
FACULTY OF SCIENCE AND BIO-ENGINEERING SCIENCES
DEPARTMENT OF COMPUTER SCIENCE

Towards Advanced Task Management

Master thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in de Toegepaste Informatica

Joachim Michiels

Promoter: Prof. Dr. Beat Signer
Advisor: Sandra Trullemans

Academic year 2015-2016

2

FACULTEIT WETENSCHAPPEN EN BIO-INGENIEURSWETENSCHAPPEN
VAKGROEP COMPUTERWETENSCHAPPEN

Towards Advanced Task Management

Masterproef ingediend in gedeeltelijke vervulling van de eisen voor het behalen van de graad
Master of Science in de Toegepaste Informatica

Joachim Michiels

Promotor: Prof. Dr. Beat Signer
Begeleider: Sandra Trullemans

Academiejaar 2015-2016

i

Abstract

Keeping track of the things we need to do is a common human activity. It is
something we do on a daily basis and enables us to manage our life. We are
�rst confronted with this in our childhood years when we have to use paper
agendas to write down homework assignments. This extends further in our
adolescent lives where we have to combine work-related and personal tasks
on a daily basis.

We are faced with multiple tasks everyday. Sometimes we experience
di�culties deciding which tasks we are going to do �rst, especially if we
cannot remember the task at the right place or moment. In our private lives
this can cause frustrations to friends or family and can end up with some
heated discussions. In the workplace, this becomes an even bigger problem
because we have tasks to do and deadlines to keep. If we are unable to �nish
our tasks on time, we could be wasting a lot of company resources.

This thesis represents a new way into handling tasks and the way we
are reminded of todos and tasks. Instead of being reminded in a time-based
manner. We will look into �nding a way of being reminded when we are in
the right context. We will be searching for a way to remind the user of the
right todo at the right time with the right information.

Personal Information Management is introduced for the improvement of
the organisation and re-�nding of personal information. Multiple researchers
introduced di�erent systems to support their view on how to make the man-
agement of tasks easier or better. We studied their implementations but
nevertheless we found out that only partial implementations of context re-
minding was being used. Since only partial implementations of our view on
how to improve todo management was introduced we decided to design and
implement our own todo management framework.

We take a look at the Resource-Selector-Link (RSL) model and its imple-
mentation in the form of the iServer. We study the design and implementa-
tion and the changes that were introduced to this model by the Information
Linking and Interaction (ILI) framework. We study all the di�erent design
and implementation choices that were made and further build on these with
our own todo management framework. After the adaptation to the model
and the iServer we build our own TodoServer that utilises the iServer to
implement the core functionality of the todo management framework.

We end by implementing a simple GUI to demonstrate the core com-
ponents of the todo management framework and we introduce a use case
to demonstrate a more lifelike example of utilising the todo management
framework.

ii

Declaration of Originality

I hereby declare that this thesis was entirely my own work and that any addi-
tional sources of information have been duly cited. I certify that, to the best
of my knowledge, my thesis does not infringe upon anyone's copyright nor
violate any proprietary rights and that any ideas, techniques, quotations, or
any other material from the work of other people included in my thesis, pub-
lished or otherwise, are fully acknowledged in accordance with the standard
referencing practices. Furthermore, to the extent that I have included copy-
righted material, I certify that I have obtained a written permission from the
copyright owner(s) to include such material(s) in my thesis and have included
copies of such copyright clearances to my appendix.

I declare that this thesis has not been submitted for a higher degree to
any other University or Institution.

iii

Acknowledgements

First of all, I want to thank my promoter Prof. Beat Signer for his guidance
in the thesis. He helped me when I needed it the most. Secondly, I would like
to thank my advisor Sandra Trullemans. She helped me better understand
the Information Linking and Interaction framework and helped me with the
structure of this thesis.

Furthermore I would like to thank my children, Fiebe and Ben and an-
other special person who I will not mention by name. They were my reason
and motivation to �nish this work. Many times did they have to wait for my
attention but in the end they always stood by me.

Contents

1 Introduction

1.1 Time Management and Task Management 1
1.2 Personal Information Management 3
1.3 Contribution of This Thesis 6
1.4 Thesis Structure . 7

2 Literature Review

2.1 Context-Based Task Management 9
2.2 Low-Level Extensibility . 11
2.3 Linking of Information in Tasks 13
2.4 Templates . 14
2.5 What Does Already Exist? . 14

3 Model Interpretation And Extensions

3.1 The Resource-Selector-Link Model 17
3.1.1 What is The RSL Model? 18
3.1.2 ILI Framework, an Extension to The RSL Model . . . 21
3.1.3 Extension of The ILI Framework 22

3.2 GUI and Reminder Plug-in . 26

4 Implementation

4.1 The Information Linking and Interaction Framework 31
4.2 The Implementation of The Information Linking and Interac-

tion Framework . 34
4.3 Changes Made to The iServer 36
4.4 Implementation of TodoServer 42
4.5 Implementation of GUI and Reminder Plug-in 45

5 Conclusions

5.1 Conclusion . 48
5.2 Future Work and Vision . 49

v CONTENTS

A Bibliography

1
Introduction

1.1 Time Management and Task Management

Time management is a term that is widely used in the academic world, the
professional world and in everyday life, but it is something that is di�cult
to de�ne. According to Lakein [42] time management involves the process of
determining what you need, de�ning the goals that you need to achieve and
prioritising and planning tasks required to achieve these goals. The work of
Kaufman-Scarborough and Lindquist [37] explains time management as ways
to assess the relative importance of activities through the development of a
prioritisation plan. These two de�nitions emphasise prioritising activities as
a way to e�ectively manage time.

But based on research on the literature, Brigitte J.C. Claessens, Wen-
delien van Eerde and Christel G. Rutte [17] suggest a de�nition of time
management as �behaviours that aim at achieving an e�ective use of time
while performing certain goal-directed activities�.

Time Management and Task Management 2

They de�ne that the use of time is not an aim in itself and cannot be
achieved without looking at other factors. The focus of time management is
on a goal-directed activity, such as completing a task, which is carried out
in a way that implies an e�ective use of time. According to a review of time
management literature [18] these behaviors are made of:

• Time assessment behaviours, which aim at awareness of here and now
or past, present, and future [37] and self-awareness of one's time use (at-
titudes, cognition, e.g. Wratcher and Jones [69]), which help to accept
tasks and responsibilities that �t within the limit of one's capabilities.

• Planning behaviours, such as setting goals, planning tasks, prioritising,
making to-do lists, grouping tasks (e.g. Britton and Tesser [13]; Macan
[46, 47]) which aim at an e�ective use of time.

• Monitoring behaviours, which aim at observing one's use of time while
performing activities, generating a feedback loop that allows a limit
to the in�uence of interruptions by others (e.g. Fox and Dwyer [27];
Zijlstra et al. [70]).

When they studied the impact of these behaviours, they found that plan-
ning showed the most signi�cant results. Bond and Feather [11] for instance,
found that the factor �sense of purpose� was the most important factor.
Macan [46] found that the sub-scale �goal setting and prioritising� was sig-
ni�cantly related to outcomes such as perceived control of time and job satis-
faction. Britton and Tesser [13] found a positive relation between short-range
planning and grade point average of students, whereas long-range planning
was unrelated. They stated that short-range planning was a more e�ective
time management technique than long-range planning because plans could be
adjusted to immediate changes or unpredictable situations, which allowed for
�exibility. three studies (Hall and Hursch [31]; King et al. [40]; Orpen [53])
showed a positive relation between training time management techniques and
performance meaning that performing e�ective time management strategies
could have a positive impact on what we want to accomplish.

Time management strategies are often associated with the recommenda-
tion to set goals or tasks. But then the question still remains as to which
tasks will have to be completed �rst? We will have to prioritise these tasks.
This can be done in various ways, a few examples include:

• ABC analysis [42]: This is a technique that focuses on the categorisa-
tion of large data into groups. The technique uses A, B and C priority
groups. The A, B and C are being used for:

3 CHAPTER 1. Introduction

� A: Tasks that are urgent and important

� B: Tasks that are important but not urgent

� C: Tasks that are unimportant.

With this method we can then order the tasks by priority group.

• Pareto analysis: This is the idea that 80 percent of the tasks can be
completed in 20 percent of the disposable time. The remaining 20 per-
cent of the tasks will take up the remaining 80 percent of the disposable
time. This can be used to split the tasks into two groups. The �rst
group should then get the highest priority [26].

• Eisenhower Method: This method comes from a quote attributed to
Dwight D. Eisenhower: �I have two kinds of problems, the urgent and
the important. The urgent are not important, and the important are
never urgent�. It is a method that places tasks in a decision matrix as
shown in Figure 1.1 (also known as an �Eisenhower Box� or �Eisenhower
Decision Matrix� [49]) The matrix uses the following 4 quadrants:

� Important/Urgent quadrant

� Important/Not Urgent quadrant

� Unimportant/Urgent quadrant

� Unimportant/Not Urgent quadrant

Even though there exist many other methods to prioritise tasks, we can con-
clude that the selection and completion of tasks forms an important factor
when someone wants to manage their time in a productive manner. Because
short-range planning seems to be a more e�ective time management tech-
nique than long-range planning it seems to be more optimal to focus our
research on a way to manage todos and short tasks.

1.2 Personal Information Management

Information through time has always been used to accomplish daily goals.
The �ve senses are the main input mechanisms for us humans to capture
information [12]. The brain then processes these input signals and can store
them for later use. It then organises and manages information by creating
associations between information items [65]. The main problem with the hu-
man brain is that it has a limited storage capacity and information can be lost
because people forget things. Throughout time mankind has found multiple

Personal Information Management 4

Figure 1.1: Representation of the Eisenhower matrix found on
askbutwhy.com

ways to help itself store information. It all started in ancient times where
they used writings on cave walls to store information. Later in the �fteenth
century, mankind had invented paper and used this as the preferred medium
to store information. Paper has not only been used for information storage
but also for moving information, placing information in context or remind-
ing the owner of a paper document [57]. Over the last decades, technology
has improved and personal computers, tablets, smartphones, harddisks, �ash
drives and other technological options are being used to store information.
The introduction of these new technologies simpli�es the storage of informa-
tion and ensures that there is virtually no limit on the amount of information
we can store. With this comes a new problem: The overabundance of in-
formation. Because there is so much information, it is di�cult to �nd the
right information we seek. The overabundance of information does not only
appear in �nding information in publicly available data such as on the In-
ternet. It may also occur in our own personal information space. This space
contains all the information we keep after �nding it; all the information we
receive from other people or instances and all information we produce our-
selves [63]. This personal information space does not only include digital data

5 CHAPTER 1. Introduction

but also physical data (post-its, notes written on paper, books or letters).
For example, a user may want to retrieve information about the object of a
project meeting. In their search process, they encounter an email with the
meeting minutes of that particular project meeting. This report discusses
the scope of the project meeting. Nevertheless, another received email from
one of the attendees adds remarks to this report and adds extra crucial infor-
mation to the proposed scope of the project. For the initial search problem
the second email would better �t than the �rst one where the user stopped
the search process. If one would have received less emails, they would have
been reminded of the second email and stop the search there instead of be-
ing satis�ed with the �rst one [63]. Personal information management has
a classi�cation problem and a fragmentation problem. According to Dumais
and Landauer, the classi�cation problem comes from 2 major problems [23]:

• The �rst problem comes with the labeling of information. People want
to use labels that contain lots of information because that can help them
later on when they need to retrieve the information. This introduces the
problem that time must be spent when an item needs to be classi�ed.
As Cole [19] concludes, users do not want to spend this time and only
classify if the bene�t goes beyond the initial e�ort.

• The second problem is introduced with the fact that information can
only exist in one category in the physical space without duplicating it.
But what should we do when we also need the same information in
another category? Already in 1945, Vannevar Bush envisioned the use
of selection by association instead of the categorisation of information.
He also envisioned the Memex, a mechanical device which would make
it possible to de�ne links between information items [15].

The fragmentation problem is based on the di�usion of information in both
digital and physical environments. Some information might be written down
in a notebook while other information might be stored on a laptop, all in
the same personal information space. Not only can some information be
duplicated in the digital and the physical environment, another problem lies
in the fact that the person will need to remember where which information
is stored in order to be able to retrieve it later on.

If we want to address the fragmentation problem we also need to �nd a
way to augment the human memory so that people do not need to lose time
with managing information but more enjoying life itself. How would it be if
all information is taken care by a system disappearing in our daily life? Users
would not be aware of the presence of technological support but they would
just use it as we now use a pencil to write on paper. Weiser described this

Contribution of This Thesis 6

view in 1991 in his publication entitled The Computer for the 21st Century
[67] under the term Ubiquitous Computing [63]. Most important, ubiquitous
computing will help overcome the problem of information overload. �There
is more information available at our �ngertips during a walk in the woods
[67]than in any computer system, yet people �nd a walk among trees relaxing
and computers frustrating. Machines that �t the human environment instead
of forcing humans to enter theirs will make using a computer as refreshing
as taking a walk in the woods�. [67]

The work of Trullemans [63] aims to approach the personal information
space as a Personal Cross-Media Information Space covering the digital as
well as the physical space. For this she has designed a Personal Cross-Media
Information Management System.

1.3 Contribution of This Thesis

Sandra Trullemans has created the Information Linking and Interaction (ILI)
framework. It is based on the Resource-Selector-Link (RSL) hypermedia
metamodel and provides the necessary functionality for organising personal
information, including digital media and physical artefacts, by linking objects
to each other or to semantically de�ned concepts. A major contribution is
the ability to de�ne the relevance of an information piece in a given con-
text. She also provides users the possibility to express how relevant several
information pieces are for each other. In addition to the linking functional-
ity, an interaction layer was introduced to serve as a basis for di�erent user
interfaces, �nally leading to an extensible user-centric framework [63].

This thesis builds further on the design and the principles of the In-
formation Linking and Interaction framework to implement a new way of
interacting and organising Reminders and todos. As we already discussed,
short-range planning seems to be a more e�ective time management tech-
nique than long-range planning. Therefore we focus our research to �nd a
way to manage todos and small tasks instead of large planning artefacts.
One problem with current todos is that they are everywhere and nowhere.
Some todos are written on a piece of paper, some are being stored in a dig-
ital mail, and others are kept on a post-it note. But because they are all
kept in di�erent places they loose their purpose. How can they remind the
person on the right moment of the right todo? This seems to be related
to the fragmentation problem that we discussed in the �eld of personal in-
formation management. But it does not stop there. Because people use
di�erent methods and tools to make todos (post-it notes, digitally entered
todos) our extension of the information linking and interaction framework

7 CHAPTER 1. Introduction

does not only need to resolve the fragmentation problem but also needs to
support low extensibility so that it can easily incorporate di�erent ways of
making todos.

Most current todo handling systems have limited ways of handling repet-
itive tasks. Therefore our extension needs to incorporate a way of making
and using templates to create todos.

Most todos are being used to handle a speci�c task for a speci�c moment,
which introduces another shortcoming of current todos. They only remind
the person in a time-based manner. The users are reminded only on a speci�c
time to take a speci�c action. We would like to change this, it seems optimal
to remind the user not only in a time-based manner but rather in a context-
based manner.

Another shortcoming of current todos that we like to address in this thesis
is that there is limited capability to link documents or other information to
speci�c todos. For example, it would be useful that when you are reminded
to do some shopping that you automatically are redirected to the latest
shopping list that you have stored digitally. And last but not least, our
extension needs to be ubiquitous.

The bottom line is that we want the right todo at the right situation
with the right information. In this thesis we build further on the work of
Trullemans and build further on her Information Linking and Interaction
framework to make a todo management framework to unify the input of
tasks, support the usage of templates, treat todos and send reminders in a
context-based manner and have bidirectional links between tasks and other
information items (which includes todos themselves).

1.4 Thesis Structure

The thesis is structured in four parts. The �rst part provides the neces-
sary introduction of several concepts to be able to follow the further con-
tributions. It gives an important understanding of time management, task
management and personal information management. Therefore, the second
chapter provides a literature review on the di�erent functionalities that our
implementation of a todo management framework should support.

In the second part, we discuss the model interpretations and extensions.
We explain the Resource-Selector-Link (RSL) model and explain the adap-
tations that were made by the Information Linking and Interaction (ILI)
framework. We then explain the adaptations that were necessary for our
todo management framework to operate and end by discussing the GUI that
we made and the use case that was implemented.

Thesis Structure 8

In the third part we discuss the implementation. We begin by giving an
introduction to the workings of the iServer and the way the original RSL
model was implemented in the architecture of the iServer. We then discuss
the adaptations that were made to the iServer by the Information Linking
and Interaction framework.

We then discuss our extensions to the iServer and introduce and discuss
the architecture and implementation of the todoserver which utilises the iS-
erver. We end by discussing the implementation of the GUI applications that
we made.

In the fourth and �nal part, we discuss our solutions and give our conclu-
sions about our �ndings. We end by giving our vision about possible future
work.

2
Literature Review

2.1 Context-Based Task Management

Studies have shown that people organise their work in units of work grouped
in a theme, often referred to in literature as tasks or activities [3, 21, 28].

There already exist many books and papers on how to organise these
tasks or activities and your time (e.g., [1, 20]). They all explain in one way
or another on how to prioritise an amount of tasks e�ectively [5].

An important factor in prioritising these tasks is giving them a priority
based on the moment in time they need to be completed. Tasks that need to
be completed more quickly are given a higher priority. This also leads to the
way the user is reminded of a speci�c task. This is something that is almost
always done in a time-driven manner.

Most systems remind the user of a tasks based on how much time there
is left to complete this task. For example, the user has introduced a task
that needs to be completed Saturday at 9.00 PM. The user has selected the
option that he wants to be reminded one hour in advance. The system then
reminds the user of this particular task Saturday at 8.00 PM.

But reminding the user of a particular task that needs to be executed
is not always done in a time-driven manner. As we can see in the re-
search of Ludford et al. [45] previous research has already discussed and de-
signed location-based systems. Early proof-of-concept designs include Cybre-

Context-Based Task Management 10

Minder [22] and comMotion [48]. Their work de�ned the basic idea: virtual
reminders associated with physical locations.

The E-Gra�ti [14] and the GeoNotes [25] systems were similar, but were
used in the �eld of social messaging. Other reminder systems are location
based in a di�erent way. Gate Reminder [39] is an example of this because
it is installed at the doorway of a house.

Researchers have begun implementing location-based systems on cell phones
because of the portability and the usage of GPS. For instance, DeDe supports
location- and time-based social messages. A user speci�es a place or time
when the other person will receive a text message [35]. Place-Its is another
example which runs on a cell phone and supports location-based reminders
[62].

In the research of Kessell and Chan [38] that involved the ceation of
castaway, a context-aware task management system. They start by telling
that prior work from Bellotti and Ducheneaut [4], Anhalt and Jennings [2]
and Rhodes [54] has already explored task management and the delivery of
context relevant information. Their study shows that once users got the
ability to make location-based reminders 33 % of all items required location-
based reminders.

The research we have just discussed [38] shows that there is a need for
more than only time-based reminders and once users get the opportunity to
use other options they actually use it. This already shows that only using
time-based reminders hinders the e�ectiveness of reminders and incorporat-
ing location in the way reminders are triggered can augment the e�ectiveness.

The research of Ludford [45] explains another location-based reminder
system where their studies showed that 84 % of all messages used a location-
based trigger to remind themselves of the message. This again shows that
once people have the opportunity to use location-based reminders, they ac-
tually use it. They also showed that typically, users record information at a
base location such as home or work and refer to it at the place where they
carry out their task. This indicates that the actual location and context of
the user when he records a task is not the same location or context they want
to be reminded of that particular task.

But why stop at only time and location? Besides time and location,
priority is often a context associated with managing tasks. These are also
known as retrieval contexts. They are stored together with the task in order
to provide information about when a todo can be carried out [24].

According to Bellotti one of the key features of a good reminder is: �Many
to-dos are prompts placed in-the-way in anticipation of a routine practice that
will occur at the right moment for the to-do to be discovered� [4]. The right

11 CHAPTER 2. Literature Review

moment does not only mean the right time but rather the right context. For
example, the moment you are in conferencing room A, you meet person A in
a meeting that involves project A you want to be reminded of a particular
question you want to ask person A about project A. She gives the example:
�when I go to grab my bag to go home, I'll go, I mus take that [object next to
the bag] home�. This means that reminders should be triggered in a speci�c
context instead of only on a particular time or only in a particular location.

Prospective memory, the kind of memory that involves remembering to
perform a certain todo, is subject to failure [56]. Failures in this mem-
ory which leads to failures in task management makes it that tasks aren't
completed, tasks are repeated or that the correct tasks are uncompleted.
Therefore it is important to have the correct reminder in the correct context.

2.2 Low-Level Extensibility

The way that we record tasks or todos is another thing we need to better
understand before we can begin the design of our todo management frame-
work.

Beside the problems with the prospective memory that we already dis-
cussed there is also a problem with the fragmentation of task information
on di�erent platforms. We are living in the digital age and task information
is stored in di�erent programs or applications (email, calendars and other
applications). This leads to di�culties in �nding, managing, remembering
and executing tasks.

That is why it is important that we build a framework that is capable
of supporting multiple di�erent input clients. So that all the necessary task
information is stored and used in one central place and can be used by every
connected client.

In the work of Bernstein [9] they show that information workers still like
to write information from their memory to paper. But in the research of
Lin [44] they say that digital tools are better suited for processing the cap-
tured information in the post-capture phase. This shows that paper should
remain to be a possible capture tool for us but the processing of the captured
information should be done digitally. Not only is the processing of the cap-
tured information better done digitally but also the storage of the captured
information should be done digitally because digital storage has virtual no
storage limits.

Low-Level Extensibility 12

In the paper of Dey and Abowd [22] they provide a list of the following
reminder tools:

• Paper To-Do lists

• E-Mail Mailbox

• Post-It Notes

• Personal Information Management Tool

• Human Assistant

This indicates that in order for our todo management framework to be
utilised it should support multiple input devices each suited to the speci�c
needs of their speci�c users.

In the work of Bellotti [4] they conducted a pilot study to study todos and
how they are represented. Their study showed that out of all the recorded
todos:

• 35,8 % were kept in email

• 11,6 % were kept in online calendar

• 9,7 % were kept in paper list or paper notepad

• 4,7 % were kept in online folders

• 4 % were kept in online special purpose to-do list

• 2,7 % were kept in pda calendar and list combined

• 2,2 % were kept in daytimer/bound notebook/planner

This again indicates that people use di�erent capture tools to capture their
todos. It shows the need for our todo management framework to support
multiple ways of creating tasks or todos.

But besides the need to support multiple ways of creating tasks or todos
this also shows that the fragmentation problem from personal information
management exists in task information management. Even when we look at
only digital information this problem exists.

Each program that the user uses to introduce information items stores
these items in their speci�c collection [7]. But information items from di�er-
ent programs can be used outside the scope of their programs. For example
an email is the primary source of a new event or appointment that is entered

13 CHAPTER 2. Literature Review

in a calendar. But this calendar is not only used for planning, but also for
reporting purposes and recording memorable events [66, 33].

Studies have shown that information is often organised within hierarchies
re�ecting the users' projects or tasks [7, 10, 32]. The low level extensibility
of our todo management framework could resolve these issues.

Besides the digital information fragmentation there is also the logical
information fragmentation. This type of fragmentation involves the user's
mental model of their personal task information. In the book Getting thing's
done [1] the author describes the six-level model for reviewing someones
work. This also includes the concept of �areas of responsibility�. These areas
of responsibility are areas where a person wants to achieve results. If a
particular area of responsibility that a user needs to accomplish tasks in is
not currently in his or hers focus this can result in errors.

In the work of Gonzalez and Mark [29] they discuss that �technological
support should be oriented towards helping individuals maintain both local
and global perspectives of their working spheres�. These working spheres can
be linked to the areas of responsibility that we just discussed. They also say
that a system should also support �the ability to represent information in
portable devices that can be located on their desks or hung on walls, and be
connected and synchronised with other tools such as email, electronic calen-
dars, or other systems�. Other work has also discussed the support to allow
users to organise and group based on responsibilities [4, 20]. This also leads
to the need to develop a framework that could link all the task information
from di�erent clients together and treat and di�use this information to the
di�erent connected clients. The low extensibility of our framework could help
us accomplish this.

2.3 Linking of Information in Tasks

In [45] they state that their research has discovered a common pattern for
doing everyday tasks: �people pre-plan at a base (typically home or work),
create information resources (frequently lists), and take these resources with
them to refer to at the place where the task is performed (e.g. a grocery
store)�.

This actually means that information that could help to perform the task
should be linked to the task, so that once the user is ready to perform the
task, he has all the information that he needs at his disposal. In this example
this means that once the user gets the reminder (possibly triggered because
he enters the grocery store and he is in the context of making a purchase)
he has access to the grocery list where he lists all the groceries he has to

Templates 14

buy. The bidirectional linking in the Information Linking and Interaction
framework could help us achieve this.

In the paper from Bellotti [4] their pilot study shows that �Todos are used
in multiple ways. Sometimes they are part of a list that provides a sense of the
amount of work to do. Sometimes they are resources supporting consultation,
linking to work objects, or are work objects themselves, displaying state as well
as to-do-ness�. This again shows that tasks should be able to have links to
other information but it also introduces the idea that tasks should be able
to be linked to other tasks.

These two papers show us that tasks or todos should be able to link to
information that could be useful to complete the task or todo. But we should
also look further into treating todos and tasks themselves as a resource that
can be linked to other tasks or todos.

2.4 Templates

Another interesting feature that we would like to research is the usage of
templates. In the work of Lepouras and Ioannidis [43] they use templates in
their OntoPim system. They give an example of a Task Information Manage-
ment system where a user wants to book a �ight and the Task Information
Management system already �lls in certain �elds with his personal, context-
speci�c information. The usage of templates could be a useful feature in our
extension of the Information Linking and Interaction framework.

Todo lists have also proven to be e�ective reminders of critical tasks [4],
with appropriate cues e�ectively limiting errors [16].

2.5 What Does Already Exist?

While we have looked at some speci�c points that our Todo Management
framework should incorporate it is also helpful to look at some attempts
that have already been made:

• The �rst one is Cybreminder. Cybreminder [22] is an early design that
actually incorporates the notion of context for the use of reminders.
While this is a good start, it's only a start. They incorporate the notion
of context but only at the part of delivery of the reminders. The tasks
themselves do not use context. There is no support for multiple input
devices or multiple delivery mechanisms. The task themselves are not
stored (only the reminder is stored) so there is no possibility to link to
extra information or other tasks. There is no support for templates.

15 CHAPTER 2. Literature Review

• Commotion [48] Early proof-of-concept design of location-based re-
minders. It has an auto-learning mechanisms for locations and uses
a to-do list that can be linked to a certain location. While this sup-
ports more than only time it is still limited to time and location and
doesn't incorporate the full notion of context. There is also no support
for multiple input devices, linking of information in tasks or the use of
templates.

• Not only speci�c systems are being used for task management. Folder
hierarchies are sometimes used as kind of project plans [34]. Each
folder then contains speci�c tasks for that speci�c project. Action-
oriented items like emails or temporary �les can be used as reminders
[68]. Another common �le management practice is structuring �les
within folders representing tasks [32].

What Does Already Exist? 16

3
Model Interpretation And

Extensions

In this chapter we are �rst going to take a look at the Resource-Selector-Link
(RSL)metamodel by Signer and Norrie [60] and the extensions made on this
model by Trullemans [64]. Once we understand this we can delve deeper into
making our own adaptations to support our own todo-management func-
tionalities. We end by discussing the clients that we made to test our todo
management framework and a reminder plug-in that simulates the workings
of the reminders in our todo management framework.

3.1 The Resource-Selector-Link Model

As already mentioned we are going to make modi�cations to the Resource-
Selector-Link Model (which is basically a general metamodel for hypermedia
systems dealing with data, structure and navigation information based on a
core set of link concepts) to support our todo-management functionalities.
But before we are going to do this we need to take a closer look and ex-
plain the Resource-Selector-Link (RSL) Model and the modi�cations made
by Trullemans.

The Resource-Selector-Link Model 18

Figure 3.1: the RSL metamodel as cited in [60]

3.1.1 What is The RSL Model?

In 1945 Vannevar Bush [15] gave his vision to the world and since then many
hypermedia models and systems have been developed based on his vision.
He envisioned information spaces as interlinked collections of resources.

While there exist already some attempts to provide reference models such
as Dexter [30] and the Fundamental Open Hypertext Model (FOHM) [50],
most hypermedia models and systems are isolated solutions for speci�c do-
mains or even speci�c applications. The major problem with these hyper-
media models according to Signer and Norrie [60] is the �lack of well-de�ned
conceptual models on which implementations are based. Often models are
presented as a mix of architectural, technical and conceptual features. As
a result the concepts become obfuscated and restrictions are introduced un-
necessarily due to technicalities of the envisaged implementation�.

The Resource-Selector-Link Model (RSL) was created as an answer to this
problem and several successive projects have been realised based on the RSL
metamodel for interactive paper [58]. PaperPoint [61] is an example where
the user can navigate and add comments to a PowerPoint presentation by
using a printed version of the presentation. Another example is EdFest [6]
where the technology was used to add extra functionality to the Edinburgh
Festivals Guide.

The RSL Model was de�ned using the semantic, object-oriented data
model OM [52]. The OM model is used as an operational model for data
management as well as for system design.

In the RSL model as shown in Figure 3.1, collections are represented
by white rectangles where in each collection the shaded rectangle shows the
type of the objects. Oval shapes represent associations and are de�ned be-

19 CHAPTER 3. Model Interpretation And Extensions

tween elements of collections. Cardinality constraints can be set for each
participating collection in the association.

The most generic collection in the RSL model is the Entities collection.
This collection is extended by the Links collection, the Resources collection
and the Selectors collection. A partition constraint is used to ensure that
an entity can only be a member of one of these three collections.

The Resources collection only contains objects of the type resource and
each resource represents an information unit.

The Selectors collection contains objects of the type selector and is
being used when we want to address speci�c parts of a resource. An as-
sociation RefersTo represents the fact that a selector is always associated
with exactly one resource, whereas each resource can have more than one
referencing selector.

The third collection is the Links collection which contains objects of the
type link. These are directed many-to-many links between entities. A
source may be an entire resource, parts of a resource addressed by a selec-
tor or even another link. This is being represented in the RSL model because
the collection Entities is the target collection of both the HasSource and
the HasTarget associations.

A link can have more than one source as well as more than one target.
But each link needs to have at least one source and one target. Because
the underlying OM model [41] provides bidirectional associations. All the
associations in the RSL model are also bidirectional.

The HasProperties association in the RSL model is being used to asso-
ciate properties to an entity. These properties are stored as a set of string
tuples in an entity's property attribute. These properties are not prede-
�ned by a system implementing the model. This leads to the possibility to
customise the behaviour for a speci�c entity object.

The RSL model features the use of Layers. We have already explained
the usage of selectors to select a part of a resource. But what happens
when the parts of a resource de�ned by di�erent selectors overlap? For
example, what happens when Selector A refers to a piece of text on Paper A
and Selector B refers to a particular word within the piece of text A on
the same paper A? When the user now points to the overlapping part, both
selectors will be activated. To avoid this the RSL model introduces the
notion of Layers. The association OnLayer is used to relate each selector

to exactly one layer. The association is de�ned so that each layer may
contain multiple selectors but overlapping selectors may not appear on
the same layer.

Another feature of the RSL model is user management. The user man-

The Resource-Selector-Link Model 20

Figure 3.2: Links as cited in [60]

agement part provides the functionality of de�ning speci�c access rights to
individuals or groups of individuals to implement the notion of data own-
ership. Most early hypermedia systems did not implement a representation
of users as part of the model, whereas some adaptive hypermedia models
(e.g. AHAM [8]) did introduce the concept of user models.

In the RSL model, each entity is created by one individual and an
individual may create multiple entities. Each individual is a user

whereas users can also be groups of users by using the association HasMembers.
This also means that a group of users can consist of di�erent individuals
but also other groups of users. The associations AccessibleTo and InaccessibleTo
are used to manage di�erent access-rights to di�erent users or groups of
users.

The last feature that was introduced in the RSL model was the introduc-
tion of navigational and structural links as shown in Figure 3.2. A partition
constraint is used to ensure that a link is either a navigational link or a
structural link.

The collection Structural Links is a subcollection from the collection
Links. A structure is a member of the collection Structures. The HasElements
association is being used to ensure that a structure can contain multi-
ple structural links but a structural link can only be contained within one
structure. For example, we can look at how a book can use this model.
A book has di�erent chapters and each chapter can consist of multiple sec-
tions. A chapter is a structure which consists of multiple structural links to
di�erent sections. Each section is also a structure and consists of structural
links between resources. A resource may of course be the target or source of

21 CHAPTER 3. Model Interpretation And Extensions

several structural links which leads to the reuse of data in a document. This
is also known as transclusion as mentioned by Nelson [51].

3.1.2 ILI Framework, an Extension to The RSL Model

Trullemans and Signer [64] have made adaptations to the RSL model to
match with the conceptual human memory model.

Figure 3.3: Objects as cited in [64]

The conceptual human memory model makes a distinction between con-
cepts which are internal to the memory and objects which are external to the
memory. So they introduced the collection Contexts, the collection Objects

and the collection Concepts in the RSL model as shown in Figure 3.3. The
collection Objects uses a partition constraint to ensure that an object is ei-
ther a physical object or a digital object. The collection Resources has been
extended with the collections Contexts, Concepts, Physical Objects and
Digital Objects. A disjoint constraint is used to ensure that a resource

can only be a concept, a physical object or a digital object.
Secondly, the conceptual human memory model imposes a distinction

between associative links and extent links. Extent Links are a subcollection
of Links because they have the semantics of linking objects as shown in
Figure 3.4. Whereas associative links are more seen as a speci�c type of
navigational links since they represent the navigation functionality between
concepts. Therefore, they are a subcollection of the collection Navigational

Links instead of the collection Links [63] .
The third adaptation they have made was the introduction of a new type

of association namely the weighted association. This is an association that
adds the functionality to add a weight within a range from 0 to 1 to the
association itself. Therefore, she has introduced the weighted associations

The Resource-Selector-Link Model 22

Figure 3.4: Links as cited in [63]

HasSourceRelevance which has its startpoint at the association HasSource

and the HasTargetRelevance weighted association which has its startpoint
at the association HasTarget. Both weighted associations have a Context

instance as targetpoint as shown in Figure 3.5. In this way, each source and
target of a link may have their own relevancy to a context.

3.1.3 Extension of The ILI Framework

After the introduction and discussion of the RSL metamodel and the adap-
tations made by the ILI framework as shown in Figure 4.1, we may elaborate
on the extensions made in the context of this thesis subject matter as shown
in Figure 3.7.

The �rst extension of the ILI model is the introduction of the collection
Tasks. The collection Tasks is a subcollection of the collection Resources.
We add this new collection in the disjoint constraint so that a resource

can only be a concept, a physical object, a digital object, a template
or a task. We also introduce the collection Todos. In our framework we
implement tasks as todos that are either completed or as todos that are
not yet started. Therefore the collection Todos is a subcollection of the
collection Tasks.

Both the collection Todos and the collection Tasks have an association
OnArtefact to model that todos and tasks can be found on both physical

objects or digital objects. The association OnArtefact uses cardinal-
ity constraints to implement that tasks or todos can reference to multiple

23 CHAPTER 3. Model Interpretation And Extensions

Figure 3.5: Integration of context as cited in [63]

objects and objects can reference to multiple todos or tasks.
Another collection that we introduce is the collection Templates. This

collection is also a subcollection of the collection Resources and also utilises
the disjoint constraint. It has a many to many association HasContent to
model that a template can consist of multiple tasks and a task can be part
of multiple templates.

The fourth new collection that we introduce is the collection Reminders.
Reminders are the way that we want to remind a user of a particular todo.
We implement the weighted association HasReminder to model that we want
an ordered list of reminders for a particular task. The association HasReminder
has also an association HasReminderRelevance with the collection Contexts

to model that we want an ordered list of reminders for a particular task but
also for a particular context. For example, User A wants to be reminded
on his tablet of todo A when he is in the context A. He gives this a priority
of 0.8 . He also wants to be reminded on his phone of todo A when he is in
the context A but he gives this a lower priority of 0.6 . The moment he is
in the context A he gets reminded on his tablet of todo A because he gave
this a higher priority. If his tablet had run out of power and was no longer
available he would have been reminded on his phone because this had the
second highest priority.

The �fth new collection that we introduce is the collection TodoStructures.
It is a subcollection of the collection Structures and it has a one to many
association Represents with the collection Tasks. We implement this to

The Resource-Selector-Link Model 24

Figure 3.6: the ILI framework model as cited in [64]

25 CHAPTER 3. Model Interpretation And Extensions

Figure 3.7: Integration of Todo functionalities

GUI and Reminder Plug-in 26

model the use of todo lists. Each todoStructure has at least one task and
a task can be part of multiple todostructures.

3.2 GUI and Reminder Plug-in

As shown in Figure 4.3, the todo framework consists of a todoserver that is
incorporated in the task framework that utilises the Information Linking and
Interaction framework. Di�erent clients that facilitate the input and manip-
ulation of todos, todolists, templates and reminders utilise the todoserver to
do this.

Figure 3.8: Visual representation of the todo framework

The reminder plug-ins register themselves in the todoserver and the to-
doserver facilitates the reminder procedures and makes it possible to remind
the user on the correct reminder plug-in.

The �rst GUI that we created was a windows tray application that is
capable to call all the di�erent functions of the todoserver as shown in Fig-
ure 3.9. This GUI was created for basic testing purposes and to demonstrate
the functionality of the todoserver.

When you right click on the icon in the windows task tray a menu opens
where you can select all the basic functions of the todoserver.

When you select the option Add Task from the main menu a new box
opens where you can input a name and a description for the new task as
shown in Figure 3.10. Clicking on ok will let the todoserver create the task.

Selecting the option Manage Tasks from the main menu will open a box
where you can select a created task and change its name or description as
shown in Figure 3.11. In this box it is also possible to delete an already
created task.

The screenshots above are given to re�ect the basic look and feel of the
application. The two next functions are related to the linking of reminders
to todos. This functionality is split in two functions: Add reminder with

27 CHAPTER 3. Model Interpretation And Extensions

Figure 3.9: windows tray application menu

context and Add reminder no context. When you select you want to add
a reminder to a task with context, the application opens a box where you
can select a Task from a list. When you select a task you get the option to
select a reminder, a context and the priority for this reminder. The program
also shows all the already linked reminders to this task. Adding a reminder
without context works the same way but without the option to select a
context.

When one clicks on Create template this opens up a box where you can
enter a name for the template and a description for this template.

You can then select Adding tasks to template in the main menu to
manage your newly created template. This opens a box where you can select
a template and a task to add to this template. It also shows the already
linked tasks to this template.

The option Removing tasks from template in the main menu opens
up a box where you can select a template and a task to remove from this
template.

Another option in the main menu is the option Create taskstructure.
This opens a box where you can enter a name for the taskstructure and a
description for the new taskstructure. You also have to select a task since
there is no reason to make a taskstructure without at least linking one task
to this structure.

Another little tray application that we created is the implementation
of a reminder plug-in. This little tray application only has the option to
change its state to online or o�ine. This way we can simulate the available

GUI and Reminder Plug-in 28

Figure 3.10: Creating a task

and unavailable behaviour of a reminder plug-in. By instantiating multiple
instances of this application we can simulate the use of multiple reminder
plug-ins and monitor their behaviour in our todo management framework.

Another tray application we implemented was the context changer. It is
another small tray application that only has the option to change the current
context of the todoserver. Together with the other two tray applications we
have all the means necessary to simulate all the di�erent functionalities of
our todo management framework.

The last tray application was created to simulate a use case where we
wanted to give a more lifelike example. The idea behind this application
was to simulate the use of the todoserver for a more practical use. The idea
was to implement the system of templates so that templates are used as a
blueprint for todolists. A template can only have a name, a description and
a list of linked digital objects. But without todos that can be linked to this
template.

A todolist on the other hand is an implementation of a speci�c template.
When you want to create a todolist you have to select a template to start
from, together with the digital objects that are linked to the template that
you want to use. Once the todolist is created you can then add or remove
tasks. The tasks themselves can be linked to a reminder and a context
together with a priority. Reminders are plug-ins that need to register them-
selves to the todoserver. A reminder has the status available or not available.
Once the user's current context changes the todoserver needs to check all the
tasks that this user has made and check which of these tasks are linked to
the current context with a reminder. For each of these tasks the todoserver
then has to check which registered reminder is available and has the highest
priority for this task. The found reminder is then triggered by the todoserver

29 CHAPTER 3. Model Interpretation And Extensions

Figure 3.11: Example of editing a task

to remind the user of this speci�c task.

GUI and Reminder Plug-in 30

4
Implementation

After the introduction of the RSL metamodel and our extensions to it in the
previous chapter, a discussion of the implementation is given. Initially, the
iServer implementation [59] was done in OMS Java [41]. In this chapter we
are �rst going to explore the Information Linking and Interaction Framework.
We will then discuss how the Information Linking and Interaction Framework
is implemented and end with an explanation about our extensions to this
framework to implement our todo management framework.

4.1 The Information Linking and Interaction

Framework

Researchers are faced with a big challenge in designing and implementing
entire PIM systems for user interface evaluations. Their work consists of
organising the personal information on the one hand but also on the visu-
alisation and interaction with personal information on the other hand. The
organizing part is done by associations at the lower system level but the
visualisation and interaction is done at a higher level.

The Information Linking and Interaction (ILI) Framework tries to solve
this problem by separating concerns of the associations at lower level and the
user interface design at higher level [63] as shown in Figure 4.1.

The Information Linking and Interaction Framework 32

Figure 4.1: the ILI framework as cited in [63]

33 CHAPTER 4. Implementation

The ILI framework uses a layered design to separate the concerns of infor-
mation linking and information interaction. Figure 4.1 shows the ILI archi-
tecture. The �rst thing we notice in this �gure is that the framework consists
of four parts (db4o database, Link layer, Interaction layer and User interface
Plug-ins). The db4o database is used for persistence and the User interface
Plug-ins are used for fast prototyping. But the separation of concerns takes
place at the Link layer and Interaction layer.

The link layer focuses on the information linking and uses associations at
the system level. The functionality of this layer can be compared to systems
such as HayStack [36] and Gnowsis [55]. The Link layer provides much more
functionality than only associative linking. It also includes the contextual
relevancy of these associative links and the time-based organisation of infor-
mation items. To facilitate all of the above this layer uses a data model which
is based on an extension of the Resource-Selector-Link metamodel (which we
already discussed). To incorporate the Resource-Selector-Link metamodel
this layer was based on the The iServer by Signer and Norrie [59]. The orig-
inal iServer was made in OMS Java [41] but was later also remade in Java
and improved by Trullemans to support the needed functionality given in the
conceptual model of the human memory [63]. A Facade and Strategy design
pattern is used to enhance the layered architecture and the reusability of
the iServer in other applications. The iServer Facade Interface provides the
interface for client applications. This interface is then provided in three im-
plementation versions. The �rst version includes the original iServer with the
implementation of the core RSL metamodel elements. The second version
includes the extended iServer implementation and is called the iServerCCO
version. The third version includes our extension to the iServer implementa-
tion to support our todo-management and is called the iServerTODO version.

Secondly, the interaction layer concerns the needed functionality for PIM
user interface design and focuses on the information interaction. This layer
is formed of three components:

• a PIM component

• a User Interface (UI) component

• a General UI calls component

The UI component provides the functionality to register a user interface
which can then be used by other user interfaces. A plug-in mechanism is also
provided for these user interfaces.

The General UI calls component provides commonly used calls by the
user interfaces.

The Implementation of The Information Linking and Interaction

Framework 34

But the most important component of the Interaction layer is the PIM
component. This component controls the access to the Link layer by hav-
ing the functionality to access the underlying iServer. Besides this, it also
provides an abstraction to link elements [63].

Also the current state of a user's personal information organisation is kept
and a database for PIM-speci�c elements is provided by the PIM component.

4.2 The Implementation of The Information Link-

ing and Interaction Framework

The core of the iServer as shown in Figure 4.2 is the implementation of an
adapted strategy pattern to support the Create, Read, Update and Delete
(CRUD) functionalities.

Figure 4.2: Implementation of the core classes of iServer

The purpose of a Strategy pattern is to decouple the client from the
actual implementation of the iServer. A second feature of the pattern is
the ability to switch between iServer versions without any additional e�ort
required by the client. In the Information Linking and Interaction framework
they provide two versions: the core iServer version and a Context-Concept-
Object iServer version (iServerCCO). The client can switch between the two
implementations by only instantiating the other version. This gives the client
the ability to dynamically switch between the two versions and this gives the
iServer the ability to change its implementation without a�ecting the client.

Only the CRUD operations of the core RSL metamodel are provided by
the iServerInterface. The iServerInterface is supertyped with an additional

35 CHAPTER 4. Implementation

interface for each extension on the RSL metamodel. This is done to assure
the client that there will be no changes in this interface. The iServerInterface
inherits these additional methods but the client only has to be aware of these
inherited methods if they want to actually use them.

The abstract class iServerFacade is introduced to overcome the problem
that if we change the implementation of one method concerning a CRUD
operation, this needs to be done in every single extended iServer version. The
abstract class iServerFacade only implements the CRUD operations of the
core RSL metamodel. All extensions then have to inherit from this abstract
class and have to provide their implementation of the CRUD operations of
their own extensions of the core RSL metamodel. If there is a change needed
in one of the core CRUD operations, we only have to change the abstract
class iServerFacade and by means of inheritance it will be changed in all
implemented iServer versions.

Every extension of the core RSL metamodel has to expand the iServer-
FacadeException class with its own methods throwing an unsupported ex-
ception.

The ILI framework also contains a general abstract AbstractRSLElement
class where each stored data object need to be subtyped from. This is done
so that a unique identi�er is automatically set by every creation of each RSL
metamodel object and the objects of its extensions. Therefore two or more
iServer versions would always provide a unique name for each object.

The iServer also uses a system of listeners for client applications. All
methods concerning CRUD operations in the iServer �re noti�cations to the
registered listeners. A client can then listen to any speci�c operation or to
operations on the whole iServer. These listeners are also implemented for
the iServerCCO version.

The Information Linking and Interaction framework also introduced ex-
plicit associations and weighted associations in the new RSL metamodel im-
plementation. Since associations are bidirectional, the Java implementation
contains two hashtables: the domainCollection hashstable and the rangeCol-
lection hashtable. An association has a startpoint and a target.

When you make an association, the domainCollection hashtable as well
as the rangeCollection hashtable are used with this new association to make
sure that the association is bidirectional. The domainCollection hashtable
adds the pair (domain object, rangeobject) and the rangeCollection hashtable
adds the pair (range object, domain object). When the domainCollection
hashtable or the rangeCollection hashtable already contain the key object,
the value object is added to this key.

A di�erent kind of association that was also implemented was the weighted

Changes Made to The iServer 36

association. A weighted association de�nes a weight between 0 and 1 to a
relation between a domain object and a range object (like the normal associa-
tion). But in a weighted association the domain object can be another associ-
ation. To implement this the Information Linking and Interaction framework
de�nes a type AssociationInstance. This type has two attributes, a domain
and a range (like a normal association). In a weighted association, the do-
mainCollection is de�ned as a hashtable where the key is an AssociationIn-
stance and the value is another hashtable where the key is an object (the
range object) and the value is a double (the weight). The rangeCollection
in a weighted association is de�nes as another hashtable where the key is an
object (the range object) and the value is another hashtable where the key is
of the type AssociationInstance and the value is a double (the weight). This
is done so that the bidirectionality of the weighted association is guaranteed.

4.3 Changes Made to The iServer

Multiple changes were made to the Information Linking and Interaction
framework to implement the todo management framework as shwon in Fig-
ure 4.3. The �rst thing that we will discuss are the changes that were made
to the iServer as shown in Figure 4.4.

Figure 4.3: visual representation of the Todo framework

First of all we have made changes to the core of the iServer that we dis-
cussed in the previous section. We have added the interface IServerTODOIn-
terface which de�nes all the necessary collections and methods needed in the
Todo management framework. The new version of the iServer which implem-
ments all the todo management framework functionalities can be found in the
IServerTODO class. A client needs to instantiate this class to have access to
the TODO iServer functionalities. The IServerTODO class implements the
same system of listeners and action-�ring as the Information Linking and In-

37 CHAPTER 4. Implementation

Figure 4.4: Changes made to the iServer

teraction framework. Therefore we also introduced the necessary event and
listener classes in the IServer.

We will look in deatil at the adaptations that were necessary to implement
the method createTask in IServerTODO:

pr i va t e s t a t i c HashSet<TaskListener> ta s kL i s t e n e r s = new HashSet<
TaskListener >() ;

HashSet<Co l l e c t i on> c o l l e c t i o n s = new HashSet<Co l l e c t i on >() ;
Co l l e c t i on r e s ou r c e s = (Co l l e c t i o n) getDatabaseManager () . read (Co l l e c t i o n .

c l a s s , " type == Resources ") . g e tF i r s t () ;
Co l l e c t i on ta sk s = new Co l l e c t i o n ("Tasks" , r e s ou r c e s) ;
c o l l e c t i o n s . add (ta sk s) ;

f o r (Co l l e c t i o n c o l : c o l l e c t i o n s) {
i f (getDatabaseManager () . read (org . s i g t e c . odiJava . Co l l e c t i on . c l a s s , " type ==

 \""+co l . getTypeName ()+"\"") . g e tF i r s t () == nu l l) {
getDatabaseManager () . c r e a t e (c o l) ;

}
}

This code initialises a HashSet TaskListeners that will contain all the
listeners of the type TaskListener. The other code is used to populate the
HashSet collections with the tasks that are found in the Database.

HashSet<B id i r e c t i o na lA s s o c i a t i o n > a s s o c i a t i o n s = new HashSet<
B id i r e c t i o na lA s s o c i a t i o n >() ;

a s s o c i a t i o n s . add (new B i d i r e c t i o n a lA s s o c i a t i o n (org . s i g t e c . od i . Constant .
INFINITY ,

org . s i g t e c . od i . Constant . INFINITY , " hasRepresentat ion ")) ;
a s s o c i a t i o n s . add (new B i d i r e c t i o n a lA s s o c i a t i o n (org . s i g t e c . od i . Constant .

INFINITY ,
org . s i g t e c . od i . Constant . INFINITY , "hasContent")) ;

a s s o c i a t i o n s . add (new B i d i r e c t i o n a lA s s o c i a t i o n (org . s i g t e c . od i . Constant .
INFINITY ,

Changes Made to The iServer 38

org . s i g t e c . od i . Constant . INFINITY , " onArte fact ")) ;
Orde r edB id i r e c t i ona lAs so c i a t i on displayedBy = new

Orde r edB id i r e c t i ona lAs so c i a t i on (org . s i g t e c . od i . Constant . INFINITY ,
org . s i g t e c . od i . Constant . INFINITY , "hasReminder") ;

B id i r e c t i ona lWe ightedAssoc i a t i on HasReminderRelevance = new
Bid i r e c t i ona lWe ightedAssoc i a t i on (org . s i g t e c . od i . Constant . INFINITY , org
. s i g t e c . od i . Constant . INFINITY , "hasReminderRelevance") ;

f o r (B i d i r e c t i o n a lA s s o c i a t i o n as s : a s s o c i a t i o n s) {
i f (getDatabaseManager () . read (B i d i r e c t i o n a lA s s o c i a t i o n . c l a s s , " type == \"

"+ass . getType ()+"\"") . g e tF i r s t () == nu l l) {
getDatabaseManager () . c r e a t e (a s s) ;

}
}

i f (getDatabaseManager () . read (Orde r edB id i r e c t i ona lAs so c i a t i on . c l a s s , " type
== \""+displayedBy . getType ()+"\"") . g e tF i r s t () == nu l l) {

getDatabaseManager () . c r e a t e (displayedBy) ;
}

i f (getDatabaseManager () . read (B id i r e c t i ona lWe ightedAssoc i a t i on . c l a s s , " type
== \""+HasReminderRelevance . getType ()+"\"") . g e tF i r s t () == nu l l) {

getDatabaseManager () . c r e a t e (HasReminderRelevance) ;
}

getDatabaseManager () . commit () ;

The above code is used to initialise our HashSet associations and populate
this HashSet with all the necessary associations needed by tasks.

pub l i c synchron ized void addTaskListener (TaskListener l i s t e n e r) {
i f (l i s t e n e r == nu l l) {
re turn ;

}
e l s e {
t a s kL i s t e n e r s . add (l i s t e n e r) ;

}
}

pub l i c synchron ized void removeTaskListener (TaskListener l i s t e n e r) {
t a s kL i s t e n e r s . remove (l i s t e n e r) ;

}
protec t ed synchron ized void f i r e T a s k I n i t i a l i s e d (TaskEvent e) {

f o r (I S e r v e rL i s t e n e r l i s t e n e r : l i s t e n e r s) {
l i s t e n e r . t a s k I n i t i a l i s e d (e) ;

}
f o r (TaskListener l i s t e n e r : t a s kL i s t e n e r s) {

l i s t e n e r . t a s k I n i t i a l i s e d (e) ;
}

}

protec t ed synchron ized void f ireTaskUpdated (TaskEvent e) {
f o r (I S e r v e rL i s t e n e r l i s t e n e r : l i s t e n e r s) {

l i s t e n e r . taskUpdated (e) ;
}
f o r (TaskListener l i s t e n e r : t a s kL i s t e n e r s) {

l i s t e n e r . taskUpdated (e) ;
}

}

39 CHAPTER 4. Implementation

protec ted synchron ized void f i r eTaskDe l e t ed (TaskEvent e) {
f o r (I S e r v e rL i s t e n e r l i s t e n e r : l i s t e n e r s) {

l i s t e n e r . taskDe le ted (e) ;
}
f o r (TaskListener l i s t e n e r : t a s kL i s t e n e r s) {

l i s t e n e r . taskDe le ted (e) ;
}

}

With the above code we implement the methods to add and remove
tasklisteners (addTaskListener and removeTaskListener) and we implement
the methods to �re TaskEvents to notify our iserver when a client cre-
ates, updates or deletes a task (�reTaskInitialised, �reTaskUpdated and �re-
TaskDeleted).

pr i va t e void s e tOb j e c tAs so c i a t i on s (Object ob j e c t) {
B i d i r e c t i o n a lA s s o c i a t i o n as s = (B i d i r e c t i o n a lA s s o c i a t i o n)

getDatabaseManager () . read (B i d i r e c t i o n a lA s s o c i a t i o n . c l a s s , " type == \""
+ " onArte fact "+"\"") . g e tF i r s t () ;

ob j e c t . s e tOnArte fac tAssoc ia t i on (as s) ;
getDatabaseManager () . update (ob j e c t) ;

}

p r i va t e void updateObjectAssoc ia t ions (Object ob j e c t) {
getDatabaseManager () . update (ob j e c t . ge tOnArte fac tAssoc ia t ion ()) ;

}

p r i va t e void de l e t eOb j e c tAs s o c i a t i on s (Object ob j e c t) {
B i d i r e c t i o n a lA s s o c i a t i o n as s = (B i d i r e c t i o n a lA s s o c i a t i o n)

getDatabaseManager () . read (B i d i r e c t i o n a lA s s o c i a t i o n . c l a s s , " type == \""
+ " onArte fact "+"\"") . g e tF i r s t () ;

a s s . removeRangeObject (ob j e c t) ;
getDatabaseManager () . update (as s) ;

}

pub l i c D ig i t a lOb j e c t c r e a t eD i g i t a lOb j e c t (S t r ing name , S t r ing ur i , I nd i v i dua l
c r e a t o r) throws Card ina l i tyConst ra in tExcept ion {

Dig i t a lOb j e c t ob j e c t = new Dig i t a lOb j e c t (u r i) ;
s e tRe sou r c eAs soc i a t i on s (ob j e c t) ;

ob j e c t . setName (name) ;
ob j e c t . s e tLabe l (new F i l e (u r i) . getName ()) ;
ob j e c t . s e tCrea to r (c r e a t o r) ;
getDatabaseManager () . c r e a t e (ob j e c t) ;
s e tOb j e c tAs so c i a t i on s (ob j e c t) ;
Co l l e c t i on co l = (Co l l e c t i o n) getDatabaseManager () . read (Co l l e c t i o n . c l a s s , "

type == Dig i t a lOb j e c t s ") . g e tF i r s t () ;
c o l . add (ob j e c t) ;
getDatabaseManager () . update (c o l) ;
f i r e D i g i t a l O b j e c t I n i t i a l i s e d (new Dig i ta lObjectEvent (ob j e c t)) ;
r e turn ob j e c t ;

} // crea t eOb jec t

pub l i c void updateDig i ta lObjec t (D ig i t a lOb j e c t ob j e c t) {
updateResourceAssoc iat ions (ob j e c t) ;
updateObjectAssoc ia t ions (ob j e c t) ;
getDatabaseManager () . update (ob j e c t) ;
f i r eD ig i t a lOb j e c tUpdated (new Dig i ta lObjectEvent (ob j e c t)) ;

Changes Made to The iServer 40

} // updateObject

pub l i c void d e l e t eD i g i t a lOb j e c t (D ig i t a lOb j e c t ob j e c t) {
Co l l e c t i on co l = (Co l l e c t i o n) getDatabaseManager () . read (Co l l e c t i o n . c l a s s , "

type == Dig i t a lOb j e c t s ") . g e tF i r s t () ;
c o l . removeAllPropagated (ob j e c t) ;
removeResourceAssoc iat ions (ob j e c t) ;
d e l e t eOb j e c tAs s o c i a t i on s (ob j e c t) ;
getDatabaseManager () . update (c o l) ;
getDatabaseManager () . d e l e t e (ob j e c t) ;
f i r eD i g i t a lOb j e c tDe l e t e d (new Dig i ta lObjectEvent (ob j e c t)) ;

} // de l e t eOb j e c t

pub l i c Phys ica lObject c r ea t ePhys i ca lOb j e c t (S t r ing name , I nd i v i dua l c r e a t o r)
throws Card ina l i tyConst ra in tExcept ion {

Phys ica lObject ob j e c t = new Phys ica lObject () ;
s e tRe sou r c eAs soc i a t i on s (ob j e c t) ;
s e tOb j e c tAs so c i a t i on s (ob j e c t) ;
ob j e c t . setName (name) ;
ob j e c t . s e tLabe l (name) ;
ob j e c t . s e tCrea to r (c r e a t o r) ;
getDatabaseManager () . c r e a t e (ob j e c t) ;
Co l l e c t i on co l = (Co l l e c t i o n) getDatabaseManager () . read (Co l l e c t i o n . c l a s s , "

type == Phys i ca lObjec t s ") . g e tF i r s t () ;
c o l . add (ob j e c t) ;
getDatabaseManager () . update (c o l) ;
f i r e P h y s i c a lO b j e c t I n i t i a l i s e d (new Physica lObjectEvent (ob j e c t)) ;
r e turn ob j e c t ;

} // crea t eOb jec t

pub l i c void updatePhys ica lObject (Phys ica lObject ob j e c t) {
updateResourceAssoc iat ions (ob j e c t) ;
updateObjectAssoc ia t ions (ob j e c t) ;
getDatabaseManager () . update (ob j e c t) ;
f i r ePhys i ca lObjec tUpdated (new Physica lObjectEvent (ob j e c t)) ;

} // updateObject

pub l i c void de l e t ePhys i c a lOb j e c t (Phys ica lObject ob j e c t) {
removeResourceAssoc iat ions (ob j e c t) ;
Co l l e c t i on co l = (Co l l e c t i o n) getDatabaseManager () . read (Co l l e c t i o n . c l a s s , "

type == Phys i ca lObjec t s ") . g e tF i r s t () ;
c o l . removeAllPropagated (ob j e c t) ;
getDatabaseManager () . update (c o l) ;
d e l e t eOb j e c tAs s o c i a t i on s (ob j e c t) ;
getDatabaseManager () . d e l e t e (ob j e c t) ;
f i r ePhy s i c a lOb j e c tDe l e t ed (new Physica lObjectEvent (ob j e c t)) ;

} // de l e t eOb j e c t

We also had to change the implementation that the Information Linking
and Interaction framework made for digital and physical objects because our
adaptations to the RSL model gave a new OnArtefact association to these
objects.

pub l i c Task createTask (S t r ing name , S t r ing de s c r i p t i on , I nd i v i dua l c r e a t o r) {
Task task = new Task () ;

task . setName (name) ;
task . s e tDe s c r i p t i on (d e s c r i p t i o n) ;
getDatabaseManager () . c r e a t e (task) ;

41 CHAPTER 4. Implementation

Co l l e c t i on co l = (Co l l e c t i o n) getDatabaseManager () . read (Co l l e c t i o n . c l a s s , "
type == Tasks") . g e tF i r s t () ;

c o l . add (task) ;
getDatabaseManager () . update (c o l) ;

t h i s . s e tRe sou r c eAs soc i a t i on s (task) ;
Orde r edB id i r e c t i ona lAs so c i a t i on as s = (Orde r edB id i r e c t i ona lAs so c i a t i on)

getDatabaseManager () . read (Orde r edB id i r e c t i ona lAs so c i a t i on . c l a s s , " type
== hasReminder") . g e tF i r s t () ;

task . setHasReminderAssoc iat ion (as s) ;

B i d i r e c t i o n a lA s s o c i a t i o n ass2 = (B i d i r e c t i o n a lA s s o c i a t i o n)
getDatabaseManager () . read (B i d i r e c t i o n a lA s s o c i a t i o n . c l a s s , " type ==
hasContent") . g e tF i r s t () ;

task . setHasContentAssoc iat ion (ass2) ;

B i d i r e c t i o n a lA s s o c i a t i o n ass3 = (B i d i r e c t i o n a lA s s o c i a t i o n)
getDatabaseManager () . read (B i d i r e c t i o n a lA s s o c i a t i o n . c l a s s , " type ==
hasRepresentat ion ") . g e tF i r s t () ;

task . s e tHasRepre s enta t i onAssoc i a t i on (ass3) ;

B i d i r e c t i o n a lA s s o c i a t i o n ass4 = (B i d i r e c t i o n a lA s s o c i a t i o n)
getDatabaseManager () . read (B i d i r e c t i o n a lA s s o c i a t i o n . c l a s s , " type ==
onArte fact ") . g e tF i r s t () ;

task . s e tOnArte fac tAssoc ia t i on (ass4) ;

B id i r e c t i ona lWe ightedAssoc i a t i on ass5 = (B id i r e c t i ona lWe ight edAssoc i a t i on)
getDatabaseManager () . read (B id i r e c t i ona lWe ight edAssoc i a t i on . c l a s s , " type
 == hasReminderRelevance") . g e tF i r s t () ;

task . setHasReminderRelevanceAssoc iat ion (ass5) ;

getDatabaseManager () . update (task) ;
f i r e T a s k I n i t i a l i s e d (new TaskEvent (task)) ;
r e turn task ;

}

And last but not least, we implemented the createTask method. In this
method we begin by initialising the task object. We set the name and the
description of this task. We create the task in the db4o database. We add this
task object to the tasks collection. We then tell the database to update this
changed collection. Since the Task object inherits from the Resource class
we use the method setResourceAssociations to initiate all the associations
available to an object of the type Resource.

We then initialise every association related to the Task object, tell the
database to update our newly created task and last but not least we �re a
TaskEvent to tell the system that a new task has been created. We end by
giving back the newly created Task object.

The IServerFacadeExceptions class was adapted to support the new todo
exceptions.

We also added the classes Reminder, Task, TaskStructure and Template
to introduce our RSL model into the iServer implementation. As we discussed
in our RSL model, the classes Task and Template inherit from the class
Resource. The class TaskStructure inherits from the class Structure and

Implementation of TodoServer 42

the class Reminder inherits from the class AbstractRslElement. You may
wonder why we did not create a Todo class. This was done because the Todo
class exhibits the same behavior as the Task class therefore we choose to
implement this in our IServerTODO class. The IServerTODO implements
todos as a collection and the manipulation and persistence of todos is handeld
by the IServerTODO class. The decision to implement it this way was done
in accordance with Sandra Trullemans the creator of the Information Linking
and Interaction framework.

4.4 Implementation of TodoServer

While we made the adaptations to the iServer necessary to implement our
adapted RSL model. It is now time to look at how we implemented the
TodoServer as shown in Figure 4.5. The Todoserver is the core of the todo
management framework. It utilises the iServer to implement the RSL model
and communicate with the data objects. When we take a look at the archi-
tecture of the Todoserver we can see that it utilises the same principle as the
iServer to implement its main server component. We have implemented an
interface TodoServerInterface where we de�ne all the methods that need to
be implemented by the client.

Figure 4.5: Architecture of the TodoServer

The abstract class TodoServerFacade implements the TodoServerInter-
face. If in the future someone wants to add functionalities to the Todoserver
they only need to create an interface themselves and let the TodoServerFa-
cade extend it as well.

The class TodoServer extends the TodoServerFacade and implements all

43 CHAPTER 4. Implementation

the methods that we de�ned in the TodoServerInterface. It also initialises
the iServerTODO as an iServerInterface.

We created the class CurrentServer to store a reference to our TodoServer.
This way we can make sure that multiple input clients and multiple re-
minder plugins all make use of the same TodoServer. To instantiate a new
TodoServer it su�ces to use:

TodoServer tSe rve r = CurrentServer . g e t In s tance () . g e tSe rve r () ;

The class CurrentContext is a class that is used and manipulated in To-
doServer. It is used to track changes to the current context.

The interface ReminderInterface is implemented to facilitate the use of
di�erent reminder plug-ins. When someone wants to make a reminder plug-in
it su�ces to implement the ReminderInterface and implement the necessary
methods.

Another class that is used and manipulated by the TodoServer is the class
ReminderRegistration. This class is used to keep track of the reminder plug-
ins that are registered and still available. It maintains a HashMap where the
key is of the type Reminder and the value is of the type ReminderInterface.
Because each reminder plug-in has to implement the ReminderInterface we
can search the available reminders in the ReminderRegistration and use the
found ReminderInterface to call methods of the reminder-plugin.

pr i va t e HashMap<Reminder , ReminderInter face> map = new HashMap() ;

pub l i c void addReminder (Reminder rem , ReminderInter face remi) {
map . put (rem , remi) ;

}

When we look at the code in the class TodoServer we can see how the
ReminderRegistration is used:

pr i va t e ReminderRegistrat ion remreg ;

@Override
pub l i c void reg i s t e rReminder (ReminderInter face remi) {
Reminder rem = searchReminder (remi) ;
i f (rem == nu l l) {
rem = iS e r v e r . createReminder (remi . getName () , " automat i ca l l y c rea ted " ,

remi . g e t I nd i v i dua l ()) ;
}
remreg . addReminder (rem , remi) ;

}

@Override
pub l i c void unreg i s terReminder (ReminderInter face remi) {
// TODO Auto−generated method s tub
remreg . removeReminder (remi) ;

}

Implementation of TodoServer 44

We will now look in the code of the TodoServer how this all works to-
gether:

cContext = new CurrentContext () ;

@Override
pub l i c void changeCurrentcontext (Context cont) {

cContext . setCont (cont) ;
sendReminders () ;

}

When the user enters a new context the client calls the method changeCurrentContext
from the TodoServer. CurrentContext changes the context and the todoserver
then execute the method sendReminders.

pr i va t e void sendReminders () {
Co l l e c t i on<Object> co l= iS e r v e r . c o l l e c t i o nTa sk s () ;

Task task = nu l l ;
LinkedHashMap<java . lang . Object , Double> hmap = nu l l ;
Set<Object> keys = nu l l ;
Boolean send = f a l s e ;

f o r (Object element : c o l) {
i f (element i n s t an c e o f Task) {
send = f a l s e ;
hmap = ((Task) element) . getOrderedReminders (cContext . getCont ()) ;
keys = hmap . keySet () ;
f o r (Object element2 : keys) {
i f (element2 i n s t an c e o f Reminder && send == f a l s e) {
i f (remreg . i sReminderReg i s tered ((Reminder) element2)) {
remreg . g iveReminder Inte r face ((Reminder) element2) . Remind ((Task) element)

;
send = true ;

}
}
}

}
}

}

The method sendReminders starts by creating a collection and populat-
ing this collection with all the tasks from the iServer. For each object of the
type Task in the collection a HashMap gets populated with an ordered list
of reminders that are linked with this task and the current context. For each
key of this HashMap the todoserver checks if this is of the type Reminder.
If this is true then the todoserver checks by using the methods of the Re-
minderRegistration if the reminder is still available. If all of this is true then
the ReminderInterface of this reminder is used to call the method Remind of
this reminder plug-in. A boolean send is used to only send a reminder to the
reminder-plug in that is available and has the highest priority (because the
association HasReminder is a weighted association).

45 CHAPTER 4. Implementation

4.5 Implementation of GUI and Reminder Plug-

in

For the implementation of a GUI to demonstrate all the di�erent functions
of the todo management framework we opted to use tray applications. We
chose this implementation because a tray application is not as intrusive as a
normal desktop application. We implemented our tray applications by having
one main class to con�gure the tray application and its main components.
For each di�erent panel that's displayed when you select a menu option a
new class was made. This way it is easier to make changes to one particular
panel without e�ecting the main tray application or other panels.

The basic implementation of the tray app:

i f (SystemTray . i sSupported ()) {

SystemTray tray = SystemTray . getSystemTray () ;
Image image = Too lk i t . g e tDe fau l tToo lk i t () . getImage (" tray . g i f ") ;

// s e c t i on with a l l the a c t i o n l i s t e n e r s
Act ionL i s t ene r e x i t L i s t e n e r = new Act ionL i s t ene r () {

pub l i c void act ionPerformed (ActionEvent e) {
System . out . p r i n t l n (" Ex i t ing . . . ") ;
System . e x i t (0) ;

}
} ;

PopupMenu popup = new PopupMenu () ;
MenuItem ex i t I t em = new MenuItem("Exit ") ;
ex i t I t em . addAct ionLis tener (e x i t L i s t e n e r) ;

popup . add (ex i t I t em) ;

t rayIcon = new TrayIcon (image , "Tray Demo" , popup) ;
t rayIcon . setImageAutoSize (t rue) ;
t ry {
tray . add (t rayIcon) ;

} catch (AWTException e) {
System . e r r . p r i n t l n ("TrayIcon could not be added . ") ;

}

}

All the basic Create, Read, Update and Delete operations of our todo
management framework are implemented by our todoserver. Each client (for
example this tray aplication) can then use these operations to implement
their own way of handling all the di�erent objects we have implemented.
This implementation makes it possible to implement the use case that we
have discussed previously only by a�ecting the code of the tray application
without touching the code of the todoserver.

An example of the code of the tray application where a panel is instan-

Implementation of GUI and Reminder Plug-in 46

tiated to create a todolist and the todoserver is used to perform the create
operation of this todolist:

CreateTodo l i s t panel = new CreateTodo l i s t () ;

i n t a=JOptionPane . showConfirmDialog (new JFrame () , panel , " c r e a t e t o d o l i s t : " ,
JOptionPane .OK_CANCEL_OPTION) ;

i f (a == JOptionPane .OK_OPTION){
todoServer . c r ea t eTask s t ruc tu r e (panel . getListName () , panel .

g e tL i s tDe s c r i p t i on () , panel . getTaskLis t () , panel . getTemplate () ,
getCurrentUser ()) ;

JOptionPane . showMessageDialog (nu l l , " Todo l i s t was c rea ted ") ;
}

The reminder plug-in that we made Implements our ReminderInterface
and implements the methods that were de�ned by the interface. This makes
it so that our todoserver can call these methods from each reminder plug-in.

pub l i c c l a s s ReminderTray implements ReminderInter face {

@Override
pub l i c void Remind(Task taak) {
System . out . p r i n t l n ("REMIND TODO: " + taak . getName () + " BY REMINDER " +

name) ;
}

}

5
Conclusions

We started with a brief introduction to time management and task man-
agement followed by an introduction to personal information management.
We concluded that the selection and completion of tasks forms an important
factor when someone wants to manage their time in a productive manner.
Because we saw that short-range planning seemed to be a more e�ective
time management technique than long-range planning we decided to focus
our research to todos and short tasks instead of long-range planning.

We saw that the fragmentation problem from personal information man-
agement also had an impact in our todo management research. Some todos
are written on paper while others are stored in a digital mail. Todos are
everywhere and nowhere. But because they are all kept in di�erent places,
how can they remind the person on the right moment of the right todo? We
concluded that it would be important for our todo management framework
to support multiple ways of creating todos but our framework should also be
capable of supporting multiple reminder clients.

We also discussed that most current todo handling systems have limited
ways of handling repetitive tasks. Therefore our todo management frame-
work needs to incorporate a manner of making and using templates to create
todos.

The next requirement of our todo management framework was based on
the fact that most todos are being used to handle a speci�c task for a speci�c

Conclusion 48

moment. They only remind the person in a time-based manner. The users
are reminded only on a speci�c time to take a speci�c action. We would like
to change this, it seems optimal to remind the user not only in a time-based
manner but rather in a context-based manner.

We also saw that another shortcoming of current todos that we like to
address in this thesis was that there is limited capability to link documents
or other information to speci�c todos. Therefore it was necessary for our
todo management framework to support this functionality. And last but not
least, our framework needed to be ubiquitous.

The bottom line was that we want the right todo at the right situation
with the right information. To accomplish this we worked further on the
work of Trullemans and extended her Information Linking and Interaction
framework to make a todo management framework to unify the input of
tasks, support the usage of templates, treat todos and send reminders in a
context-based manner and have bidirectional links between tasks and other
information items.

5.1 Conclusion

In this thesis we found new insights in the management of todos and a way
to augment task management with personal information management. To
address the fragmentation problem in task management we optimised the
design of our framework.

As shown in Figure 4.3 we have build our todo management framework as
a standalone framework that is build on top of the information linking and in-
teraction framework. We have extended the ILI framework to integrate our
adapted RSL model and our todo management framework utilises the ILI
framework to communicate with the data model. Our framework can easily
be used by di�erent clients because we have designed our todoserver to ac-
commodate this. The todoserver also implemented a reminder interface that
each reminder plug-in needs to implement as a mechanism to communicate
with di�erent reminder plug-ins. This design helps resolve the aforemen-
tioned fragmentation problem.

To help resolve the limited capabilities of handling repetitive tasks in most
current todo handling systems we introduced templates. These templates
were introduced in the RSL model and were implemented in the iServer
extension. The todoserver implemented the necessary methods to make and
manage templates. The template serves as a way to handle repetitive tasks
by letting the user de�ne a template and later reuse this multiple times.

We saw that multiple attempts were already made to manage tasks and

49 CHAPTER 5. Conclusions

reminders in not only a time-based manner. But we extended further on this
idea by not letting our framework only use time or place but instead letting
it use context. This way the user is not only con�ned to place or time but
can now freely de�ne his todos and reminders in a context-based manner. To
Accommodate this we have build further on the principles of the RSL model
and the ILI framework to build further on their idea of utilising context. This
made it possible to let the user de�ne their todo in a current context and let
the user be reminded of this todo in another context.

Because we have build further on the architecture of the ILI framework we
could also build further on their implementation of information linking. We
extended further on their RSL model to introduce the information linking in
our todo management framework. We designed our own extension of the RSL
model to incorporate this and also made it so that it is possible to let todos
link to other todos. Because of this the user is capable of being reminded of
a particular todo with also all the information necessary to accomplish this
todo.

We feel that this thesis can be an important �rst step into merging task
management with personal information management and that the implemen-
tation of the todo management framework can be extended to further help
the productive management of time and tasks.

5.2 Future Work and Vision

The presented work raises a lot of new opportunities in the �elds of task
management, time management and personal information management. Fu-
ture work may build further on our research to look further into long range
planning and project management. Project management is an important fac-
tor in today's professional life. It would be interesting to see how someone
could build further on this work to research how project management could
bene�t from the �ndings of this work and the usage of personal information
management.

On the implementation �eld we think it could be useful to look for a
way to build further on the todoserver. While we already discussed and
found a solution for the fragmentation problem, it still is only a beginning.
An interesting idea is to redesign the todoserver to an even more centralised
design where the main idea is to use a system of web services to communicate
with the di�erent clients. With this design the clients can be programmed
in the programming language of choice as long as they respect the wsdl-
rules and communicate by xml. The same can also be done for the reminder
plug-ins.

Future Work and Vision 50

A
Bibliography

52

Bibliography

[1] Allen, David. Getting Things Done. Penguin, 2001.

[2] Anhalt, Joshua and Smailagic, Asim and Siewiorek, Daniel P and Gem-
perle, Francine and Salber, Daniel and Weber, Sam and Beck, Jim and
Jennings, James. Toward Context-aware Computing: Experiences and
Lessons. IEEE Intelligent Systems, 16(3):38�46, May 2001.

[3] Bannon, Liam and Cypher, Allen and Greenspan, Steven and Monty,
Melissa L. Evaluation and Analysis of Users' Activity Organization. In
Proceedings of the SIGCHI conference on Human Factors in Computing
Systems, pages 54�57, Boston, United States, December 1983.

[4] Bellotti, Victoria and Dalal, Brinda and Good, Nathaniel and Flynn,
Peter and Bobrow, Daniel G and Ducheneaut, Nicolas. What a To-
do: Studies of Task Management Towards The Design of A Personal
Task List Manager. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 735�742, Vienna, Austria, April
2004.

[5] Bellotti, Victoria and Smith, Ian. Informing the Design of an Infor-
mation Management System with Iterative Fieldwork. In Proceedings
of the 3rd conference on Designing interactive systems: processes, prac-
tices, methods, and techniques, pages 227�237, New York City, United
States, August 2000.

[6] Belotti, Rudi and Decurtins, Corsin and Norrie, Moira C and Signer,
Beat and Vukelja, Ljiljana. Experimental Platform for Mobile Informa-
tion Systems. In Proceedings of the 11th annual international conference
on Mobile computing and networking, pages 258�269, Cologne, Germany,
August 2005.

[7] Bergman, Ofer and Beyth-Marom, Ruth and Nachmias, Ra�. The
Project Fragmentation Problem in Personal Information Management.

BIBLIOGRAPHY 54

In Proceedings of the SIGCHI conference on Human Factors in comput-
ing systems, pages 271�274, Montréal, Canada, April 2006.

[8] Bergman, Ofer and Beyth-Marom, Ruth and Nachmias, Ra�. The
Project Fragmentation Problem in Personal Information Management.
In Proceedings of the SIGCHI conference on Human Factors in comput-
ing systems, pages 271�274, Montreal, Canada, April 2006.

[9] Bernstein, Michael and Van Kleek, Max and Karger, David and Schrae-
fel, MC. Information Scraps: How and Why Information Eludes Our
Personal Information Management Tools. ACM Transactions on Infor-
mation Systems (TOIS), 26(4):24, September 2008.

[10] Boardman, Richard and Sasse, M Angela. Stu� Goes Into The Com-
puter and Doesn't Come Out: a Cross-tool Study of Personal Informa-
tion Management. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 583�590, New York, United States,
April 2004.

[11] Bond, Michael J and Feather, NT. Some Correlates of Structure and
Purpose in the Use of Time. Journal of Personality and Social Psychol-
ogy, 55(2):321, August 1988.

[12] Braisby, Nick and Gellatly, Angus. Cognitive Psychology. Oxford Uni-
versity Press, March 2012.

[13] Britton, Bruce K and Tesser, Abraham. E�ects of Time-management
Practices on College Grades. Journal of educational psychology,
83(3):405, September 1991.

[14] Burrell, Jenna and Gay, Geri K. E-gra�ti: Evaluating Real-world Use
of a Context-aware System. Interacting with Computers, 14(4):301�312,
July 2002.

[15] Bush, Vannevar. As We May Think. Atlantic Monthly, 176(1):101�108,
July 1945.

[16] Chung, Phillip H and Byrne, Michael D. Cue E�ectiveness in Mitigat-
ing Postcompletion Errors in a Routine Procedural Task. International
Journal of Human-Computer Studies, 66(4):217�232, April 2008.

[17] Claessens, Brigitte JC and Van Eerde, Wendelien and Rutte, Christel G
and Roe, Robert A. Planning Behavior and Perceived Control of Time
at Work. Journal of Organizational Behavior, 25(8):937�50, November
2004.

55 BIBLIOGRAPHY

[18] Claessens, Brigitte JC and Van Eerde, Wendelien and Rutte, Christel
G and Roe, Robert A. A Review of the Time Management Literature.
Personnel review, 36(2):255�276, 2007.

[19] Cole, Irene. Human Aspects of O�ce Filing: Implications for the Elec-
tronic O�ce. In Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, pages 59�63, Seattle, USA, October 1982.

[20] Covey, Stephen R. The 7 Habits of Highly E�ective People. Simon &
Schuster New York, NY., 1989.

[21] Czerwinski, Mary and Horvitz, Eric and Wilhite, Susan. A Diary Study
of Task Switching and Interruptions. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 175�182, New
York, USA, April 2004.

[22] Dey, Anind K and Abowd, Gregory D. CybreMinder: A Context-aware
System for Supporting Reminders. In Proceedings of International Sym-
posium on Handheld and Ubiquitous Computing, pages 172�186, Bristol,
UK, September 2000.

[23] Dumais, Susan T and Landauer, Thomas K. Using Examples to Describe
Categories. In Proceedings of the SIGCHI conference on Human Factors
in Computing Systems, pages 112�115, Boston, USA, December 1983.

[24] Ellis, Judi. Prospective Memory or the Realization of Delayed Inten-
tions: A Conceptual Framework for Research. Prospective memory:
Theory and applications, pages 1�22, 1996.

[25] Espinoza, Fredrik and Persson, Per and Sandin, Anna and Nyström,
Hanna and Cacciatore, Elenor and Bylund, Markus. Geonotes: So-
cial and Navigational Aspects of Location-based Information Systems.
In Proceedings of International Conference on Ubiquitous Computing,
pages 2�17, Atlanta, USA, October 2001.

[26] Ferriss, Tim . The 4-Hour Workweek: Escape 9-5, Live Anywhere, and
Join the New Rich. Crown Publishing Group, 2007.

[27] Fox, Marilyn L and Dwyer, Deborah J. Stressful Job Demands and
Worker Health: An Investigation of the E�ects of Self-Monitoring1.
Journal of Applied Social Psychology, 25(22):1973�1995, November
1995.

BIBLIOGRAPHY 56

[28] González, Victor M and Mark, Gloria. Constant, Constant, Multi-
tasking Craziness: Managing Multiple Working Spheres. In Proceed-
ings of the SIGCHI conference on Human factors in computing systems,
pages 113�120, Vienna, Austria, April 2004.

[29] González, Victor M and Mark, Gloria. Managing Currents of Work:
Multi-tasking Among Multiple Collaborations. In Proceedings of EC-
SCW 2005, pages 143�162, Paris, France, September 2005.

[30] Halasz, Frank and Schwartz, Mayer and Grønbæk, Kaj and Trigg, Ran-
dall H. The Dexter Hypertext Reference Model. Communications of the
ACM, 37(2):30�39, February 1994.

[31] Hall, Brandon L and Hursch, Daniel E. An Evaluation of the E�ects of
a Time Management Training Program on Work E�ciency. Journal of
Organizational Behavior Management, 3(4):73�96, October 1982.

[32] Henderson, Sarah. Genre, Task, Topic and Time: Facets of Personal Dig-
ital Document Management. In Proceedings of the 6th ACM SIGCHI
New Zealand chapter's international conference on Computer-human in-
teraction: making CHI natural, pages 75�82, Auckland, New Zealand,
July 2005.

[33] Jeuris, Steven and Houben, Steven and Bardram, Jakob. Laevo: a Tem-
poral Desktop Interface for Integrated Knowledge work. In Proceedings
of the 27th annual ACM symposium on User interface software and tech-
nology, pages 679�688, Honolulu, USA, October 2014.

[34] Jones, William and Phuwanartnurak, Ammy Jiranida and Gill, Rajdeep
and Bruce, Harry. Don't Take My Folders Away!: Organizing Personal
Information To Get Things Done. In Procedings of CHI 2005 extended
abstracts on Human factors in computing systems, page 1505�1508,
Portland, USA, April 2005.

[35] Jung, Younghee and Persson, Per and Blom, Jan. DeDe: Design and
Evaluation of a Context-enhanced Mobile Messaging System. In Proceed-
ings of the SIGCHI conference on Human factors in computing systems,
pages 351�360, Portland, USA, April 2005.

[36] Karger, David and Bakshi, Karun and Huynh, David and Quan, Dennis
and Sinha, Vineet. Haystack: A Customizable General-Purpose Infor-
mation Management Tool for End Users of Semistructured Data. In
Proceedings of CIDR 2003, 1st Biennial Conference on Innovative Data
Systems Research, Asilomar, USA, January 2003.

57 BIBLIOGRAPHY

[37] Kaufman, Carol Felker and Lane, Paul M and Lindquist, Jay D. Time
Congruity in the Organization: A Proposed Quality-of-life Framework.
Journal of Business and Psychology, 6(1):79�106, September 1991.

[38] Kessell, Angela and Chan, Christopher. Castaway: a cContext-aware
Task Management System. In Proceedings of CHI 2006 ACM Conference
On Human Factors in Computing Systems, pages 941�946, Montréal,
Canada, April 2006.

[39] Kim, Sung Woo and Kim, Min Chul and Park, Sang Hyun and Jin,
Young Kyu and Choi, Woo Sik. Gate Reminder: a Design Case of
a Smart Reminder. In Proceedings of the 5th conference on Designing
interactive systems: processes, practices, methods, and techniques, pages
81�90, Cambridge, USA, August 2004.

[40] King, Abby C and Winett, Richard A and Lovett, Steven B. En-
hancing Coping Behaviors in At-risk Populations: The E�ects of Time-
management Instruction and Social Support in Women from Dual-earner
Families. Behavior Therapy, 17(1):57�66, January 1986.

[41] Kobler, Adrian and Norrie, Moira C. OMS Java: A Persistent Object
Management Framework. Java and Databases. Hermes Penton Science,
6(3):46�62, June 2000.

[42] Lakein, Alan and Leake, Pip. How To Get Control of Your Time and
Your Life. PH Wyden New York, 1973.

[43] Lepouras, George and Dix, Alan and Katifori, Akrivi and Catarci,
Titziana and Habegger, Benjamin and Poggi, Antonella and Ioannidis,
Yannis. Ontopim: From Personal Information Management to Task In-
formation Management. Personal Information Management: Now That
We are Talking, What Are We Learning, 1(1):78, August 2006.

[44] Lin, Min and Lutters, Wayne G and Kim, Tina S. Understanding the
Micronote Lifecycle: Improving Mobile Support for Informal Note Tak-
ing. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 687�694, Vienna, Austria, April 2004.

[45] Ludford, Pamela J and Frankowski, Dan and Reily, Ken and Wilms,
Kurt and Terveen, Loren. Because I Carry my Cell Phone Anyway:
Functional Location-based Reminder Applications. In Proceedings of
the SIGCHI conference on Human Factors in computing systems, pages
889�898, Montréal, Canada, April 2006.

BIBLIOGRAPHY 58

[46] Macan, Therese Ho�. Time Management: Test of a Process Model.
Journal of applied psychology, 79(3):381�391, 1994.

[47] Macan, Therese Ho�. Time-management Training: E�ects on Time
Behaviors, Attitudes, and Job Performance. The Journal of psychology,
130(3):229�236, 1996.

[48] Marmasse, Natalia and Schmandt, Chris. Location-aware Information
Delivery with Commotion. In International Symposium on Handheld
and Ubiquitous Computing, pages 157�171, Bristol, UK, September
2000.

[49] McKay, B and McKay, K. The Eisenhower Decision Matrix: How to Dis-
tinguish Between Urgent and Important Tasks and Make Real Progress
in Your Life. A Man's Life, Personal Development, 2013.

[50] Millard, Dave E and Moreau, Luc and Davis, Hugh C and Reich,
Siegfried. FOHM: a Fundamental Open Hypertext Model for Inves-
tigating Interoperability Between Hypertext Domains. In Proceedings
of the eleventh ACM on Hypertext and hypermedia, pages 93�102, San
Antonio, USA, May 2000.

[51] Nelson, Theodor H. Complex Information Processing: a File Structure
for The Complex, The Changing and The Indeterminate. In Proceedings
of the 1965 20th national conference, pages 84�100, Cleveland, USA,
January 1965.

[52] Norrie, Moira C. An Extended Entity-relationship Approach to Data
Management in Object-oriented Systems. In Proceedings of Interna-
tional Conference on Conceptual Modeling, pages 390�401, Arlington,
USA, December 1993.

[53] Orpen, Christopher. The E�ect of Time-management Training on Em-
ployee Attitudes and Behavior: A Field Experiment. The Journal of
psychology, 128(4):393�396, 1994.

[54] Rhodes, Bradley J. The Wearable Remembrance Agent: A System for
Augmented Memory. Personal Technologies, 1(4):218�224, December
1997.

[55] Sauermann, Leo and Bernardi, Ansgar and Dengel, Andreas. Overview
and Outlook on The Semantic Desktop. In Proceedings of the 2005

59 BIBLIOGRAPHY

International Conference on Semantic Desktop Workshop: Next Gener-
ation Information Management D Collaboration Infrastructure-Volume
175, Galway, Ireland, November 2005.

[56] Schacter, Daniel L. The Seven Sins of Memory: How The Mind Forgets
and Remembers. Houghton Mi�in Harcourt, 2002.

[57] Sellen, Abigail J and Harper, Richard HR. The Myth of The Paperless
O�ce. MIT press, 2003.

[58] Signer, Beat. Fundamental Concepts for Interactive Paper and Cross-
media Information Spaces. PhD thesis, SWISS FEDERAL INSTITUTE
OF TECHNOLOGY ZURICH, Zurich, Switzerland, 2005.

[59] Signer, Beat and Norrie, Moira C. A Framework for Cross-media Infor-
mation Management. In Proceedings of EuroIMSA 2005, International
Conference on Internet and Multimedia Systems and Applications, pages
318�323, Grindelwald, Switzerland, February 2005.

[60] Signer, Beat and Norrie, Moira C. As We May Link: A General Meta-
model for Hypermedia Systems. In Proceedings of ER 2007, 26th Inter-
national Conference on Conceptual Modeling, pages 359�374, Auckland,
New Zealand, November 2007.

[61] Signer, Beat and Norrie, Moira C. PaperPoint: a Paper-based Presen-
tation and Interactive Paper Prototyping Tool. In Proceedings of the 1st
international conference on Tangible and embedded interaction, pages
57�64, Baton Rouge, USA, February 2007.

[62] Sohn, Timothy and Li, Kevin A and Lee, Gunny and Smith, Ian and
Scott, James and Griswold, William G. Place-its: A Study of Location-
based Reminders on Mobile Phones. In International Conference on
Ubiquitous Computing, pages 232�250, Tokyo, Japan, September 2005.

[63] Trullemans, Sandra. Personal Cross-Media Information Management.
In Graduation thesis, Brussels, Belgium, 2013.

[64] Trullemans, Sandra and Signer, Beat. Towards a Conceptual Frame-
work and Metamodel for Context-Aware Personal Cross-Media Infor-
mation Management Systems. In International Conference on Concep-
tual Modeling, pages 313�320, Atlanta, USA, October 2014. Springer
International Publishing.

BIBLIOGRAPHY 60

[65] Tulving, Endel and Thomson, Donald M. Encoding Speci�city and Re-
trieval Processes in Episodic Memory. Psychological review, 80(5):352�
373, September 1973.

[66] Tungare, Manas and Perez-Quinones, Manuel and Sams, Alyssa. An
Exploratory Study of Calendar Use. arXiv preprint arXiv:0809.3447,
September 2008.

[67] Weiser, Mark. The Computer for The 21st Century. Scienti�c american,
265(3):94�104, September 1991.

[68] Whittaker, Steve. Personal Information Management: from Information
Consumption to Curation. Annual review of information science and
technology, 45(1):1�62, 2011.

[69] Wratcher, MA and Jones, RO. A Time Management Workshop for
Adult Learners. In Journal of College Student Personnel, volume 27,
pages 566�567, Missouri, USA, 1986.

[70] Zijlstra, Fred RH and Roe, Robert A and Leonora, Anna B and Krediet,
Irene. Temporal Factors in Mental Work: E�ects of Interrupted Activi-
ties. Journal of Occupational and Organizational Psychology, 72(2):163�
185, June 1999.

