
Graduation thesis submitted in partial fulfilment of the requirements for the
degree of Master of Science in Applied Sciences and Engineering: Computer
Science

STORYTELLING AS A MEANS
TO IMPROVE SOCIAL
INCLUSION IN COMPUTER
SCIENCE EDUCATION

Inas Ghazouani Ghailani

June 2024

Promotor: Prof. Dr. Beat Signer
Advisor: Yoshi Malaise

Sciences and Bioengineering Sciences



ii



Proefschrift ingediend met het oog op het behalen van de graad van Master of
Science in de Ingenieurswetenschappen: Computerwetenschappen

HET GEBRUIK VAN
STORYTELLING OM SOCIALE
INCLUSIE TE VERBETEREN IN
COMPUTERWETENSCHAPPEN
EDUCATIE

Inas Ghazouani Ghailani

Juni 2024

Promotor: Prof. Dr. Beat Signer
Advisor: Yoshi Malaise

Wetenschappen en Bio-ingenieurswetenschappen



ii



Abstract

One of the biggest challenges faced by non-profit organisations that provide computer science ed-
ucation for underrepresented people is high dropout rates. These rates are the result of a number
of factors that impact both students and teachers. In this thesis, we aimed to address this prob-
lem. In order to do so we started by visiting HYFBE, a Belgian non-profit organisation teaching
web development to refugees and migrants, and we performed a literature review to expand our
understanding of the domain. Based on the insights gained during this process, we developed the
JsStories tool. The tool helps students learn JavaScript through storytelling. To minimise any
barriers to entry and to maximise the feeling of connection to the story, we incorporated stories
from HYFBE’s alumni. Additionally, educational best practises such as the PRIMM approach
and suggesting level-appropriate content based on knowledge graphs were followed to build the
tool. Throughout this thesis, we have used the Design Science Research Methodology. We con-
ducted interviews and a survey to evaluate a first prototype of the tool. Based on the positive
results of the evaluation, we believe the tool could be beneficial for organisations such as HYFBE
to use both during their programs and in the student selection procedure, providing insights to
students about what to expect from such programs.

iii



iv



Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisor Yoshi Malaise,
without whom I could not have undertaken this journey. His weekly advice, guidance and
support have been invaluable in shaping this thesis. I could truly not have imagined having a
better advisor.

Furthermore, I am extremely grateful to my supervisor, professor Beat Signer, for giving me this
opportunity and for his valuable advice and feedback.

I would also like to extend my sincere thanks to the HYFBE alumni who contributed to this
thesis by sharing their stories and without whom the conducted research would not have been
possible. I wish them all the best in their lives in Belgium.

Special thanks also to Evan Cole for his helpful feedback and given insights on how to enhance
the JsStories tool. Many thanks also to Laura van der Lubbe, whose expertise in knowledge
graphs has significantly influenced the creation of the one used in the JsStories tool.

I would also like to thank the students and the education coordinator I talked to during my visit
at HYFBE, who helped me acquire a better understanding of the difficulties students face in
such programmes.

In addition, I am thankful for the representatives of HYF Denmark, Borders None, Open Cultural
Center and Social Hackers Academy, as well as the survey participants, that contributed to the
evaluation of the tool.

Last but not least, I would like to thank my family and friends for their continuous emotional
support, encouragement and for believing in me.

v



Contents

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5

2.1 Bloom’s Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Code Reading and Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Models for Programming Pedagogy . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 The Block Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Use-Modify-Create . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 PRIMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Expertise Reversal Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Formative Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Parsons Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Gamification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Storytelling and Adult Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.9 Knowledge Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Related Work 17

3.1 Storytelling Alice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Questions About Learner’s Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Knowledge Graph Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 Co-teach Informatica’s Digital Learning Platform . . . . . . . . . . . . . . 19
3.3.2 iSport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 JsStories 23

4.1 JsStories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1 Storytelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 PRIMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.3 Content of a JsStory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.4 The Knowledge Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Implementation 33

5.1 Story Collection and Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vi



CONTENTS vii

5.2 The Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.1 The Knowledge Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.2 Predict Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.3 Run Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.4 Investigate Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.5 Modify Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.6 Make Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Evaluation 41

6.1 Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.1 HYF Belgium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1.2 HYF Denmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.1.3 Borders None . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.4 Open Cultural Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.1.5 Social Hackers Academy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3 Main Findings of the Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Discussion and Future Work 51

7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2.1 Design Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2.2 Additional Educational Material . . . . . . . . . . . . . . . . . . . . . . . 52
7.2.3 Prior Knowledge Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2.4 Students’ Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2.5 Web-based Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2.6 Other Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8 Conclusion 55

A JsStory: Hope After Darkness 57

B Survey Results 67

C Screenshots 75



viii CONTENTS



Chapter 1

Introduction

1.1 Problem Statement

As computer scientist Wasseem Latif once said: “Give a man a program, frustrate him for a day.
Teach a man to program, frustrate him for a lifetime.” Learning and teaching programming
is up until this day well-known to be difficult [19, 39, 7] as evidenced by the failure rates in
programming courses that can undoubtedly be improved [48]. The primary reasons for this
challenge are, among others, students’ poor problem-solving skills as well as shortcomings in
the way programming is taught, including the learning materials utilised [7]. Several crucial
aspects that could be improved in the current approach to teaching programming have been
identified [19]. The suggestions for improvement include making the teaching of programming
more flexible, enabling students to learn at their own pace and through various methods. Students
should also be provided with enough and appropriate assistance. Additionally, it is important
that the teachers are not only skilled programmers but also have strong pedagogical skills to
effectively teach programming.

Furthermore, with the increasing digitalisation, STEM fields such as computer science are grow-
ing in importance and demand. However, statistical evidence shows that people of different
races, ethnicities and socially vulnerable groups, such as refugees, are underrepresented in such
fields [36]. Additionally, the same applies to people of diverse sexual orientations and gender iden-
tities [13]. There is also a significant gender disparity, as men outnumber women in STEM pro-
fessions and education [21, 36]. Hence, numerous (non-profit) organisations worldwide aim to
fight the inequality and high dropout rates from underrepresented groups. Migracode Europe1,
co-funded by the Erasmus+ program of the European union, fosters open-access technology
education for refugees and migrants. Their network is made up of nine coding schools across
several European countries. Among these, is HackYourFuture Belgium2 (HYFBE), a non-profit
organisation that offers a free web development programme to refugees and other disadvantaged
groups, preparing them for their first job or internship in the IT industry. As such, HYFBE
supports these people in their integration process regardless of their background and prior pro-

1https://migracode.eu/about-migracode/
2https://hackyourfuture.be

1

https://migracode.eu/about-migracode/
https://hackyourfuture.be


2 CHAPTER 1. INTRODUCTION

gramming knowledge while also addressing the high demand in the IT industry. The team at
HYFBE comprises volunteers, including mentors and coaches, who are willing to share their
knowledge and expertise with the students and provide support for them. The program consists
of weekly classes that take place every Sunday. Additionally, during the week the students are
expected to complete some homework assignments about the topics covered in class. However,
these organisations are facing challenges in maintaining low dropout rates. We believe this is
due to several factors. In addition to the complexity of programming, volunteer teachers may
lack the necessary pedagogical skills for effective teaching as they are often not given a formal
training. Furthermore, it is important to take into account the background and needs of these
refugees and migrants to foster their sense of belonging. Therefore, we believe that a solution
to tackle the high dropout rates in organisations aiming to teach programming to socially vul-
nerable groups should address each of these aspects while taking into account the mentioned
suggestions to improve programming teaching.

1.2 Method

Throughout this thesis, we have made use of the Design Science Research Method (DSRM) in
information systems research [38], which consists of six different phases. These are the follow-
ing: (1) problem identification and motivation, (2) defining the requirements and objectives for
the solution, (3) designing the solution and then developing it, (4) demonstrating the solution,
(5) conducting an evaluation, (6) communicating the artefact along with the problem it aims to
solve and the results of the evaluation.

The problem identification and motivation is described in the problem statement (Section 1.1).
To gather the requirements and objectives of the solution, we studied several papers related
to social inclusion in computer science education, the challenges of learning programming and
computer science concepts, as well as studies on potential pedagogical approaches to be used in
computer science education. In addition, we attended a Sunday session at HackYourFuture to
interact directly with the target group and obtain more information on the requirements and
objectives. There we had the opportunity to talk with the educational coordinator at that time
and socially vulnerable students including refugees and asylum seekers. We discussed the cur-
riculum of the 9-month web development programme, challenges faced by students, motivations
for joining the program and any fears or assumptions the students initially had about computer
science. These insights shaped the design and development of the JsStories tool. The artefact is
demonstrated using screenshots presenting the tool’s functionality. Additionally, the appendix
contains a complete example of one of the books currently available in the JsStories tool. The
artefact was then evaluated by means of interviews and a survey with both students and teachers.
Finally, the findings and conclusions are communicated through this thesis.

1.3 Contributions

The main contribution of this thesis is the introduction of the JsStories tool, designed to help
learn programming in JavaScript through storytelling. The tool provides an interface containing
books consisting of stories and exercises based on the PRIMM model [43, 44]. In order to track



1.4. THESIS OUTLINE 3

students’ progress, the tool is also built using the concept of a knowledge graph. By using
storytelling, the PRIMM approach and a knowledge graph, the tool strives to enhance the social
inclusion in organisations aimed at teaching socially vulnerable groups and potentially reduce
the dropout rates. The stories used, which are real stories of HYFBE’s alumni, focus on building
a sense of belonging among socially vulnerable students. Additionally, the PRIMM approach
and the knowledge graph provide a learning environment that allows students to learn at their
own pace while offering support along the way. The stories are managed through a content
management system allowing for story flexibility and thus support for various target groups.
Although JsStories was initially developed to teach JavaScript in a social education setting, it
may for instance also be adapted to teach programming to children by using appropriate stories
such as fairytales. Another contribution involves the exploration of relevant models for effective
programming pedagogy, the concepts of knowledge graphs and gamification, more specifically
storytelling, which have been discussed in Chapter 2. Furthermore, we investigated the challenges
students face in organisations like HYFBE through a visit there, talking to students and the
educational coordinator. Additionally, insights on the challenges and internal workings of a
number of Migracode schools, such as their student selection procedure have been acquired
through interviews and documented in this thesis.

1.4 Thesis Outline

The remainder of this thesis is organised as follows: Chapter 2 contains background information
on educational psychology focusing on models for programming pedagogy as well as some gen-
eral education theories. Furthermore, gamification including storytelling is discussed. Finally,
this chapter discusses knowledge graphs. The following chapter covers some relevant work in
the research domain. This includes work that is related to the application of certain concepts
described in Chapter 2, as well as work that is pertinent due to its utilisation during the imple-
mentation of the tool. Additionally, Chapter 4 provides a detailed, illustrated description of the
tool that was developed as a potential solution for the problem statement. Using the background
information described in Chapter 2, the motivation behind every aspect of the tool is explained.
Furthermore, in Chapter 5 information is provided on the collection and writing processes for
the stories included in the tool. Moreover, it offers further details on the implementation of the
tool and the motivation behind every implementation choice. The evaluation of the tool was
conducted using interviews and a survey. Chapter 6 includes a thorough description of every
interview that was carried out as well as an overview of the outcomes of the survey. Furthermore,
Chapter 7 discusses potential future work to further improve the tool. Finally, a conclusion is
provided in Chapter 8. The appendix contains an example of a book currently available in the
JsStories tool, figures depicting the survey results and larger images of the screenshots used in
Chapter 4.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Background

2.1 Bloom’s Taxonomy

Bloom’s taxonomy, named after Benjamin S. Bloom and introduced in [5], is a popular model
that is widely adopted in education. The taxonomy is a six-level hierarchical classification of
learning objectives. It consists of the levels knowledge, comprehension, application, analysis,
synthesis and evaluation, ranging from lower to higher levels, with the highest levels requiring
more cognitive load than the lower ones [12, 1]. Teachers can use Bloom’s taxonomy to structure
their lessons such that their students go through each level progressively and only move on to
the higher levels once they have mastered the lower ones [12].

Figure 2.1: Revised Bloom’s taxonomy [12]

The taxonomy was later on revised in [2] which included structural modifications and a renaming
of the learning objectives, as illustrated in the pyramid shown in Figure 2.1. The learning
objectives were renamed to remembering, understanding, applying, analysing, evaluating and
creating, using verbs instead of nouns. In this version, creating is the highest level, as opposed to

5



6 CHAPTER 2. BACKGROUND

the original version where evaluation was the highest level. The objectives from lower to higher
levels are listed in Table 2.1, along with their subcategories, a description, and an example which
are given by the authors [2].

Subcategories Description Examples

Remembering Recognising and
recalling

Retrieve relevant
knowledge from

long-term memory

Recall the dates of
important events in

U.S. history

Understanding Interpreting,
exemplifying,
classifying,

summarising,
inferring, comparing

and explaining

Construct meaning
from instructional
messages, including
oral, written, and

graphic
communication

Compare historical
events to

contemporary
situations

Applying Executing and
implementing

Carry out or use a
procedure in a given

situation

Divide one whole
number by another
whole number, both
with multiple digits

Analysing Differentiating,
organising and
attributing

Break material into its
constituent parts and
determine how the
parts relate to one
another and to an
overall structure or

purpose

Structure evidence in
a historical description
into evidence for and
against a particular
historical explanation

Evaluating Checking and
critiquing

Make judgements
based on criteria and

standards

Determine if a
scientist’s conclusions
follow from observed

data

Creating Generating, planning
and producing

Put elements together
to form a coherent or
functional whole;

reorganise elements
into a new pattern or

structure

Generate hypotheses
to account for an

observed phenomenon

Table 2.1: Revised Bloom’s taxonomy [2]

2.2 Code Reading and Tracing

In 2004, Lister et al. [28] looked into the reasons why first-year CS students still have difficulties
writing code after completing their introductory programming classes. Their study consisted of
providing students from multiple countries with twelve multiple choice questions to answer, which
tested their skills in predicting what a code snippet will do as well as their skills in completing



2.3. MODELS FOR PROGRAMMING PEDAGOGY 7

some given code. Based on their study, they found that in most cases the students have difficulties
writing code not only because they lack problem-solving skills, which was the main explanation
given in [33], but more importantly because the students have difficulties reading code and
understanding it. The study was conducted again a couple of years later [27] to make sure that
no biases due to other factors, such as the programming language covered by the questions, were
included. Additionally, they made sure that the students who participated had not participated
to the original study. The results of this second study confirmed those of the previous one, as
they found that there was a clear correlation between the abilities to trace, explain and write
code.

2.3 Models for Programming Pedagogy

2.3.1 The Block Model

The Block model, a model that focuses on the understanding of programs, was introduced by
Schulte [42]. The model is depicted in Table 2.2 as a 4x3 table representing three dimensions over
four different levels. Each cell or block (hence the name of the model) in the table emphasises a
particular part of the comprehension process. The first two dimensions Text surface and Program
execution (data flow and control flow), both concern the structure of the program. Text surface
refers to the actual text of the program, whereas Program execution (data flow and control flow)
deals with the order in which the program is executed as well as the manipulation of data. The
third dimension is Goals of the Program, which is about what the program is intended to do.
Furthermore, the four different levels are Atoms (the language elements such as keywords), Blocks
(the code blocks/units made up of atoms), Relations (the relations between the different blocks)
and Macro Structure (the whole program). The first step of program comprehension involves
reading the program text and retrieving information, which is added to the reader’s mental
model. It is typically a bottom-up process in the table where first the atoms, then the code
blocks, then the relationships between those, and eventually the whole program are considered,
involving one or multiple dimensions.

The model can be used to plan lessons in programming courses, focusing on code comprehension.
Moreover, the author states that the blocks/cells of the model should be viewed as movable,
meaning that when planning a lesson, not every block has to be considered and also that the
order in which the blocks are arranged may vary in accordance with different learning trajectories.
In a 2019 paper [18], Izu et al. proposed some examples of exercises based on the Block model
that may be used when teaching programming to improve program comprehension. In Table 2.3
one of these examples is given for each block.

Furthermore, the Block model may be seen as a taxonomy, similar to Bloom’s taxonomy, be-
cause it enables the classification of various code comprehension activities and questions into the
different blocks. In addition, the hierarchy is somewhat also present in the Block Model since,
for instance, the students first have to comprehend atoms before they can understand the macro
structure. Both models were compared in [49] and although there are some similarities, according
to the authors, the Block model “provided a better way of describing novice programming code
comprehension tasks because of the increased granularity that it provides”.



8 CHAPTER 2. BACKGROUND

Macro
Structure

Understanding the overall
structure of the program

Understanding the
‘algorithm’ of the

program

Understanding the
goal/purpose of the

program

Relations References between
blocks, eg. method calls,
object creation, accessing

data...

Sequence of method calls
- ‘object sequence

diagrams’

Understanding how
subgoals relate to goals,
how function is achieved

by subfunctions

Blocks ‘Regions of
Interests’ (ROI) that

syntactically or
semantically build a unit

Operation of a block of
code, a method, or a ROI

(as a sequence of
statements)

Purpose of a block of
code, possibly seen as a

subgoal

Atoms Language elements Operation of a statement Purpose of a statement

Text Surface Program Execution
(data flow and control

flow)

Goals of the Program

Duality Structure Function

Table 2.2: The Block model, taken from [42]

Macro
Structure

Represent the overall
program structure by
drawing a tree of
function/procedure

dependencies (relative to
invocations)

Verify if a program
statement or block is ever
reachable during program

execution

Select the sentence, from
a few options, which most
accurately summarises
the program’s purpose

Relations Link each occurrence of a
variable with its

declaration

Identify the scope of a
variable.

Summarise in a short
sentence the purpose of a
simple block invoking one

or more
procedures/functions

Blocks Draw a box around the
code of each loop

Change a for loop into a
while loop

Write comments
explaining the purpose of

a block and of the
statements it is built from

Atoms Identify the keywords in a
piece of code

Determine the value of an
expression for given
values of the involved

variables

Rename a constant with
an appropriate name
from the problem

Text Surface Program Execution
(data flow and control

flow)

Goals of the Program

Duality Structure Function

Table 2.3: Examples of activities/questions for each cell in the Block model, based on [18]



2.3. MODELS FOR PROGRAMMING PEDAGOGY 9

2.3.2 Use-Modify-Create

In [24], Lee et al. looked into the development of Computational Thinking (CT) in middle and
high school students. CT is considered to be an essential aspect of computer science as it
denotes the thinking abilities needed to be able to define, comprehend and analyse problems
as well as solving these with the use of a computer, automation and abstraction [24]. Based
on their research, they introduced a learning progression consisting of three phases, called Use-
Modify-Create (UMC), to help students progress in CT. Figure 2.2 illustrates the UMC learning
progression. In the Use phase, the students make use and explore other people’s work. The
students may be given some program, for instance, that they can analyse and run to test its
outcome. Then in the Modify phase, they can make small modifications to the work provided to
them, like modifying the program’s use of a certain visual aspect such as a colour. Lastly, in the
Create phase, after having gained more understanding of the original program and experience
with the small modifications, the students can make more important modifications, such as
adding some extra functionalities. This requires the students to add their own written code to
the program. Following an iterative process of testing, analysing, and refining their modifications,
the students ultimately get ownership of the final altered program. After having been through
the UMC phases for different programs, the students get more confident to write entirely new
programs based on the knowledge they have gained through these different phases. Furthermore,
the model can be used for different levels of complexity. For instance, after going through the
UMC phases introducing basic programming principles, the students might proceed to going
through the three phases for somewhat more advanced programming concepts, and so on. The
model thus makes sure that the students get more comfortable to write programs by progressively
going through all these phases for different levels of complexity. Also, the model ensures (in the
context of programming) that students have a thorough understanding of programs before they
are required to write them from scratch.

Figure 2.2: The Use-Modify-Create progression, taken from [24]



10 CHAPTER 2. BACKGROUND

2.3.3 PRIMM

PRIMM is a pedagogical model for both learning and teaching programming that was introduced
by Sentance, Waite and Kallia [43, 44]. It represents the following five distinct activities:

• Predict stands for predicting what the provided code will do. Examples of predict activi-
ties are predicting the output of the given code and predicting state changes.

• Run stands for testing the predictions of the predict step by running the provided code.

• Investigate stands for inspecting the structure of the provided code. An example of an
investigate activity would be answering code comprehension questions about the structure
of the code such as for example: What happens if in line 4 the variable x is replaced by y?

• Modify stands for making code modifications. The addition of functionality to the pro-
vided code and the removal of bugs in the code are two examples of modify actions.

• Make stands for utilising the same or modified structures from the previous four activities
to make a new program from scratch.

The model is based on the Use-Modify-Create framework, described in the previous section.
PRIMM only focuses on programming, as opposed to the UMC framework, which can be used
for any type of computational thinking, including modelling, designing, programming, and more.
In order to better reflect the concept of programming, the authors expanded the Use phase
of the UMC framework to include the three different activities: Predict, Run, and Investigate.
Furthermore, the Modify and Make activities of PRIMM correspond to the Modify and Create
phases of the UMC framework. PRIMM also makes use of different levels of abstraction, similar
to the ones used in the Block model (described in Section 2.3.1), as the five different activities each
focus on a particular abstraction level. Predict and Run emphasises the execution of the program
whereas Investigate focuses on the program itself, mainly its structure and Make concentrates
on the purpose and function of the program. Moreover, as the goal of the predict phase is to first
read the code in order to understand it and be able to predict its outcome, it also relies on the
work related to the importance of the ability to trace and read code, described in Section 2.2.

PRIMM can thus be used in programming courses by dividing the lessons into the five different
activities. In [43], the authors examined the experiences of programming teachers with PRIMM.
The teachers were first introduced to it and were provided with some materials containing exer-
cices that they could use during their lessons. They were also free to adapt the exercices if they
wanted to do so. Following the introduction to the model, the teachers implemented it in their
programming courses for a couple of months. Afterwards, they were interviewed about how the
lessons went, whether they felt confident using the PRIMM method and on the impact it had on
the student’s performances. Based on the feedback from the teachers, the authors concluded that
using PRIMM helped improve the understanding of programming for students but it also had a
positive impact on the structure and executions of the lessons. Furthermore, the favourable effect
PRIMM had on student’s performances was also described in greater depth in [44]. The model
was evaluated in several high schools with the students being divided in a control group and an
experimental group. To assess their prior knowledge and basic comprehension of programming,
all of the students were required to first take a baseline test in the form of a multiple-choice
quiz. Afterwards both groups followed programming lessons for several months, but the lessons



2.4. EXPERTISE REVERSAL EFFECT 11

given to the experimental group were based on the PRIMM method. Subsequently, both groups
completed a post-test. The findings show that the experimental group significantly outperformed
the control group on the post-test, despite the fact that both groups had similar scores on the
baseline test taken prior to the programming lessons.

2.4 Expertise Reversal Effect

The term expertise reversal effect is well-known within the field of education psychology. This
effect refers to situations in which learning materials that are advantageous for beginners turn out
to be unfavourable for more experienced learners [41, 47]. In other words, the effect arises when
the effectiveness of the learning materials decreases as learners become more experienced. The
expertise reversal effect is assumed to be a result of redundancy and the limitations of the working
memory in terms of capacity and duration [41]. For instance, as more experienced learners do
not require as much additional information as beginners, the information becomes redundant and
the working memory is needlessly overloaded. According to Wolfgang Schnotz [41], in order for
learning to be effective, instructional support and individual learning must be rightly balanced
in order to match the learning materials to the learners level of expertise.

2.5 Formative Assessment

Formative assessment can have a significant impact on students’ learning performance, according
to a thorough literature review on the subject by Black and William [4]. They defined formative
assessment as follows: “Assessment refers to all those activities undertaken by teachers and —
by their students in assessing themselves — that provide information to be used as feedback to
modify teaching and learning activities. Such assessment becomes formative assessment when
the evidence is actually used to adapt the teaching to meet student needs”. Whereas summative
assessment consists of occasional, larger and graded activities, formative assessment is about
more regular, smaller tasks that are generally ungraded [14]. A typical summative assessment
could be a graded exam at the end of the academic year covering all taught material. On the
other hand, an example of formative assessment could be an ungraded homework covering a
specific topic taught in class that would be corrected by the teacher to provide feedback. As
Graham [14] states, formative assessment is not only helpful for teachers to adapt their teaching
to the student needs but it also helps students themselves to recognise their limitations in their
understanding of certain topics allowing them to work on it.

GoFormative1 (or also called Formative) is a web-based platform for digital formative assess-
ments. It is free for both teachers and students. Using the platform teachers can create as-
sessments based on various pre-defined types of questions, assign the assessments to selected
students, view their responses and provide individual feedback that can immediately be viewed
by the students [14].

1https://goformative.com

https://goformative.com


12 CHAPTER 2. BACKGROUND

2.6 Parsons Problem

In a Parsons problem or puzzle, first presented in 2006 by Parson and Haden in [37], a code
program is fragmented into several code blocks or lines appearing in a wrong order, and the pur-
pose is to rearrange the code fragments to form the correct code [37]. A 2008 study on Parsons
problems [8] showed that a significant amount of students that scored well on Parsons problems
also performed well on code writing exercises, indicating that the two are positively correlated
and that similar skills are needed for both. Furthermore, the authors state that grading Parsons
problems is simpler than grading traditional code writing exercises. For instance, a Parsons
problem may be graded by assigning 1 point for each correctly ordered code line. Also, several
variants of the problem exists such as, the Two-dimensional Parsons problem and the Parsons
problem including distractors. When reordering the code fragments in the former, indentation
should also be taken into account. Furthermore, in the latter, distractors can be extra erro-
neous code fragments or code fragments that do not belong to the code program and should
thus not be used when forming the solution [11]. The authors of [11] analysed Two-dimensional
Parsons problems with distractors in contrast to modifying faulty code and writing code. They
conducted a study and found that in terms of learning outcomes and knowledge retention, based
on pretests and posttests, there was no significant difference between the three. However, com-
pleting Two-dimensional Parsons problems required substantially less time than the other two,
making it more efficient.

2.7 Gamification

According to the definition given by Deterding et al., gamification refers to “the use of game
design elements in non-game contexts” [9]. In game studies, a distinction is made between the
terms game and play as the former denotes the type of playing following rules and aiming to
achieve some goals, whereas the latter does not involve any rules or goals. Gamification refers only
to the former [9]. As per the definition, a gamified application is in and of itself not considered
to be a game but rather an application that contains certain game elements. The authors also
proposed the following definition for what should be considered as game elements: “elements that
are characteristic to games — elements that are found in most (but not necessarily all) games,
readily associated with games, and found to play a significant role in gameplay”. Moreover, as
mentioned in the definition of gamification, the game elements used are more specifically game
design elements. Those can be divided into five distinct levels of abstractions that can all be
used in gamification: Game interface design patterns, Game design patterns and mechanics,
Game design principles and heuristics, Game models, Game design methods [9]. The five levels
along with a short description and some examples are depicted in Table 2.4. Furthermore,
gamification as well as toys, playfull design and serious games are situated along two axes in
Figure 2.3 based on the gaming/playing and parts/whole aspects. Serious games are considered
to be a type of game that is intentionally created with a serious purpose and thus not merely for
amusement [3, 9]. Similarly, gamification can be used in any non-game context such as education
or employee training for some specific purpose other than entertainment [9].



2.7. GAMIFICATION 13

Figure 2.3: Situating gamification, taken from [9]

Gamification gained popularity in 2010 and has since remained a major topic in academia [30,
15], particularly with regard to its application in the context of education [30]. According
to a literature review by Nah et al. [35], eight particular game interface design elements are
most frequently used in education. These are the following: Points, Levels/Stages, Badges,
Leaderboards, Prizes/Rewards, Progress bars, Storyline/Narrative and Feedback. The authors
also provided a description for each of these game elements, which is summarised in the following
lines. There are several types of points but they all have the same general purpose, which is to
indicate accomplishments. Points that are gained when specific activities are accomplished are
called Experience Points. Furthermore, earned points can in some cases not only serve as an
indication of achievement but also as virtual currency. These are known as Steam Points. For
instance, in some games, these points can be used to acquire hints. Additionally, the authors
state the usefulness of rewards and prices as it helps keeping the learners motivated. In order to
maximise the impact that rewards and prices have on the learners’ motivation it is best to give
several small rewards at various points during their learning journey. An example of a reward is
a character upgrade in a gamified application that uses characters. Another way to retain the
students’ motivation to continue their learning process by completing upcoming learning task
is earning badges, which can be obtained after achieving a given milestone. Further, to keep
track of the learners’ progression, levels/stages as well as progress bars can be used. Levels are
often used in games with the first few levels being less challenging than the higher ones in terms
of efforts needed to complete the level. The learners may have a feeling of satisfaction after
completing a level, which can drive them to continue with the next levels. Furthermore, progress
bars can be used by the learners to monitor their progression regarding the main learning goal
or a particular sub-goal. The progress bars mainly have a boosting effect on the learners to
achieve the particular goal, especially when they are close to doing so. Another game element
that can certainly help with keeping the learners motivated, is a leaderboard. On a leaderboard,
the learners are ranked based on their obtained score, which could result from the accumulation
of their experience points. Because they can compare their score and ranking with those of other
learners, it might encourage them to achieve a higher rank. To avoid discouraging learners with
low scores, only those with the highest scores should be displayed on the leaderboard, such as



14 CHAPTER 2. BACKGROUND

the top 5 or top 10. In terms of performance, feedback is a key game element as it improves
the learning experience and efficacy while also keeping the learners interested. The usefulness
of the feedback element depends on how often the feedback is given, when it is provided and
how explicit it is. The more explicit the feedback and the sooner it is provided, the better for
engaging the students. Consider, for instance, textual feedback that immediately appears after
completing a task, to indicate what was done incorrectly and why it is incorrect. Finally, the
storytelling/narrative element relates to the usage of a story in the gamified application. Having
a story include the aspects to be learned provides a context and is a way to improve the learners’
engagement.

Level Description Example

Game interface
design patterns

Common, successful interaction
design components and design
solutions for a known problem

in a context, including
prototypical implementations

Badge,
leaderboard, level

Game design
patterns and
mechanics

Commonly reoccurring parts of
the design of a game that

concern gameplay

Time constraint,
limited resources,

turns

Game design
principles and
heuristics

Evaluative guidelines to
approach a design problem or
analyze a given design solution

Enduring play,
clear goals, variety

of game styles

Game models Conceptual models of the
components of games or game

experience

MDA; challenge,
fantasy, curiosity;
game design atoms

Game design
methods

Game design-specific practices
and processes

Playtesting,
playcentric design,
value conscious
game design

Table 2.4: Game design elements, the five levels of abstractions [9]

2.8 Storytelling and Adult Learning

Enzo Caminotti and Jeremy Gray conducted a thorough literature study on the impact of sto-
rytelling on adult learning [6]. The authors state that in contrast to child education, interest
and experience play a major role in adult education. Adults have a wealth of experiences that
shape who they are and tend to learn based on their own interests. Hence, the authors discuss
experience, role-play and case studies as three types of effective storytelling for adult education.
In the first, students share their story composed of their experiences. This allows teachers to
link newly acquired knowledge and information to what the students already knew from prior
experiences. Furthermore, role-play involves having the students take on a role using their own
knowledge and experience. Lastly, case studies covering a real-world scenario can be used for
practice. Moreover, according to Marsha Rossiter [40], stories make new information easier to
remember and has an impact on the involvement of students based on how much they can relate



2.9. KNOWLEDGE GRAPHS 15

to the story and their emotional connection to the narration. The author provides an example of
how reading about a success story of a character they can relate to might inspire and motivate
adult learners who are having difficulty.

2.9 Knowledge Graphs

Over the last decade, knowledge graphs have been widely used in various application domains
such as medical care, cyber security, journaling and education [50]. According to Hogan et al. [17],
the first occurrence in literature of the term knowledge graph dates back to as early as 1972. How-
ever, it was the introduction of Google’s knowledge graph on their blog in 2012 that considerably
contributed to the term’s widespread use [46]. Google’s knowledge graph, as described in the
video on the blog post, is essentially a graph-structured database containing worldly facts and the
relationships between these. It was launched to improve users’ experiences with the search en-
gine using semantics. Three improvements were made using the knowledge graph: more accurate
search results, the ability to provide a summary containing information relevant to the search
query and, the capability to provide users with further information that might be interesting
based on others past searches [46]. However, their blog post merely described the improvements
the knowledge graph will make to the search engine without providing further detail about the
knowledge graph itself or its implementation. Following Google’s announcement, the term knowl-
edge graph began to be widely used without an explicit definition. Therefore, Ehrlinger and Wöß
proposed the following definition in their 2016 publication [10]: “A knowledge graph acquires and
integrates information into an ontology and applies a reasoner to derive new knowledge”. In
Figure 2.4 the architecture of the knowledge graph is depicted. From the definition and the
architecture it is clear that although the terms knowledge base and knowledge graph are often
interchanged in some publications, they are not the same. A knowledge base contains a set of
information while a knowledge graph consists of a knowledge base supplemented with a reasoning
engine to extract additional new information.

Figure 2.4: Knowledge graph architecture, taken from [10]

To illustrate with a simple example, consider Figure 2.5 depicting a knowledge base and the
corresponding graph-structured version. In this example, the knowledge base consists of factual
triples such as (Albert Einstein, sonOf, Hermann Einstein) indicating that Hermann Einstein
was the father of Albert Einstein and (Hans Albert Einstein, sonOf, Albert Einstein) indicating
that Albert Einstein was the father of Hans Albert Einstein. We can infer using reasoning
that Hermann Einstein was the grandfather of Hans Albert Einstein even though this was not
information that was provided in the knowledge base, i.e. the knowledge base did not include
the triple (Herman Einstein, isGrandfatherof, Hans Albert Einstein).



16 CHAPTER 2. BACKGROUND

Figure 2.5: Knowledge base comprising factual triples and its equivalent graph-structured ver-
sion, taken from [20]



Chapter 3

Related Work

3.1 Storytelling Alice

Figure 3.1: Interface of Storytelling Alice, taken from [23]

Caitlin Kelleher and Randy Pausch introduced Storytelling Alice in 2007, which is a tool to
produce 3D animated movies while learning programming [23]. The idea was to make learning
how to program more engaging by adding the storytelling aspect. Storytelling Alice builds further
on Alice 2.0 1, a tool that enables the creation of 3D virtual environments through programming,
by dragging and dropping tiles containing code parts to create the final program. It may be used
to practice programming with concepts such as variables, conditionals, looping and any other
similar concept that is likely to be taught in first-year programming classes [22]. Alice 2.0 helps
reduce the frustration that novice programmers might experience during their learning journey,
as the drag and drop construct prevents syntax errors and as bugs can be more easily detected
in the animations, which represents the constructed program [23, 22]. It was shown in [34] that
Alice 2.0 not only helped students perform better but it also increased the retention rates of

1http://www.alice.org

17

http://www.alice.org


18 CHAPTER 3. RELATED WORK

students intending to pursue a computer science education but having limited background in both
computer science and mathematics, also referred to as high risk students. Kelleher [22] states
that, even though Alice 2.0 is effective in improving the retention rates, it does not necessarily
help with drawing new students into computer science, which is why Storytelling Alice was
introduced. Storytelling Alice mainly targeted middle school girls, as according to the authors,
girls are less likely to engage in computer science education. The authors carried out a study
in which they examined the effect of Storytelling Alice on the girls’ drive to learn programming
and their performance. They also looked at the effect of Alice 2.0 and compared it to the effect
of Storytelling Alice in order to focus on the impact of the storytelling aspect and eliminate the
possibility of any other factor being the reason behind the obtained results. Overall, they found
that Storytelling Alice had a positive impact on the girls’ motivation to learn programming.

3.2 Questions About Learner’s Code

Lehtinen, Santos and Sorva presented the concept of automatically generated Questions about
Learner’s Code (QLCs) in their 2021 paper [26]. According to the authors, it is often the case
that students do not fully understand the code they have written, even though the code is working
correctly. This may, for instance, be because they have used code snippets authored by others
(plagiarism), or because they obtained the code via trial and error [26]. Therefore, the authors
propose to prompt students with automatically generated questions about their own written code
to enhance their code comprehension and learning. More recently, in a subsequent publication
on the QLCs [25], the authors introduced a tool implementing the concept of automatically
generated QLCs. The provided open-source library2 generates multiple choice questions based
on some specified javascript code. The QLCs include the different questions with multiple answer
alternatives. Moreover, for each answer option, a brief explanation is provided on why it is the
correct answer or not. In addition to the javascript code, a configuration about the QLCs can
be provided to, among other things, indicate the number of QLCs that should be returned. The
questions are generated based on the abstract syntax tree (AST) and the different variable values
of the provided javascript code. The library can generate up to seven different kind of questions,
which are listed in Figure 3.2. Besides the library, the authors also provided an example of how
to incorporate QLCs in courses. They developed a tool that makes use of a web editor where
students can exercise by writing code according to some given description. Once they submit
the code and that it passes some tests, indicating that it is correct, they are prompted with a
number of multiple choice questions regarding their code, to make them reflect about it.

2https://github.com/teemulehtinen/qlcjs

https://github.com/teemulehtinen/qlcjs


3.3. KNOWLEDGE GRAPH USE CASES 19

Figure 3.2: The different types of QLCs, taken from [25]

3.3 Knowledge Graph Use Cases

3.3.1 Co-teach Informatica’s Digital Learning Platform

The importance of computer science is growing worldwide, however there are not enough com-
puter science teachers, making it impossible for certain schools to offer a Computer Science
course [29]. Co-Teach Informatica3 provides a solution to tackle this problem in the Nether-
lands. They offer a program that may be added to the curriculum of schools wanting to provide
a Computer Science course, but facing difficulty finding a qualified teacher. The program consists
of an online learning platform on which students can follow modules autonomously in class while
being supervised by a teacher. The students can get support for anything related to the content
of modules via the remote support desk the program offers. Hence, the supervising teacher does
not necessarily need any Computer Science background as their role is to administer the course
and help the students with things like learning how to use the platform. The modules also include
exercises and tests, which are graded by the teaching assistants of the remote support desk. In
addition, the program includes guest lectures given by IT experts in which the students get to
work on projects in order to gain hands-on experience. In their 2023 paper [29], Van der Lubbe et
al. presented an online learning platform for the Co-Teach Informatica program. As the students
work independently in that program, being able to track their progress is important for both the
supervising teachers as well as the students themselves. That is why their design makes use of a
student model, representing the current student’s knowledge. The student model is built on top
of a what they call, a domain model, which basically is a knowledge graph consisting of all the
learning goals organised by chapter, as well as the dependencies between the different learning
goals. The program modules are related to certain learning goals based on the activities they
contain, so that as the student progresses through them, the student model is updated. Fig-
ure 3.3 depicts the learning platform from the viewpoint of a student. Furthermore, in Figure 3.4
an example of the learning goals and its dependencies for a particular chapter are illustrated.
Unfortunately, as their work is very recent no evaluations have been done yet. However, they are

3https://co-teach.nl/

https://co-teach.nl/


20 CHAPTER 3. RELATED WORK

planning on conducting a pilot study in which their online learning platform will be evaluated
within the context of a specific programming course and several student classes.

Figure 3.3: The learning platform, taken from [29]

Figure 3.4: Example of the learning goals for a specific chapter, taken from [29]



3.3. KNOWLEDGE GRAPH USE CASES 21

3.3.2 iSport

As part of his Masters thesis [31] under the supervision of Beat Signer, Yoshi Malaise presented
the iSport framework. After having surveyed multiple table tennis trainers about their way of
managing their training sessions, he found that the methods used by most of the trainers were not
optimal and could be improved. For instance, the majority of trainers write down their session
preparation on paper and do not use any form of ICT tools for it, which makes it difficult to first
of all keep track of the trainees progress but also to share the session details with other coaches,
as it is often the case that trainees are trained by different coaches. Therefore, in his research, he
looked at how well the concepts of knowledge graphs and personalised learning could be applied
in the context of table tennis training. In Figure 3.5 the iSport framework, which is based on the
Resource-Selector-Link metamodel by Signer and Norrie [45], is illustrated. The framework is a
knowledge graph representing the field-specific knowledge of table tennis education that may help
the trainers mainly in managing the training sessions and in monitoring the trainees’ progresses.
For example, based on the graph it can be deduced that an exercise may be used to teach certain
techniques but also that an exercise can have some prerequisites in terms of previously acquired
techniques. In addition, Malaise developed a tool built on top of the iSport framework to be used
by the trainers. The tool consists of different modules where among other things sessions can be
scheduled and planned based on saved exercises, assessments can be created and user profiles of
the trainees can be visualised including the knowledge graph that keeps track of their progress.
As the prototype was built during the Covid-19 pandemic, the evaluation had to be done using a
video demonstrating how the tool may be used and a survey. However, the majority of trainers
were enthusiastic about using the tool in the future.

Proficiency level

teaches

VisuallizedBy

Exercise

TechniqueValidatedByCriteria

VisualizedBy Technique

Assessment

LearningOutcomeLevel

Learning
Outcome

Evaluation Criteria
Player

AchievedProficiencyLevel

Achieved
Proficiency

ResultOfPlayer

ResultOfAssessment

AssessmentResult

AssessmentExerciseResult

requires

AssessmentRequirement

EvaluatedBy

AssessmentExercise

ImageResource

TrainingResult

IncludesExercise Training

PerformedExercise

TrainingCriteriaResult

requiresTechniqueLevel

RequiresTechnique

Figure 3.5: The iSport framework, taken from [31]



22 CHAPTER 3. RELATED WORK



Chapter 4

JsStories

We introduce the JsStories tool as a solution to foster social inclusion in computer science
education, particularly within organisations like HYFBE, which aim to teach computer science
to socially vulnerable groups. The purpose of the tool is to help students learn the JavaScript
programming language. Storytelling, the PRIMM approach and the concept of knowledge graphs
form the core foundations of the tool.

4.1 JsStories

As previously mentioned in Section 1.2, we had the opportunity to visit HYFBE during a Sunday
session and engage with the educational coordinator, as well as the students following the web
development programme. When we asked the students what they found the most challenging in
the curriculum, the first JavaScript module was the most popular answer, followed by the module
on separation of concerns. In the program, the students begin with learning markup languages
like markdown and HTML, as well as styling with CSS. Following this introduction, in the
first JavaScript module, the students move on to a real programming language and encounter
many constructs of programming such as variables, conditionals and loops for the first time.
Furthermore, during our discussion with the educational coordinator, he confirmed that these
were the two modules students struggle the most with. However, he explained that for separation
of concerns this is mostly related to the curriculum itself, in terms of when the subject is
introduced, how long it is taught and the teaching methods utilised. This was already something
they were planning and working on adapting in their curriculum. As a result, we decided to
focus the tool on the JavaScript programming language.

4.1.1 Storytelling

As discussed in Section 2.7 and 2.8, storytelling can enhance adult learning depending on the
learner’s interest, background and experience, as well as the kind of stories used. In addition

23



24 CHAPTER 4. JSSTORIES

to improving knowledge retention, it boosts students’ engagement and involvement depending
on how they can relate to the story and its characters. Therefore, JsStories was designed with
storytelling at its core. The goal of the tool is to help students learn programming in JavaScript
by working through digital books that contain stories and exercises. The stories included are real
pseudonymised stories from HYFBE alumni, detailing their journeys to Belgium, the challenges
they faced, their HackYourFuture experience and any insights they have learned along the way.
As such, the selected stories aim to foster the sense of belonging among learners who can relate
to the main characters. Moreover, reading such achievement stories can inspire and motivate
the students to complete the program, potentially reducing the drop out rates in the long run.
Figure 4.1 depicts the homepage of the JsStories tool, which currently includes four different
stories. As one can see from the illustration, progress bars are also used for each book as they
allow students to monitor their progress and serve as additional incentive to complete the book,
as outlined in Section 2.7. Additionally, when students have completed all the JsStories, they
can generate and download a personalised certificate including their name. This is illustrated
in Figures 4.8g and 4.8h. Therefore, before being able to use the tool, students have to sign up
with their first and last name as shown in Figure 4.8a.

Figure 4.1: Homepage of the JsStories tool

4.1.2 PRIMM

The incorporated exercises are based on the PRIMM model, which consists of dividing the
programming lessons and learning materials into five phases: (1) Predict, (2) Run, (3) Investigate,
(4) Modify and (5) Make. As discussed in Section 2.3.3, this model enhances the understanding
of students as they progress through each of these phases and thus ensures that students are not
required to write code before being able to read it. Hence, the JsStories tool contains exercises
for each of these phases. For the predict phase, multiple choice questions requiring the learner
to predict the outcome of code have been included. These questions feature options that may
contain images as well as text. Figure 4.2 illustrates an example of such a predict exercise. In
this particular exercise, the given code describes a flag and the student has to predict which flag
it represents out of a set of given options.



4.1. JSSTORIES 25

Figure 4.2: Example of a predict exercise

Figure 4.3: Example of a run exercise

Figure 4.4: Example of an investigate exercise

Next, in the run phase, the students are required to run the provided code and follow along an
automatically filled-in trace table. Each line in the execution gets highlighted and the student can



26 CHAPTER 4. JSSTORIES

observe the changes in the trace table for that specific line. This type of exercise was included
because, as discussed in Section 2.2, the abilities to trace, explain and write code are closely
related. Tracing code, i.e. simulating the execution of code, improves the understanding of it.
An example of this exercise is shown in Figure 4.3. As one can see, the fourth line of the code,
currently being executed, is highlighted and in the trace table the student can observe the value
assigned to the variable capital. In the investigate phase of PRIMM, the students’ focus should
be on understanding code structure. Therefore, exercises involving multiple choice questions
requiring the learner to investigate the structure of code have been included. These questions
cover, among others, topics such as variable declaration and initialisation. Figure 4.4 depicts an
example.

Figure 4.5: Example of a modify exercise: blanks

Figure 4.6: Example of a modify exercise: parsons

Furthermore, for the modify phase, where students finally get to modify code, two types of
exercises were incorporated. The first type is a blanks exercise, in which students are given
some code containing blanks and options to fill them in. These options can for instance include
keywords, variable names and values. An example of this exercise is shown in Figure 4.5. The
second type of exercise is a parsons puzzle, which has been shown to be an effective exercise
for learning programming, as described in Section 2.6. More precisely, these exercises include
two-dimensional parsons puzzles, which require students to put code fragments in the right order
while taking into consideration indentation. Figure 4.6 illustrates such a puzzle.



4.1. JSSTORIES 27

Finally, in the exercises for the make phase, the students are required to write code, which is then
checked using predefined unit tests. They are given a description of the required functionality
and have to write code accordingly. For instance, in the exercise depicted in Figure 4.7, the
students are tasked to write a function with a specific name, number of arguments and return
value.

Figure 4.7: Example of a make exercise

The exercises in the JsStories tool serve as a form of formative assessment (see Section 2.5). The
small ungraded tasks include feedback which helps students identify gaps in their understanding.
The requirements for effective feedback, discussed in Section 2.7, have been taking into consid-
eration. As such, the feedback is provided immediately after the students submit their answers
and it clearly indicates any mistake depending on the kind of exercise. For the predict and
investigate exercises, textual feedback is provided for both correct and incorrect answers. The
feedback is indicated in green and red respectively and explains why it is correct or incorrect.
Additionally, for the exercises of the modify phase, the code lines which have been incorrectly
filled in or placed in the puzzle are highlighted in red, helping students identify their mistakes.
Furthermore, in the parsons puzzles, textual feedback is also provided indicating whether code
lines have been incorrectly placed or incorrectly indented. Lastly, in the make exercises, students
can view which unit tests their code has successfully passed and which it hasn’t, providing an
indication of what might be incorrect in their code.

4.1.3 Content of a JsStory

Every JsStory is displayed on the home page using a cover image and title, as depicted in
Figure 4.1. A JsStory can consist of several chapters and an overview of all the chapters can
be found on the book’s contents page, as shown in Figure 4.8b. Moreover, every chapter is
composed of multiple scenes including text and images to convey parts of the story as well as
one or more of the aforementioned exercises. These exercises are integrated into the story itself,
offering additional information or addressing topics covered in the story. Finally, each JsStory
concludes with a motivating quote related to the story, as shown in Figure 4.8c. The appendix
contains a complete example of a JsStory, where the entire story can be explored along with the
included exercises. Moreover, it contains a larger version of the screenshots in Figure 4.8.



28 CHAPTER 4. JSSTORIES

(a) The sign up page (b) The contents page in a book

(c) The quote at the end of a book (d) Tooltip info of an unlocked book

(e) Tooltip info of a locked book (f) All books being unlocked

(g) Button to generate a certificate (h) The generated certificate

Figure 4.8: Screen captures of the JsStories tool



4.1. JSSTORIES 29

4.1.4 The Knowledge Graph

One of the suggestions for enhancing programming teaching, as discussed in the problem state-
ment (see Section 1.1), is to provide a flexible learning environment that enables students to
learn at their own pace. In the related works Section 3.3.1 and 3.3.2, a personalised learning
environment was created making use of the concept of a knowledge graph, described in Sec-
tion 2.9. Hence, a JavaScript knowledge graph was integrated as the third core component of
the JsStories tool.

The knowledge graph used in the JsStories tool is illustrated in Figure 4.9. Initially, the goal was
to build a general knowledge graph based on the JavaScript programming language. However,
doing so was much more challenging than anticipated. After discussing it with Laura Van der
Lubbe, who contributed to the Python knowledge graph described in Section 3.3.1, the decision
was made to follow her advice on limiting the scope and instead building the knowledge graph
based on a particular curriculum. She noted that the prior knowledge differs in a lot of handbooks,
curricula, tutorials and other resources. As a result, creating a general knowledge graph would
be difficult as the prior knowledge defined in the graph would never be in line with the prior
knowledge stated in all these materials. The resulting knowledge graph is therefore built with
the curriculum of HYFBE’s web development programme as its foundation. The curriculum,
which is open source and available online on GitHub1, was thoroughly analysed in order to build
this knowledge graph.

From the curriculum’s GitHub repository, six different modules were deduced. These were
coloured differently in the knowledge graph: Agile (blue), User experience and User interface
(red), Welcome to JavaScript (green), Debugging (yellow), Behaviour, strategy and implemen-
tation (purple), and Separation of concerns (grey). Every subject covered in the curriculum
is represented by an oval figure in the knowledge graph. As is illustrated in the knowledge
graph, a module may cover multiple subjects. Furthermore, the knowledge graph is a directed
acyclic graph in which the edges determine the prior knowledge required for a certain subject,
indicating which other subjects must be completed first before moving on to this subject. On
the GitHub page, emojis illustrating the growth phases of a chicken are used for each module,
helping students to keep track of their progress but most importantly, indicating what material
or exercises they should prioritise. For instance, material marked with an egg cover the module’s
fundamental skills, whereas a chicken emoji denotes material covering more advanced concepts
and skills. Students should thus make sure to understand the material marked with an egg before
moving on to materials marked with the next emoji in the growth phase. This approach was
analysed and used to determine the prior knowledge in the graph. Additionally, a subject may
be split into multiple sub-subjects according to the curriculum. As the purpose of the JsStories
tool is to learn how to program in JavaScript, we decided to only focus on the subjects covered
in the module ‘Welcome to JS’ and related modules in terms of prior knowledge. These subjects
with their sub-subjects are listed below in Table 4.1.

1https://github.com/HackYourFutureBelgium

https://github.com/HackYourFutureBelgium


30 CHAPTER 4. JSSTORIES

Basicstructure HTML

Basicstructure CSS

Developers tool

Response media-
queries Box-size model CSS units

Accesible design

Data types Scoping rulesBasic JS structure

Static analysisJS syntax
Dynamic analysis

Control structures

Logging techniques Automated testing Test-driven
developpment

Functional roles

Refactoring 

Event-driven
programming DOM access

Dependencies

Figure 4.9: The knowledge graph based on the curriculum of the web development program of
HYFBE

Subject Module Sub-subjects

Basic JavaScript structure Welcome to JavaScript Understanding the program
structure, Using semicolon at
the end of a code line

JavaScript syntax Welcome to JavaScript Primitives, Operators, Identi-
fiers, Keywords, Checks, Blocks,
Function calls

Control Structures Welcome to JavaScript If-else, While, Do-while, Switch,
For-loop

Data types Welcome to JavaScript string, number, bigint, boolean,
undefined, null, symbol, object

Static analysis Welcome to JavaScript Flowchart, Analysing variables,
Annotating code

Scoping rules Welcome to JavaScript var vs. let, Dynamic vs. static
scoping, Lifetime

Logging techniques Welcome to JavaScript console.log, console.error, con-
sole.info, alert, prompt



4.1. JSSTORIES 31

Dynamic analysis Welcome to JavaScript Tracetables, Variable access,
Variable types

Automated testing Debugging console.assert, Debugger state-
ment

Test-driven development Behaviour, strategy and
implementation

Documenting behaviour, Writing
tests, Implement functions based
on tests, Fuzz testing

Functional roles Separation of concerns Listeners, Handlers, Utils, Com-
ponents, Custom events

Dependencies Separation of concerns Entry points, import, NPM
packages, Scope hierarchy

Refactoring Separation of concerns Code splitting, Isolating com-
ponents, Component unit tests,
Single responsibility pattern

Event-driven programming Separation of concerns Event listeners, Event handlers,
Event, Program flow, Event loop

DOM access Separation of concerns find element by id, find element
by classname, find element by
type, element.innerHTML,
element.attribute, docu-
ment.createElement, doc-
ument.appenChild, docu-
ment.removeChild

Table 4.1: Covered subjects split into sub-subjects.

Knowledge Graph Update

Every exercise within a story covers specific aspects of the JavaScript programming language, cor-
responding to one or more sub-subjects in the knowledge graph. Upon completion of an exercise,
the relevant sub-subjects are updated in the knowledge graph and the learner can move on with
the story. A sub-subject is considered complete once the learner has successfully finished at least
one exercise covering that sub-subject for all the different PRIMM phases (see Section 4.1.2).
For instance, the sub-subject Primitives is considered complete in the knowledge graph once
the learner has completed at least once all of the following exercises related to Primitives: a
predict exercise, a run exercise, an investigate exercise, either a blanks exercise or parsons puzzle
and a make exercise. Furthermore, a subject in the knowledge graph is considered complete
when all of its sub-subjects have been completed. For instance, the subject JS syntax is marked
complete once all its sub-subjects (Primitives, Operators, Identifiers, Keywords, Checks, Blocks
and Function calls) are marked complete. A challenging design decision was whether to mark
a sub-subject as complete once the learner has completed at least one exercise addressing that
sub-subject for all the different PRIMM phases or once all available exercises covering that sub-
subject have been completed. We finally opted for the first option as this allows learners to
choose whether to further exercise on that sub-subject by reading other stories covering that



32 CHAPTER 4. JSSTORIES

sub-subject or to move on and continue with stories covering other same-level sub-subjects or
more advanced subjects.

Story Locking

As depicted in Figure 4.8d, stories can be locked or unlocked based on the subjects they cover
and the prior knowledge required. When hovering on unlocked books, the tooltip indicates which
subjects it covers and the prior knowledge it requires in terms of mastered subjects. For locked
books, the tooltip provides additional information about the books the learner must read first
to acquire the prior knowledge needed to unlock that story, as demonstrated in Figure 4.8e. To
illustrate with an example, consider Figure 4.8d where one can see that the books From Palestine
to Belgium: A Tech Journey and Hope After Darkness are unlocked while the books Changing
Lanes and Across Borders are locked. Moreover, Figure 4.8e shows that the book Changing
Lanes covers the subject Control structures and that it has as prerequisite subject JS Syntax,
which can be acquired by first reading the book Hope After Darkness. As soon as the learner
completes the book Hope after darkness, the knowledge graph is updated and consequently the
book Changing Lanes is unlocked since the necessary prior knowledge has been acquired. As
such, the knowledge graph is used to create a personalised learning environment allowing the
learner to learn at its own pace. Furthermore, with the locking of stories, the learning way is
paved for the learners allowing them to complete exercises that are in line with their current
knowledge level, minimising the frustration caused by exercises that are too difficult based on
their current level.



Chapter 5

Implementation

This chapter provides further details on the implementation of the JsStories tool which was
described in the previous chapter. Furthermore, details about the collection and writing processes
of the stories used in the tool are also provided in this chapter.

5.1 Story Collection and Processing

The used stories were collected from HYFBE alumni who volunteered to share their story. These
participants were contacted using the programme’s Slack platform. A total of five people vol-
unteered but after contacting them individually, only four of them replied. The interviews were
scheduled using the Vectera1 platform. This allowed the interviews to be easily scheduled at a
time that worked best for the participants. Each interview started with an introduction to the re-
search and a clear explanation on how their stories would be used. The interviews were not struc-
tured with pre-planned questions, allowing the participants to freely tell their stories. This was
done to avoid monotonic stories and encourage participants to share what was most relevant to
them. To ensure accurate understanding and avoid any misinterpretations, the LSD method [16]
was used during the interviews. This involved listening to the participants, summarising what
they were saying, and asking relevant questions based on what was being shared. Every interview
was recorded after obtaining permission from the participants and the recordings were used to
transcribe the stories later on. The transcribed stories were then summarised in bullet points
and converted to narrative text using ChatGPT2. Furthermore, all stories were pseudonymised
to maintain the privacy of the participants.

1https://go.vectera.com
2https://chat.openai.com/

33

https://go.vectera.com
https://chat.openai.com/


34 CHAPTER 5. IMPLEMENTATION

5.2 The Application

The high-level architecture of the JsStories tool is depicted in Figure 5.1. The JsStories tool
was developed using the TypeScript3 programming language, which is essentially a strongly
typed language that is built on top of JavaScript. Hence, TypeScript was used because of its
compile-time type checking, as well as its compatibility with the Ionic framework4. Ionic is an
open-source framework that is especially popular for the development of mobile apps, as it allows
cross-platform app development. It is known to be easy to learn because it mainly requires basic
web development skills. Furthermore, Ionic provides built-in UI components compatible with
various frontend frameworks. Initially, we wanted to keep the possibility to create a mobile
app in the future open, should it be deemed useful and necessary. Therefore, Ionic, integrated
with the component-based frontend framework React JS5, was utilised. The JsStories tool is
currently available as a desktop application. It was packaged and distributed using the Electron
framework6.

Backend

Web Application

Ionic Libraries

React UI components
- Acorn
- React-syntax-highlighter
- React-codemirror2
- QLC's
- Parsons study lens

REST API

Strapi CMS

Collections and components

Figure 5.1: High level architecture of the application

More importantly, since the tool is to be used in an educational setting, including teachers and
organisational personnel, who may not have a technical background, it should be easy to manage
and adapt stories and exercises. Hence, it was decided to separate the content, specifically the
stories and the exercises, from the more technical aspects of the tool. Therefore, Strapi7, an open
source headless Content Management System (CMS), was used. The content can be managed
through both a REST API and an admin panel, which is depicted in Figures 5.2 and 5.3. Strapi
supports three types of content: collections, single types and components. A single type can only

3https://www.typescriptlang.org/
4https://ionicframework.com/
5https://react.dev/
6https://www.electronjs.org/
7https://strapi.io/

https://www.typescriptlang.org/
https://ionicframework.com/
https://react.dev/
https://www.electronjs.org/
https://strapi.io/


5.2. THE APPLICATION 35

have one instance, whereas multiple instances of a collection can be created. Finally, components
are data structures that can be used as attributes within the other two content types.

Figure 5.2: Strapi’s Content-Type Builder

Content types can be created using the Content-Type Builder shown in Figure 5.2. Specifically,
the Story collection in the Content-Type Builder, is illustrated. This collection is built based
on seven attribute fields of various types, such as media fields for the cover images, text for
the title and relation fields linking to other content types. For instance, as discussed in the
previous chapter, a story consists of multiple chapters, including scenes with text, images and
exercises. Hence, the Story collection has a relation field chapters, representing the one-to-many
relationship with the Chapter collection. Furthermore, instances of the different content types
may be created and managed in the Content Manager, depicted in Figure 5.3. As one can see,
four instances of the Story collection have been created.

Figure 5.3: Strapi’s Content Manager



36 CHAPTER 5. IMPLEMENTATION

The following sections provide further detail on the backend and frontend implementation of the
exercises and the knowledge graph.

5.2.1 The Knowledge Graph

The knowledge graph has also been implemented using Strapi. As such, adaptations to the
curriculum can be easily reflected using Strapi’s Content Manager.

Figure 5.4: The Subject collection

Figure 5.5: The Subsubject collection

A collection has been created for both subjects and sub-subjects, as described in Section 4.1.4.
The Subject collection, depicted in Figure 5.4, contains four attribute fields: a name field, a



5.2. THE APPLICATION 37

boolean field indicating whether the subject has been completed, a relation field representing
the one-to-many relationship with its subsubjects and a many-to-many relation field indicating
required prior knowledge in terms of other subjects. Moreover, Figure 5.5 depicts the Subsubject
collection. Alongside a name attribute field and a relation field to its parent subject, the Sub-
subject collection also contains a boolean field for all the PRIMM phases. Whenever an exercise
is completed, the covered subsubjects are updated using the relevant boolean field. As such, a
Subsubject is considered completed once all of its boolean fields are set to true, indicating that
the learner has practiced that subsubject in the five PRIMM phases. Furthermore, the completed
boolean field of a Subject is set to true once all of its subsubjects are considered completed.

5.2.2 Predict Exercise

The collection representing a predict exercise, illustrated in Figure 5.6, comprises seven attribute
fields. A description of the exercise is stored in the description field. Moreover, every predict
exercise includes a code fragment, contained in the program field, along with some multiple-
choice questions, represented by the one-to-many relation field, multiple choice questions. The
multiple-choice questions can contain text options as well as images. As previously mentioned,
exercises are contained within scenes, which explains the one-to-one relation with the Scene
collection. Upon completion of a predict exercise, its completed boolean attribute is updated
along with the subsubjects it covers, represented by the sub subjects relation field. In terms of
User Interface, the React Syntax Highlighter8 has been used to emphasise code syntax.

Figure 5.6: The predictEx collection

8https://www.npmjs.com/package/react-syntax-highlighter

https://www.npmjs.com/package/react-syntax-highlighter


38 CHAPTER 5. IMPLEMENTATION

5.2.3 Run Exercise

Figure 5.7 depicts the runEx collection, which consists of the same attribute fields as the predictEx
collection, without the multiple choice questions attribute. Among all the exercises, the run
exercise was the most challenging to implement. Initially, we attempted to implement it using the
JavaScript parser Acorn9 to generate an abstract syntax tree (AST). Additionally, Acorn-walk10

was used to traverse the tree and extract all the necessary information to build the trace table.
However, we soon realised that this was not the most effective approach, as this requires a lot
of manual work with a bigger risk of overlooking details. Therefore, we explored the possibility
of using Stopify11, a JavaScript-to-JavaScript compiler that supports single-stepping and adding
breakpoints. Unfortunately, due to a lack of documentation, this was quite challenging. Finally,
we adapted code from the Explorotron IDE extension [32], which is based on the Aran12 library.
Aran basically allows to weave advice in the AST of the code, depending on whether the actions
are READ or WRITE. Thereafter, the code along with the advice can be converted back to code,
enabling evaluation of both together.

Figure 5.7: The runEx collection

5.2.4 Investigate Exercise

The Strapi collection for the investigate exercise contains the exact same set of attribute fields
as the runEx collection. Furthermore, the open-source library described in Section 3.2, was used
to automatically generate questions regarding the structure of the code fragment, stored in the
program field. The library also provides multiple options per question. Configurations have
been set such that an investigate exercise includes between one to three automatically generated
multiple-choice questions, depending on the possibility to generate questions based on the given
code.

9https://www.npmjs.com/package/acorn
10https://www.npmjs.com/package/acorn-walk
11https://www.stopify.org/
12https://github.com/lachrist/aran

https://www.npmjs.com/package/acorn
https://www.npmjs.com/package/acorn-walk
https://www.stopify.org/
https://github.com/lachrist/aran


5.2. THE APPLICATION 39

5.2.5 Modify Exercise

As described in Section 4.1.2, two types of exercises have been provided for the modify phase
of PRIMM: blanks exercises and parsons exercises. The collection for the parsons exercise is
also similar to the runEx collection. Moreover, the implementation of the parsons exercise is
mostly based on the implementation of the Parsons lens in the Study Lenses tool13, which allows
students to explore code through a parsons puzzle.

Figure 5.8: The blanksEx collection

Furthermore, Figure 5.8 depicts the blanksEx collection type. To incorporate the blanks, the
Acorn parser was employed. The code fragment in the program field is parsed using Acorn, to
generate an AST. Acorn-walk is then used to traverse the tree. When variables and identifiers
are encountered, they are potentially replaced by a blank ( ), based on a randomly generated
float and the collection’s probability parameter. As such, based on the required difficulty level
for the exercise, the probability parameter can be set accordingly. For the code editor in the User
Interface, the library react-codemirror214 was employed.

5.2.6 Make Exercise

The makeEx collection is illustrated in Figure 5.9. In a make exercise, students are required
to write code in a code editor, based on a provided description. The written code is then
evaluated using predefined unit tests. Therefore, the collection contains a one-to-many relation
field, unit tests. The UnitTest collection comprises fields for a description and an assertion.
Hence, the written code is evaluated together with the unit tests’ assertions. If the test passes,
then the description is displayed in green in the editor’s console. Otherwise, it is displayed in
red. Upon completion of the exercise, the student’s solution is stored in the doneSolution field,

13https://www.npmjs.com/package/react-codemirror2
14https://www.npmjs.com/package/react-codemirror2

https://www.npmjs.com/package/react-codemirror2
https://www.npmjs.com/package/react-codemirror2


40 CHAPTER 5. IMPLEMENTATION

used to continuously display the solution in the editor thereafter. Finally, the shouldContain
field is an enumeration containing all the keywords and variables the student should use in their
solution. This is verified by traversing through the AST of the written code, similar to the blanks
exercise.

Figure 5.9: The makeEx collection



Chapter 6

Evaluation

Given that the JsStories application is intended to be used in an educational setting, it is im-
portant to consider feedback on the tool’s perception from both parties involved. This includes
students, as well as educators and organisational personnel. Consequently, the JsStories appli-
cation was evaluated using a combination of interviews and a survey involving both parties. A
detailed discussion of every interview, along with a thorough explanation of the survey’s content
and results is provided in the following sections. The main focus of the evaluation was on the im-
pact of the tool on social inclusion, its effectiveness as a learning tool, as well as its applicability
in programmes such as the one offered by HYFBE.

6.1 Interviews

A total of six interviews were conducted. All four alumni of the HYFBE program who had
previously shared their stories for this research have been contacted for the evaluation. Unfor-
tunately, only one of them agreed to provide some feedback on the prototype. Furthermore,
we interviewed a former education coordinator at HYFBE. In addition to HYFBE, we reached
out to the eight other coding schools affiliated with Migracode. Among these, we received
a response from HYF Denmark, Borders None (Kroatia), Open Cultural Center (Spain) and
Social Hackers Academy (Greece). We conducted semi-structured interviews with representa-
tives of each of these organisations using the Microsoft Teams platform1, during which the tool
was demonstrated and feedback was provided. The interviews concluded with a discussion re-
garding the possibility of involving their students and teachers in a survey.

1https://www.microsoft.com/nl-be/microsoft-teams/log-in

41

https://www.microsoft.com/nl-be/microsoft-teams/log-in


42 CHAPTER 6. EVALUATION

6.1.1 HYF Belgium

Education Coordinator

The interview with the former education coordinator at HYFBE took place as an online meet-
ing using the Microsoft Teams platform. As an education coordinator, his work there mainly
consisted of developing and implementing the curriculum. Prior to that role, he also worked
as an educational officer, assisting the students and closely monitoring their learning journeys.
At the start of the interview, the motivation behind the JsStories application was explained.
This was followed by a demonstration, showing and briefly describing the functionality of the
application. The interview was conducted in an unstructured manner to allow for a genuine
open discussion in which any remark and feedback, whether positive or constructive, may be
shared. The interviewee was overall rather enthusiastic about the application and appreciated
the storytelling aspect. More specifically, he liked the fact that every story is designed in a book
form and that the integrated exercises fit the storyline. He believes that it has a lot to offer for
students who are still doubting if programming, or computer science in general, is anything for
them or students who are seeking something more than just exercises. The applicability of the
tool within the HackYourFuture programme, or a similar programme, was then discussed. In
terms of exercises, he noted that the current version of the application contains a limited number
of exercises. To illustrate his point, he mentioned the problem with the quizzes of the JavaScript
curriculum of W3schools. Despite the quality of the questions, only two or three questions per
language feature are included in the quizzes, which is not enough practice for effective learning.
Therefore, he suggested including optional exercises after each exercise, such that the learner can
choose to complete them or not. The optional exercises would be of the same type and cover the
same learning feature(s). For instance, once a learner has completed a parsons exercise covering
the if control structure, they will be given the possibility to practice more on parsons exercises
covering the if control structure. Additionally, he proposed adding a sandbox at the end of the
story with a summarising table of content as interface. In the table of content, all the learning
features covered in the story are summed up with some external links and references. The learner
would also have the possibility to complete extra optional exercises for each language feature.
This allows the learner to choose on what they want to practice further at the end of the story.
He also noted that making it available at the end of the story would avoid making the book more
daunting.

Furthermore, when asked about his opinion on using the tool as part of the selection procedure
of a programme such as HackYourFuture, the interviewee liked the idea for two main reasons. He
started by explaining that the majority of forms and websites simply show pictures of people who
successfully learned programming, giving the impression that everyone can learn it. However,
these websites often merely direct users to platforms such as freeCodeCamp2, which he is not a
big fan of. Therefore, he appreciated the fact that in JsStories, the story of representation is the
content itself. Also, he claimed that testing someone on their ability to write code as they enter
a programming course is not helpful, which is why he appreciated the fact that the tool uses
the PRIMM pedagogy instead of simply asking to write code. Nonetheless, he stated that if the
tool is used for the entrance examination, extra support needs to be provided such that students
do not feel disoriented. For instance, a help button showing a recording of how to complete the
exercise or providing some extra written explanation. Also, since trace tables are assumed to be
new for students starting their programming journey, it should not be expected from them to

2https://www.freecodecamp.org/

https://www.freecodecamp.org/


6.1. INTERVIEWS 43

just understand that they have to read the code, follow along the automatically filled in trace
table and make the connection between these two. To support his claim, he referenced the
expertise reversal effect, stating that the way novices and experts learn is different in the sense
that novices require much more step by step approaches (see Section 2.4). Therefore, although
automatically filled in trace tables are acceptable for more experienced students, it may not be
suitable for beginners. Hence, he recommended adapting the run exercises to include blanks
that the students must fill in instead of having the trace table filled in completely automatically.
This way, focus can be put on certain code lines. Alternatively, multiple choice questions can be
included after the trace table.

Moreover, we discussed other topics and directions the tool may cover rather than purely
JavaScript if it were to be used for the entrance exam. He suggested to use the tool for typing
exercises, depending on the level of student targeted. He went on to explain that in the past,
typing was something that slowed down the students quite a lot. When provided with links to
typing games, the students seemed to find it very helpful. Furthermore, he noted that the stories
could also be used to explain the Internet in a high level way, covering topics such as the client,
the server and protocols without going into more advanced topics like API calls and promises.
He further recommended using the stories to explain markdown or the file system structure.
Additionally, he noted that the tool could also be adapted to learn another programming lan-
guage such as Python. In the last part of the interview, collaboration was also briefly discussed.
The former education coordinator suggested two possible approaches to collaboration: at the
exercise level and at the story level. The first option would be to provide a kind of chat box
where students may discuss the exercises and move forward in the story together. The latter
would involve a more asynchronous collaboration with branching stories. Each student would
be working on a branch of the story and, once completed, they would be able to read the other
branch of the story.

Alumni

The second interview with one of the HackYourFuture graduates was conducted using the
Vectera3 platform. The interviewee was already familiar with the research and the motiva-
tion behind it since they had previously contributed by sharing their story. Therefore, the
interview started with just a brief explanation to summarise the main points. The goal of the
semi-structured interview was to let the interviewee test the prototype and then proceed with
some prepared questions. A link to the JsStories tool was send to the interviewee. However,
some components of the user interface were unreadable on their screen. At the time, we were
unsure of the cause as the interviewee indicated that they did not have the dark mode enabled.
Therefore, we proceeded by sharing our screen to present the tool and its functionalities, making
sure to show an example of an exercise for every PRIMM phase. The interviewee was first asked
about the potential impact the tool’s storytelling aspect could have on the learners’ motivation
and willingness to engage with the content and exercises. They believe it can have a positive
effect, but they noted that it mostly depends on the story itself and how much the learner can
relate to it. Additionally, they stated that it also depends on the quality of the story in terms
of how well it is written. Furthermore, when asked whether such stories could enhance social
inclusion, they affirmed that reading happy ending stories of people having experienced similar
situations could bring a sense of hope to the reader. For instance, reading about someone who

3https://go.vectera.com/

https://go.vectera.com/


44 CHAPTER 6. EVALUATION

successfully completed their programming journey despite facing similar challenges may motivate
a reader who is uncertain about continuing their programming journey and discourage them from
dropping out.

Moreover, they mentioned that they would have appreciated having access to such a tool when
they were following the HYF programme and believe it may be useful for the JavaScript mod-
ule. Additionally, they commented that the tool may be used as means of preparation for the
programme, giving novices an idea of what to expect before starting their programming jour-
ney. Furthermore, they valued the tool’s use of the PRIMM pedagogy providing a step-by-step
support for the students. When asked if they had any remarks about the design of the tool,
they mentioned liking the usage of the book-style design including text, images and exercises.
However, they remarked that the design of the parsons exercise could be improved. They men-
tioned that the purpose of the exercise was not clear at first because of the exercise’s compression
on one page of the book, requiring horizontal scrolling. The interviewee was then also asked if
they believe a mobile version of the application would be useful. They stated that it would
be more convenient for students who would like to use the tool when commuting for instance.
Nonetheless, the interviewee remarked that it would only be beneficial in early stages of the
learning process implying short coding exercises, as it would otherwise be difficult to code on a
smartphone. Lastly, when asked if they had any other general remark or feedback, they began
by expressing gratitude for the efforts put into this work to help socially vulnerable people. They
found the tool promising and envisioned it being used not only in HYF but also other similar
programs. Finally, we discovered that the unreadable components of the tool on his screen were
due to the dark mode they had enabled. Therefore, they proposed to go through the stories after
our interview to review them. They informed us via mail afterwards that they appreciated the
stories and found them to be an interesting and promising way to learn programming.

6.1.2 HYF Denmark

For HYF Denmark4, the interview was conducted with the founder of the organisation that
launched the initiative in Denmark back in 2017, as well as the current managing director.
The interviewees began by introducing themselves and their roles at HYF Denmark, while also
providing more information on what HYF Denmark stands for. Following this introduction, the
research and its motivations were explained, along with a live demonstration of the JsStories tool.
After the demonstration, the interviewees had some questions related to the tool’s functionalities,
including whether or not the knowledge graph or learning path of the students could somehow
be monitored by mentors. This is currently not possible, however it would be a useful feature to
add in the future. Furthermore, as the tool is currently based on the curriculum of HYFBE, the
used knowledge graph was explained and the relevant modules were compared to those of HYF
Denmark’s currciulum. The interviewees were then questioned about the storytelling aspect
and the stories used, specifically whether they think it could help improve student motivation,
engagement and social inclusion. They believe that, in general, it could have a positive impact to
read and take into account stories of diverse people and experiences, especially for non-traditional
bootcamps aiming to teach socially vulnerable people. However, they mentioned that, although
the tool is interesting for exercise, HYF Denmark’s strong focus on getting their students into
the job market means that they target highly motivated and passionate students who do not
need additional motivation during the programme. The managing director further commented

4https://www.hackyourfuture.dk/

https://www.hackyourfuture.dk/


6.1. INTERVIEWS 45

that perhaps stories involving real job market cases, working experiences and tips might be more
appropriate for HYF Denmark.

Furthermore, when we discussed the possibility of using the tool in the student selection pro-
cedure, both interviewees were enthusiastic about it. The current selection procedure at HYF
Denmark involves a technical assignment using HTML, CSS and some JavaScript. They noted
that for the selection procedure it is important to find the right balance so that the assignment is
challenging enough to assess the skills of the applicant but not overly challenging as to disqualify
too many applicants. The primary purpose of this assignment is to test people’s amount of ded-
ication and time management skills. Therefore, for the technical assignment, freeCodeCamp is
utilised as they are familiar with the workload and time requirements. However, one limitation
of freeCodeCamp noted by the interviewees, is that the included exercises and projects often
reflect a Western-centric perspective. For instance, a lot of exercises feature cats as cute pets.
However, in some cultures, cats are not commonly kept as pets, which might seem unfamiliar
to people new to Europe. Consequently, they found that the JsStories with the actual kind of
stories used, would be well-suited for the student selection process as it would introduce them
to coding through reading rich achievement stories the students can relate to. This would help
enhance their initial motivation to pursue coding. Furthermore, as the interviewees did not have
a technical background, we did not question them about the type of exercises selected for the
PRIMM approach. The interview concluded with a discussion on the survey, during which both
the founder and the managing director allowed for involvement of their students and mentors.
Hence, we were given access to the official slack platform of HYF Denmark, enabling us to con-
tact the students and mentors for the survey. Finally, the founder of the organisation suggested
that the JsStories tool could potentially be tested in future student selection procedures at HYF
Denmark.

6.1.3 Borders None

The fourth interview was conducted with a representative of the organisation called Borders
None5, located in Croatia. This organisation focuses on training refugees to pursue a career
in web development. Compared to HYFBE and HYF Denmark, Borders None is a smaller
organisation with fewer students. The interview was conducted with a member of the directing
team at Borders None. First, a demonstration of the JsStories tool was provided, showing its
functionalities while also explaining the motivation behind each aspect. Overall, the interviewee
expressed enthusiasm for the tool. She characterised the tool as a solution that ‘catches two birds
with one stone’, serving as both an exercise tool to enhance the students’ knowledge as well as a
motivation booster. As a social worker, the interviewee regularly uses storytelling and believes it
may be useful in numerous situations. In this particular case, she believes the storytelling aspect
can boost the motivation of students to complete the program, as well as enhance their sense
of belonging. She further explained that providing students with real-life stories of people they
can relate to may be highly beneficial, as students are interested in whether there are graduates
who have completed the course and found employment in the field of web development. The
possibility of using the JsStories tool in the student selection procedure was then discussed. The
interviewee explained that at Borders None, the programme is divided into a beginner course and
an advanced course. The beginner course covers HTML and CSS, after which the students must
pass a final project. JavaScript and other more advanced topics are covered in the advanced

5https://www.bordersnone.com/coders-without-borders/

https://www.bordersnone.com/coders-without-borders/


46 CHAPTER 6. EVALUATION

course. Students may enrol in the advanced course if they have completed the beginner course
or if they have prior knowledge of HTML and CSS, demonstrated through a project. For the
beginner course, students are selected based on discussions with them, assessing their motivation
and skills. Therefore, the interviewee believes that the tool is only suitable for use during the
program and homework sessions, but not in their selection procedure, as they do not include
a technical assignment. Furthermore, she mentioned that Borders None has a high dropout
rate, mainly because students lose motivation or lack self-confidence as foreigners. Hence, she
suggested that an adaptation of the tool covering HTML and CSS might be useful in the beginner
course to foster initial motivation and a sense of belonging among the students. This might help
them stay motivated and boost their chances of completing both courses. Moreover, as language
courses are offered at Borders None, the interviewee commented that an adapted version of the
tool aimed at teaching languages, using such stories, would also be beneficial. She states that
learning from concrete examples one can relate to makes it much easier to focus and remember.
Therefore, she always advises teachers at Borders None to make examples as concrete possible
and to link them to the students’ situations and preferences. When asked about the design of
the tool, she mentioned liking the book-form design and found the tool very intuitive. As a
conclusion to the interview, she agreed to share the survey with former students and teachers at
Borders None on their slack platform.

6.1.4 Open Cultural Center

Open Cultural Center6, founded in 2016, is a non-profit organisation that is present in both Spain
and Greece. Their objective is to facilitate the integration process of refugees and migrants
by offering educational courses in various fields such as languages and technology, as well as
providing sports and cultural activities. In Spain, the organisation runs two open-access code
academies: Migracode7 and CodeWomen8. The former is open to everyone, while the latter is
focused on empowering women. We conducted an interview with the programme manager of
Migracode. As with the other interviews, the research was explained and a demonstration of
the tool was provided. The interviewee valued the tool, finding it a promising and interesting
learning resource. Regarding the design of the tool, the interviewee liked the book format and
the integration of an editor in some of the exercises. Additionally, he appreciated that multiple
kind of exercises were included, allowing students to interact with code in various ways. As the
tool is currently quite small, we also discussed the number of exercises it should incorporate in
order to maximise the tool’s usefulness. The interviewee particularly liked the idea of identifying
students’ mistakes and recommending optional exercises based on that. He commented that
learners usually enjoy having optional exercises recommended to them, offering them the choice
to complete them or not. He further noted that without proper testing, it is difficult to determine
the effectiveness of the tool. However, he stated that including the tool in the program would
likely be beneficial as it provides an additional learning resource. Furthermore, the interviewee
mentioned that Flexbox Froggy9 is used in their program for CSS. This gamified learning resource
is highly appreciated by the students as it provides an engaging way to learn CSS. Currently,
ways to incorporate more gamification into their program are explored. He believes that the
storytelling aspect of the JsStories tool is a powerful feature that can further enhance engagement.

6https://openculturalcenter.org/
7https://migracode.org/
8https://codewomenbarcelona.org/
9https://flexboxfroggy.com/

https://openculturalcenter.org/
https://migracode.org/
https://codewomenbarcelona.org/
https://flexboxfroggy.com/


6.1. INTERVIEWS 47

As the students can relate to the incorporated stories they can better engage with it, making it
easier to focus and learn. He further mentioned that the tool might enhance the social belonging
among students providing a first step for improvement of social inclusion.

The applicability of the tool within the program of Migracode was then discussed. The intervie-
wee believes that depending on how well it aligns with their curriculum, the tool could definitely
fit into the program as a companion tool for students to practice. Moreover, when asked if
he believes the tool could also be used in the student selection procedure, he expressed strong
appreciation for the idea. As part of Migracode’s selection procedure, students are required
to complete a course on Khan Academy10 and develop a small project using HTML and CSS.
Currently, the project does not include JavaScript, but the interviewee mentioned that they are
considering to include it. He explained that when starting with the JavaScript module, some
students feel overwhelmed learning about the programming concepts for the first time, which
sometimes leads to drop outs. This confirms our findings at HYFBE. Therefore, the interviewee
believes it makes a lot of sense to use the tool in the student selection procedure. It will both
introduce students to JavaScript before they join the program, as well as, offer them insights into
what to expect from the program. When discussing other directions for the tool, the interviewee
shared that an adaptation of the tool for their language lab would be beneficial. Regarding the
survey, the interviewee planned to share it with students and teachers during the on-site course
sessions. At the conclusion of the interview, the interviewee mentioned that we could reach out
to them for future testing of the tool at Migracode.

6.1.5 Social Hackers Academy

The last interview was held with the co-founder and executive director of the non-profit organisa-
tion Social Hackers Academy11 (SHA). SHA is primarily aimed at teaching web development to
refugees and other socially vulnerable groups. After having demonstrated the tool and outlined
the research, the interviewee started by expressing gratefulness for the effort put into this research
aiming to improve the social inclusion of vulnerable groups. He then continued by explaining
that although SHA initially started as an organisation to help refugees and migrants, they have
now shifted to also allow less vulnerable people to join the program by paying a small fee, while
more vulnerable people receive a scholarship. The lack of funding, which is not as available as
in other countries, made this adjustment necessary. Moreover, following the Covid-19 crisis, the
SHA program moved completely online. As a result, they have students from numerous countries
although more than half their students still reside in Greece. When asked about the storytelling
aspect and the impact it could have on the students, the interviewee indicated being a big fan
of storytelling and found it an interesting way to learn. Overall, he found the tool to be a great
concept and confirmed that also their students have a lot of difficulties with JavaScript. However,
he noted that the tool’s usefulness depends on whether the learning objectives can be achieved
using the tool, which can only be determined by testing the tool in a real setting. Furthermore,
he stated that it also depends on the learning modalities. Not everyone learns the same way,
therefore the tool might not be effective for all. When asked about the applicability of the tool
in the SHA program, the interviewee stated that, as he is not the Head of Education and that he
does not have a technical background, he felt unqualified to answer these questions. He therefore

10https://www.khanacademy.org/
11https://socialhackersacademy.org/

https://www.khanacademy.org/
https://socialhackersacademy.org/


48 CHAPTER 6. EVALUATION

suggested to forward our request to their Head of Education so that she might be able to take
some time to meet and answer our questions. Unfortunately, we did not hear back from her.

6.2 Survey

The survey was carried out through a Google Form12, which incorporated a video demonstration
of the tool along with a number of questions including multiple choice, linear scale, and short
answer questions. Given that the tool is currently only available as a desktop application and
considering the busy schedules of the students, as reported by the representatives of the organi-
sation, we chose to incorporate a video demonstration. As such, the students are not required to
install the application and test it in order to fill in the questionnaire, thus saving valuable time.
As discussed in the interview section, the survey was eventually shared in three organisations:
Borders None, HYF Denmark and Open Cultural Center (specifically Migracode), primarily via
the organisations’ Slack platform. A total of 7 responses were collected, which is unfortunately
a rather low response rate. However, this outcome was expected due to the busy schedules of
the students and the fact that the anonymous survey was shared in large groups of students and
teachers, resulting in individuals that feel less inclined to participate as they might assume other
students or teachers would.

As sections and conditional questions were used, the survey was designed to allow both students
and teachers to fill it in. Nine questions applied to both groups. Teachers were provided with
an additional question, while students were given 2 more. The first question is a multiple-
choice question in which participants can select the organisation they are affiliated with out of 7
options. Three respondents are affiliated with HYF Denmark, 2 with Open Cultural Center and
2 with Borders None. In the following multiple choice question the participants could indicate
if they are a (former) student or a (former) teacher. Of the 7 respondents, only one identifies
as a teacher, specifically a former teacher. The other 6 respondents are current students. The
participants were then asked if they believe that the use of storytelling in the tool could positively
influence the motivation and willingness of students to complete exercises and potentially help
lower dropout rates. The question was provided with a linear scale ranging from 1 (Strongly
disagree) to 10 (Strongly agree). Two of the participants answered with the highest score of 10,
3 with the score of 9 and 2 with the score of 8. These answers indicate that all participants
believe the tool may somewhat help improve the motivation of students. The next question,
using the same linear scale, focused on the impact of the specific type of stories used. The
respondents were asked whether they believe any kind of story would have the same impact as
the current real-life stories of HYFBE alumni. For this question, the participants had differing
opinions. The majority answered with a neutral score, as 2 participants responded with a score
of 5 and 3 respondents with a score of 6. The other two participants answered with scores of 3
and 8. These answers suggest that although the majority of the respondents is not persuaded
that any kind of story might have the same impact, they may believe that using other stories
could also be valuable, depending on the kind of story. Based on the results, we realise that an
additional question aimed at assessing the impact of the stories currently used on the sense of
belonging among students would have been beneficial.

12https://www.google.com/intl/en_be/forms/about/

https://www.google.com/intl/en_be/forms/about/


6.3. MAIN FINDINGS OF THE EVALUATION 49

Furthermore, the respondents were asked if they believe the JsStories tool could be useful in the
program they are affiliated with. Two participants answered with a score of 7, 3 with a score
of 8 and the remaining 2 people with a score of 9. Hence, all participants agreed that the tool
may be beneficial in their program. Based on their responses to a question regarding this, the
students would have liked the opportunity to use the JsStories tool during their time following the
program. Out of the 6 students, 2 answered with the highest score of 10, 3 with a score of 8 and
one person with a score of 7. Additionally, the potential use of the tool in the student selection
procedure, giving students insights into what to expect, was questioned. The participants seemed
to value this idea as 4 out of the 7 participants gave it a score of 8, 2 people a score of 9 and the
remaining person a score of 10. Furthermore, the design of the tool received favourable scores
of 7, 8 and 10. Moreover, all respondents favoured a web-version of the tool over a desktop
application, which is something that should be considered in future adaptations of the tool.
The participants were also asked, in an optional short-answer question, if they believe the tool
could be adapted for another purpose. One respondent suggested that an adaptation of the tool
could focus on learning HTML. The other participants either did not answer or mentioned that
they appreciated the current version of the tool focusing on JavaScript. Additionally, a short-
answer question regarding the selection of exercises for the PRIMM approach was provided to the
teachers. The sole teacher respondent approved the current selection of exercises, finding them
appropriate for PRIMM. On the other hand, students were also asked if they would be interested
in contributing their story for potential use in the tool, while maintaining anonymity. 5 out of
the 6 students expressed interest. This implies that for future expansions of the tool students
would potentially be willing to contribute with their stories. Finally, a section was provided
where participants could leave any additional feedback and remark, as well as a section where
they could leave their email-address if they wished to be contacted for additional information on
the survey or for a follow-up meeting. One of the respondents left a short remark ‘add helper ’,
by which the respondent probably meant that a type of helper feature should be provided such
as hints.

6.3 Main Findings of the Evaluation

• Participants of the evaluation were enthusiast about the idea of using JsStories as a compan-
ion tool for students to practice throughout the programme, primarily noting its potential
to enhance student engagement. Furthermore, using the tool in the student selection pro-
cedure of the organisation received even greater appreciation from participants due to the
specific stories currently included. Reading alumni stories before joining the programme
can help prospective students know what to expect from the programme and can foster a
sense of belonging as they might relate to the stories.

• The usefulness of JsStories as a learning tool depends on how well it aligns with the
organisation’s curriculum. To further enhance its effectiveness, additional exercises such as
optional exercises or links to external resources could be included in the stories. Moreover,
additional functionalities to support teachers might be added such as a functionality to
monitor student’s progress to provide better support for their students.

• A web-based version of the JsStories application is favoured over a desktop application.

• Based on the feedback, an adapted version of the JsStories tool might also be beneficial
for other purposes. For instance, the tool could be used to learn a different program-
ming language or specific computer science concepts such as high-level Internet protocols.



50 CHAPTER 6. EVALUATION

Furthermore, it could potentially be adapted for language courses and typing courses. Ad-
ditionally, different kinds of stories could be used, such as stories targeting the job market
to prepare students for it.



Chapter 7

Discussion and Future Work

This chapter provides a discussion and addresses potential future work to further improve the
JsStories tool, taking into account the results of the evaluation. It includes adaptations in terms
of design and purpose, as well as extra features that could further enhance the tool.

7.1 Discussion

In this research, we aimed to come up with a solution to address the high dropout rates in
organisations like HYFBE. We introduced the JsStories tool, a JavaScript learning tool focused
on improving social inclusion through storytelling and enhancing the learning environment using
the PRIMM approach and knowledge graphs. The findings of the evaluation indicate that the use
of real anonymised stories of HYFBE alumni may foster a sense of belonging among students and
boost their motivation, which is a first step towards improving social inclusion. This is because
students might relate to the characters, situations and experiences in such stories based on their
own background. Furthermore, the PRIMM approach was also appreciated as it provides support
for the students guiding them step by step and allowing them to interact with code in different
ways. However, a limitation of the evaluation, conducted through interviews and a survey, is that
the tool was not tested by the target group. A thorough evaluation including testing of the tool
over an extended period of time might provide more useful insights on the PRIMM approach, the
selected type of exercises as well as the personalised learning environment provided through the
use of a knowledge graph and story locking. Moreover, while the tool was initially designed for use
during the programme, we also evaluated its potential use during the student selection procedure
of organisations such as HYFBE, which was highly appreciated and encouraged by all participants
of the evaluation. Currently, most of the Migracode schools use platforms such as freeCodeCamp
and Khan Academy for their technical assignments in the student selection process. However,
these platforms have some limitations such as using a western-centric perspective in the exercises.
Hence, incorporating the JsStories tool with the current stories in the student selection procedure
may be beneficial as it allows prospective students to get a first exposure to programming within
the context of the programme they are applying to. This should therefore definitely be further
explored in future work.

51



52 CHAPTER 7. DISCUSSION AND FUTURE WORK

7.2 Future Work

7.2.1 Design Improvement

Although the design of the tool was given favourable ratings in the evaluation, there are still areas
it could benefit from improvements. Currently, a book design is used for the tool and exercises
are limited to a single page. This leads to suboptimal user experience for the modify exercises,
which include a Parsons puzzle, as horizontal scrolling is required to have a clear view of the
drag-and-drop area. One potential improvement could be to provide an overview of the exercise
on the book page itself, along with a button to open a larger screen where the exercise can be
fully viewed and completed. Alternatively, an exercise could be spread over two book pages.
However, the first option is preferable as the entire window screen could be potentially used.
Similar adjustments could be made for the run exercise as it also requires horizontal scrolling
to view the complete trace table, depending on the number of variables and the variable name
sizes. Due to time constraints, these improvements have not been implemented yet. In addition,
it was noted during the evaluation that the tool is not compatible with the dark mode yet, which
should be taken into account in future adaptations of the tool.

7.2.2 Additional Educational Material

In the current version of the JsStories tool, a total of six types of exercises are provided for the
different PRIMM phases. However, to enhance the tool and allow more variety, further research
could be done on additional effective types of exercises that could be incorporated. As discussed
in the interview with the former Education Coordinator at HYFBE (see Section 6.1.1), the tool
could also offer more opportunities for practice as it is currently limited. For instance, optional
exercises could be included so that after completing an exercise, the student can choose to further
exercise on the covered topic as needed. In addition, students may be required to complete
supplementary exercises based on the number of attempts for an exercise and the mistakes
they made. Furthermore, a sandbox could be incorporated at the end of a book, providing an
overview of all covered topics along with extra resources and exercises. The exercises currently
integrated in the books all align with the storylines. However, aligning exercises with a storyline
can be time-consuming. One option could therefore be to include mandatory exercises that fit
the storyline, as is currently the case, along with random, automatically generated exercises for
optional practice. Alternatively, other approaches beyond the tool itself could also be explored.
For instance, instead of incorporating additional exercises in the tool, options could be to provide
links to external resources and exercises related to the topics or to incorporate the tool in an
extern Learning Management System (LMS) providing more custom exercises and resources.

7.2.3 Prior Knowledge Test

One of the limitations of the tool is that the present version does not take into consideration
students’ prior knowledge. Hence, every student begins with the same set of locked and unlocked
books, regardless of their understanding of the subjects covered in these books. However, it
would be preferable to leave the choice of whether to further exercise on familiar subjects or



7.2. FUTURE WORK 53

start with books covering subjects beyond their knowledge level, to the students. Therefore, it
would be beneficial to include a prior knowledge test for students to complete after signing up,
to assess their current knowledge level and understanding. This test should not be limited to
plain multiple-choice or short-answer questions. Instead, it could for instance also be used to
introduce the tool using storytelling and thus serve a dual purpose. Using the test’s results, the
knowledge graph will be updated at the start, unlocking books that cover topics the students
already master or are ready to learn. Consequently, future research could focus on exploring
approaches to efficiently assess students’ prior knowledge.

7.2.4 Students’ Progress

As the tool is intended for use in an educational setting, additional features could be incorporated
to provide support for the teachers. Using the data contained in the knowledge graph, one extra
functionality could be to allow teachers to monitor students’ progress with data visualisation
tools. Furthermore, additional data such as topics or exercises the students found challenging
along with details on the mistakes and number of attempts they made, could be provided. This
would enable teachers to provide students with targeted help or extra material on these topics. If
multiple students encounter difficulties with these topics, the teacher could also decide to review
these during the course lessons. Hence, there is certainly room for further research to identify
additional features that would enhance the tool’s value.

7.2.5 Web-based Application

The JsStories tool is currently available as a desktop application. However, based on the results
from the evaluation, a web-based version would be preferable as it requires no installations from
the users ans simply runs on the browser. While the transition from desktop application to web-
based version is possible, it would require some further adaptations to the setup of the Strapi
server to enable multi-user authentication, as it currently only supports single-user functionality.

7.2.6 Other Directions

Other directions and purposes for the tool can also be explored in future research. Currently, the
focus of the tool is on the JavaScript programming language. Nonetheless, as discussed in the
evaluation, adaptations of the tool could for instance be centered on CSS, HTML or other subjects
such as typing or language learning. Moreover, the tool was initially intended to be used as an
exercise tool to accompany students in programs like the one provided by HYFBE. However,
based on the feedback received in the evaluation, the tool could potentially also be used in
student selection procedures or in pre-courses. Nonetheless, this would require some adaptations
necessary for novices, such as providing supplemental explanation for the exercises. Additionally,
to evaluate the efficacy of using the adapted tool in the student selection procedure, a thorough
evaluation in a real setting is necessary. As HYF Denmark and Open Cultural Center were
willing to participate in the testing phase, the evaluation could potentially be integrated in their
student selection procedure. Ideally, a form of A/B testing would be employed for the evaluation.



54 CHAPTER 7. DISCUSSION AND FUTURE WORK

For half of the program applicants, the organisation would follow their regular student selection
procedure, including the current technical assignment. The other half of the students would be
provided with the tool and tasked to complete certain stories as part of the technical assignment.
Following this, the experience of both groups would be compared based on a qualitative analysis
aimed at evaluating the students’ motivation to complete the program, their sense of belonging,
the insights gained on JavaScript and their perception of the technical assignment. Additionally,
at the end of the program, the dropout rates could be analysed to evaluate whether the use of
the tool in the selection procedure had an impact on them. Furthermore, the current version of
the tool, which is intended for use during the program, could also benefit from such an extended
evaluation, as only a qualitative analysis was conducted without testing it in a real setting.



Chapter 8

Conclusion

The work undertaken in this thesis focused on addressing the limitations in teaching and learning
programming, which contribute to high dropout rates in organisations aimed at providing socially
vulnerable people with computer science education. We introduced the JsStories tool, which is
built based on insights gained from both literature and a visit at HYFBE. The tool focuses on the
JavaScript programming language based on the perceived difficulties of students. Additionally,
the tool aims to provide a solution taking into account suggestions for improvement found in
literature. Firstly, the tool is based on storytelling. The real pseudonimysed stories of HYFBE’s
alumni aim to foster a sense of belonging among socially vulnerable students in an engaging
way, thereby enhancing their motivation. The tool thus takes into account the background and
needs of students, as discussed in the suggestions for improvement. Secondly, since one of the
suggestions implied the need for a flexible learning environment where students can learn at their
own pace, the tool was built on top of a knowledge graph representing HYFBE’s curriculum.
Based on the knowledge graph, story locking has been implemented, ensuring that students are
provided with exercises at their own knowledge level. Thirdly, limitations in terms of teaching
methods and learning materials were addressed by using the PRIMM approach for the exercises.
This approach focuses on improving student’s understanding of code before they are required to
write code. In terms of implementation, the Strapi CMS was used to facilitate the management of
stories and exercises, even by non-technical organisational personal. The results of the qualitative
analysis, which included interviews and a survey, indicate that the tool could bring added value
to organisations such as HYFBE. It could serve as a first step towards improving social inclusion
and potentially help lower the dropout rates. However, a more extended evaluation in one of
these organisations, including testing of the tool throughout a longer period of time in a realistic
scenario, would be beneficial. Furthermore, the current tool is only a first prototype that can
certainly be improved in terms of added functionality and implementation. Finally, as the idea
of using the tool in the student selection procedure received unanimous approving feedback, this
option should definitely be further explored.

55



56 CHAPTER 8. CONCLUSION



Appendix A

JsStory: Hope After Darkness

57



58 APPENDIX A. JSSTORY: HOPE AFTER DARKNESS



59



60 APPENDIX A. JSSTORY: HOPE AFTER DARKNESS



61



62 APPENDIX A. JSSTORY: HOPE AFTER DARKNESS



63



64 APPENDIX A. JSSTORY: HOPE AFTER DARKNESS



65



66 APPENDIX A. JSSTORY: HOPE AFTER DARKNESS



Appendix B

Survey Results

Figure B.1: Question 1.

Figure B.2: Question 2.

67



68 APPENDIX B. SURVEY RESULTS

Figure B.3: Student responses to Question 3.

Figure B.4: Teacher responses to Question 3.

Figure B.5: Student responses to Question 4.



69

Figure B.6: Teacher responses to Question 4.

Figure B.7: Student responses to Question 5.

Figure B.8: Teacher responses to Question 5.



70 APPENDIX B. SURVEY RESULTS

Figure B.9: Question 6.

Figure B.10: Student responses to Question 7.

Figure B.11: Teacher responses to Question 7.



71

Figure B.12: Student responses to Question 8.

Figure B.13: Teacher responses to Question 8.

Figure B.14: Student responses to Question 9.



72 APPENDIX B. SURVEY RESULTS

Figure B.15: Teacher responses to Question 9.

Figure B.16: Question 10.

Figure B.17: Question 11.



73

Figure B.18: Question 12.

Figure B.19: Feedback section.

Figure B.20: Contact section.



74 APPENDIX B. SURVEY RESULTS



Appendix C

Screenshots

Figure C.1: The sign up page

75



76 APPENDIX C. SCREENSHOTS

Figure C.2: The contents page in a book

Figure C.3: The quote at the end of a book



77

Figure C.4: Tooltip info of an unlocked book

Figure C.5: Tooltip info of a locked book



78 APPENDIX C. SCREENSHOTS

Figure C.6: All books being unlocked

Figure C.7: Button to generate a certificate



79

Figure C.8: The generated certificate



80 APPENDIX C. SCREENSHOTS



Bibliography

[1] Nancy E Adams. “Bloom’s Taxonomy of Cognitive Learning Objectives”. In: Journal of
the Medical Library Association 103.3 (July 2015), p. 152. doi: https://doi.org/10.
3163/1536-5050.103.3.010.

[2] Lorin W Anderson and David R Krathwohl. A Taxonomy for Learning, Teaching, and
Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. Longman, 2001.

[3] Katrin Becker. “What’s the Difference Between Gamification, Serious Games, Educational
Games, and Game-Based Learning”. In: Academia Letters 209 (Jan. 2021), pp. 1–4. doi:
https://doi.org/10.20935/AL209.

[4] Paul Black and Dylan Wiliam. Inside the Black Box: Raising Standards Through Classroom
Assessment. Granada Learning, 1998.

[5] Benjamin S Bloom et al. Taxonomy of Educational Objectives, Handbook I: Cognitive Do-
main. Longman, 1956.

[6] Enzo Caminotti and Jeremy Gray. “The Effectiveness of Storytelling on Adult Learning”.
In: Journal of Workplace Learning 24.6 (Aug. 2012), pp. 430–438. doi: https://doi.org/
10.1108/13665621211250333.

[7] Chin Soon Cheah. “Factors Contributing to the Difficulties in Teaching and Learning of
Computer Programming: A Literature Review”. In: Contemporary Educational Technology
12.2 (Oct. 2020), p. 272. doi: https://doi.org/10.30935/cedtech/8247.

[8] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. “Evaluating a New Exam Question:
Parsons Problems”. In: Proceedings of the 4th International Workshop on Computing Ed-
ucation Research. Sydney, Australia, Sept. 2008, pp. 113–124. doi: https://doi.org/10.
1145/1404520.1404532.

[9] Sebastian Deterding et al. “From Game Design Elements to Gamefulness: Defining Gami-
fication”. In: Proceedings of the 15th International Academic MindTrek Conference: Envi-
sioning Future Media Environments. Tampere, Finland, Sept. 2011, pp. 9–15. doi: https:
//doi.org/10.1145/2181037.2181040.

[10] Lisa Ehrlinger and Wolfram Wöß. “Towards a Definition of Knowledge Graphs”. In: SE-
MANTICS: Posters and Demos 48.1-4 (Sept. 2016), p. 2.

[11] Barbara J Ericson, Lauren E Margulieux, and Jochen Rick. “Solving Parsons Problems
Versus Fixing and Writing Code”. In: Proceedings of the 17th Koli Calling International
Conference on Computing Education Research. Koli, Finland, Nov. 2017, pp. 20–29. doi:
https://doi.org/10.1145/3141880.3141895.

81

https://doi.org/https://doi.org/10.3163/1536-5050.103.3.010
https://doi.org/https://doi.org/10.3163/1536-5050.103.3.010
https://doi.org/https://doi.org/10.20935/AL209
https://doi.org/https://doi.org/10.1108/13665621211250333
https://doi.org/https://doi.org/10.1108/13665621211250333
https://doi.org/https://doi.org/10.30935/cedtech/8247
https://doi.org/https://doi.org/10.1145/1404520.1404532
https://doi.org/https://doi.org/10.1145/1404520.1404532
https://doi.org/https://doi.org/10.1145/2181037.2181040
https://doi.org/https://doi.org/10.1145/2181037.2181040
https://doi.org/https://doi.org/10.1145/3141880.3141895


82 BIBLIOGRAPHY

[12] Mary Forehand. “Bloom’s Taxonomy: Original and Revised”. In: M. Orey (Ed.), Emerging
Perspectives on Learning, Teaching, and Technology (2005).

[13] Jonathan B Freeman. “Measuring and Resolving LGBTQ Disparities in STEM”. In: Policy
Insights from the Behavioral and Brain Sciences 7.2 (Oct. 2020), pp. 141–148. doi: https:
//doi.org/10.1177/2372732220943232.

[14] Krista Graham. “TechMatters: Let’s “Go Formative”: Exploring a Digital Platform to
Enhance Teaching and Learning”. In: LOEX Quarterly 44.3 (2017), pp. 4–6.

[15] Juho Hamari, Jonna Koivisto, and Harri Sarsa. “Does Gamification Work? A Literature
Review of Empirical Studies on Gamification”. In: Proceedings of the 47th Hawaii Inter-
national Conference on System Sciences. Waikoloa, USA, Jan. 2014, pp. 3025–3034. doi:
https://doi.org/10.1109/HICSS.2014.377.

[16] Hand-out Interview Techniques (long version). https://skillslab.tue.nl/pathtoimg.
php?id=51. 2023.

[17] Aidan Hogan et al. “Knowledge Graphs”. In: ACM Computing Surveys 54.4 (July 2021),
pp. 1–37. doi: https://doi.org/10.1145/3447772.

[18] Cruz Izu et al. “Fostering Program Comprehension in Novice Programmers-learning Ac-
tivities and Learning Trajectories”. In: Proceedings of the Working Group Reports on In-
novation and Technology in Computer Science Education. Aberdeen, Scotland, Dec. 2019,
pp. 27–52. doi: https://doi.org/10.1145/3344429.3372501.

[19] Tony Jenkins. “On the Difficulty of Learning to Program”. In: Proceedings of the 3rd Annual
Conference of the LTSN Centre for Information and Computer Sciences. Loughborough,
UK, Aug. 2002, pp. 53–58.

[20] Shaoxiong Ji et al. “A Survey on Knowledge Graphs: Representation, Acquisition, and
Applications”. In: IEEE Transactions on Neural Networks and Learning Systems 33.2 (Feb.
2021), pp. 494–514. doi: https://doi.org/10.1109/TNNLS.2021.3070843.

[21] Shulamit Kahn and Donna Ginther. Women and STEM. Tech. rep. National Bureau of
Economic Research, June 2017.

[22] Caitlin Kelleher. “Motivating Programming: Using Storytelling to Make Computer Pro-
gramming Attractive to Middle School Girls”. PhD thesis. Pittsburgh, USA: Carnegie
Mellon University, School of Computer Science, Nov. 2006.

[23] Caitlin Kelleher and Randy Pausch. “Using Storytelling to Motivate Programming”. In:
Communications of the ACM 50.7 (July 2007), pp. 58–64. doi: https://doi.org/10.
1145/1272516.1272540.

[24] Irene Lee et al. “Computational Thinking for Youth in Practice”. In: ACM Inroads 2.1
(Feb. 2011), pp. 32–37. doi: https://doi.org/10.1145/1929887.1929902.

[25] Teemu Lehtinen, Lassi Haaranen, and Juho Leinonen. “Automated Questionnaires About
Students’ JavaScript Programs: Towards Gauging Novice Programming Processes”. In:
Proceedings of the 25th Australasian Computing Education Conference. Melbourne, Aus-
tralia, Jan. 2023, pp. 49–58. doi: https://doi.org/10.1145/3576123.3576129.

[26] Teemu Lehtinen, André L Santos, and Juha Sorva. “Let’s Ask Students About Their Pro-
grams, Automatically”. In: Proceedings of IEEE/ACM 29th International Conference on
Program Comprehension. Madrid, Spain, May 2021, pp. 467–475. doi: https://doi.org/
10.1109/ICPC52881.2021.00054.

https://doi.org/https://doi.org/10.1177/2372732220943232
https://doi.org/https://doi.org/10.1177/2372732220943232
https://doi.org/https://doi.org/10.1109/HICSS.2014.377
https://skillslab.tue.nl/pathtoimg.php?id=51
https://skillslab.tue.nl/pathtoimg.php?id=51
https://doi.org/https://doi.org/10.1145/3447772
https://doi.org/https://doi.org/10.1145/3344429.3372501
https://doi.org/https://doi.org/10.1109/TNNLS.2021.3070843
https://doi.org/https://doi.org/10.1145/1272516.1272540
https://doi.org/https://doi.org/10.1145/1272516.1272540
https://doi.org/https://doi.org/10.1145/1929887.1929902
https://doi.org/https://doi.org/10.1145/3576123.3576129
https://doi.org/https://doi.org/10.1109/ICPC52881.2021.00054
https://doi.org/https://doi.org/10.1109/ICPC52881.2021.00054


BIBLIOGRAPHY 83

[27] Raymond Lister, Colin Fidge, and Donna Teague. “Further Evidence of a Relationship
Between Explaining, Tracing and Writing Skills in Introductory Programming”. In: ACM
SIGCSE Bulletin 41.3 (July 2009), pp. 161–165. doi: https : / / doi . org / 10 . 1145 /
1562877.1562930.

[28] Raymond Lister et al. “A Multi-national Study of Reading and Tracing Skills in Novice
Programmers”. In: ACM SIGCSE Bulletin 36.4 (June 2004), pp. 119–150. doi: https:
//doi.org/10.1145/1044550.1041673.

[29] LM van der Lubbe et al. “Bridging the Computer Science Teacher Shortage with a Digital
Learning Platform”. In: Proceedings of the 15th International Conference on Computer
Supported Education. Prague, Czech Republic, Apr. 2023, pp. 289–296. doi: https://
doi.org/10.5220/0011971900003470.

[30] Jenni Majuri, Jonna Koivisto, and Juho Hamari. “Gamification of Education and Learning:
A Review of Empirical Literature”. In: Proceedings of the 2nd international GamiFIN
conference. Pori, Finland, May 2018, pp. 11–19.

[31] Yoshi Malaise. iSport: Towards A Smart Trainer Assitant. Master’s thesis, Vrije Univer-
siteit Brussel. June 2021.

[32] Yoshi Malaise and Beat Signer. “Explorotron: An IDE Extension for Guided and Indepen-
dent Code Exploration and Learning”. In: Proceedings of the 23rd Koli Calling Interna-
tional Conference on Computing Education Research. Koli, Finland, Nov. 2023, pp. 13–18.
doi: https://doi.org/10.1145/3631802.3631816.

[33] Michael McCracken et al. “A Multi-national, Multi-institutional Study of Assessment of
Programming Skills of First-year CS Students”. In: Working group reports from ITiCSE on
Innovation and Technology in Computer Science Education. Canterbury, UK, Dec. 2001,
pp. 125–180. doi: https://doi.org/10.1145/572133.572137.

[34] Barbara Moskal, Deborah Lurie, and Stephen Cooper. “Evaluating the Effectiveness of a
New Instructional Approach”. In: Proceedings of the 35th SIGCSE Technical Symposium
on Computer Science Education. Norfolk, USA, Mar. 2004, pp. 75–79. doi: https://doi.
org/10.1145/1028174.971328.

[35] Fiona Fui-Hoon Nah et al. “Gamification of Education: A Review of Literature”. In: Pro-
ceedings of the 1st International Conference on HCI in Business. Crete, Greece, June 2014,
pp. 401–409. doi: https://doi.org/10.1007/978-3-319-07293-7_39.

[36] Sylvia C Nassar-McMillan et al. “New Tools for Examining Undergraduate Students’
STEM Stereotypes: Implications for Women and Other Underrepresented Groups”. In:
New Directions for Institutional Research 2011.152 (Dec. 2011), pp. 87–98. doi: https:
//doi.org/10.1002/ir.411.

[37] Dale Parsons and Patricia Haden. “Parson’s Programming Puzzles: A Fun and Effective
Learning Tool for First Programming Courses”. In: Proceedings of the 8th Australasian
Conference on Computing Education. Hobart, Australia, Jan. 2006, pp. 157–163.

[38] Ken Peffers et al. “A Design Science Research Methodology for Information Systems Re-
search”. In: Proceedings of 1st International Conference on Design Science Research in
Information Systems and Technology. Claremont, USA, Feb. 2006, pp. 83–106.

[39] Anthony Robins, Janet Rountree, and Nathan Rountree. “Learning and Teaching Pro-
gramming: A Review and Discussion”. In: Computer Science Education 13.2 (Aug. 2010),
pp. 137–172. doi: https://doi.org/10.1076/csed.13.2.137.14200.

https://doi.org/https://doi.org/10.1145/1562877.1562930
https://doi.org/https://doi.org/10.1145/1562877.1562930
https://doi.org/https://doi.org/10.1145/1044550.1041673
https://doi.org/https://doi.org/10.1145/1044550.1041673
https://doi.org/https://doi.org/10.5220/0011971900003470
https://doi.org/https://doi.org/10.5220/0011971900003470
https://doi.org/https://doi.org/10.1145/3631802.3631816
https://doi.org/https://doi.org/10.1145/572133.572137
https://doi.org/https://doi.org/10.1145/1028174.971328
https://doi.org/https://doi.org/10.1145/1028174.971328
https://doi.org/https://doi.org/10.1007/978-3-319-07293-7_39
https://doi.org/https://doi.org/10.1002/ir.411
https://doi.org/https://doi.org/10.1002/ir.411
https://doi.org/https://doi.org/10.1076/csed.13.2.137.14200


84 BIBLIOGRAPHY

[40] Marsha Rossiter. “Narrative and Stories in Adult Teaching and Learning”. In: ERIC Digest
(2002).

[41] Wolfgang Schnotz. “Reanalyzing the Expertise Reversal Effect”. In: Instructional Science
38.3 (Oct. 2010), pp. 315–323. doi: https://doi.org/10.1007/s11251-009-9104-y.

[42] Carsten Schulte. “Block Model: An Educational Model of Program Comprehension as
a Tool for a Scholarly Approach to Teaching”. In: Proceedings of the 4th International
Workshop on Computing Education Research. Sydney, Australia, Sept. 2008, pp. 149–160.
doi: https://doi.org/10.1145/1404520.1404535.

[43] Sue Sentance, Jane Waite, and Maria Kallia. “Teachers’ Experiences of Using Primm to
Teach Programming in School”. In: Proceedings of the 50th ACM Technical Symposium
on Computer Science Education. Minneapolis, USA, Feb. 2019, pp. 476–482. doi: https:
//doi.org/10.1145/3287324.3287477.

[44] Sue Sentance, Jane Waite, and Maria Kallia. “Teaching Computer Programming With
PRIMM: A Sociocultural Perspective”. In: Computer Science Education 29.2-3 (Apr. 2019),
pp. 136–176. doi: https://doi.org/10.1080/08993408.2019.1608781.

[45] Beat Signer and Moira C Norrie. “As We May Link: A General Metamodel for Hypermedia
Systems”. In: Proceedings of ER 2007, International Conference on Conceptual Modeling.
Auckland, New Zealand, Nov. 2007, pp. 359–374. doi: https://doi.org/10.1007/978-
3-540-75563-0_25.

[46] Amit Singhal. Introducing the Knowledge Graph: Things, Not Strings. May 2012. url:
https://blog.google/products/search/introducing-knowledge-graph-things-

not/.

[47] John Sweller et al. “The Expertise Reversal Effect”. In: Educational Psychologist 38.1
(2003), pp. 23–31. doi: https://doi.org/10.1007/978-1-4419-8126-4_12.

[48] Christopher Watson and Frederick WB Li. “Failure Rates in Introductory Programming
Revisited”. In: Proceedings of the 2014 Conference on Innovation & Technology in Com-
puter Science Education. Uppsala, Sweden, June 2014, pp. 39–44. doi: https://doi.org/
10.1145/2591708.2591749.

[49] Jacqueline Whalley and Nadia Kasto. “Revisiting Models of Human Conceptualisation in
the Context of a Programming Examination”. In: Proceedings of the 15th Australasian
Computing Education Conference. Adelaide, Australia, Jan. 2013, pp. 67–76. doi: https:
//dl.acm.org/doi/abs/10.5555/2667199.2667207.

[50] Xiaohan Zou. “A Survey on Application of Knowledge Graph”. In: Journal of Physics:
Conference Series 1487.1 (Jan. 2020). doi: https://doi.org/10.1088/1742-6596/1487/
1/012016.

https://doi.org/https://doi.org/10.1007/s11251-009-9104-y
https://doi.org/https://doi.org/10.1145/1404520.1404535
https://doi.org/https://doi.org/10.1145/3287324.3287477
https://doi.org/https://doi.org/10.1145/3287324.3287477
https://doi.org/https://doi.org/10.1080/08993408.2019.1608781
https://doi.org/https://doi.org/10.1007/978-3-540-75563-0_25
https://doi.org/https://doi.org/10.1007/978-3-540-75563-0_25
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://doi.org/https://doi.org/10.1007/978-1-4419-8126-4_12
https://doi.org/https://doi.org/10.1145/2591708.2591749
https://doi.org/https://doi.org/10.1145/2591708.2591749
https://doi.org/https://dl.acm.org/doi/abs/10.5555/2667199.2667207
https://doi.org/https://dl.acm.org/doi/abs/10.5555/2667199.2667207
https://doi.org/https://doi.org/10.1088/1742-6596/1487/1/012016
https://doi.org/https://doi.org/10.1088/1742-6596/1487/1/012016

	Introduction
	Problem Statement
	Method
	Contributions
	Thesis Outline

	Background
	Bloom's Taxonomy
	Code Reading and Tracing
	Models for Programming Pedagogy
	The Block Model
	Use-Modify-Create
	PRIMM

	Expertise Reversal Effect
	Formative Assessment
	Parsons Problem
	Gamification
	Storytelling and Adult Learning
	Knowledge Graphs

	Related Work
	Storytelling Alice
	Questions About Learner’s Code
	Knowledge Graph Use Cases
	Co-teach Informatica's Digital Learning Platform
	iSport


	JsStories
	JsStories
	Storytelling
	PRIMM
	Content of a JsStory
	The Knowledge Graph


	Implementation
	Story Collection and Processing
	The Application
	The Knowledge Graph
	Predict Exercise
	Run Exercise
	Investigate Exercise
	Modify Exercise
	Make Exercise


	Evaluation
	Interviews
	HYF Belgium
	HYF Denmark
	Borders None
	Open Cultural Center
	Social Hackers Academy

	Survey
	Main Findings of the Evaluation

	Discussion and Future Work
	Discussion
	Future Work
	Design Improvement
	Additional Educational Material
	Prior Knowledge Test
	Students' Progress
	Web-based Application
	Other Directions


	Conclusion
	JsStory: Hope After Darkness
	Survey Results
	Screenshots

