
Graduation thesis submitted in partial fulfilment of the requirements for the
degree of Master of Science in Applied Sciences and Engineering: Computer
Science

STORYTELLING AS A MEANS
TO IMPROVE SOCIAL
INCLUSION IN COMPUTER
SCIENCE EDUCATION

Inas Ghazouani Ghailani

June 2024

Promotor: Prof. Dr. Beat Signer
Advisor: Yoshi Malaise

Sciences and Bioengineering Sciences

ii

Proefschrift ingediend met het oog op het behalen van de graad van Master of
Science in de Ingenieurswetenschappen: Computerwetenschappen

HET GEBRUIK VAN
STORYTELLING OM SOCIALE
INCLUSIE TE VERBETEREN IN
COMPUTERWETENSCHAPPEN
EDUCATIE

Inas Ghazouani Ghailani

Juni 2024

Promotor: Prof. Dr. Beat Signer
Advisor: Yoshi Malaise

Wetenschappen en Bio-ingenieurswetenschappen

ii

Abstract

One of the biggest challenges faced by non-pro�t organisations that provide computer science ed-
ucation for underrepresented people is high dropout rates. These rates are the result of a number
of factors that impact both students and teachers. In this thesis, we aimed to address this prob-
lem. In order to do so we started by visiting HYFBE, a Belgian non-pro�t organisation teaching
web development to refugees and migrants, and we performed a literature review to expand our
understanding of the domain. Based on the insights gained during this process, we developed the
JsStories tool. The tool helps students learn JavaScript through storytelling. To minimise any
barriers to entry and to maximise the feeling of connection to the story, we incorporated stories
from HYFBE’s alumni. Additionally, educational best practises such as the PRIMM approach
and suggesting level-appropriate content based on knowledge graphs were followed to build the
tool. Throughout this thesis, we have used the Design Science Research Methodology. We con-
ducted interviews and a survey to evaluate a �rst prototype of the tool. Based on the positive
results of the evaluation, we believe the tool could be bene�cial for organisations such as HYFBE
to use both during their programs and in the student selection procedure, providing insights to
students about what to expect from such programs.

iii

iv

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisor Yoshi Malaise,
without whom I could not have undertaken this journey. His weekly advice, guidance and
support have been invaluable in shaping this thesis. I could truly not have imagined having a
better advisor.

Furthermore, I am extremely grateful to my supervisor, professor Beat Signer, for giving me this
opportunity and for his valuable advice and feedback.

I would also like to extend my sincere thanks to the HYFBE alumni who contributed to this
thesis by sharing their stories and without whom the conducted research would not have been
possible. I wish them all the best in their lives in Belgium.

Special thanks also to Evan Cole for his helpful feedback and given insights on how to enhance
the JsStories tool. Many thanks also to Laura van der Lubbe, whose expertise in knowledge
graphs has signi�cantly in
uenced the creation of the one used in the JsStories tool.

I would also like to thank the students and the education coordinator I talked to during my visit
at HYFBE, who helped me acquire a better understanding of the di�culties students face in
such programmes.

In addition, I am thankful for the representatives of HYF Denmark, Borders None, Open Cultural
Center and Social Hackers Academy, as well as the survey participants, that contributed to the
evaluation of the tool.

Last but not least, I would like to thank my family and friends for their continuous emotional
support, encouragement and for believing in me.

v

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Method . 2

1.3 Contributions . 2

1.4 Thesis Outline . 3

2 Background 5

2.1 Bloom’s Taxonomy . 5

2.2 Code Reading and Tracing . 6

2.3 Models for Programming Pedagogy . 7
2.3.1 The Block Model . 7
2.3.2 Use-Modify-Create . 9
2.3.3 PRIMM . 10

2.4 Expertise Reversal E�ect . 11

2.5 Formative Assessment . 11

2.6 Parsons Problem . 12

2.7 Gami�cation . 12

2.8 Storytelling and Adult Learning . 14

2.9 Knowledge Graphs . 15

3 Related Work 17

3.1 Storytelling Alice . 17

3.2 Questions About Learner’s Code . 18

3.3 Knowledge Graph Use Cases . 19
3.3.1 Co-teach Informatica’s Digital Learning Platform 19
3.3.2 iSport . 21

4 JsStories 23

4.1 JsStories . 23
4.1.1 Storytelling . 23
4.1.2 PRIMM . 24
4.1.3 Content of a JsStory . 27
4.1.4 The Knowledge Graph . 29

5 Implementation 33

5.1 Story Collection and Processing . 33

vi

CONTENTS vii

5.2 The Application . 34
5.2.1 The Knowledge Graph . 36
5.2.2 Predict Exercise . 37
5.2.3 Run Exercise . 38
5.2.4 Investigate Exercise . 38
5.2.5 Modify Exercise . 39
5.2.6 Make Exercise . 39

6 Evaluation 41
6.1 Interviews . 41

6.1.1 HYF Belgium . 42
6.1.2 HYF Denmark . 44
6.1.3 Borders None . 45
6.1.4 Open Cultural Center . 46
6.1.5 Social Hackers Academy . 47

6.2 Survey . 48
6.3 Main Findings of the Evaluation . 49

7 Discussion and Future Work 51
7.1 Discussion . 51
7.2 Future Work . 52

7.2.1 Design Improvement . 52
7.2.2 Additional Educational Material . 52
7.2.3 Prior Knowledge Test . 52
7.2.4 Students' Progress . 53
7.2.5 Web-based Application . 53
7.2.6 Other Directions . 53

8 Conclusion 55

A JsStory: Hope After Darkness 57

B Survey Results 67

C Screenshots 75

viii CONTENTS

Chapter 1

Introduction

1.1 Problem Statement

As computer scientist Wasseem Latif once said:\Give a man a program, frustrate him for a day.
Teach a man to program, frustrate him for a lifetime." Learning and teaching programming
is up until this day well-known to be di�cult [19, 39, 7] as evidenced by the failure rates in
programming courses that can undoubtedly be improved [48]. The primary reasons for this
challenge are, among others, students' poor problem-solving skills as well as shortcomings in
the way programming is taught, including the learning materials utilised [7]. Several crucial
aspects that could be improved in the current approach to teaching programming have been
identi�ed [19]. The suggestions for improvement include making the teaching of programming
more
exible, enabling students to learn at their own pace and through various methods. Students
should also be provided with enough and appropriate assistance. Additionally, it is important
that the teachers are not only skilled programmers but also have strong pedagogical skills to
e�ectively teach programming.

Furthermore, with the increasing digitalisation, STEM �elds such as computer science are grow-
ing in importance and demand. However, statistical evidence shows that people of di�erent
races, ethnicities and socially vulnerable groups, such as refugees, are underrepresented in such
�elds [36]. Additionally, the same applies to people of diverse sexual orientations and gender iden-
tities [13]. There is also a signi�cant gender disparity, as men outnumber women in STEM pro-
fessions and education [21, 36]. Hence, numerous (non-pro�t) organisations worldwide aim to
�ght the inequality and high dropout rates from underrepresented groups. Migracode Europe1,
co-funded by the Erasmus+ program of the European union, fosters open-access technology
education for refugees and migrants. Their network is made up of nine coding schools across
several European countries. Among these, is HackYourFuture Belgium2 (HYFBE), a non-pro�t
organisation that o�ers a free web development programme to refugees and other disadvantaged
groups, preparing them for their �rst job or internship in the IT industry. As such, HYFBE
supports these people in their integration process regardless of their background and prior pro-

1https://migracode.eu/about-migracode/
2https://hackyourfuture.be

1

2 CHAPTER 1. INTRODUCTION

gramming knowledge while also addressing the high demand in the IT industry. The team at
HYFBE comprises volunteers, including mentors and coaches, who are willing to share their
knowledge and expertise with the students and provide support for them. The program consists
of weekly classes that take place every Sunday. Additionally, during the week the students are
expected to complete some homework assignments about the topics covered in class. However,
these organisations are facing challenges in maintaining low dropout rates. We believe this is
due to several factors. In addition to the complexity of programming, volunteer teachers may
lack the necessary pedagogical skills for e�ective teaching as they are often not given a formal
training. Furthermore, it is important to take into account the background and needs of these
refugees and migrants to foster their sense of belonging. Therefore, we believe that a solution
to tackle the high dropout rates in organisations aiming to teach programming to socially vul-
nerable groups should address each of these aspects while taking into account the mentioned
suggestions to improve programming teaching.

1.2 Method

Throughout this thesis, we have made use of theDesign Science Research Method (DSRM)in
information systems research [38], which consists of six di�erent phases. These are the follow-
ing: (1) problem identi�cation and motivation, (2) de�ning the requirements and objectives for
the solution, (3) designing the solution and then developing it, (4) demonstrating the solution,
(5) conducting an evaluation, (6) communicating the artefact along with the problem it aims to
solve and the results of the evaluation.

The problem identi�cation and motivation is described in the problem statement (Section 1.1).
To gather the requirements and objectives of the solution, we studied several papers related
to social inclusion in computer science education, the challenges of learning programming and
computer science concepts, as well as studies on potential pedagogical approaches to be used in
computer science education. In addition, we attended a Sunday session at HackYourFuture to
interact directly with the target group and obtain more information on the requirements and
objectives. There we had the opportunity to talk with the educational coordinator at that time
and socially vulnerable students including refugees and asylum seekers. We discussed the cur-
riculum of the 9-month web development programme, challenges faced by students, motivations
for joining the program and any fears or assumptions the students initially had about computer
science. These insights shaped the design and development of the JsStories tool. The artefact is
demonstrated using screenshots presenting the tool's functionality. Additionally, the appendix
contains a complete example of one of the books currently available in the JsStories tool. The
artefact was then evaluated by means of interviews and a survey with both students and teachers.
Finally, the �ndings and conclusions are communicated through this thesis.

1.3 Contributions

The main contribution of this thesis is the introduction of the JsStories tool, designed to help
learn programming in JavaScript through storytelling. The tool provides an interface containing
books consisting of stories and exercises based on the PRIMM model [43, 44]. In order to track

1.4. THESIS OUTLINE 3

students' progress, the tool is also built using the concept of a knowledge graph. By using
storytelling, the PRIMM approach and a knowledge graph, the tool strives to enhance the social
inclusion in organisations aimed at teaching socially vulnerable groups and potentially reduce
the dropout rates. The stories used, which are real stories of HYFBE's alumni, focus on building
a sense of belonging among socially vulnerable students. Additionally, the PRIMM approach
and the knowledge graph provide a learning environment that allows students to learn at their
own pace while o�ering support along the way. The stories are managed through a content
management system allowing for story
exibility and thus support for various target groups.
Although JsStories was initially developed to teach JavaScript in a social education setting, it
may for instance also be adapted to teach programming to children by using appropriate stories
such as fairytales. Another contribution involves the exploration of relevant models for e�ective
programming pedagogy, the concepts of knowledge graphs and gami�cation, more speci�cally
storytelling, which have been discussed in Chapter 2. Furthermore, we investigated the challenges
students face in organisations like HYFBE through a visit there, talking to students and the
educational coordinator. Additionally, insights on the challenges and internal workings of a
number of Migracode schools, such as their student selection procedure have been acquired
through interviews and documented in this thesis.

1.4 Thesis Outline

The remainder of this thesis is organised as follows: Chapter 2 contains background information
on educational psychology focusing on models for programming pedagogy as well as some gen-
eral education theories. Furthermore, gami�cation including storytelling is discussed. Finally,
this chapter discusses knowledge graphs. The following chapter covers some relevant work in
the research domain. This includes work that is related to the application of certain concepts
described in Chapter 2, as well as work that is pertinent due to its utilisation during the imple-
mentation of the tool. Additionally, Chapter 4 provides a detailed, illustrated description of the
tool that was developed as a potential solution for the problem statement. Using the background
information described in Chapter 2, the motivation behind every aspect of the tool is explained.
Furthermore, in Chapter 5 information is provided on the collection and writing processes for
the stories included in the tool. Moreover, it o�ers further details on the implementation of the
tool and the motivation behind every implementation choice. The evaluation of the tool was
conducted using interviews and a survey. Chapter 6 includes a thorough description of every
interview that was carried out as well as an overview of the outcomes of the survey. Furthermore,
Chapter 7 discusses potential future work to further improve the tool. Finally, a conclusion is
provided in Chapter 8. The appendix contains an example of a book currently available in the
JsStories tool, �gures depicting the survey results and larger images of the screenshots used in
Chapter 4.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Bloom's Taxonomy

Bloom's taxonomy, named after Benjamin S. Bloom and introduced in [5], is a popular model
that is widely adopted in education. The taxonomy is a six-level hierarchical classi�cation of
learning objectives. It consists of the levelsknowledge, comprehension, application, analysis,
synthesis and evaluation, ranging from lower to higher levels, with the highest levels requiring
more cognitive load than the lower ones [12, 1]. Teachers can use Bloom's taxonomy to structure
their lessons such that their students go through each level progressively and only move on to
the higher levels once they have mastered the lower ones [12].

Figure 2.1: Revised Bloom's taxonomy [12]

The taxonomy was later on revised in [2] which included structural modi�cations and a renaming
of the learning objectives, as illustrated in the pyramid shown in Figure 2.1. The learning
objectives were renamed toremembering, understanding, applying, analysing, evaluating and
creating, using verbs instead of nouns. In this version, creating is the highest level, as opposed to

5

6 CHAPTER 2. BACKGROUND

the original version where evaluation was the highest level. The objectives from lower to higher
levels are listed in Table 2.1, along with their subcategories, a description, and an example which
are given by the authors [2].

Subcategories Description Examples

Remembering Recognising and
recalling

Retrieve relevant
knowledge from

long-term memory

Recall the dates of
important events in

U.S. history

Understanding Interpreting,
exemplifying,
classifying,

summarising,
inferring, comparing

and explaining

Construct meaning
from instructional

messages, including
oral, written, and

graphic
communication

Compare historical
events to

contemporary
situations

Applying Executing and
implementing

Carry out or use a
procedure in a given

situation

Divide one whole
number by another
whole number, both
with multiple digits

Analysing Di�erentiating,
organising and

attributing

Break material into its
constituent parts and

determine how the
parts relate to one
another and to an
overall structure or

purpose

Structure evidence in
a historical description
into evidence for and
against a particular

historical explanation

Evaluating Checking and
critiquing

Make judgements
based on criteria and

standards

Determine if a
scientist's conclusions
follow from observed

data

Creating Generating, planning
and producing

Put elements together
to form a coherent or

functional whole;
reorganise elements

into a new pattern or
structure

Generate hypotheses
to account for an

observed phenomenon

Table 2.1: Revised Bloom's taxonomy [2]

2.2 Code Reading and Tracing

In 2004, Lister et al. [28] looked into the reasons why �rst-year CS students still have di�culties
writing code after completing their introductory programming classes. Their study consisted of
providing students from multiple countries with twelve multiple choice questions to answer, which
tested their skills in predicting what a code snippet will do as well as their skills in completing

2.3. MODELS FOR PROGRAMMING PEDAGOGY 7

some given code. Based on their study, they found that in most cases the students have di�culties
writing code not only because they lack problem-solving skills, which was the main explanation
given in [33], but more importantly because the students have di�culties reading code and
understanding it. The study was conducted again a couple of years later [27] to make sure that
no biases due to other factors, such as the programming language covered by the questions, were
included. Additionally, they made sure that the students who participated had not participated
to the original study. The results of this second study con�rmed those of the previous one, as
they found that there was a clear correlation between the abilities to trace, explain and write
code.

2.3 Models for Programming Pedagogy

2.3.1 The Block Model

The Block model, a model that focuses on the understanding of programs, was introduced by
Schulte [42]. The model is depicted in Table 2.2 as a 4x3 table representing three dimensions over
four di�erent levels. Each cell or block (hence the name of the model) in the table emphasises a
particular part of the comprehension process. The �rst two dimensionsText surface and Program
execution (data
ow and control
ow) , both concern the structure of the program. Text surface
refers to the actual text of the program, whereasProgram execution (data
ow and control
ow)
deals with the order in which the program is executed as well as the manipulation of data. The
third dimension is Goals of the Program, which is about what the program is intended to do.
Furthermore, the four di�erent levels are Atoms (the language elements such as keywords),Blocks
(the code blocks/units made up of atoms),Relations (the relations between the di�erent blocks)
and Macro Structure (the whole program). The �rst step of program comprehension involves
reading the program text and retrieving information, which is added to the reader's mental
model. It is typically a bottom-up process in the table where �rst the atoms, then the code
blocks, then the relationships between those, and eventually the whole program are considered,
involving one or multiple dimensions.

The model can be used to plan lessons in programming courses, focusing on code comprehension.
Moreover, the author states that the blocks/cells of the model should be viewed asmovable,
meaning that when planning a lesson, not every block has to be considered and also that the
order in which the blocks are arranged may vary in accordance with di�erent learning trajectories.
In a 2019 paper [18], Izu et al. proposed some examples of exercises based on the Block model
that may be used when teaching programming to improve program comprehension. In Table 2.3
one of these examples is given for each block.

Furthermore, the Block model may be seen as a taxonomy, similar to Bloom's taxonomy, be-
cause it enables the classi�cation of various code comprehension activities and questions into the
di�erent blocks. In addition, the hierarchy is somewhat also present in the Block Model since,
for instance, the students �rst have to comprehend atoms before they can understand the macro
structure. Both models were compared in [49] and although there are some similarities, according
to the authors, the Block model \provided a better way of describing novice programming code
comprehension tasks because of the increased granularity that it provides".

8 CHAPTER 2. BACKGROUND

Macro
Structure

Understanding the overall
structure of the program

Understanding the
`algorithm' of the

program

Understanding the
goal/purpose of the

program

Relations References between
blocks, eg. method calls,
object creation, accessing

data...

Sequence of method calls
- `object sequence

diagrams'

Understanding how
subgoals relate to goals,
how function is achieved

by subfunctions

Blocks `Regions of
Interests' (ROI) that

syntactically or
semantically build a unit

Operation of a block of
code, a method, or a ROI

(as a sequence of
statements)

Purpose of a block of
code, possibly seen as a

subgoal

Atoms Language elements Operation of a statement Purpose of a statement

Text Surface Program Execution
(data
ow and control

ow)

Goals of the Program

Duality Structure Function

Table 2.2: The Block model, taken from [42]

Macro
Structure

Represent the overall
program structure by

drawing a tree of
function/procedure

dependencies (relative to
invocations)

Verify if a program
statement or block is ever
reachable during program

execution

Select the sentence, from
a few options, which most

accurately summarises
the program's purpose

Relations Link each occurrence of a
variable with its

declaration

Identify the scope of a
variable.

Summarise in a short
sentence the purpose of a
simple block invoking one

or more
procedures/functions

Blocks Draw a box around the
code of each loop

Change a for loop into a
while loop

Write comments
explaining the purpose of

a block and of the
statements it is built from

Atoms Identify the keywords in a
piece of code

Determine the value of an
expression for given

values of the involved
variables

Rename a constant with
an appropriate name

from the problem

Text Surface Program Execution
(data
ow and control

ow)

Goals of the Program

Duality Structure Function

Table 2.3: Examples of activities/questions for each cell in the Block model, based on [18]

2.3. MODELS FOR PROGRAMMING PEDAGOGY 9

2.3.2 Use-Modify-Create

In [24], Lee et al. looked into the development of Computational Thinking (CT) in middle and
high school students. CT is considered to be an essential aspect of computer science as it
denotes the thinking abilities needed to be able to de�ne, comprehend and analyse problems
as well as solving these with the use of a computer, automation and abstraction [24]. Based
on their research, they introduced a learning progression consisting of three phases, calledUse-
Modify-Create (UMC), to help students progress in CT. Figure 2.2 illustrates the UMC learning
progression. In the Use phase, the students make use and explore other people's work. The
students may be given some program, for instance, that they can analyse and run to test its
outcome. Then in the Modify phase, they can make small modi�cations to the work provided to
them, like modifying the program's use of a certain visual aspect such as a colour. Lastly, in the
Create phase, after having gained more understanding of the original program and experience
with the small modi�cations, the students can make more important modi�cations, such as
adding some extra functionalities. This requires the students to add their own written code to
the program. Following an iterative process of testing, analysing, and re�ning their modi�cations,
the students ultimately get ownership of the �nal altered program. After having been through
the UMC phases for di�erent programs, the students get more con�dent to write entirely new
programs based on the knowledge they have gained through these di�erent phases. Furthermore,
the model can be used for di�erent levels of complexity. For instance, after going through the
UMC phases introducing basic programming principles, the students might proceed to going
through the three phases for somewhat more advanced programming concepts, and so on. The
model thus makes sure that the students get more comfortable to write programs by progressively
going through all these phases for di�erent levels of complexity. Also, the model ensures (in the
context of programming) that students have a thorough understanding of programs before they
are required to write them from scratch.

Figure 2.2: The Use-Modify-Create progression, taken from [24]

10 CHAPTER 2. BACKGROUND

2.3.3 PRIMM

PRIMM is a pedagogical model for both learning and teaching programming that was introduced
by Sentance, Waite and Kallia [43, 44]. It represents the following �ve distinct activities:

ˆ Predict stands for predicting what the provided code will do. Examples of predict activi-
ties are predicting the output of the given code and predicting state changes.

ˆ Run stands for testing the predictions of the predict step by running the provided code.

ˆ Investigate stands for inspecting the structure of the provided code. An example of an
investigate activity would be answering code comprehension questions about the structure
of the code such as for example: What happens if in line 4 the variablex is replaced byy?

ˆ Modify stands for making code modi�cations. The addition of functionality to the pro-
vided code and the removal of bugs in the code are two examples of modify actions.

ˆ Make stands for utilising the same or modi�ed structures from the previous four activities
to make a new program from scratch.

The model is based on the Use-Modify-Create framework, described in the previous section.
PRIMM only focuses on programming, as opposed to the UMC framework, which can be used
for any type of computational thinking, including modelling, designing, programming, and more.
In order to better re
ect the concept of programming, the authors expanded the Use phase
of the UMC framework to include the three di�erent activities: Predict, Run, and Investigate.
Furthermore, the Modify and Make activities of PRIMM correspond to the Modify and Create
phases of the UMC framework. PRIMM also makes use of di�erent levels of abstraction, similar
to the ones used in the Block model (described in Section 2.3.1), as the �ve di�erent activities each
focus on a particular abstraction level. Predict and Run emphasises the execution of the program
whereasInvestigate focuses on the program itself, mainly its structure andMake concentrates
on the purpose and function of the program. Moreover, as the goal of the predict phase is to �rst
read the code in order to understand it and be able to predict its outcome, it also relies on the
work related to the importance of the ability to trace and read code, described in Section 2.2.

PRIMM can thus be used in programming courses by dividing the lessons into the �ve di�erent
activities. In [43], the authors examined the experiences of programming teachers with PRIMM.
The teachers were �rst introduced to it and were provided with some materials containing exer-
cices that they could use during their lessons. They were also free to adapt the exercices if they
wanted to do so. Following the introduction to the model, the teachers implemented it in their
programming courses for a couple of months. Afterwards, they were interviewed about how the
lessons went, whether they felt con�dent using the PRIMM method and on the impact it had on
the student's performances. Based on the feedback from the teachers, the authors concluded that
using PRIMM helped improve the understanding of programming for students but it also had a
positive impact on the structure and executions of the lessons. Furthermore, the favourable e�ect
PRIMM had on student's performances was also described in greater depth in [44]. The model
was evaluated in several high schools with the students being divided in a control group and an
experimental group. To assess their prior knowledge and basic comprehension of programming,
all of the students were required to �rst take a baseline test in the form of a multiple-choice
quiz. Afterwards both groups followed programming lessons for several months, but the lessons

2.4. EXPERTISE REVERSAL EFFECT 11

given to the experimental group were based on the PRIMM method. Subsequently, both groups
completed a post-test. The �ndings show that the experimental group signi�cantly outperformed
the control group on the post-test, despite the fact that both groups had similar scores on the
baseline test taken prior to the programming lessons.

2.4 Expertise Reversal E�ect

The term expertise reversal e�ect is well-known within the �eld of education psychology. This
e�ect refers to situations in which learning materials that are advantageous for beginners turn out
to be unfavourable for more experienced learners [41, 47]. In other words, the e�ect arises when
the e�ectiveness of the learning materials decreases as learners become more experienced. The
expertise reversal e�ect is assumed to be a result of redundancy and the limitations of the working
memory in terms of capacity and duration [41]. For instance, as more experienced learners do
not require as much additional information as beginners, the information becomes redundant and
the working memory is needlessly overloaded. According to Wolfgang Schnotz [41], in order for
learning to be e�ective, instructional support and individual learning must be rightly balanced
in order to match the learning materials to the learners level of expertise.

2.5 Formative Assessment

Formative assessment can have a signi�cant impact on students' learning performance, according
to a thorough literature review on the subject by Black and William [4]. They de�ned formative
assessment as follows: \Assessment refers to all those activities undertaken by teachers and |
by their students in assessing themselves | that provide information to be used as feedback to
modify teaching and learning activities. Such assessment becomes formative assessment when
the evidence is actually used to adapt the teaching to meet student needs". Whereas summative
assessment consists of occasional, larger and graded activities, formative assessment is about
more regular, smaller tasks that are generally ungraded [14]. A typical summative assessment
could be a graded exam at the end of the academic year covering all taught material. On the
other hand, an example of formative assessment could be an ungraded homework covering a
speci�c topic taught in class that would be corrected by the teacher to provide feedback. As
Graham [14] states, formative assessment is not only helpful for teachers to adapt their teaching
to the student needs but it also helps students themselves to recognise their limitations in their
understanding of certain topics allowing them to work on it.

GoFormative1 (or also called Formative) is a web-based platform for digital formative assess-
ments. It is free for both teachers and students. Using the platform teachers can create as-
sessments based on various pre-de�ned types of questions, assign the assessments to selected
students, view their responses and provide individual feedback that can immediately be viewed
by the students [14].

1https://goformative.com

12 CHAPTER 2. BACKGROUND

2.6 Parsons Problem

In a Parsons problem or puzzle, �rst presented in 2006 by Parson and Haden in [37], a code
program is fragmented into several code blocks or lines appearing in a wrong order, and the pur-
pose is to rearrange the code fragments to form the correct code [37]. A 2008 study on Parsons
problems [8] showed that a signi�cant amount of students that scored well on Parsons problems
also performed well on code writing exercises, indicating that the two are positively correlated
and that similar skills are needed for both. Furthermore, the authors state that grading Parsons
problems is simpler than grading traditional code writing exercises. For instance, a Parsons
problem may be graded by assigning 1 point for each correctly ordered code line. Also, several
variants of the problem exists such as, the Two-dimensional Parsons problem and the Parsons
problem including distractors. When reordering the code fragments in the former, indentation
should also be taken into account. Furthermore, in the latter, distractors can be extra erro-
neous code fragments or code fragments that do not belong to the code program and should
thus not be used when forming the solution [11]. The authors of [11] analysed Two-dimensional
Parsons problems with distractors in contrast to modifying faulty code and writing code. They
conducted a study and found that in terms of learning outcomes and knowledge retention, based
on pretests and posttests, there was no signi�cant di�erence between the three. However, com-
pleting Two-dimensional Parsons problems required substantially less time than the other two,
making it more e�cient.

2.7 Gami�cation

According to the de�nition given by Deterding et al., gami�cation refers to \the use of game
design elements in non-game contexts" [9]. In game studies, a distinction is made between the
terms game and play as the former denotes the type of playing following rules and aiming to
achieve some goals, whereas the latter does not involve any rules or goals. Gami�cation refers only
to the former [9]. As per the de�nition, a gami�ed application is in and of itself not considered
to be a game but rather an application that contains certain game elements. The authors also
proposed the following de�nition for what should be considered as game elements: \elements that
are characteristic to games | elements that are found in most (but not necessarily all) games,
readily associated with games, and found to play a signi�cant role in gameplay". Moreover, as
mentioned in the de�nition of gami�cation, the game elements used are more speci�callygame
design elements. Those can be divided into �ve distinct levels of abstractions that can all be
used in gami�cation: Game interface design patterns, Game design patterns and mechanics,
Game design principles and heuristics, Game models, Game design methods[9]. The �ve levels
along with a short description and some examples are depicted in Table 2.4. Furthermore,
gami�cation as well as toys, playfull design and serious games are situated along two axes in
Figure 2.3 based on the gaming/playing and parts/whole aspects. Serious games are considered
to be a type of game that is intentionally created with a serious purpose and thus not merely for
amusement [3, 9]. Similarly, gami�cation can be used in any non-game context such as education
or employee training for some speci�c purpose other than entertainment [9].

	Introduction
	Problem Statement
	Method
	Contributions
	Thesis Outline

	Background
	Bloom's Taxonomy
	Code Reading and Tracing
	Models for Programming Pedagogy
	The Block Model
	Use-Modify-Create
	PRIMM

	Expertise Reversal Effect
	Formative Assessment
	Parsons Problem
	Gamification
	Storytelling and Adult Learning
	Knowledge Graphs

	Related Work
	Storytelling Alice
	Questions About Learner’s Code
	Knowledge Graph Use Cases
	Co-teach Informatica's Digital Learning Platform
	iSport

	JsStories
	JsStories
	Storytelling
	PRIMM
	Content of a JsStory
	The Knowledge Graph

	Implementation
	Story Collection and Processing
	The Application
	The Knowledge Graph
	Predict Exercise
	Run Exercise
	Investigate Exercise
	Modify Exercise
	Make Exercise

	Evaluation
	Interviews
	HYF Belgium
	HYF Denmark
	Borders None
	Open Cultural Center
	Social Hackers Academy

	Survey
	Main Findings of the Evaluation

	Discussion and Future Work
	Discussion
	Future Work
	Design Improvement
	Additional Educational Material
	Prior Knowledge Test
	Students' Progress
	Web-based Application
	Other Directions

	Conclusion
	JsStory: Hope After Darkness
	Survey Results
	Screenshots

