. Confidence and experience in the programming lan-
guage can keep the focus of the developer on the creative aspect of the process. Still, as nowadays

7https://csound.com/
8https://supercollider.github.io/
9https://p5js.org/

10https://threejs.org/

1.4. METHODOLOGY 11

practically all programming languages have packages available for multimedia programming and
audio / midi data stream processing, a choice needs to be made between different languages and
libraries.
In this thesis, the possibilities and restrictions of Javascript in the domain of music visualisation
are investigated. With the advancement of web browsers, the capabilities for creating dynamic
musical content have significantly improved over the past three years. Nowadays Javascript is the
most recognised and widely used web technology over the world and is easily runnable by users,
regardless of the browser or operating system. JavaScript-based applications running in browsers
now offer high performance, portability across various platforms, and long-term viability due to
standardisation. The ubiquity of web browsers on desktop and mobile devices makes them widely
distributed, positioning them as a ”write once, run anywhere” solution for developing musical
interfaces ([3, 12]).

This thesis aims to undertake a detailed investigation of the possibilities of JavaScript in
the realm of creating digital artwork. Focusing on real time music interactivity of visuals, the
combination of Javascript p5 and reactive programming is explored and evaluated. Can reac-
tive programming help in creating interactive music visualisers in p5? This exploration is done
through analysis, experimentation, and practical demonstrations.

The research questions of this thesis can be stated as follows:

• An exploration of Javascript p5.js: To what extent is Javascript p5.js suitable for creating
digital visuals and animations?

• Enhancing interactivity with music data flows: Can the combination of Javascript p5.js
and reactive programming improve the process of creating interactive visuals that respond
to music data streams?

1.4 Methodology

Research method

The objective of this research is to explore the use of JavaScript in the context of creative coding,
specifically in the realm of visualisations interacting with musical data streams like audio signals
and MIDI signals. This research adopts a research through design approach. The primary focus
is on the development and evaluation of a web browser tool for creating real time visualisations
on music. The design process involves iterative cycles of prototyping, implementation, and
refinement.

Functionality

The research aims to develop a prototype web browser tool that facilitates the creation of visual-
isations in JavaScript, utilising the p5 library. The tool allows developers to connect parameters
used in the Javascript code of the visual, to user-configurable and fully customisable inputs that
are programmed via the reactive programming paradigm (RxJs). The input stream can be an
audio stream recorded by a microphone, a stream of key presses on your laptop keyboard, MIDI
streams coming from a synthesizer, a timer event, or any other input that the developer can come
up with, as long as it is programmable in Javascript and RxJs. The tool makes it possible to
configure and combine multiple input streams, allowing developers to experiment with real-time
testing of the effect of parameter value changes on the visual output. By making the connection

12 CHAPTER 1. INTRODUCTION

between input and visual output easily programmable and real time, it enables developers to
concentrate on the creative aspects of visualisation creation.

Technical details

The visualisation tool combines different technologies. The user interface is built using the
framework React, that facilitates a modular and flexible tool design. The underlying functionality
consist of two parts: the creation and real time testing of visuals, and the configuration of inputs.
The creation and real time testing of visuals is configured using the library p5.js, that provides
powerful functionalities for generating animated visuals, and creating both 2D and 3D graphics
in a HTML canvas element. For the input configuration, the reactive programming library RxJs
is explored. This library makes it possible to create, combine and manipulate data streams and
connect actions to it (like modifying parameters in the visual code). Inside of the configuration of
an input, the Web Audio API or any other built-in Javascript functionality can be used to create
fully customisable input streams.The input configuration is made visible in a graph structure
with the help of the GOjs library.

Evaluation and Testing

Once the visualisation tool is developed, it is used to provide answers to our research questions:
how can p5.js be used to create animated visuals, and how can reactive programming principles
help to make these visuals interact with music? This is investigated in the creation process of
three demo art works, using different input interactions and visual concepts:

• Demo 1: Visualisation reacting in real time on a midi input stream coming from a connected
synthesizer

• Demo 2: Visualisation reacting on the live input of a microphone

During the development of these demo artworks, the use of p5 is discussed, and the influence
of reactive programming in interactivity of music data flows is investigated. Different aspects
are taken into account, such as: ease of start-up, testability of the visual, ease of connecting
the input stream with the visual output, flexibility of tuning the visualisation based on differing
parameter values and coding time. In a second phase, the application is tested by a group of
test people with different technical background and experience. In a survey and an interview of
their findings, the functionalities and technologies of the web application are evaluated in it’s
strengths and shortcomings.

Conclusion and Implications

The research will conclude with a summary of the key findings and their implications for the
field of creative coding and visualisations on music with the technologies Javascript p5 and
reactive programming. The conclusion will also discuss the limitations of the study and provide
recommendations for further research and improvements to the web browser tool.

1.4.1 Thesis outline

In the following sections, a background in the domain of musical data streams and music visu-
alisation is given. Next, an overview of the work and research done in this domain is provided.
With this context, the web browser solution is explained extensively, after which it is evaluated,

1.4. METHODOLOGY 13

tested and demoed. Finally, a conclusion is made on how Javascript p5 can be used as a tech-
nology to create music visualisations, and how reactive programming can facilitate the addition
of interactivity.

Chapter 2

Background

2.1 Music as data stream

To understand how music data can be transformed to visuals, a basic knowledge of the digital
representation of music data is required. The two most common digital formats to represent music
tracks are audio and MIDI. Generally speaking, audio is used for capturing live performances
or pre-recorded sound, while MIDI is used for composing, sequencing, and controlling electronic
music devices. In what’s next, both of them are discussed in technical detail.

2.1.1 Audio input stream

Audio data refers to the digital representation of sound waves. It captures the actual audio
signals produced by musical instruments, voices, or any other sound source. Audio data is
typically stored as a sequence of samples, where each sample represents the amplitude of the
sound wave at a specific point in time. These samples are captured at a certain sampling rate,
usually measured in Hertz (Hz). Audio data is widely used in formats such as WAV, MP3,
AAC, and others. It can be played back on various devices, including speakers, headphones, or
computer systems, to produce audible sound.

Audio data is typically represented in either the time domain or the frequency domain. Time
Domain: In the time domain, audio data represents sound as a waveform. The waveform shows
how the sound pressure level changes over time. It is a one-dimensional representation where
time is plotted on the x-axis and the amplitude (loudness) of the sound is plotted on the y-axis.
This format directly captures the variations in sound over time and is commonly used for tasks
such as audio recording, playback, and editing.

Frequency Domain: The frequency domain representation of audio data provides informa-
tion about the different frequencies present in a sound. It is obtained through a mathematical
transformation called the Fourier transform. The Fourier transform decomposes the time domain
waveform into its constituent frequencies. In the frequency domain, audio data is represented
as a spectrum, with frequency on the x-axis and amplitude on the y-axis. This representation
is useful for analysing and manipulating the individual frequency components of a sound. It is
commonly used in tasks such as audio equalisation, filtering, and spectral analysis.

The time domain and frequency domain representations of audio data are closely related.
The Fourier transform allows us to convert between the two domains, enabling various audio
processing techniques. [13, 14]

14

2.1. MUSIC AS DATA STREAM 15

Figure 2.1: audio signal in time domain and frequency domain

2.1.2 MIDI input stream

MIDI (Musical Instrument Digital Interface) data is a standard protocol used to communicate
musical information between electronic musical instruments, computers, and other devices. It
represents music in a different way compared to audio data. MIDI data does not directly capture
the sound itself, but rather represents the instructions or commands that control musical pa-
rameters. MIDI data consists of a series of messages or events. Each message typically includes
information about aspects such as note on/off events, pitch, duration, velocity (how hard a key
was pressed), and various control parameters (e.g., modulation, expression, sustain). These mes-
sages are sent and received between MIDI-enabled devices to generate and control sound. ([15])
An example of a MIDI message is given in Figure 2.1 . ([16])

Figure 2.2: format of a midi signal

MIDI data is highly versatile and can be edited, manipulated, and played back on different
MIDI-compatible devices. For example, a MIDI keyboard can send note on/off messages to
trigger the corresponding sounds in a software synthesizer or a hardware MIDI sound module.
MIDI data is often used for tasks such as composing music, recording MIDI performances, and
controlling virtual instruments. It’s important to note that MIDI data does not contain actual
audio wave forms, so it requires a MIDI-compatible device or software to generate sound based
on the instructions it provides.

2.1.3 Audio and midi processing

Generally speaking, audio is used for capturing live performances or pre-recorded sound, while
MIDI is used for composing, sequencing, and controlling electronic music devices. Keeping in
mind the difference between audio and midi signals, let’s look at a common musical hardware
setup and it’s associated data flows in Figure 2.2: The interface device handles a combination of
audio signals and midi signals, by connecting three input devices, microphone, midi controller

16 CHAPTER 2. BACKGROUND

keyboard and computer, to three output devices, monitor loudspeakers, monitor headphones and
computer (can be both input and output device). ([17])

Figure 2.3: audio data flow versus midi data flow

Let it be clear that, although both audio and midi data represent music tracks, different
technology and processing is needed to transform it into visuals. ... [discuss the processes
further]. In live performances, also a combination of audio and MIDI is possible. In this thesis,
visualisation of both audio and MIDI device input is explored.

2.2 Reactive programming

Reactive programming is a programming paradigm that focuses on asynchronous data streams
and the propagation of changes. It is primarily used to handle and respond to event-driven and
real-time systems, where data is constantly changing and events are continuously generated. A
list of the core concepts of reactive programming:

• Observables represent a source of data or events that can be observed over time. Observ-
ables can emit values, error messages, or completion signals.

• Subscribers are entities that subscribe to observables in order to receive and react to the
emitted values. Subscribers define functions or callbacks that are invoked when new values
are emitted.

• Operators or methods transform, filter, combine, or manipulate the emitted values from
observables. These operators enable powerful data processing and manipulation capabili-
ties.

• Event-driven: Reactive programming is particularly well-suited for event-driven systems
where events occur asynchronously and need to be handled in real-time. It provides a
declarative way to express the behavior of the system based on the incoming events.

• Reactive programming allows for efficient handling of asynchronous operations. It
provides mechanisms to handle asynchronous tasks, such as network requests or user input,
without blocking the execution flow.

In the example below, an observable emitting click events is asynchronously processed by
three sequential operators: buffer, map and filter. The output is again an observable that can be
subscribed to by a subscriber. The subscriber can execute a callback function on every emitted
value, for example printing a string in the console.

2.2. REACTIVE PROGRAMMING 17

Figure 2.4: Reactive programming example

18 CHAPTER 2. BACKGROUND

Seeing the benefits of reactive programming, it is commonly used in the domain of web and mo-
bile development, for creating interactive and responsive user interfaces that handle dynamically
incoming data streams and user interactions. Also for IoT applications, reactive programming
is well-suited to handle and efficiently process events and changes in the IoT environment. Also
in the contexts like gaming, microservices and distributed systems, reactive programming has
proven it’s value.
What about the context of music data flows and processing? Some papers explored the possibil-
ities and advantages of reactive programming in manipulating audio signals or performing live
music coding ([11], [18]). They state that ”reactive programming is a way of modelling stateful
streams of data updates, e.g. from hardware musical instruments like MIDI control surfaces, in
a way that allows the programmer to write pure functional code that operates over them”. In
the concept of transforming music streams to visuals, reactive programming principles can help
in introducing responsiveness of the visual to music data flows efficiently. In reactive program-
ming terms, subscribers listening to observables emitting music signals, can process these signals
asynchronously and transform them into changes in the visual. The technical implementations
of such a setup are described in detail in the Solution section.

2.3 Visual Programming Language

A visual programming language (VPL) is a type of programming language that uses visual
elements, such as graphics and diagrams, to create and execute program code. Instead of writing
code using text-based languages, VPL allows developers to create programs by dragging and
dropping blocks or symbols that represent different functions or actions. VPL’s offer a number
of benefits such as ease of use, also for non-technical profiles, rapid prototyping and intuitive
syntax. ([19])

Figure 2.5: Text based programming versus visual programming

In the context of music and sound data processing, two important VPL’s are Max MSP and
Pure Data. Max MSP is a commercial visual programming language developed by Cycling ’74.
It is widely used in multiple fields of music and sound design, and it offers a wide range of modules
and objects that can be connected together to create complex interactive systems. Max/MSP is
known for its versatility and extensive library of pre-built objects, making it suitable for a broad
range of applications beyond just music. It has a strong presence in the professional audio and
multimedia industry and is widely used in areas such as live performances, installations, and
interactive media. The Max MSP programming language allows users to build and manipulate
music data flows, by creating building blocks (sources, functions and outputs) and connecting
them to each other. Jitter, an extention of Max MSP specialized in real-time video processing,
makes it possible to turn data flows into animated visualisations. ([20]

2.4. VISUALISATION OF MUSIC 19

On the other hand, Pure Data (Pd) is an open-source alternative to Max/MSP that fol-
lows a similar visual programming paradigm. It was initially developed by Miller Puckette, the
creator of Max, and is freely available for anyone to use and modify. Pure Data focuses pri-
marily on real-time processing of music and audio data flows, and it has a strong community of
users within the electronic music and digital art domains. While Pure Data may have a slightly
narrower focus compared to Max/MSP, it still offers a wide range of functionality and can be
extended through the creation of custom objects and patches. ([21]

Overall, visual programming is a powerful tool for multimedia purposes, as it enables artists,
designers, and creative individuals to explore and experiment with audio and visual elements
in an intuitive and visual manner. Moreover, visual programming languages provide a natu-
ral environment for expressing reactive programming concepts. Their graphical representations
and visual connections between blocks make it easier to understand and work with reactive be-
haviour. Nodes representing music data streams and events, and operations can be connected to
propagate changes and trigger updates throughout the program. This integration of visual and
reactive programming enables the creation of dynamic and responsive applications with ease.

2.4 Visualisation of music

In the early days of music visualisation, pre-built and automatically generated visuals were
available to everyone through applications like iTunes or Windows Media Player. Many people
will recognise the colourful shapes and movements of the spirals in Figure 2.3. These visuals were
synchronised to the frequencies and loudness of the song, creating a mesmerising audio-visual
experience.

Figure 2.6: Early day music visualisations

Over the years, technology in the field of music visualisation has rapidly evolved, especially
with the rise of electronic music. Interactive visuals and lightning have become a standard in
almost every large club, and DJs and artists now incorporate moving animations that enhance
their musical performances. These interactive visuals react in real-time to the music being played,
creating an immersive and dynamic experience for the audience.

Today, visualising music has become an art form of its own, with various software and hard-
ware tools available for artists and designers to create captivating and personalised visuals that

20 CHAPTER 2. BACKGROUND

complement the music. From real-time projections on stage to interactive installations at music
festivals, music visualisation has expanded its boundaries and possibilities, blurring the lines
between auditory and visual artistic expressions.

Chapter 3

Related Work

Many research has been done about the emotional effects and impact of combining music with
visual stimuli. A paper of Xiangnuo and Jialu ([22]) states that ”digital art works under multi-
modality provide not only sensory experience, but also emotional value to the audience through
digital technology and multi-sensory interaction, thus forming a unique artistic charm”.
Another paper explores the value of multimodal stimulation in the context of musical experience
and learning. It indicates that the multimodal nature of musical involvement and expression is
an important aspect of embodied music cognition. The paper emphasises the fact that visual
and auditory perception do strongly interact. Regarding music education purposes, interactive
music systems can address current issues regarding motivation and creativity in music education,
and help in the creative use of musical parameters ([23, 24]). Other papers investigate the power
of music visualisations for people with one or multiple disabilities. It states that by combining
music with, for example, tactile stimulation, movement, or visuals, meaning-making processes in
music of these people was stimulated, helping them to understand the internal structures and
expressive qualities of music. ([25])
Other research investigates the neural and stress-reducing effects of music in combination with
visual art. It finds that multimodal (music + visual art) aesthetic experience has a stronger
effect than a single modal aesthetic experience (music/ visual art). ([26, 27]

The rapid progress of science and technology has led to great progress and innovation in the
forms of digital art ([22]). The transformation of audio signals to visuals is investigated in pre-
vious research. One paper introduces an audio analysis plugin for real time processing, allowing
users to select a custom set of audio analyses to be performed in real-time. ([28]) Other research
is done about a general transformation of audio signals to visuals. It investigates methods for in-
teractively mapping audio features (numerical data representing signal and perceptual attributes
of sound/music obtained computationally) to visual objects to facilitate music visualisation. Fur-
ther, it gives a concise introduction to the theory of how information can be derived from sound
signals and presents examples of how that information can be visualised using Processing. ([29])

Reactive programming in the context of music data flows is investigated in a paper that presents
an alternative approach for callbacks and explicit state programming for creating synthesizers in
the SuperCollider audio synthesis environment. In this paper, functional reactive programming
(FRP) is used to define the control logic of the instrument, where inputs are taken from musical
controllers, mobile apps or graphical user interface (GUI) widgets.

Several research is done regarding the use of visual programming languages in data flow process-

21

22 CHAPTER 3. RELATED WORK

ing and more in particular in the context of music applications. A first paper investigates the use
of VPL’s to process data flows in a context of IoT (Paper [4]). In the domain of music processing,
papers [8] and [9] confirmed in their research that the visual nature of VPL’s is suitable for music
data flow processing, and that these languages remove hurdles between artists and their ideas,
enhancing the speed of the creation process. Further, it compares multiple visual programming
languages, like OpenMusic, Max MSP and Pure Data, in a survey, discussing the pro’s and con’s
of each language. Another paper ([10]) investigates the value of Max in processing digital music
signals, with the goal to ”promote the communications in art and other fields, and to some extent
inspire the transformation of relevant art education”. Next to Max, OpenMusic is investigated in
a paper ([30] where the link between visual programming and reactive programming is explored.
The paper presents a fairly simple and elegant formalism for the integration of reactive processes
in the visual programming language OM. The visual programming language Sonnet in combina-
tion of Imager is investigated in the context of creating dynamic visualisations ([31]), resulting
in a system that is capable of generating a wide variety of dynamic visuals. In the paper [32], a
music visualisation system is described that creates images interacting with both midi and audio
data. The system is designed in a way that makes the process of artist/scientist collaboration
as easy as possible, with the use of visual programming to develop system components when-
ever possible. Technologies like Max/MSP, Jitter, and Virtools allow creators without training
in traditional computer programming to participate in the development process with greater ease.

Next to VPL’s, many text-based programming languages are developed to facilitate the cre-
ation of interactive multimedia applications. Processing, the programming language on which
the Javascript p5 library is inspired, is a widely known and used by artists and designers, for dif-
ferent purposes, from scientific data visualisation to art installations ([33]). Research investigates
the use of Processing in the domain of music visualisation and audio signal processing. Further,
Processing with the purpose of interactive visualisation of music and user input is investigated
in the creation of a music player visualisation that integrates low-level features of music data via
shapes and colours with real-time animation and player control interactions ([34]. Another paper
investigates Python as a programming language for real time music visualisation, by implement-
ing a Python real time music visualisation method. More specifically, a system is implemented
capable of visualising music by analysing the time and frequency information of the digital music
and utilising Python sound libraries ([35])

For programmers who are already familiar with Javascript, there is a wide range of libraries
available for creating multimedia content and interactive applications. Research has proven the
advantages, flexibility and testability of the creation of digital instruments in the web browser,
using the Javascript library Gibberish.js and the Web Audio API ([12]). The Javascript p5
library, that brings the simplicity and creative possibilities of Processing to the web, is explored
and evaluated. P5 is found easy to get started with, intuitive, easy to read, applicable for a lot
of purposes, an excellent choice for experimenting with creative coding, however performance is
reaching its limits in professional contexts and large scale projects ([3]).

Chapter 4

Solution

4.1 General concept

In this research, a web browser tool is developed that enables the creation of interactive visuals.
With this tool, the user is able to create visuals by coding in Javascript p5.js, and tuning visual
parameters in real time by connecting them to user configurable input data streams using the
reactive programming paradigm. The tool exists of three integrated components:

• an input configuration component (left): a component where input data streams can be
configured, manipulated and processed. Example input data streams are audio input, MIDI
signals and key presses.

• a Javascript p5 code playground (center), where the developer can create an image or
animation through Javascript p5 code.

• and an output canvas (right) displaying the visual.

These are shown in Figure 4.1. Each of these components can be clicked and expanded. At
the top, two buttons are providing functionality for saving the visual configuration or uploading
a previously configured visual into the web tool. In what’s next, the functionality and technical
implementation of each component is discussed in detail.

4.2 The input configuration component

4.2.1 Functionality

The input configuration component handles the configuration of all possible input data streams
and their influence on parameters in the javascript visualisation code. The input selection com-
ponent is using the RxJs library to configure multiple input data streams and process them to
parameter changes. The section is implemented by using a graph structure, containing nodes
and edges connecting nodes. The different types of nodes are consistent with the concepts of
RxJs (see Background sections and technical implementation for more details on this library):

• Observable node: rxjs observable emitting values / events. An observable has a name
and a configuration that are both configurable by the developer. They can be changed
by clicking on the observable node, so that the name and configuration input fields are

23

24 CHAPTER 4. SOLUTION

Figure 4.1: tool layout

opened at the bottom of the input selection component. When doing so, the node is
coloured in purple to indicate that the configuration of this node is opened and editable.
The configuration of the observable node is shown in a javascript editor, that can interpret
general Javascript and RxJs code. A valid observable configuration is returning an rxjs
observable in the editor. When the observable code is invalid, the node colours red and
the error message is added below the editor. To make it more concrete, a screenshot of the
observable configuration layout is shown in Figure 4.2.

Figure 4.2: Observable node configuration

• Parameter node: a parameter that can be used in the visualisation editor A parameter
node has a name and a value. The parameter name can be customised by the developer
and the value field is always showing the real time value of the parameter.

• Observer node: nodes connecting observable nodes with parameter nodes. They are
RxJs observers listening to observable(s) and providing a callback function that changes
the value of one or more parameters depending on the values emitted by the observable(s).
An Observer node has, like an observable node, a name input field and a configuration
in a Javascript editor. The node name and configuration can be opened and changed by

4.2. THE INPUT CONFIGURATION COMPONENT 25

clicking on the node, so that the name input field and Javascript editor field are opened
at the bottom of the input selection component. The node again colours purple indicating
that it can be edited. A valid observable node subscribes an observer callback function to
an observable node in the Javascript editor. When the observable code is invalid, the node
colours red and the error message is added below the editor. An example of an observer
configuration is shown in Figure 4.3.

Figure 4.3: Observer node configuration

A full example of an input data stream graph is shown in Figure 4.4 where three different ob-
servables are emitting values, while three different observers are reacting to these value emissions
by changing the values of four parameters. These parameters can be used in the visual code of
the second component. The graph can be customised to the wishes and needs of the developer:
new nodes of each type can be added by the three buttons ”Observable”, ”Observer” and ”Pa-
rameter” at the top, nodes can be removed by clicking on them and pressing the Backspace key,
nodes can be moved around the graph to make the graph layout more structured, node names
can be changed, the graph can be zoomed in and out or moved entirely to the left or right to
zoom in on a specific part of it.

Figure 4.4: Input selection component - example graph

As a help for the developer, some preprogrammed observables are foreseen in the tool. They

26 CHAPTER 4. SOLUTION

can be opened as a node in the graph by clicking on the ”Browse” button. Functionalities like
MIDI signal processing, audio frequency signal generation, key presses or interval observables are
currently present in the list, that can be extended in the future. When the developer has created
and configured some observables, observers and parameters working together, the setup can be
tested by pressing the ”RUN” button. Automatically, links between observables, observers and
parameters are calculated and presented by an arrow in the graph. More concretely, observables
have outgoing edges to all subscribed observers, and observers have outgoing edges to all param-
eters that are affected by this observer. From the moment the input component is running, new
emitted values are captured and the paths they affect are visually represented by highlighted
graph nodes in yellow. through the graph When the STOP button is pressed, all observables
quit emitting values and no parameter values are changed anymore.

4.2.2 Technical implementation

• RxJs

The input section uses a combination of reactive programming in RxJs, and a visual graph repre-
sentation implemented by the GO.js framework. To understand how this component is working
technically, let’s first dive into a short introduction of the RxJs library. Reactive programming is

a programming paradigm that focuses on incoming data streams and the propagation of changes.
It allows you to express the dynamic behaviour of a system in terms of streams of events that can
be observed and reacted to. This is explained in more detail in the Background section. RxJS
(Reactive Extensions for JavaScript) is a popular library that brings the principles of reactive
programming to JavaScript. It provides a set of powerful tools for working with data streams and
enables you to easily compose and manipulate them in a declarative manner. At the core of RxJS

is the concept of an Observable. An Observable is a representation of a stream of values that
can be observed over time. It can emit values, errors, and completion signals. Observables can be
created from various sources such as events, callbacks, timers, or even existing data structures.
Once you have an Observable, you can apply a wide range of operators to transform, filter,

combine, and manipulate the data stream. These operators allow you to perform operations like
filtering values, mapping them to different values, merging multiple streams, and much more.
RxJS provides a rich set of operators that can be combined in various ways to create complex
data flows. An operator has one or more observables as input and has an observable as output.
An observer is an object or a set of callback functions that can subscribe to an Observable to

receive notifications when values are emitted. An observer typically consists of three optional
callback functions: next, error, and complete. The next function is called whenever a new value
is emitted by the Observable, the error function is called when an error occurs, and the complete
function is called when the Observable has completed emitting values. Observers can subscribe
to an Observable using the subscribe method and can unsubscribe to stop receiving further noti-
fications. This immediately explains the concept of a Subscription. A Subscription represents
the connection between an Observable and an Observer. Subscriptions can be used to control
the lifecycle of the observation and to unsubscribe when you’re no longer interested in receiving
updates.

These four concepts are disposable inside the nodes of the input selection component. An
observable node can contain any observable available in RxJs, possibly transformed by one

4.2. THE INPUT CONFIGURATION COMPONENT 27

or several operators (again returning an observable). An observer node can subscribe to one
of the observable nodes with a certain callback function. This link between observable and
observer created a subscription object. The application provides three dictionary objects to
store and access the observable objects, observer objects and parameter objects created in the
input diagram. When the ”RUN” button is clicked, the following steps are run:

• (0) If any previous configuration was already running, it is stopped (more on this later).

• (1) All parameter nodes in the diagram are created and added to a dictionary called params,
with the parameter name as their key. Other nodes can now access these parameters by
extracting the Parameter objects out of the params dictionary.

• (2) Links between observable nodes, observer nodes, and parameter nodes are identified
by conducting a text search within the node editors. As an example, the following code
snippet is used to establish a connection between observable and observer nodes:

function connectObsvblsToObsvrs() {

observables.forEach(observable => {

observable.observers = []

observers.forEach(observer => {

if (observer.code.includes(observable.name)) {

observable.observers = [...observable.observers, observer]

}

})

})

}

• (3) All observable nodes are executed and the returning Observables are stored in the
obs dictionary with the observable name as their key. Other nodes can now access these
observables by extracting the Observable out of the obs dictionary. If an observable editor
contains an error, the observable node is highlighted in red and an error message is added
below the editor.

• (4) All observer nodes are executed and all configured subscriptions are created and stored
in a dictionary called subscriptions. For failing observer code, the observer node is high-
lighted and an error message is added below the failing observer editor.

After all these steps, the diagram is updated with the newest changes (links, errors) and new
parameter values are calculated and shown continuously. For every newly emitted value by an
observable, active nodes are highlighted. The continuously updating params dictionary can now
be used in the visualisation code in the visual playground component.

When the developer clicks on the ”STOP” button, or when the RUN button is clicked and
a new configuration needs to be set up, several steps need to happen to shut down the current
input configuration. 1. the params dictionary is cleared 2. all subscriptions in the subscription
dictionary are unsubscribed from their observables. This is needed to avoid that observers keep
on listening to observables that no longer exist. After that, the subscriptions dictionary is cleared.
3. all observables are completed so that they no longer emit values. After that, the obs dictionary
is cleared.

These steps are necessary to avoid memory leaks in the input component. All RxJs objects
need to be shut down explicitly, otherwise event emissions and event listeners will keep on running

28 CHAPTER 4. SOLUTION

and will slow down the application significantly in every new run. The code snippet of the STOP
functionality is given below.

function stopExecution() {

params = {}

// stop subscriptions

for (const subscription in subscriptions) {

subscriptions[subscription].unsubscribe()

}

subscriptions = {}

// stop observables

stopObservable$.next();

stopObservable$.complete();

obs = {}

}

• DIAGRAM

The diagram layout in the input component is implemented with the help of the GOJS
library. GOJS is a versatile JavaScript library that empowers developers to build interactive and
customisable diagrams for web applications. With GOJS, you can create a wide range of diagram
types, such as flowcharts, organisation charts, mind maps, UML diagrams, network graphs, and
more. It includes support for interactive behaviours like node dragging, link creation, grouping,
panning, and zooming. The library also facilitates data binding, allowing seamless integration
with external data sources to dynamically update the diagram content.
The input configuration diagram is build as a GOJS GraphLinksModel, that enables creating
nodes and linking them with each other. It stores node data and link data in two separate arrays.
Each node and link is adaptable by both user interaction (like changing a node name or opening
a node editor colouring the node purple) and application logic (like a parameter value changed
by an observer callback function or a node highlighting because an observable is emitting a new
value). To enhance user experience, GOJS offers smooth animations for changes to the diagram
and supports commands and actions for intuitive user interactions. Additionally, it provides
an undo/redo mechanism for users to revert changes easily. These functionalities make user
interaction with the input diagram smooth and flexible.

4.3 The Javascript playground

4.3.1 Functionality

The visual playground component of the tool is a Javascript code editor in which the developer
can create visuals that are run in real time. The editor has a p5 running environment, so all
functionality available in p5 can be used to create visuals: shapes, colours, lighting and effects.
The visual code can exist of two parts:

• Setup variable declarations and functions, executed only once

• a draw function executed continuously to run the animation

4.3. THE JAVASCRIPT PLAYGROUND 29

Every time a change in the visual code is detected, the full editor code (part 1 and 2) is rerun.
From then on, the draw function is continuously executing in a loop, updating the visual in the
output component. When an error is detected while running the visual code, the visualisation
is no longer updated and an error message is shown below the editor. From the moment the
issue is fixed, the visual appears again in the output component. This makes it easy and hands
on for the developer to test and evaluate the visual code. In the Javascript editor, supportive
features such as autocompletion, indentation and selection highlights are foreseen to enhance the
developing experience (however it can still be improved).

Here is where the input component and the visual playground component come together: if
the developer configured some input parameters in the input component, these parameters can
be used in the visual code, by accessing the params dictionary:

params[name]

As the draw function is executing continuously, changes in parameter values are affecting the
visual in real time. The visibility of parameters values and changes in real time in the diagram,
supports the developer in understanding the movements in the visual. Also,testing the effect of
changing parameters to the visual is easy and fast. This keeps the focus of the developer on the
creative process, and aesthetic enhancement of the visual.

4.3.2 Technical implementation

To understand how the visual playground editor works technically, a quick introduction is given
on how p5 works.
Overall, p5.js provides a beginner-friendly and intuitive way to create visualisations in a canvas
using JavaScript. It abstracts away many of the complexities of raw HTML5 canvas program-
ming and provides a simplified and expressive API for creating interactive graphics on the web.

Setup: Every p5.js sketch begins with a setup() function. This function is called once when
the sketch starts and is used for initialising settings and variables. You can set the canvas size,
choose a background colour, or any other initial configurations you need.

Draw: The draw() function is the heart of a p5.js sketch. It is called continuously in a loop after
the setup() function. The draw() function is responsible for updating and rendering the visuals
on the canvas. You can think of it as the main animation loop.

Canvas: The canvas element is where your visualisations will be displayed. You can create
a canvas by using the createCanvas() function in the setup() function. This function takes pa-
rameters for the width and height of the canvas.

Inside the draw() function, you can use various built-in p5.js functions to draw shapes, lines,
colours, and images on the canvas. For example, you can use functions like rect(), ellipse(),
line(), background(), and fill() to create different visual elements.

In the visualisation tool, p5 is present in the running environment of the Javascript visuali-
sation editor. Moreover, the setup function, that as stated above is specific to the p5 package,
is running in the background from the moment that the application is started, and creates the
output canvas component in the output section. In other words, the setup function is already
created in the application code and does not need to be defined by the user. This makes sure that

30 CHAPTER 4. SOLUTION

the user doesn’t need to worry about how the canvas is appearing on the web page. From the
moment a valid draw function is typed in the visualisation editor, the coded visual is appearing
in the canvas. If the visualisation code is not valid, an error message is printed out at the bottom
of the visual playground component.

4.4 The output canvas component

The output canvas is where the first and second component come together: the visual image
or animation is run and shown in the canvas, and the influence of changing parameter values
is immediately visible in the animation. This makes it possible for the creator to test the
visualisation code very fast, and try out parameter changes to create a true art piece. Further,
the animation can be opened in full screen mode to make screen recording possible or hide the
technical details for a live audience.

4.5 From manual to practice: a first example

Despite a rather simple tool layout, the three components work together in a flexible way and
with a lot of possibilities. In what follows, the three components and how they work together,
are explained extensively and with the help of an example, the visualisation and animation of a
grid of circles (Figure 4.5).

Figure 4.5: first example p5 visual

The following sections explain:

• how this image is created in the tool by the help of the p5 framework

• how the image can be animated by an input stream of key presses on the user’s keyboard

4.5.1 Visualisation code

The code that creates the grid of circles is given in the code snippet below. Outside of the draw
function, the cell size and initial circle size are declared. Out of the cell size, the number of
rows and columns is calculated. The draw function, that is executed continuously, paints the
background in black and loops over all rows and columns to draw each circle.

4.5. FROM MANUAL TO PRACTICE: A FIRST EXAMPLE 31

// Variables

const cellSize = 50; // Size of each cell

var circleSize = cellSize // initial size of each circle

const cols = Math.ceil(visualWidth / cellSize);

const rows = Math.ceil(visualHeight / cellSize);

// DRAW FUNCTION

p.draw = () => {

p.background(0);

p.translate(-visualWidth / 2, -visualHeight / 2);

for (let i = 0; i < rows; i++) {

for (let j = 0; j < cols; j++) {

const x = j * cellSize + cellSize / 2; // X-coordinate of the circle’s center

const y = i * cellSize + cellSize / 2; // Y-coordinate of the circle’s center

// Draw a circle at the calculated position

p.circle(x, y, circleSize);

}

}

};

The image created in Figure 4.5 is now static, as the parameters are not changing in the
animation loop (the draw function). Also, the parameter values are not changed by any input
data stream at this moment. Let’s see how the animation changes when the parameter ”radius”
is changed in the visual code. For every new frame, the radius is increased by 1 and the circle
appears larger in the output canvas:

// Variables

const cellSize = 50; // Size of each cell

var circleSize = cellSize // initial size of each circle

const cols = Math.ceil(visualWidth / cellSize);

const rows = Math.ceil(visualHeight / cellSize);

// DRAW FUNCTION

p.draw = () => {

p.background(0);

p.translate(-visualWidth / 2, -visualHeight / 2);

for (let i = 0; i < rows; i++) {

for (let j = 0; j < cols; j++) {

const x = j * cellSize + cellSize / 2; // X-coordinate of the circle’s center

const y = i * cellSize + cellSize / 2; // Y-coordinate of the circle’s center

// Draw a circle at the calculated position

p.circle(x, y, circleSize);

}

32 CHAPTER 4. SOLUTION

}

circleSize += 1

};

There we are: the image now has changing circle radius so that it is a dynamically changing
image. The animation automatically starts in the output canvas from the moment the visuali-
sation code is valid.

4.5.2 Input selection

The previous section explained how an image could be created and tested in the web browser tool,
and how this image could be animated through time. To continue, the animation’s movements can
be triggered by external factors. For example, can the radius be changed on a user configurable
event? Let’s investigate the specific case where the radius increases when the user presses the
”arrow up” key, and decreases when the user presses the ”arrow down” key. To implement this,
the developer can configure it’s first input data streams, which are in this case two streams of
key-press events: one for Arrow up and one for Arrow down. This can be translated into the
following nodes:

• Observable1: Key press Arrow Up

return rxjs.fromEvent(document, ’keydown’)

.pipe(

rxjs.filter(event => event.code === ’ArrowUp’)

)

• Observable2: Key press Arrow Down

return rxjs.fromEvent(document, ’keydown’)

.pipe(

rxjs.filter(event => event.code === ’ArrowUp’)

)

• Observer 1: callback function Arrow Up: circle radius + 1

return obs["keyUp"].subscribe(

() => { params["radius"] += 10; }

)

• Observer 2: callback function Arrow Down: circle radius - 1

return obs["keyDown"].subscribe(

() => { params["radius"] -= 10; }

)

• Parameter: radius

After creating these five nodes and pressing the RUN button, the following diagram is created:
When now pressing the Arrow up and Arrow down keys, the upper path and lower path of

the graph respectively are highlighted and the radius is increasing and decreasing with 10.
If we want the animation to react on these user interactions, we need to use the value of

params[”radius”] as circle size inside of the visualisation code:

4.5. FROM MANUAL TO PRACTICE: A FIRST EXAMPLE 33

Figure 4.6: Diagram radius changes through key presses

// Variables

const cellSize = 50; // Size of each cell

const cols = Math.ceil(visualWidth / cellSize);

const rows = Math.ceil(visualHeight / cellSize);

// DRAW FUNCTION

p.draw = () => {

p.background(0);

p.translate(-visualWidth / 2, -visualHeight / 2);

for (let i = 0; i < rows; i++) {

for (let j = 0; j < cols; j++) {

const x = j * cellSize + cellSize / 2; // X-coordinate of the circle’s center

const y = i * cellSize + cellSize / 2; // Y-coordinate of the circle’s center

// Draw a circle at the calculated position

p.circle(x, y, params["radius"]);

}

}

};

Here we go: we now have a visual that is reacting to user input in real time. The following
screenshots show the animation for different radius parameter values:

Figure 4.7: Animation of circles in grid

34 CHAPTER 4. SOLUTION

4.6 Challenges during development

In this section, the challenges faced during the development of the visualisation web tool are
briefly discussed.

4.6.1 Layout

The first challenge was coming up with a nice and user friendly layout that enhances the creative
process of the developer. The goal was to visually represent the connections between the input
configuration, the visualisation code and the visual canvas. The interaction between these three
components should be visible at all time, and switching from the one to the other component
should be easy. For that reason, the layout of expandable components was chosen. This makes
it possible to see the visual changing (in the output component) and see the parameter values
evolving (in the input component) while coding in the visual code playground. At the same
time, a detailed view on input nodes, code editors and visuals in full screen mode are supported.
Further, a visual representation of external triggers influencing parameter values was desired.
The implementation of the GOJS diagram and implementing the interactivity of the diagram
nodes to different triggers (errors in the code, observables emitting new values, a node’s editor
being opened, ...) was challenging. In the end we succeeded to make the diagram interactive
and transparent.

4.6.2 Performance and memory leaks

The creation of observables and observers happens when the developer clicks the RUN button.
In RxJs, every observable and observer keeps on running as long as it is not shut down explicitly.
At first, the tool didn’t include the functionality of unsubscribing observers and completing
observables when a new RUN was started, which lead to memory leaks and performance issues.
Some refactoring and restructuring was needed to prevent these memory leaks and shut down
correctly every observable and observer at the right time.

4.6.3 Communication between components

The communication and reuse of variable values between different components is implemented
through dictionary objects. Here the challenge was to not lose user friendliness of the tool by
requiring accessing parameters, observables and global variables by dictionaries, as this possibly
makes the code less readable or longer. To address this, we assigned the dictionaries short names
to minimize any inconvenience in the user’s coding experience and quality.

4.6.4 Error messages of editors

Another challenge involved dealing with error messages and issues while running the code in
the editors of observables, observers, and the visual playground. Ensuring that all errors were
caught and properly presented below the corresponding editor proved to be quite demanding.
Often uncaught errors still resulted in error messages in the browser console, without providing
any indication of their origin to the developer. Moreover, crafting error messages that were
understandable to the developer, given their execution amongst other back end application code,
proved to be a challenging task. This is still an issue and can be improved in the future, to make
debugging in the tool easier and more user friendly.

Chapter 5

Demos

Now that the web browser visualisation tool is extensively explained in all it’s components and
functionalities, it’s time to create some visualisations interacting with music input streams. In
this thesis, two demo’s are created and explained. The first demo is a grid of cubes reacting
on MIDI signals, coming from a MIDI piano connected to the user’s computer. The second one
is a 3D visual of turning torus objects, that reacts on an audio signal coming from the user’s
computer microphone.

5.1 Demo 1: cube grid piano

5.1.1 visualisation code

Let’s first start with the code creating the visual, without taking into account the interactivity
with the midi keyboard. Similar to the circle grid example, this visual shows a grid of p5 cubes.
Each cube is turning around with a certain angle. To add some movements and colour changes
around the grid, the 2D Perlin noise ([36]) function is used to add some randomness to the angle,
so that every cube has a slightly different angle than it’s neighbour cubes. Further, we add two
p5 lighters to provide some colour in the cube grid. In this demo, we choose for a white point
light and a blue directional light. The visual code looks like this:

const cellSize = 30; // Size of each cell

var cubeSize = cellSize - 10

const cols = Math.ceil(visualWidth / cellSize);

const rows = Math.ceil(visualHeight / cellSize);

var angle = 0

p.draw = () => {

p.strokeWeight(0);

p.background(0);

p.translate(-visualWidth / 2, -visualHeight / 2);

// create lights

p.directionalLight(

0,255,255, // color

35

36 CHAPTER 5. DEMOS

1, 1, 0 // direction

);

p.pointLight(

255, 255, 255, // color

40, -40,0 // position

);

// draw grid of cubes

for (let i = 0; i < rows; i++) {

for (let j = 0; j < cols; j++) {

p.fill("white")

const x = j * cellSize + cellSize / 2; // X-coordinate of the cube’s center

const y = i * cellSize + cellSize / 2; // Y-coordinate of the cube’s center

const z = cellSize + cellSize / 2; // Z-coordinate of the cube’s center

// Draw a cube at the calculated position

p.push(); // Save the current drawing state

p.translate(x, y, z); // Move to the cube’s position

p.rotateX(angle + p.noise(i/5, j/5)); // Apply rotation around the X-axis

p.rotateY(angle + p.noise(i/5, j/5)); // Apply rotation around the Y-axis

p.box(cubeSize); // Draw the cube

p.pop(); // Restore the previous drawing state

}

}

angle += 0.01

};

The cubes are each turning around but with a slightly different angle, which results, in a
combination with the lighting, in a moving colour gradient around the grid. This is seen in the
following screenshots:

Figure 5.1: Cube grid piano: animation

5.1.2 Input selection

Now this animation will be spiced up by adding an input data stream coming from a MIDI
keyboard. The keys pressed on the MIDI keyboard should be captured by an observable and

5.2. DEMO 2: TURNING TORI 37

processed to parameter values influencing the visual. This is implemented using the Web MIDI
API, which provides capabilities to work with MIDI devices directly from a web browser. It
allows web applications to connect to MIDI controllers and send and receive MIDI messages. It
results in the following observable code:

const midiInputsObservable = navigator.requestMIDIAccess().then(midiAccess => {

const midiInputs = midiAccess.inputs

const inputObservables = Array.from(midiInputs.values()).map(input =>

rxjs.fromEvent(input, ’midimessage’).pipe(

rxjs.map(event => event.data)

)

)

observableMerged = rxjs.merge(...inputObservables);

return observableMerged

})

return midiInputsObservable

This observable listens to all MIDI devices connected to the computer and merges them into one
observable with the RxJs merge operator. As explained in the background section on audio and
midi signals, a MIDI signal is a tuple of three numbers: 1) action code (press or release), 2) note
number and 3) velocity. Each tuple coming from the Web MIDI API is emitted by this MIDI
observable.

To actually process this MIDI signal and transform it into a parameter change, an observer
needs to be subscribed to this observable. This observer takes the seconds item in the midi
signal array, extracts the minimal note key of the keyboard from it and assigns this value to a
parameter pressedNote:

minNoteKey = 48

subscription = OBS["midiSignal"].subscribe(

midiSignal => { PAR["pressedNote"] = midiSignal[1] - minNoteKey; }

)

The parameter pressedNote can have now values from 0 to the maximum note key of the
keyboard. If we want to make the pressed note visible in the cube grid, the following condition
can be added to the visualisation: code:

if (PAR["pressedNote"] === j) {

p5.fill("red")

} else { p5.fill("white") }

If we now play the piano, we see each note played appearing in a red column of cubes in the
cube grid visual, as if the cube grid is a digital piano. This is just a simple interaction to start
with, but the developer is free to come up with more complex or artistic interactions he/she can
think of.

5.2 Demo 2: turning tori

5.2.1 visualisation code

As in the previous demo, we first create the visual without interaction of external data streams.
This visual exists of multiple 3D tori with different size, turning around in a black screen.

38 CHAPTER 5. DEMOS

Figure 5.2: Turning tori: animation

We first create a class that describes a torus: an object with a size and a thickness, and
three direction indicators, one for each direction in the 3D field. A torus object also has a draw
function, that draws the torus on the canvas.

class Torus {

constructor(size, thickness, colour, directionx, directiony, directionz) {

this.size = size;

this.thickness = thickness,

this.colour = colour;

this.angleX = 0;

this.angleY = 0;

this.angleZ = 0;

this.xRotation = 0.01;

this.yRotation = 0.01;

this.zRotation = 0.01;

this.directionX = directionx

this.directionY = directiony

this.directionZ = directionz

}

drawTorus() {

p.push(); // Save the current transformation state

p.fill(this.colour);

p.rotateX(this.angleX);

p.rotateY(this.angleY);

p.rotateZ(this.angleZ);

p.torus(this.size, this.thickness);

p.pop(); // Restore the transformation state

}

}

Next, we create five tori, each with different properties like size and turning directions, and save
them in an array.

var tori = []

tori.push(new Torus(visualHeight/2.5, 6, "white", 1, -1, -1));

5.2. DEMO 2: TURNING TORI 39

tori.push(new Torus(visualHeight/3, 5.5, "white", -1, -1, -1));

tori.push(new Torus(visualHeight/3.5, 5,"white", 1, -1, -1));

tori.push(new Torus(visualHeight/4.5, 4.5, "white", 1, 1, 1));

tori.push(new Torus(visualHeight/6, 4, "white", -1, -1, 1));

Finally we write the draw function, that colours the background in black and loops over the
torus array to draw each torus one by one in the screen. At the end of the draw loop, the three
angles of each torus are updated with their respective rotation.

p.draw = () => {

p.background("black")

tori.forEach((torus) => {

torus.drawTorus();

torus.angleX += torus.xRotation * torus.directionX

torus.angleY += torus.yRotation * torus.directionY

torus.angleZ += torus.zRotation * torus.directionZ

})

5.2.2 Input selection

We create one observable that listens to the user’s computer microphone via browser’s Web
Audio API. It returns a frequency array every 50 milliseconds.

const audioCtx = new (window.AudioContext || window.webkitAudioContext)();

const analyser = audioCtx.createAnalyser();

const freqArray = new Float32Array(analyser.frequencyBinCount);

const audioObservable = navigator.mediaDevices.getUserMedia({ audio: true })

.then(stream => {

const source = audioCtx.createMediaStreamSource(stream);

source.connect(analyser);

// Return the audio observable

return rxjs.interval(50).pipe(

rxjs.map(() => {

analyser.getFloatFrequencyData(freqArray);

return Array.from(freqArray);

})

);

});

observable = audioObservable;

This frequency data can be transformed by an observer in many ways. In this demo, we chose
for a simple transformation by dividing the frequency data into five chunks, and calculating the
maximum (positive) frequency for each chunk. The result value is an array of five elements
representing each the ’loudness’ of each of the chunks.

subscription = obs["audioSignal"].subscribe(freqArray => {

const normalizedArray = Array.from(freqArray).map(value => (value + 140) / 140);

40 CHAPTER 5. DEMOS

const chunkSize = Math.floor(normalizedArray.length / 5);

const maxValues = [];

for (let i = 0; i < 5; i++) {

const startIndex = i * chunkSize;

const endIndex = startIndex + chunkSize;

const chunk = Array.from(normalizedArray.slice(startIndex, endIndex));

const max = Math.max(...chunk);

maxValues.push(max);

params["loudness"] = maxValues.map(value => parseFloat(value.toFixed(2)))

}

})

The last line of the observer code sets the array of highest frequencies for each chunk to a
parameter called ”Loudness”. This parameter controls how fast the tori in the visual rotate. The
bigger torus represents the loudness of the low-pitched sounds, while the smaller one represents
the loudness of the high-pitched sounds. This creates a interactive visualisation in real-time of
the sounds picked up by the user’s computer.

Chapter 6

Evaluation and testing

The web application and the strengths and weaknesses of p5.js in combination with reactive
programming are evaluated extensively by combining insights coming from 1) previous research
insights explored in the related work section, 2) insights during the process of the creation of
the demo visualisations, and 3) feedback received from a group of five test persons who explored
and tried out the web application in all it’s functionalities.

During the testing phase, the application’s functional documentation was provided within the
application itself, and the application was hosted on a GitHub Page. This allowed all testers
to conveniently access the tool using their preferred web browser. At the commencement of the
testing phase, all test participants received an explanation of the web application and its func-
tionalities. The evaluation occurred through both interviews and surveys featuring open-ended
questions.
The results are detailed in the sections below.

6.1 Application concept in general

Many test users highlighted the application’s intuitive layout and the straightforward conceptual
logic of its various building blocks. The user-friendly nature of the application enabled the swift
and effortless creation of simple visuals, incorporating basic interactions such as key presses or
time intervals. This lowered the barrier for first-time users to engage with interactive visual
creation. One tester indicated he enjoyed to explore the possibilities in iterations: by first
creating simple and then more complex and interactive visuals in a playful manner. Another test
user came up with the idea to create a game with it, showing the flexibility and versatile nature
of the application.

6.2 Creating visuals in Javascript p5

Creating visuals with p5.js in the browser offers an accessible and user-friendly environment for
creative coding. The p5.js library provides a simple and intuitive syntax, making it easy for
developers that are new in the field of visualisations, to start creating visuals quickly. With
p5.js, developers can generate animated visuals and create both 2D and 3D graphics within an
HTML canvas element, providing a versatile canvas for creative expression. All test users, both
with technical and non technical background, agreed on the user friendliness and accessibility

41

42 CHAPTER 6. EVALUATION AND TESTING

of the p5 framework. One test user suggested to flatten the learning curve further by providing
coding support (examples, illustrations) and documentation links of p5.js in the web application.

One of the significant advantages of using JavaScript for music visualisation is the testability
and real-time interaction it offers. Being browser-based, p5.js allows developers to see immediate
visual feedback, making it highly testable during the development process. This real-time in-
teraction capability enables quick iterations and adjustments, fostering a more efficient creative
workflow. One test user indicated the focus on fast realisation, testing and trial and error in the
tool as a strength in the creative process.

One test user with some experience in creating visuals with Processing (related to p5) indi-
cated that the choice for a browser tool and javascript p5 is logic and accessible. JavaScript
runs on almost all modern web browsers, ensuring broad accessibility and compatibility for users
across different platforms and devices. The ubiquity of web browsers on desktop and mobile de-
vices positions p5.js as a ”write once, run anywhere” solution for developing musical interfaces.
This portability and distribution ease allow creators to reach a wider audience without requiring
users to install specific software. This also became clear during testing with different test people:
the setup time of the tool was very minimal, and also sharing created interactive visuals could
easily be shared and run on different devices.

Additionally, JavaScript has a vast and active community, providing developers with extensive
resources for learning, problem-solving, and sharing creative projects. This active community
contributes to the continual improvement and evolution of JavaScript and its associated libraries.
This was also noticed by two test persons during the development of their demo visualisation.

However, using JavaScript for music visualisation also comes with a limitation regarding per-
formance, especially when dealing with complex and computationally intensive visualisations.
During the development of the two demo’s, that processed rather complex input data streams
and animated visualisations, the performance boundaries were reached. In the second demo pro-
cessing audio signals, the frequency of emitting audio data by the observable, had an influence
on the visualisation movements, leading to a less smooth and efficient visualisation experience.
In the first demo processing midi signals, the performance boundaries were reached when in-
creasing the number of cubes in the visual, resulting in a more slowly moving visual. Next to the
performance limitations of p5, also the Web Audio API showed it’s limitations: one test person
mentioned that the audio output lagged slightly behind the input by a fraction of a second. This
”almost but not quite in sync” situation could pose a challenge for music.

In conclusion, using p5.js for interactive music visualisation provides an accessible and versatile
platform for creating music visualisations in the browser. Its ease of start-up, real-time inter-
action and testability, intuitive syntax and large user community make it an attractive choice
for developers that are new in the field of visualisation. However, it’s crucial to be mindful of
potential performance limitations when building more complex and reactive visualisations.

6.3. P5.JS WITH REACTIVE PROGRAMMING 43

6.3 p5.js with reactive programming

The integration of reactive programming using RxJS in combination with the p5.js library for
creating interactive visualisations in the browser has been a significant and enriching aspect of
this master thesis. The ability to connect observables to the p5.js code and use them to adapt
visual parameters based on emitted values has provided a new level of interactivity and dynamic
responsiveness to the visuals. This integration allowed for real-time synchronisation between the
music data flows and the visual output, providing engaging and interactive visual experiences.

By incorporating reactive programming principles, the web application enabled developers to
easily configure and combine multiple input streams, such as MIDI keyboard presses, micro-
phone inputs, or custom user interactions. This flexibility expanded the creative possibilities,
allowing developers to experiment with diverse input sources and visualise the effects in real
time. One test person highlighted the flexibility and modularity of the application, which makes
it possible to think of interesting integrations like online microservices, sensors, or AI inter-
actions. Furthermore, the combination of p5.js’s graphics capabilities and RxJS’s data stream
manipulation provided a seamless blend of creative coding and reactive programming paradigms.
This synergy offered a powerful and efficient approach to building interactive visuals, allowing
developers to focus more on the creative aspects of visual creation rather than dealing with low-
level technicalities.

The visual representation of the observables, observers and parameters in a linked diagram
using GOJS added an intuitive and visual aspect to the reactive programming process. This
integration with visual programming concepts enhances the overall user experience, making it
easier for developers to understand the connections between different elements and understand
the behaviour of the visuals in response to various inputs.

In evaluating the use of reactive programming with p5.js, it became clear that this approach
significantly reduced the coding time and intuitiveness required to achieve interactive visuali-
sations. The declarative nature of reactive programming with RxJs simplified the handling of
complex data flows, making it easier to manage the codebase and apply changes or improve-
ments. This reduction in complexity also facilitated the scalability of digital artworks, enabling
the addition of new observables and interactive parameters with ease. However, as stated above,
performance limitations of running p5.js in the browser need to be taken into account.

It is essential to note that while reactive programming provided substantial advantages in terms
of interactivity and data flow management, it also introduced a learning curve for developers who
were not familiar with the reactive programming paradigm. One test user noted that, thanks to
this tool, they grasped the fundamentals of reactive programming (observers and subscribers) and
p5 visualizations in a straightforward manner. However, some developers might initially find it
challenging to understand and leverage the full potential of RxJS’s capabilities effectively. There-
fore, the integration of reactive programming in this web application should be accompanied by
clear documentation and guidance to help developers familiarise themselves with the concepts.
The need for clear examples and documentations links was also emphasised by multiple test users.

Additionally, certain aspects of the application, such as suboptimal error messaging in each
JavaScript editor or the use of dictionaries for storing and accessing parameters and observables
/ observers, could be further improved to enhance user experience and reduce the learning curve.
Also, a test user mentioned that understanding how the different components are working to-

44 CHAPTER 6. EVALUATION AND TESTING

gether in the background, can help to solve and understand error messages and problems faster.
By addressing these areas of improvement and providing user-friendly interfaces and documen-
tation, the application can become more accessible to developers of varying skill levels. As the
development process is iterative, user feedback and testing can guide the implementation of these
enhancements, ultimately leading to a more intuitive and efficient web application for creating
interactive music visualisations.

6.4 Conclusion of test phase

In conclusion, the integration of reactive programming with p5.js in the web application has been
a successful effort that enhanced the interactivity and creative possibilities. The combination
of these two technologies proved to be a powerful and efficient approach for building interactive
visuals that adapt in real time based on music data flows. The visual representation of data
flows using GOjs further contributed to the user-friendliness and understanding of the visual’s
interactivity. However, to fully utilise the potential of reactive programming, providing appro-
priate learning resources and documentation will be crucial for developers aiming to leverage
this approach effectively. Furthermore, performance limitations need to be taken into account
when building large installations. Overall, this integration has demonstrated the possibilities
and advantages of combining reactive programming with the p5.js library for creating interactive
and dynamic music visualisations in the browser.

Chapter 7

Conclusion

This thesis delves into the realm of interactive visual creation. Numerous technologies, languages,
and methods exist for crafting interactive visuals, catering to diverse skill sets and backgrounds.
The abundance of options can be overwhelming, and this thesis aims to identify technologies
that are approachable, providing a delightful introduction to music visualisation for new users
in creative coding.

In this research, a web application is created that combines the JavaScript’s p5.js framework
with the principles of reactive programming. The web application provides functionality to draw
p5 images and animations in a HTML canvas easily, and with real time output or error mes-
saging. Furthermore, interactivity of the visual can be added by connecting parameters in the
visualisation code to user configurable input streams with the help of the RxJs reactive program-
ming framework of Javascript. Inspired by the principles of visual programming languages, a
visual graph representation shows the structure and impact of this input stream configuration
and how it changes values of visual parameters.

During the development and in the test phase of the application, the benefits and challenges
of the web application and of combining p5.js and reactive programming for creating interactive
visuals were analysed. A first key takeaway is the testability and real-time interaction the browser
tool offers, enabling quick iterations and adjustments and fostering a more efficient creative work-
flow. The web application highlighted the synergy between p5.js and reactive programming as a
powerful combination for crafting interactive music visualisations. The application’s user-friendly
layout and intuitive building blocks lowered the entry barriers, enabling fast creation of simple
to complex visuals with basic interactions. The integration of p5.js with reactive programming
using RxJS showcased the power of real-time synchronisation between music or user interaction
data streams and visual outputs, offering dynamic and engaging visual experiences. In addition
to the benefits of this integration, performance considerations were noted for complex visuals,
and the learning curve associated with reactive programming was acknowledged. Feedback from
test users further underscored the importance of clear documentation and supportive resources
to maximise the potential of this approach.

In summation, this research explores the potential of merging p5.js with reactive programming to
create interactive music visualisations, improving interactivity, responsiveness, and creative ex-
pression. It provides a foundation for developers new in creative coding to explore the fascinating
realm of developing interactive music visualisations.

45

Bibliography

[1] Climate spiral: Global temperature over time, n.d. URL https://climate.nasa.gov/

climate_resources/300/video-climate-spiral-1880-2022/.

[2] MiMi. What is data art?, 2023. URL https://agoradigital.art/what-is-data-art/.

[3] E. Sandberg. Creative coding on the web in p5.js: A library where javascript meets pro-
cessing, 2019.

[4] P. P. Ray. A survey on visual programming languages in internet of things. Scientific
Programming, pages 1–6, 2017. doi: 10.1155/2017/1231430.

[5] Refik Anadol. Bosphorus : Data sculpture. URL https://refikanadolstudio.com/

projects/bosphorus-data-sculpture/.

[6] M. Akten. Simple harmonic motion #8, n.d. URL https://www.memo.tv/works/

simple-harmonic-motion/.

[7] This is Colossal. Scale collective flux, 2021. URL https://www.thisiscolossal.com/

2021/04/scale-collective-flux/.

[8] A. Pošćić, G. Kreković, and A. Butković. Desirable aspects of visual pro-
gramming languages for different applications in music creation, 2015. URL
https://www.researchgate.net/publication/331783205_Desirable_Aspects_of_

Visual_Programming_Languages_for_Different_Applications_in_Music_Creation.

[9] A. Pošćić and G. Kreković. Ecosystems of visual programming languages for music creation:
A quantitative study. Journal of the Audio Engineering Society, 66(6):486–494, 2018. doi:
10.17743/jaes.2018.0028.

[10] Some techniques on digital signal processing in the visual programming environ-
ment max, 2020. URL https://ieeexplore.ieee.org/abstract/document/9131297/

figures#figures.

[11] M. C. Negrão. Nndef: livecoding digital musical instruments in supercollider using functional
reactive programming, 2018. URL https://doi.org/10.1145/3242903.3242905.

[12] C. Roberts, G. Wakefield, M. Wright, and J. Kuchera-Morin. Designing musical instruments
for the browser. Computer Music Journal, 39(1):27–40, 2015. doi: 10.1162/comj a 00283.

[13] Towards Data Science. Understanding audio data: Fourier transform, fft, spec-
trogram, and speech recognition, n.d. URL https://towardsdatascience.com/

understanding-audio-data-fourier-transform-fft-spectrogram-and-speech-recognition-a4072d228520.

46

https://climate.nasa.gov/climate_resources/300/video-climate-spiral-1880-2022/
https://climate.nasa.gov/climate_resources/300/video-climate-spiral-1880-2022/
https://agoradigital.art/what-is-data-art/
https://refikanadolstudio.com/projects/bosphorus-data-sculpture/
https://refikanadolstudio.com/projects/bosphorus-data-sculpture/
https://www.memo.tv/works/simple-harmonic-motion/
https://www.memo.tv/works/simple-harmonic-motion/
https://www.thisiscolossal.com/2021/04/scale-collective-flux/
https://www.thisiscolossal.com/2021/04/scale-collective-flux/
https://www.researchgate.net/publication/331783205_Desirable_Aspects_of_Visual_Programming_Languages_for_Different_Applications_in_Music_Creation
https://www.researchgate.net/publication/331783205_Desirable_Aspects_of_Visual_Programming_Languages_for_Different_Applications_in_Music_Creation
https://ieeexplore.ieee.org/abstract/document/9131297/figures#figures
https://ieeexplore.ieee.org/abstract/document/9131297/figures#figures
https://doi.org/10.1145/3242903.3242905
https://towardsdatascience.com/understanding-audio-data-fourier-transform-fft-spectrogram-and-speech-recognition-a4072d228520
https://towardsdatascience.com/understanding-audio-data-fourier-transform-fft-spectrogram-and-speech-recognition-a4072d228520

BIBLIOGRAPHY 47

[14] Audio Interfacing. Midi tracks vs. audio tracks, n.d. URL https://audiointerfacing.

com/midi-tracks-vs-audio-tracks/.

[15] G. Forsberg. An audio-to-midi application in java, 2009.

[16] ResearchGate. An example of midi message, n.d. URL https://www.researchgate.net/

figure/An-example-of-MIDI-message_fig1_343709022.

[17] GeeksforGeeks. Difference between digital audio and midi, n.d. URL https://www.

geeksforgeeks.org/difference-between-digital-audio-and-midi/.

[18] T. Murphy. A livecoding semantics for functional reactive programming, 2016. URL https:

//doi.org/10.1145/2975980.2975986.

[19] University of Auckland. What is visual programming?, 2005. URL https://www.cs.

auckland.ac.nz/courses/compsci732s1c/archive/2005/lectures/WhatIsVP.pdf.

[20] Jean-François Charles. A tutorial on spectral sound processing using max/msp and jitter.
Computer Music Journal, 32(3):87–102, 2008.

[21] Bryan WC Chung. Multimedia Programming with Pure Data. CRC Press, 2013. ISBN
978-1466565996.

[22] Xiangnuo Li and Jialu He. Exploring the emotional design of digital art under the multi-
modal interaction form. In Lecture Notes in Computer Science, volume 14030, July 09 2023.
URL https://link.springer.com/chapter/10.1007/978-3-031-35699-5_40.

[23] Luc Nijs, Pieter Coussement, Chris Muller, Micheline Lesaffre, and Marc Leman. The
music paint machine - a multimodal interactive platform to stimulate musical creativity in
instrumental practice. In Conference Paper, Institute for Psychoacoustics and Electronic
Music, Ghent University, Blandijnberg 2, 9000 Ghent, Belgium, January 2010. URL https:

//www.researchgate.net/publication/221130789.

[24] Emily Zimmerman and Amir Lahav. The multisensory brain and its ability to learn music.
Annals of the New York Academy of Sciences, 2012. doi: 10.1111/j.1749-6632.2012.06455.
x. URL https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.

2012.06455.x.

[25] Melissa Bremmer, Carolien Hermans, and Vincent Lamers. The charmed dyad: Multi-
modal music lessons for pupils with severe or multiple disabilities. International Jour-
nal of Music Education, 43(2), 2022. doi: 10.1177/1321103X20974802. URL https:

//journals.sagepub.com/doi/abs/10.1177/1321103X20974802.

[26] Martin Klasen, Yu-Han Chen, and Klaus Mathiak. Multisensory emotions: perception,
combination and underlying neural processes. Reviews in the Neurosciences, August 2012.
doi: 10.1515/revneuro-2012-0040. URL https://www.degruyter.com/document/doi/10.

1515/revneuro-2012-0040/html.

[27] Anna Fekete, Rosa M. Maidhof, Eva Specker, Urs M. Nater, and Helmut Leder. Does
art reduce pain and stress? a registered report protocol of investigating autonomic and
endocrine markers of music, visual art, and multimodal aesthetic experience. PLoS ONE,
17(4):e0266545, April 2022. doi: 10.1371/journal.pone.0266545. URL https://doi.org/

10.1371/journal.pone.0266545.

https://audiointerfacing.com/midi-tracks-vs-audio-tracks/
https://audiointerfacing.com/midi-tracks-vs-audio-tracks/
https://www.researchgate.net/figure/An-example-of-MIDI-message_fig1_343709022
https://www.researchgate.net/figure/An-example-of-MIDI-message_fig1_343709022
https://www.geeksforgeeks.org/difference-between-digital-audio-and-midi/
https://www.geeksforgeeks.org/difference-between-digital-audio-and-midi/
https://doi.org/10.1145/2975980.2975986
https://doi.org/10.1145/2975980.2975986
https://www.cs.auckland.ac.nz/courses/compsci732s1c/archive/2005/lectures/WhatIsVP.pdf
https://www.cs.auckland.ac.nz/courses/compsci732s1c/archive/2005/lectures/WhatIsVP.pdf
https://link.springer.com/chapter/10.1007/978-3-031-35699-5_40
https://www.researchgate.net/publication/221130789
https://www.researchgate.net/publication/221130789
https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.2012.06455.x
https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.2012.06455.x
https://journals.sagepub.com/doi/abs/10.1177/1321103X20974802
https://journals.sagepub.com/doi/abs/10.1177/1321103X20974802
https://www.degruyter.com/document/doi/10.1515/revneuro-2012-0040/html
https://www.degruyter.com/document/doi/10.1515/revneuro-2012-0040/html
https://doi.org/10.1371/journal.pone.0266545
https://doi.org/10.1371/journal.pone.0266545

48 BIBLIOGRAPHY

[28] A. M. Stark. Sound analyser: A plug-in for real-time audio analysis in live
performances and installations, 2014. URL https://www.semanticscholar.

org/paper/Sound-Analyser%3A-A-Plug-In-for-Real-Time-Audio-in-Stark/

ee6288d289d200b2e221634c6344083e04bb7554.

[29] M. Graf. An audio-driven system for real-time music visualisation. 2021. URL https:

//arxiv.org/abs/2106.10134.

[30] J. Bresson, C. Agon, and G. Assayag. Openmusic: Visual programming environment for
music composition, analysis and research. In Proceedings of the 19th ACM International
Conference on Multimedia, pages 743–746. Association for Computing Machinery, 2011.
doi: 10.1145/2072298.2072434.

[31] F. Collopy, R. M. Fuhrer, and J. D. Visual music in a visual programming language, 1999.
URL https://doi.org/10.1109/vl.1999.795882.

[32] R. Taylor. Real-time music visualization using responsive imagery, 2014. URL https://www.

academia.edu/7767058/REAL_TIME_MUSIC_VISUALIZATION_USING_RESPONSIVE_IMAGERY.

[33] C. Pramerdorfer. An introduction to processing and music vi-
sualization, 2011. URL https://www.semanticscholar.org/

paper/An-Introduction-to-Processing-and-Music-Pramerdorfer/

8794c8548fb56359ee44ac76e854dac464f61350.

[34] Interactive music visualization for music player using processing, 2016. URL https://

ieeexplore.ieee.org/document/7863205.

[35] Research and implementation of real-time music visualization system based on python, 2020.
URL https://doi.org/10.1117/12.2654065.

[36] p5.js contributors. p5.js reference: noise(), 2021. URL https://p5js.org/reference/#/

p5/noise.

https://www.semanticscholar.org/paper/Sound-Analyser%3A-A-Plug-In-for-Real-Time-Audio-in-Stark/ee6288d289d200b2e221634c6344083e04bb7554
https://www.semanticscholar.org/paper/Sound-Analyser%3A-A-Plug-In-for-Real-Time-Audio-in-Stark/ee6288d289d200b2e221634c6344083e04bb7554
https://www.semanticscholar.org/paper/Sound-Analyser%3A-A-Plug-In-for-Real-Time-Audio-in-Stark/ee6288d289d200b2e221634c6344083e04bb7554
https://arxiv.org/abs/2106.10134
https://arxiv.org/abs/2106.10134
https://doi.org/10.1109/vl.1999.795882
https://www.academia.edu/7767058/REAL_TIME_MUSIC_VISUALIZATION_USING_RESPONSIVE_IMAGERY
https://www.academia.edu/7767058/REAL_TIME_MUSIC_VISUALIZATION_USING_RESPONSIVE_IMAGERY
https://www.semanticscholar.org/paper/An-Introduction-to-Processing-and-Music-Pramerdorfer/8794c8548fb56359ee44ac76e854dac464f61350
https://www.semanticscholar.org/paper/An-Introduction-to-Processing-and-Music-Pramerdorfer/8794c8548fb56359ee44ac76e854dac464f61350
https://www.semanticscholar.org/paper/An-Introduction-to-Processing-and-Music-Pramerdorfer/8794c8548fb56359ee44ac76e854dac464f61350
https://ieeexplore.ieee.org/document/7863205
https://ieeexplore.ieee.org/document/7863205
https://doi.org/10.1117/12.2654065
https://p5js.org/reference/#/p5/noise
https://p5js.org/reference/#/p5/noise

	Introduction
	The art of data visualisation
	Music visualisation tools
	Problem statement and contribution
	Methodology
	Thesis outline

	Background
	Music as data stream
	Audio input stream
	MIDI input stream
	Audio and midi processing

	Reactive programming
	Visual Programming Language
	Visualisation of music

	Related Work
	Solution
	General concept
	The input configuration component
	Functionality
	Technical implementation

	The Javascript playground
	Functionality
	Technical implementation

	The output canvas component
	From manual to practice: a first example
	Visualisation code
	Input selection

	Challenges during development
	Layout
	Performance and memory leaks
	Communication between components
	Error messages of editors

	Demos
	Demo 1: cube grid piano
	visualisation code
	Input selection

	Demo 2: turning tori
	visualisation code
	Input selection

	Evaluation and testing
	Application concept in general
	Creating visuals in Javascript p5
	p5.js with reactive programming
	Conclusion of test phase

	Conclusion

