
FACULTY OF SCIENCE AND BIO-ENGINEERING SCIENCES
DEPARTMENT OF COMPUTER SCIENCE

Extensible Platform for Real-Time
Feedback in Presentation Training

Graduation thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in Applied Sciences and Engineering: Computer Science

Mohamed Zahir

Promoter: Prof. Dr. Beat Signer
Advisor: Reinout Roels

Academic year 2015-2016

i

Abstract
Presentations are an important form of communication, mainly used to de-
liver a message or to persuade people. Identified centuries ago, presentations
are practically used everywhere nowadays, in business environments, educa-
tional environments, and more. Since not everyone is born as a good presen-
ter, a presentation can nevertheless be performed effectively by mastering the
required communication skills. Therefore, we conducted a literature study in
the field of communication, identifying the most important elements present
in the communication process and communication aspects, both verbal and
nonverbal. Unfortunately, presentations can be regarded as being stressful
situations, inciting the speaker to perform the same mistakes unconsciously.
Therefore, using informative feedback has shown its effectiveness, allowing
the speaker to adapt their behaviour. Since human feedback is not always af-
fordable, sensor technologies have proven their potential, providing real-time
feedback to the speaker. Current multimodal feedback systems are limited in
the sense that communication aspects, input and output modalities are iden-
tified beforehand. However, a presentation should be adapted to the context
and to the audience’s background, which implies that there is no “fixed” set
of rules that guarantees a good presentation for all scenarios and cultures.
Therefore it is important that a multimodal feedback system is extensible at
the level of input and output modalities as well as the detection rules that
trigger feedback.

This thesis proposes an extensible platform providing real-time feedback
to the speaker. The speaker is less constrained and able to customise the
system depending on the presentation’s context and needs. Moreover, exten-
sibility has been identified as being the most important factor of the system,
allowing developers to build plug-ins for the inclusion of different input and
output modalities, as well as plug-ins for detecting and providing feedback
on communication aspects.

ii

Declaration of Originality
I hereby declare that this thesis was entirely my own work and that any addi-
tional sources of information have been duly cited. I certify that, to the best
of my knowledge, my thesis does not infringe upon anyone’s copyright nor
violate any proprietary rights and that any ideas, techniques, quotations, or
any other material from the work of other people included in my thesis, pub-
lished or otherwise, are fully acknowledged in accordance with the standard
referencing practices. Furthermore, to the extent that I have included copy-
righted material, I certify that I have obtained a written permission from the
copyright owner(s) to include such material(s) in my thesis and have included
copies of such copyright clearances to my appendix.

I declare that this thesis has not been submitted for a higher degree to
any other University or Institution.

iii

Acknowledgements
First, I would like to express my deep sense of gratitude to both my promoter,
Prof. Dr. Beat Signer, and my supervisor, Reinout Roels, allowing me to
conduct my research. Thank you for always being available, patient, and for
your precious guidance and support throughout this thesis.

I would also like to thank my family and friends for their support during
my academic years which made me able to achieve this important goal.

Contents

1 Introduction
1.1 Research Context . 1
1.2 Problem Definition and Justification 2
1.3 Objectives and Research Method 2
1.4 Structure of the Thesis . 3

2 Background
2.1 User Interfaces and Interactions 6

2.1.1 The Evolution of User Interfaces 7
2.1.2 Tangible User Interfaces 11
2.1.3 Organic User Interfaces 13
2.1.4 Ubiquitous Computing 14
2.1.5 Virtual, Mixed & Augmented Reality 15
2.1.6 Brain-Computer Interfaces 16
2.1.7 Similarities Between Post-WIMP User Interfaces 17
2.1.8 Conclusion . 18

2.2 Multimodal Interfaces and Interaction 19
2.2.1 Multimodal User Interfaces vs. Graphical User Interfaces 20
2.2.2 Design of Multimodal Systems 22
2.2.3 Principles of Multimodal Interaction 26
2.2.4 Multimodal Fusion . 28
2.2.5 Multimodal Fission . 30
2.2.6 The CARE Framework 31

3 Related Work
3.1 Communication . 33

3.1.1 The Communication Process 34
3.1.2 Verbal Communication 35
3.1.3 Nonverbal Communication 36
3.1.4 The Importance of Feedback 40
3.1.5 Conclusion . 41

3.2 Multimodal Feedback Systems 42

v CONTENTS

3.2.1 Presentation Sensei [1] 42
3.2.2 Presentation Trainer [2] 45
3.2.3 RHEMA [3] . 47
3.2.4 A Real-Time Feedback System for Presentation Skills [4] 48
3.2.5 Feedback System for Presenters Detects Nonverbal Ex-

pressions [5, 6] . 49
3.2.6 Multi-sensor Self-Quantification of Presentations [7] . . 51
3.2.7 Multimodal Public Speaking Performance Assessment

[8] . 56
3.3 Summary of the Related Work 59

3.3.1 Comparison of the Feedback Systems 59
3.3.2 Analysis of the Comparison Table 61
3.3.3 Conclusion . 63

4 Presentation Mate
4.1 Architecture . 65

4.1.1 Input Modality Layer 65
4.1.2 Plug-in Layer . 67
4.1.3 Rule Engine Layer . 69
4.1.4 Application Controller Layer 69
4.1.5 Output Modality Layer 70

5 Implementation I: Architecture
5.1 Used Software Technologies 71

5.1.1 Managed Extensibility Framework 71
5.1.2 Reflection . 72
5.1.3 Rule Engine . 72
5.1.4 C#.NET Programming Language 73
5.1.5 Windows Presentation Foundation 74
5.1.6 Model-View-ViewModel Pattern 74

5.2 Implementation of the Input Modality Layer 74
5.3 Implementation of the Plug-in Layer 77
5.4 Subscribing Plug-ins to Input Modalities 78
5.5 Implementation of the Rule Engine Layer 79

5.5.1 Subscribing Facts to Plug-ins 81
5.6 Implementation of the Application Controller Layer 83
5.7 Implementation of the Output Modality Layer 83

6 Implementation II: Plug-ins and Rules
6.1 The Microsoft Kinect Input Modality 86

6.1.1 Microsoft Kinect and Microsoft Kinect SDK 86

CONTENTS vi

6.1.2 Implementation of the Kinect Input Modality 88
6.1.3 Subscription to the Kinect Streams 92

6.2 Gesture Detection Plug-in . 94
6.2.1 Importing the Gesture Plug-in 95
6.2.2 Computing the Gesture Angle 95
6.2.3 Gesture Facts . 96
6.2.4 Gesture Rules . 97

6.3 Sightline Plug-in . 99
6.3.1 Importing the Sightline Plug-in 101
6.3.2 Computing the Head Pose Angles 101
6.3.3 The Sightline Fact . 103
6.3.4 The Sight Rules . 104
6.3.5 Limitations . 105

6.4 Speech Analysis . 106
6.4.1 Importing the Speech Rate and Loudness Plug-ins . . . 106
6.4.2 Acquiring Audio Data 107
6.4.3 Computing the Speech Rate 108
6.4.4 Computing the Loudness 109
6.4.5 The Loudness Fact . 110
6.4.6 The Loudness Rule . 110

6.5 The WPF Window Output Modality 111

7 Use Case
7.1 The Main Window . 113
7.2 Configuring the Plug-ins . 114

7.2.1 Subscribing Plug-ins to Input Modalities 115
7.3 Configuring the Facts . 115

7.3.1 Configurator Pages . 116
7.4 Configuring the Output Modalities 122

7.4.1 The WPF Window as Output Modality 122

8 Conclusions and Future Work
8.1 Contributions . 126
8.2 Future Work . 127

1
Introduction

1.1 Research Context

The importance of public speaking has been identified at least 2500 years ago,
especially during the ancient Greek ages where the art of public speaking or
rhetoric was used as a means for persuading people [9]. Even if the art of
public speaking has changed during the centuries, it still remains important
in business environments nowadays and in our daily life [10]. Since the goal
of the speaker is to deliver a message to an audience, it is of great impor-
tance that it has to be done effectively, and this by mastering the needed
communication skills (verbal and nonverbal communication skills) [11]. Not
everyone is born as a good presenter. However the needed skills can be im-
proved by making use of the different materials available, such as courses,
seminars, books, etc. [12]. Nevertheless, practicing alone will not guaran-
tee improvement, since the possibility of making the same mistakes without
realising it can occur. Therefore, feedback can be used to avoid speakers
from making the same mistakes. Although its effectiveness has been shown
in learning [13], it is not always affordable to acquire human feedback during
presentations [12]. The advances in real-time sensor technologies have proven
their potential for these circumstances [14] and could therefore be used for
building a powerful system designed to provide automatic feedback in real-
time during presentations without any human intervention, which is one of

Problem Definition and Justification 2

the main goals of this thesis.

1.2 Problem Definition and Justification

Multimodal interaction has shown its potential compared to other interac-
tion styles [15] by offering a more intuitive and natural way of interaction
between humans and machines, and by extending the spectrum of applica-
tions in which the traditional WIMP-style user interface found its limitations.
Multiple researchers have taken presentations to the next level, by developing
multimodal systems capable of measuring the speaker’s nonverbal communi-
cation skills in order to rehearse and improve the quality of presentations.

Even if studies have provided empirical findings for the design of multi-
modal systems, practically none of the presentation tools offering feedback
to the speaker allow their systems to be extensible in certain ways. Studying
communication reveals that there are no fixed rules for a “good” presentation,
since it depends on culture, context, language, and so forth. Unfortunately,
current available systems tackle only certain aspects of oral communication
which are defined in advance, limiting the power of multimodal systems in
the field of presentations.

Therefore, this thesis presents Presentation Mate (PRESMA), a frame-
work designed to provide feedback to the speaker in real-time during presen-
tations. Taking advantage of existing multimodal systems and technologies,
PRESMA allows the extensibility of input modalities, nonverbal communica-
tion skills (rules and plug-ins) and output modalities, allowing the tool to be
customisable according to the speaker’s conception of an ideal presentation.
A basic set of plug-ins and communication aspect rules are provided based
on research work, also provided in this document for anyone interested in the
study of Human-Computer Interaction and Communication.

1.3 Objectives and Research Method

The main goal of this thesis is to design an extensible system capable of
providing informative feedback to the speaker during presentations. Before
being able to conceptualise the system, it is important to understand the
issues that could occur during presentations, and which kind of systems are
more suitable for assisting the speaker during a presentation session. There-
fore the research methodology of this thesis was performed as follows:

3 CHAPTER 1. Introduction

• A study on Multimodal Systems in general in order to get an insight on
how this kind of system are more suitable for assisting speakers during
presentations.

• A literature study in the field of Pedagogy, Psychology, and Commu-
nication to identify and understand the communication process. This
will provide more insight on the issues and difficulties that could occur
while performing presentations.

• Afterwards, conducting an investigation, analysis and comparison of
existing Multimodal Systems designed to provide informative feedback
during or for the rehearsal of presentations. This will help to identify
the gaps, which will be useful for the design and implementation of the
proposed approach in this thesis.

• Finally, a proof of concept, PRESMA, based on the findings of the
conducted research.

1.4 Structure of the Thesis

First, a literature study in the field of Human-Computer Interaction is con-
ducted is Chapter 2, more specifically about WIMP and post-WIMP inter-
faces. This serves mainly to accentuate the importance of the emergence
of Multimodal User Interfaces and Interaction Techniques. Based on this
literature study, the core concepts present in multimodal systems, such as
multimodal fusion and fission as well as the CASE and CARE modelling
frameworks are explained, making it able to understand how meaningful in-
formation about users can be extracted from input modalities.

In the first part of Chapter 3, a literature study in the field of Pedagogy,
Psychology, and Communication is provided, explaining the basic concepts of
the communication process as well as the important communication aspects.
The second part focusses more on the field of Computer Science, more specif-
ically about existing multimodal systems providing informative feedback to
speakers. The working of these systems are analysed and compared, making
it possible to identify their advantages and inconveniences used to motivate
the proposed approach of this thesis.

Chapter 4 explains the architecture of the PRESMA and the technologies
used to successfully achieve this project.

Structure of the Thesis 4

The implementation of the system is divided in Chapter 5 and Chapter 6.
The first part explains the core code of the system, allowing the inclusion
of input and output modalities, as well as the detection of communication
aspects. The second part consists of applying the core concepts defined in
Chapter 5 by the means of plug-ins, such as the inclusion of the Microsoft
Kinect sensor, nonverbal communication aspect detectors, and output modal-
ities.

Finally, Chapter 7 concludes this thesis with the main contribution, as
well as a number of possible future work.

2
Background

Computer technology has in the past decades made great advances and took
an important place in everyone’s daily life. Computer users are nowadays
not mainly computer professionals, such as programmers or designers, but
also discretionary users [16]. Opening this kind of technology to a broader
spectrum of users did not only have advantages in terms of processing large
amounts of information, but also caused users to become angry and frustrated
due to the designers’ lack of user knowledge and understanding. Both com-
puter and cognitive science are needed to develop tools, techniques, method-
ologies, to learn how to build efficient computers that are easy to use [16].
Human-Computer Interaction (HCI), or often called Man-Machine Interac-
tion, became rapidly important with the emergence of computers [17, 18]. It
is a cross-disciplinary area “concerned with the design, evaluation and imple-
mentation of interactive computing systems for human use and with the study
of major phenomena surrounding them.” [18]. Booth [16] suggests that ten
major disciplines contribute towards HCI (as shown in Figure 2.1) serving
to understand the user’s needs, developing software and hardware interac-
tion techniques, creating intelligent and adaptive, implementing usable and
efficient interfaces, and so forth [16, 17, 18].

User Interfaces and Interactions 6

Figure 2.1: An overview of the disciplines involved in HCI [16].

Since the study of Human-Computer Interaction is relevant to this thesis,
the following sections discuss the evolution of user interfaces and interaction
techniques, and presents multiple kinds of user interfaces as well as their
effectiveness in terms of usability, functionality, and performance.

2.1 User Interfaces and Interactions

A user interface or UI refers to means in which the user interacts with a
machine by using input devices, such as a keyboard, mouse, touchscreen,
digital pen, game controller and so forth [19]. During the past centuries one
may notice that user interfaces have significantly changed, going from user
interfaces using mechanical components to user interfaces allowing the user
to interact with machines on a more natural way [20, 21]. The prediction
made in 1962 by Douglas Engelbert, mostly known as being the inventor of
the mouse, stating that “In 20 or 30 years, you’ll be able to hold in your hand
as much computing knowledge as exists now in the whole city, or even the
whole world.” [22], has become true with the evolution of hardware devices,
which allows software to be embedded practically everywhere. Even though
the current methodology for designing user interfaces remains powerful, it
nevertheless does not fulfil all the requirements for new future computing
devices and requires therefore a new way of thinking about user interfaces
and interaction [23].

7 CHAPTER 2. Background

Figure 2.2: The IBM 029 batch system [24].

2.1.1 The Evolution of User Interfaces

Since in the early 20th century computing devices were not as powerful as
nowadays microwaves, user interfaces were considered to be overhead and
the processor was utilised with as less overhead as possible [24]. The user
interfaces were also too complex and only expert users were allowed to use
them. A good example is the batch computing system, as presented in Fig-
ure 2.2, where punched cards were used for describing the program and used
as input of the user interface. Attached printers were used as output media
in order to generate the results of the program.

Evolved from the batch computing systems, command-line interfaces present
a kind of request-response interaction style. Such systems, as presented in
Figure 2.3, were mainly composed of a keyboard for requesting demands by
typing commands in textual forms and, depending on the system, a screen or
a printer for presenting the results. A possible disadvantage that can be at-
tributed to such systems is that it required the user to spend serious learning
time for mastering the commands (possible requests), but a real-time and
interactive way of working was offered, which was not the case in the pre-
vious systems. Software was no more designed to be computation-intensive
but also presentation-intensive [24]. Even if the user interfaces have evolved
quite a lot during these last years, the command-line interfaces have still
survived and are to be found in recent operating systems [25].

In the 1960s Douglas Engelbert, inspired by his experiences with early
graphical displays and by Vannevar Bush’s As we may think vision [26] of

User Interfaces and Interactions 8

Figure 2.3: The VT100 command-line [24].

what we today may call hypertext, presented a demo of a hypertext system
composed of a multiple-window graphical interface, which was controlled by
a three-button mouse [24]. The user experience took another dimensions that
manufacturers started to design systems based on the Xerox PARC WIMP
(windows, icons, menus and a pointing device) graphical user interface. In
1984, the Macintosh popularized the WIMP graphical user interfaces (as
presented in Figure 2.4) and later copied by Windows with the Personal
Computer (PC), which made computing devices more accessible to the public
[27]. Even though WIMP interfaces have not changed a lot [25, 27] during
the last decades, they remain still successful and important, because:

• It became possible for young children, managers and non-professional
users at home to become comfortable with computers. The WIMP
user interface has provided a way to learn easily to work with and
to gain knowledge because of the fact that the look and feel of these
user interfaces are consistent compared to previous generations of user
interfaces that focussed only on the performances and functionalities
of applications [25, 27].

• It is a kind of abstraction that hides the most technical issues from the
application to the user. In this way even the most unexperienced users
can perform complex tasks [27].

9 CHAPTER 2. Background

Figure 2.4: The Apple Macintosh (1984). Image taken from
http://www.computerhistory.org/timeline/1984/

• They have been explored, examined and decorticated in the last two
decades, such that design principles have been defined for making them
easy to understand and to learn [27].

Nevertheless, even if WIMP user interfaces have been successful and im-
portant through the last decades, they are not fit enough to match future
computing systems due to some Human-Computer Interaction limitations
[23] and carry a number of disadvantages, which are [25, 27]:

Following the disadvantages of the WIMP user interfaces, one may notice
that new thinking about user interfaces is necessary [25, 27, 23]. User inter-
faces do not need to use toolbars, menus and forms anymore but must rely
on more natural way of interaction, such as, for example, gesture recognition
or even speech recognition, which are called post- or non-WIMP user inter-
faces or next generation user interfaces [25, 27, 28]. This fourth generation
of user interfaces must at least contain one interaction technique that is not
dependent of classical 2D widgets (e.g. menus or icons) [25]. Compared to
traditional WIMP user interfaces that inherit automatically from a serial,
turn-taking dialog between the user and the computer with a single input
and output stream, non-WIMP user interfaces must instead support contin-
uous multi-mode interaction between the user and the computer by making
use of multiple parallel, asynchronous channel devices [29, 30]. This style of
interaction are natural and easy to learn because it reflects the user’s pre-
existing interaction skills with non-digital real world and real world objects
[29, 31]. However, such kind of interaction are more difficult to build, share

User Interfaces and Interactions 10

• The more complex an application is, the harder the interface becomes,
which decreases the user’s effectiveness of learning.

• Certain applications are so large that users do not want to upgrade and
are satisfied with small subset they know.

• Users spend too much time manipulating the user interface that the
application itself.

• Expert users are frustrated of performing too much “point-to-click”
operations and prefer keyboard shortcuts.

• Mousing and keyboarding are not suitable for all the users, especially
for disabled users.

• It becomes difficult to perform 3D tasks with conventional 2D control
widgets.

• Not suitable for shared tasks. WIMP user interfaces are designed to to
be used by a single person.

Figure 2.5: Disadvantages of WIMP style user interfaces.

11 CHAPTER 2. Background

and reuse, since they require inventive low-level programming approaches and
high skills [29]. Also speaking in terms of interaction, non-WIMP interaction
has to be focussed on both new kinds of interactions (e.g.: virtual reality,
mixed reality, augmented reality, tangible interaction, ubiquitous and perva-
sive computing, mobile interaction, and etc.) and the output presentation of
information [27, 31].

The following sections present different kinds of next generation or post-
WIMP user interfaces that are the subject of research and even available on
the market, and provide a more natural way of interaction between humans
and machines. Unfortunately, there are plenty of different types of next
generation user interfaces available nowadays [27], but only a few of them
will be discussed to provide a better understanding of what to expect from
this fourth generation of user interfaces.

2.1.2 Tangible User Interfaces

Tangible User Interfaces (TUI) are interfaces that provides a physical form
to digital information and computations allowing them to be manipulated by
human hands. Such interfaces are often called “graspable” user interfaces and
are built to support the sophisticated developed human skills for sensing and
manipulating their environments [32]. According to Burghart [27] easy to
manipulate real life objects are used to delegate the representations of data
from a visualisation on the screen, which makes the interaction more intuitive
compared to traditional GUIs (using a keyboard and a computer mouse) that
are inconsistent with the way humans interact with the environment within
they live [32]. While GUIs are serving as a more general interface to emulate
various tools using pixels, TUIs are a new way of materialising Mark Weiser’s
[33] vision of Ubiquitous Computing [32].

The key idea of TUIs, as shown in Figure 2.6, is to provide input devices
that act as a bridge between the physical and digital world. Such input de-
vices are both a tangible representation of the coupled digital information
and a way of controlling that digital information. An intangible representa-
tion is added to the model to visualise the digital information to compensate
the limitations of physical objects, like for example, changing the physical
properties of physical objects.

Multi-touch surfaces are often used with tangible user interfaces to com-
pose what is called hybrid surfaces or Hybrid User Interfaces (HUI). Such
interfaces combine multiple types of interaction techniques to form one in-
terface [27, 34], like the ReacTable and Microsoft Surface [34] shown in Fig-
ure 2.7 and Figure 2.8.

“Radical Atoms” is a further step made by Ishii et al. [35] stating that all

User Interfaces and Interactions 12

Figure 2.6: The key idea of Tangible User Interfaces [32].

Figure 2.7: ReacTable hybrid
surface [34].

Figure 2.8: Microsoft’s hybrid
Surface [34].

digital information may in the future be manifested in the physical world.
The main idea of this assumption, as presented in Figure 2.9, is based on
the iceberg metaphor stating that with GUIs the user can only see infor-
mation from the digital world through a screen, just like the iceberg that
can only be seen through the surface of the water. TUIs are a further step
allowing the user to interact with the digital world through physical objects,
like the top of the iceberg that sticks out of the water. Finally, Radical
Atoms would be a manifestation of digital information in the physical world
based on hypothetical dynamic physical materials that are transformable and
reconfigurable [32, 35].

13 CHAPTER 2. Background

Figure 2.9: Radical Atoms. The iceberg metaphor [35].

2.1.3 Organic User Interfaces

Organic user interface (OUI) is a rather new research area working on non-
planar, non-flat and flexible organic displays [36]. They allow users to interact
with organic objects with both hands, like in the real world. The feeling of
texture and temperature is incorporated into HCI and thus open new ways
of interaction [36, 27]. Although OUIs share similarities with TUIs, the first
one combines the input and output in one device (no spatial separation).
This implies that digital information is manipulated directly without the
use of physical controllers compared to TUIs. Interactions become more
continuous and natural, allowing users to use everyday’s gestures, like for
example, bending, folding or crumpling a paper [36]. Designers are no more
obligated to waste space for graphical buttons, which offers benefits to small
displays.

Although organic user interfaces are difficult to obtain or not yet to be
found on the market, investigating the user’s experience with such devices
becomes difficult. Vertegaal and Poupyrev [37] describe three interaction
principles for the design of organic user interfaces:

• “Input Equals Output: Where the display is the input device.” Due
to the fact that no spatial separation is present between the input
and output device, the display serves both as a manipulator (input)
and for the presentation (output) of digital information. The user is
able to interact with the display by dynamically changing its form,
touching the surface or by even integrating small sensors within the
display [36, 37].

• “Function Equals Form: Where the display can take any shape.” The
flexibility property of the displays allows users to change the shape of
the display, which imply the designers to develop flexible layouts that
adapt to every possible form of the display [36, 37].

User Interfaces and Interactions 14

• “Form Follows Flow: Where displays can change their shape.” This
principle states that interaction can take place actively or passively.
By twisting, bending, pulling, etc. the display, the user will passively
supply input to the application. While in the future, computing devices
will be able to actively present data by automatically changing their
physical shapes [36, 37].

2.1.4 Ubiquitous Computing

Computing devices have nowadays taken an important and inseparable place
thanks to the improvements in microprocessor technologies, making them
more compact to support, organise, and mediate our daily activities [38].
The idea behind Weiser’s Ubiquitous Computing [33] is to take advantage of
embedded, wireless, and flexible software architecture technologies to help
organise and mediate social interactions in every situation [38]. The concept
of ubiquitous computing is based on advances from both pervasive andmobile
computing, as shown in Figure 2.10.

Figure 2.10: The two dimensions of Ubiquitous Computing [38].

By making computing devices more mobile, users are capable of carrying
computing devices with them, which enhances the reasoning and communica-
tion capabilities of humans independently from the device’s location. Access-
ing such a level of mobility is either done by reducing the size of the devices
or by allowing them to be accessible over a network by light-weighted devices.
Pervasive computing, which is the second dimension needed for making com-
puting devices more invisible, is based on a mutual dependency involving

15 CHAPTER 2. Background

both devices and environments to be intelligent. Computing devices should
be capable of acquiring information from the environment in which they are
embedded, while the environment should be capable of detecting these de-
vices [38].

2.1.5 Virtual, Mixed & Augmented Reality

Virtual Reality (VR) technology offers unique experiences to users, such as
exploring molecules or even the interior of vehicles before the production
takes place [39]. Users are immersed inside a computerised or simulated
environment, called a Virtual Environment (VE), which does not allow them
to see the real world around them [40, 41]. Sensors, such as head-mounted
displays, sensor gloves, and much more are used to provide the possibility
to the user to interact naturally within the environment and to transform
enormous quantities of complex data into “graspable illusions” [40, 42]. Even
if virtual reality offers the possibility to gain knowledge which would not
be possible by using conventional ways, it is important to notice that it
may cause some confusion, especially when users confuse unreal information
acquired by the means of virtual scenarios with real knowledge. In fact, an
abstract level need to be realised to eliminate the confusion between true and
false, real and false data [41].

Augmented Reality (AR) can be seen as a variation of Virtual Reality
(VR), but allows instead the user to see the real world supplemented with su-
perimposed or composited virtual objects. Augmented reality can be thought
as an intermediary world between Virtual Reality (VR), where the world is
completely synthetic, and telepresence, where the world is completely real
[40]. According to Azuma et al. [40], AR systems should not be limited to
specific technologies, such as Head-Mounted Displays (HMDs), monocular or
binocular systems and monitors, but should rather have the following three
characteristics:

• AR systems should combine real and virtual;

• AR systems should be interactive in real-time;

• AR systems should be registered in 3D.

Combining the reality with virtual 3D objects can be useful to display
information that cannot be perceived by human senses. Since computing
devices are used as an Intelligence Amplification [43, 40] to make tasks more
easier to perform for users, AR applications have proven to be very effective in

User Interfaces and Interactions 16

Figure 2.11: A representation of “virtual continuum” [44].

several domains, such as in the medical environment, military environment,
or repair and maintenance environments [40].

Mixed Reality (MR) is according to Tamura et al. [45] “a kind of virtual
reality (VR) but a broader concept than augmented reality (AR), which aug-
ments the real world with synthetic electronic data”. MR covers the space on
the virtual continuum (as shown in Figure 2.11) from AR to AV, and allows
users to see the real world and virtual world objects at the same time [44].
Users are able to see each other, to communicate between them, and to ma-
nipulate virtual information on an intuitive manner [46]. Multiple single user
MR interfaces have been developed enabling persons to interact with the real
world using non conventional ways, like for example projecting kinds of “X-
Ray” images on the patient’s body, while doctors perform biopsy tasks. The
potential of MR is not only limited to advanced single user Human-Computer
Interfaces, but is also ideal for Human-Human collaborative interfaces medi-
ated by computers [47].

2.1.6 Brain-Computer Interfaces

The human brain is one of the most fascinating complex signal processing
machines that is capable of extracting information from a variety of environ-
mental signals, such as sound, sight, touch, and smell. The brain possesses
a great number of neurones, all operating in parallel, which makes it an
unique architecture. These facts have attracted the interest of scientists and
engineers to develop means (interfaces) for measuring neural signals and de-
coding them [48]. A Brain-Computer Interface (BCI) is a system that should
be capable of [48]:

• Measuring neural signals from the brain;

• Decoding neural signals by the means of methods/algorithms;

• The decoded signals must be mapped with a behaviour or action.

17 CHAPTER 2. Background

BCI systems have found their places in tremendous applications, espe-
cially in clinical applications serving as a means of communication for indi-
viduals with neurological diseases. BCIs can be divided in two major classes,
invasive and noninvasive systems. The first class of BCIs consist of implant-
ing electrodes in humans, while noninvasive systems are better suited for
situations where surgeries are not an option [48]. This kind of interface has
shown its potential by allowing monkeys and humans to move robotic arms
and mouse cursors by simply activating their neural population responsible
for the natural arms movements [49].

2.1.7 Similarities Between Post-WIMP User Interfaces

Even if nowadays different groups of post-WIMP interfaces exist, there still lie
some similarities between them [27]. Jacob et al. [31] proposed a framework
for Post-WIMP user interfaces called “Reality-Based Interaction” (RBI) that
has as goal to unify a large subset of these new emerging interaction styles,
which are based on the pre-existing knowledge of the users with everyday
and non-digital real world objects. They provided a basis for interaction
with machines that can almost be applied to almost all people and cultures.
As presented in Figure 2.12, the four themes representing the basis of the
RBI framework are:

• “Naive Physics” (NP): refers to the human’s common sense knowledge
about the basic physical principles of the physical world, such as the
gravity, velocity, and so on. User interfaces simulate or use directly
properties of the physical world and should therefore use metaphors,
like for example the illusion of gravity, mass, and inertia in the case of
the Apple iPhone, or physical constraints, in the case of TUIs, to guide
the user while performing interactions.

• “Body Awareness & Skills” (BAS): refers to the fact that people are
familiar with and understand well their bodies. They are aware of the
relative positions of their limbs and possess the needed skills to control
and coordinate them.

• “Environment Awareness & Skills” (EAS): refers to the people’s skills
for interacting with and orienting within environment surrounded by
objects. In the case of VR, performing tasks relative to the body within
a virtual world should be done using a representation of the user’s body.

User Interfaces and Interactions 18

• “Social Awareness & Skills” (SAS): refers to the awareness people have
to detect the presence of others, and to the developed skills to commu-
nicate, both verbal and non-verbal, to exchange objects, and to collab-
orate with them. Certain TUIs provide enough space and input devices
to support collaboration, while other interfaces, such as VR provide a
digital environment allowing users to communicate and interact with
each other via avatars.

Figure 2.12: The four RBI themes [31].

2.1.8 Conclusion

User interfaces have evolved a lot during the last century, going from complex
interaction styles using commands to WIMP user interfaces providing a more
easy and user-friendly way of working with computers. Although WIMP user
interfaces are still popular and offered the possibility to a broad range of users
to use computers, it unfortunately does not fit all the HCI requirements [23].
As stated by Van Dam [25], a new way of thinking about user interfaces is
required to provide a more natural way of interaction between the computing
devices and users, instead of the traditional keyboard and mouse. Since then,
a lot of research has been done to support the call for such a change. New
post-WIMP interfaces, such as Tangible User Interfaces, Augmented, Mixed
and Reality Based Interfaces, and much more have seen the light to tackle
the problems of the traditional WIMP style interfaces.

Multimodal User Interfaces (MUI) are user interfaces that allows users to
use their human senses as input modalities for interacting with machines on
a more human way. According to Dumas et al. [15], such interfaces possess
two unique features that makes MUIs distinguishable from the others:

• “The fusion of different types of data”.

• “Real-time processing and temporal constraints imposed on information
processing”.

19 CHAPTER 2. Background

Since this kind of user interfaces are relevant to this thesis, an in-depth
explanation of this new class of interface is provided in section the next
section.

2.2 Multimodal Interfaces and Interaction

The way humans interact with the world is inherently multimodal in na-
ture [50, 51]. The multiple human senses or sensing modalities are used
both sequentially or in parallel for exploring environments and confirming
expectations by providing us tons of information to support interaction. The
interaction between humans and machines was in the last decades mostly
done by the means of unimodal communication through single input channels
[50]. Since the WIMP style user interfaces do not scale the Human-Computer
Interaction (HCI) needs of future computing devices [23], multimodal inter-
action has developed significantly in the past years to fulfil the needs by
offering a more “human” way of interacting with computers, by using the hu-
man senses [17, 15]. According to Turk [50] multimodal interfaces “describes
interactive systems that seek to leverage natural human capabilities to com-
municate via speech, gesture, touch, facial expression, and other modalities,
bringing more sophisticated pattern recognition and classification methods to
human-computer interaction.”. Such user interfaces are preferred by the users
over unimodal systems where single-based recognition systems are used since
they are more transparent, flexible, robust and reliable than other human-
machine interaction means, and not to forget that they become more easier
to learn and to use [52, 15, 53] . Since the input modalities of multimodal
interfaces differ from one to another, systems become easily customisable and
usable for a large spectrum of users (impaired or not). Efficiency is not the
only advantage that multimodal interfaces offers in comparison to unimodal
interfaces, but it has shown that reliability, error handling and precision in
visual tasks have been improved, which can expand computing devices to
more other challenging levels [15].

No one can deny that Bolt’s “Put That There” system (see Figure 2.13)
in 1980 was groundbreaking in terms of multimodal systems, since it was the
first system to deal with more than one input channel, allowing speech and
gesture recognition to work in parallel [54, 55, 28]. The user, sitting in a
chair, could move objects (basic shapes) presented on a wall-sized display by
simply saying the “put that” command, while pointing to an object, and using
the voice command “there”, while pointing to a destination. Multiple systems
started to emerge in the late 1980s, allowing users to interact by using spoken
or typed natural language, speech and gesture recognition eye gaze and was

Multimodal Interfaces and Interaction 20

Figure 2.13: Put That There multimodal system [54].

even the opportunity to bring new modalities, such as haptic and mobile
computing environments to expand the traditional desktop environments and
opening doors for going beyond the WIMP-style [50].

2.2.1 Multimodal User Interfaces vs. Graphical User
Interfaces

As presented in Table 2.1, Multimodal User Interfaces (MUI) differ in many
ways from the traditional Graphical User Interface (GUI). One of the major
characteristics of the GUI is that it is often based on the Window, Icon,
Menu and Pointing device (WIMP) style and is practically used in all kinds of
operating systems [15]. The user can control a cursor displayed on the screen
by the means of pointing device (e.g. a mouse) in order to present information
represented by icons in windows. The GUI manages only one input stream,
since this interaction style requires only a single physical input device. On
the other hand, MUIs are systems using a combination of input modalities
and should therefore be able to handle multiple input streams [15, 29, 30, 50],
like in the case of the “Put That There” system [54], where the parallel or
multithreaded working of the input has shown a great importance, since the
system had to compute the coordinates on the exact same time the user said
one of the two voice commands [28]. Interpreting data for controlling GUI is
a deterministic process since the position of the pointing device can be used

21 CHAPTER 2. Background

Differences Graphical User Interface Multimodal User
Interface

Input Stream Single Multiple
Interpretation of
Data

Atomic, Deterministic Continous, Proba-
bilistic

Processing Com-
mands

Sequential Parallel

Architecture Centralised Distributed and
Time-sensitive

Table 2.1: Differences table between GUIs and MUIs [15].

or even characters typed on keyboards. This principle can not be applied in
MUI because of the fact that such interfaces are dealing with input streams
that must be continuously interpreted by probabilistic recognisers [15, 29, 30].
The processing of multimodal inputs happens in parallel due to the fact that
multiple probabilistic recognisers are needed for the interpretation of data
and are time sensitive compared to GUI. Distributed architectures are often
used for MUI since algorithms demanding high resources have to be used and
for dealing with the synchronisation of parallel interpretation of data [15].

Multimodal User Interfaces do not only provide the needed technical sup-
port for building much powerful systems than most GUIs based on the WIMP
style, but solves a lot of their disadvantages (as discussed in 2.1.1 and listed
in List 2.5). As presented in Table 2.2 , complex tasks are more suitable
on MUIs, since they allow users to adapt their multimodal behaviour [56]
and provide a more natural way of interaction instead of spending too much
time manipulating user interfaces than the application itself [50]. Also the
spectrum of users becomes much broader than traditional GUIs with mouse
and keyboard interactions. Systems are easily customisable and adaptable
depending on the users’ needs, impaired or not [15, 50]. Multimodal inter-
action does not only provide extra freedom for 3D environments [57], but
allows also users to work and collaborate on shared tasks [58, 59] in the same
environments instead of using desktop application usually designed for sin-
gle users. MUIs allows with their multithreaded input and output streams
the combination of multiple media, which may supplement each other by
using one medium as an input stream for acquiring commands and another
stream for acquiring data, as used in the “Put That There” system [54]. This
offers several advantages from a user interface perspective, since the user

Multimodal Interfaces and Interaction 22

Graphical User Interfaces Multimodal User
Interfaces

Suitable for com-
plex tasks

7 3

Manipulation of
UIs

7 3

Interactions 7 3

Performing 3D
tasks

7 3

Shared and col-
laborative work

7 3

Table 2.2: Advantages of MUIs over GUIs.

is provided a less constraint and moded feeling than with the traditional
mouse interaction and will allow more precise recognition due to the natural
behaviour of the human [28, 60].

2.2.2 Design of Multimodal Systems

The big issue regarding MUIs is that building such systems can be really
challenging, since the design principles used for standard computing envi-
ronments do not apply in multimodal systems and that even if such systems
provide much more freedom compared to WIMP user interfaces, one may no-
tice that each multimodal system may have different design decisions, since
the combination of modalities, the targeted users or even the application
tasks may differ from one to another [50, 61]. Researchers have tried to
solve this problem by providing a set of guidelines and myths that have
proven to be useful for designing multimodal systems [50]. The “Ten Myths
of Multimodal Interaction” by Oviatt [62] has played a key role by identifying
computational myths regarding how people interact with multimodal inter-
faces and by replacing these misconceptions with empirical findings. The ten
myths of multimodal interaction includes [62, 50, 63, 64]:

• Myth #1: “If you build a multimodal system, users will interact mul-
timodally”. Even if multimodal systems support multiple input modes
does not mean that users will interact multimodally. Users tend to
intermix unimodal and multimodal interaction, but prefer the last one,
since such interaction type is much more predictable depending on the
action that must be performed.

23 CHAPTER 2. Background

• Myth #2: “Speech and pointing is the dominant multimodal integration
pattern”. Speech and pointing are a more intuitive combination of input
modalities and suits better for deictic tasks, where users must select
objects and perform operations on it. The reason why this combination
of interaction seems to be dominant is because they are used by most
interfaces and are a good alternative for the traditional WIMP style
user interfaces.

• Myth #3: “Multimodal input involves simultaneous signals”. Users act
multimodally with the real world by using different modalities simul-
taneously, which does not require to perform individual multimodal
inputs at the same moment.

• Myth #4: “Speech is the primary input mode in any multimodal system
that includes it”. Speech is a dominant media because of the fact that
it is mainly used by humans as an input channel for communication.
Nevertheless, it does not mean that it should be used as a primary
modality in each multimodal interface. In certain cases like noisy envi-
ronments or privacy concerns, speech may not be the best option, and
must not be a requirement while designing a multimodal interface.

• Myth #5: “Multimodal language does not differ linguistically from uni-
modal language”. One of the advantages of multimodal interaction is
that it allows tasks to be simplified by using multiple input modes by
taking away all the complexities provided by unimodal languages. Re-
garding the case of the “Put That There” system [54], using only speech
would result in a much more complex task, while users are likely to
avoid linguistic complexities.

• Myth #6: “Multimodal integration involves redundancy of content be-
tween modes”. Multimodal integration help to support a better user
experience because redundant input modes can be used to reinforce
each other. Nevertheless, multimodal integration should take in con-
sideration the complementary nature of multimodal input for a better
usability. Non-duplicated information acquired by the multiple com-
munication modes should be put together on a complementary way
rather than redundantly.

• Myth #7: “Individual error-prone recognition technologies combine mul-
timodally to produce even greater unreliability”. Multimodal inputs re-
quires the use of recognition technologies that are designed to under-
stand the input received from the users. Unfortunately, such recogni-
tion systems are error-prone, but can be overcome by combining the

Multimodal Interfaces and Interaction 24

input of multiple recognition-based together to improve the accuracy,
and providing a more reliable user interface. The users tend also to use
the more effective mode instead of the more error-prone input media
(?), because they naturally know when and how to choose the most
effective one.

• Myth #8: “All users’ multimodal commands are integrated in a uniform
way”. Users can all have their own way of using a multimodal interface
due to their individual differences and interaction strategies. Therefore,
the multimodal integration scheme should be flexible in a way that it
should be able to detect these differences and adapt the system to the
users’ preferences.

• Myth #9: “Different input modes are capable of transmitting compara-
ble content”. From a usability perspective, it is important to under-
stand that not all input modalities are equal. Input modalities have
all their strengths and weaknesses regarding the information the user
wants to convey. Since every mode is unique, it becomes important to
understand the input modalities and in to know for what tasks they
are ideal for.

• Myth #10: “Enhanced efficiency is the main advantage of multimodal
systems”. Multimodal systems provides much more other substantial
advantages than efficiency and speed, but are flexible and allows the
users to interact with the systems the way they want. A well designed
multimodal interface provides a level of generality that enables the users
tot support a variety of different tasks, applications and environments.

Reeves et al. [65] stated that new interaction paradigms and guidelines
were needed in order to facilitate the design of multimodal systems to provide
a more transparent, flexible and efficient way of human-computer interaction.
The two main goals of these guidelines are to achieve a kind of interaction
closer to the way human communicates with each other, and to increase the
robustness of such interfaces by using redundant or complementary informa-
tion. The following six guidelines should be taken in consideration for the
design of multimodal user interfaces [65, 50]:

• Requirement Specification. Designers should be aware of the users’ psy-
chological characteristics, experience level, cultural background, phys-
ical attributes, etc. to design systems for the broadest range of users
and context of use. The best modality or combination of modalities
should therefore be supported to anticipate the changing environments

25 CHAPTER 2. Background

(e.g.: private office vs. driving car). Multimodal systems should also
address privacy and security issues. In situations where speech is used
as an input mode, providing a non-speech alternative in a public con-
text could prevent users to divulge sensitive information or intimate
information.

• Designing Multimodal Input and Output. Designers should take in con-
sideration the foundation of cognitive science (on intersensory percep-
tion and intermodal coordination) to maximize human cognitive and
physical abilities. Therefore, intuitive interaction needs to be supported
based on the capabilities of humans to process information. Modali-
ties should be compatible with the user preferences, context, and sys-
tem functionality. Additional modalities should only be added if they
improve the performances for a given user and context, for example
allowing gestures instead of speech in noisy environments.

• Adaptivity. Designers should take in consideration the needs and abil-
ities of different users, as well as the different context in which the
multimodal interface will be used. The individual differences of the
user (for example, age, preferences, skill impairment) can be captured
and used to determine the settings of the interface.

• Consistency. The multimodal interface should remain consistent in
terms of presentation and prompts even if different input and output
modalities are used to perform the same task. Therefore the output of
the system must be independent from the used input modality.

• Feedback. The users should be aware, by the means of feedback, of
which modalities are made available to them without being overloaded
with lengthy instructions that could distract them from performing
tasks correctly. Therefore, it is important to provide intuitive feedback
messages to the users by, for example, using descriptive icons, and
notify them whenever a certain action needs to take place (for example,
speech).

• Error Prevention/Handling. The multimodal interface should be clear
and easily discoverable to provide a good error prevention and error
handling. Other possibilities to avoid errors are to provide enough as-
sistance to the user by the means of help functions, allowing the users to
undo a previous action or command, or even integrate complementary
modalities to allow users to select the one they feel more comfortable
with.

Multimodal Interfaces and Interaction 26

2.2.3 Principles of Multimodal Interaction

When it comes to multimodal human-computer interaction, it is important
to understand the basic knowledge regarding the input and output modalities
implied in the interaction between the interfaces or machines and humans.

Figure 2.14: Model for the identification of basic processes in human-
computer interaction [66].

According to Schomaker et al. [66] there are at least two physically sep-
arated agents involved in the multimodal human-machine interaction pro-
cesses, one human and one machine, but they are able to exchange informa-
tion through a number of information channels. As depicted in the scheme
shown in Figure 2.14, the model describes the four input and output chan-
nels, as well as the involved agents. The Human Input Channels (HIC) and
Computer Input Modalities (CIM) describes the input, while Computer Out-
put Media (COM) and Human Output Channels (HOC) define the output
channels or feedback [64]. The model involves two basic processes:

• The Perceptive process connects the human input (HIC) and the com-
puter output (COM) together.

• The Control process connects the human output (HOC) and the com-
puter input (CIM) together.

Each of the involved agents possess a cognitive or computation compo-
nent that processes information acquired from the input channels in order to

27 CHAPTER 2. Background

prepare the output. These intermediate cognitive levels are influenced by in-
tentional parameters, either implicitly by design, in the case of non-intelligent
agents, or explicitly, as in the case of humans or more sophisticated agents
[66]. Since the elaboration of a model describing the complexity of the hu-
man cognitive apparatus is difficult even hindering, the design of interfaces
can only be inferred, since it can not be observed directly, and be supported
by empirical results [64].

Dumas et al. [15] propose an interaction model inspired by the Norman’s
action cycle [67], which suits more for multimodal human-machine interac-
tion. The model, as shown in Figure 2.15, identifies important concepts that
should be considered for the design of multimodal systems, such as: the fu-
sion of multiple input modalities, and fission to generate a message to the
user depending on the context. In the human-machine interaction loop (see
Figure 2.15) the first state, which is the decision state, consists of the human
forming consciously, or unconsciously, an intention in order to interact with a
machine. In order to satisfy the goal, the human selects the communication
means in the action state to transmit the message. In the perception state,
the machine makes use of modules, which can be in the form of sensors, to
capture the transmitted message. Depending on the different information
collected in the perception state, the machine’s interpretation state goal is to
give meaning to these, typically done by the fusion of multimodal messages.
Action is then taken in the computational state depending on the developer’s
defined rules. The machine’s action state will generate and transmit an an-
swer to the user according to the meaning extracted from the interpretation
stage. Depending on the user’s profile and context of use, the fission en-
gine will choose the adequate output modalities for the transmission of the
message. In the human’s perception state, the user is able to perceive the
changes in the world performed by the machine’s action state, allowing the
interpretation of the generated message in the interpretation state.

The architectural details of what a multimodal system should be com-
posed of is illustrated in Figure 2.16. This figure reflects the software com-
ponents used by the machine in order to make the interaction model described
before work. Recognizers are used to perceive the input modalities, which
outputs will be used by the fusion engine. The fusion engine is responsible for
interpreting the inputs and to forward it to the dialog manager responsible
for the identification of dialog state, the transmission of a message through
the fission component, the transition to perform, and/or the communication
of the action to the application. The fission engine return the message to the
user by choosing the most adequate output modality, or even combination

Multimodal Interfaces and Interaction 28

Figure 2.15: Dumas’ proposed multimodal human-machine interaction model
[15].

of output modalities, depending on the context and user’s profile tracked by
the context manager.

2.2.4 Multimodal Fusion

Fusion engines have received a lot of attention due to the benefits they pro-
vide regarding various multimedia tasks [68]. By processing multimodal data
provided by a set of input modalities, such engines are able to obtain valuable
insights. Unfortunately, the fusion of multiple modalities is a complex task,
since it depends on the different characteristics of the involved modalities,
such as: the different frame rates of audio and video modalities, the process-
ing time required by the used modalities, the correlation of modalities, and
so forth [15, 50, 68].

Figure 2.17 represents a classification of the types of multimodal interfaces
according to Nigay and Coutaz (1992) [69]. A multimodal interface can be
categorised along a three dimensional space, defining the use of modalities,
fusion, and levels of abstraction. The Use of Modalities dimension defines
whether the modalities from a specific multimodal interface can be used in
parallel, or sequentially, by the users. The Fusion dimension defines the
combination of different modalities. If a multimodal interface uses a fusion
engine for the combination of different types of data, the attributed value will
be combined, otherwise, independent in the case of the absence of fusion. The
last dimension, Levels of Abstraction, shows that all the multimodal interfaces

29 CHAPTER 2. Background

Figure 2.16: The architecture of a multimodal system [15].

have as value meaning, making it able to categorise the multimodal interfaces
in to four CASE categories [50, 70, 71]:

• Alternate: when modalities are used sequentially by the users with
fusion.

• Exclusive: when modalities are used sequentially by the users without
fusion.

• Synergistic: when modalities are used in parallel by the users without
fusion.

• Concurrent : when modalities are used in parallel by the users with
fusion.

As depicted in Figure 2.18, the fusion of different input modalities can
operate at three levels: data level, feature level, or decision level [15, 71,
72]. Fusion executed at the data level operate directly on the input streams
provided by the input modalities [71]. Such kind of fusion is used when the
fusion engine deals with multiple signals coming from similar input modalities
(e.g.: two webcams), providing no loss of information but a high susceptibility
of noise and failure due to the absence of pre-processing [15]. Feature Level

Multimodal Interfaces and Interaction 30

Figure 2.17: The classification of multimodal interfaces types [69]. Figure
taken from [70].

fusion extracts patterns and characteristics, using adaptive systems, when
tightly-coupled, or time synchronised, input modalities need to be fused.
Even though it handles better noise than the previous type of fusion, it
nevertheless can loose information [15, 71]. Fusion at the Decision Level is
mainly used for the fusion of loosely-coupled input modalities. Since the
data is pre-process data, it provides a low loss of information and failure
sensitivity [15].

Figure 2.18: The three levels of multimodal fusion [15].

2.2.5 Multimodal Fission

According to Foster (2002) [73] multimodal fission is “the process of realis-
ing an abstract message through output on some combination of the avail-
able channels”. The generated message should be adequate to the context
provided by the available output modalities, making it a delicate task [15].
Multimodal fission consists of three main tasks [15, 73]:

31 CHAPTER 2. Background

• Message Constructing or “Content selection and structuring”: consists
of the task used to design the overall structure of a presentation.

• Output Channel Selection or “Modality Selection”: consists of the task
responsible for the selection of output modalities depending on the con-
text, the user’s profile, and the characteristics of the output modalities.

• “Output Coordination”: consists of ensuring the coherence and synchro-
nisation of a presentation when multiple output modalities are com-
bined.

2.2.6 The CARE Framework

While the CASE model focuses more on the combination possibilities of
modalities at the fusion engine level, the CARE properties, Complementarity
- Assignment - Redundancy - Equivalence, instead focuses more on the user
level [15, 74]. The CARE framework provides a way of characterising and
assessing multimodal interaction from both the user and the system perspec-
tives [75]. Equivalence (s, M, s’) states that modalities of a particular set of
modalitiesM can all lead to the desired state s’ from state s [74, 76]. In other
words, since all the modalities are equivalent, choosing one of them at a time
would have the same result [15, 74, 75]. For example, asking the departure of
a flight by clicking on a button or by using speech [75]. Redundancy (s, M,
s’, tw) states that reaching the desired state s’ from state s can be achieved
by redundantly using modalities (from the set M) within the same temporal
window tw [74, 76]. Since all the modalities have the same expressive power
[76], they can be used simultaneously to reach the same goal. For example,
using speech and direct manipulation redundantly to ask for flights from a
particular city [75]. Complementarity (s, M, s’, tw) states that modalities
from a set M are to be used in complementary within the same temporal
window tw in order to achieve the desired goal s’ [74, 76]. In the case of
Bolt’s “Put That There” system [54], gestures and speech need to be used in
order to attain the target state. Finally, Assignment (s, m, s’) states that
only one modality m can be used to achieve the desired state s’ from state
s, due to the absence of choice [74, 75].

Multimodal Interfaces and Interaction 32

3
Related Work

Presentations are found everywhere serving as a means for persuading people
or to deliver a message to an audience. Being a form of communication, it is
important to understand the basic principles of the communication process
in order to deliver a message efficiently. Multiple areas, such as pedagogy,
psychology, education, and so forth, are involved in the study of communi-
cation providing crucial information to improve the quality of the delivered
message. However, the use of display and sensor-based technologies have
proven their potential in certain cases. The first part of this chapter presents
the basic principles of communication in the field of Pedagogy, Psychology
and Education, by identifying the most important elements involved in the
communication process. More specifically, an in-depth explanation of im-
portant nonverbal communication skills is provided, since most of them are
measurable by sensors.. The second part focusses more on the field of Com-
puter Science, and presents multimodal systems measuring nonverbal cues
and providing informative feedback to the speaker.

3.1 Communication

Communication is an important study area and cannot be regarded as a phe-
nomenon which simply “happens”, because every activity involving partici-
pants negotiating their roles in the communication process do use a form of

Communication 34

communication, which can be direct (consciously) or indirect (unconsciously)
[77, 78]. Moreover, communication skills are very important since they do
not only affect personal and organisational effectiveness [77, 79, 80], but
are regarded as one of the most important characteristic of a job candidate
[77, 81]. Since communication is an important topic regarding this thesis,
the following sections will be devoted to the explanation of the communica-
tion process, as well as the important communication skills that need to be
mastered in order to provide a message efficiently and of high quality, and
finally the effectiveness and importance of feedback in the communication
process.

3.1.1 The Communication Process

Communication is the process of transmitting a message, which is informa-
tion and common understanding, from one person to another, or even to
multiple persons [77, 78]. The word communication takes its name from the
Latin word communis, meaning common, and states that there is no commu-
nication unless the exchange of information results in common understanding
[77]. As shown in Figure 3.1, the important actors and elements present in
the communication process are identified.

Figure 3.1: The communication process [77].

At least two common elements are to be found in every communication
exchange, which are the sender and the receiver(s). The sender is the per-
son who initiates the communication to convey an idea or concept, while
the receiver(s) is the individual to whom the message is sent. The message
is encoded by the sender in the form of verbal, nonverbal, or written lan-
guage by simply selecting words, symbols, or gestures [77]. It is important
that the form of the message should be appropriate to the medium or com-
munication channel (e.g. face-to-face conversation, e-mail, telephone call,

35 CHAPTER 3. Related Work

etc.), which will be used to convey the message. The receiver(s) then decodes
the received message to understand its meaning and significance. Neverthe-
less, noise is anything that could create misunderstandings at any stage of
the communication process. This is why the potential of misunderstandings
should be minimised and the communication effectiveness should be maxi-
mized by choosing the appropriate communication channel, understanding
the audience, and encoding the message on the best way to avoid different
perceptions of the message, language barriers, emotions, interruptions and
attitudes. Feedback from the receiver(s), through verbal and nonverbal re-
actions, allows to determine whether the sender’s message has been received
and understood correctly in order to be able to correct any misunderstand-
ings as soon as possible [77, 78].

Many reasons could be the cause of communication failure. When noise
(see Figure 3.1) exists in one of the multiple elements of the communication
process in any way, the message may not be clear enough and understandable
as the sender intended. Understanding and overcoming these types of noises
or barriers lead to a clear and concise message. It is of great importance that
the communicator must be aware of the following barriers and try to reduce
their impact in the communication process [77, 78, 82]:

• Language or Semantic Barriers : Even if the communication is per-
formed in the same language, the semantic or the meaning of the ter-
minology (words) used may act as a communication barrier. The same
words may have different meanings depending on the audience and the
use of expressions may be misinterpreted or even offensive.

• Psychological Barriers : The psychological state of the communicator
may have an impact on the message in the communication process. A
stressed, angered, or communicator with low self-esteem will influence
the way the message is sent, received and perceived by the receivers.

• Physical Barriers : Physical distractions, such as telephone calls, drop-
in visitors, the geographical distance between the communicator and
the receiver(s), may have an impact on the effectiveness of communi-
cation.

3.1.2 Verbal Communication

Verbal communication is the sharing of information with others using speech
[83, 84]. Usually, verbal communication happens through face-to-face conver-
sations, but meetings, conferences, phone calls, and written communication

Communication 36

Verbal
Communication

Nonverbal
Communication

Oral Spoken Language Laughing, Crying,
Coughing, etc.

Non Oral Written Lan-
guage/Sign Language

Gesture, Body Lan-
guage, etc.

Table 3.1: Comparison between verbal and nonverbal communication regard-
ing spoken communication [84].

can also be regarded as being other forms of verbal communication under-
standingNonverbalComm. Many people tend to misinterpret the definition
of verbal communication. Moreover, they assume verbal communication to
only refer to spoken communication, which is not the case. Table 3.1 high-
lights the different kinds of communications and categories. Even if laughing
tends to belong to the verbal communication category, it is not considered to
be a word and is therefore classified as a form of nonverbal communication
[84]. According to [84], verbal communication is “an agreed-upon and rule-
governed system of symbols used to share meaning”, where symbols are used
for the encoding and decoding of arbitrary representations of ideas, emo-
tions, thoughts, or actions. Since verbal communication is rule-governed,
agreed-upon rules must be followed to give sense to the shared symbols.

3.1.3 Nonverbal Communication

Communication is not so much in what is said, but more in how it is said
[85]. Besides the explicit meaning of words, information, or message, com-
munication includes also implicit messages expressed through nonverbal be-
haviours. Such nonverbal cues, intentional or not, contribute to the verbal
communication process and interpretation of information by any behavioural
or expressive communication channel, such as gestures, eye contact, facial ex-
pressions, body posture, and also the physical distance between the sender
of the message and the receiver(s) [83, 86, 87]. According to Argyle [88],
nonverbal behaviour possess five primary functions:

• “Expression of emotions mainly through the face, body, voice.”

• “Communication of interpersonal attitudes.”

• “Accompany and support speech.”

37 CHAPTER 3. Related Work

• “Self-presentation.”

• “Rituals.”

Nonverbal communication is perceived by the audience as being part of the
message. Unfortunately, the interpretation of body language and nonverbal
cues is not an easy task, since nonverbal communication is not a language
with a fixed meaning and is influenced by the context (e.g.: culture, place,
people, and etc.) in which the communication process occurs [86]. Non-
verbal communication has proven to be significant, especially in conveying
messages and forming judgements about people [89]. Even when mixed sig-
nals force the receiver to make a choice between verbal and nonverbal parts
of the message, the receiver(s) tend to choose, most often, the nonverbal as-
pects [89, 90]. Many forms of nonverbal communication exists. Developing
an awareness about these forms of communication can be helpful in improv-
ing communication abilities and increasing the effectiveness of a message,
by showing that the speaker is self-confident, capable, and controlling the
situation [89]. Nonverbal communication includes [91, 86, 92, 93, 89, 94]:

Gestures and Postures “are the frequent, continuous movement changes
that happen in the body while speaking, walking, even sleeping” [95]. While
gestures are vital expressions (actions) of parts of the body, and postures the
activity of the whole human body at once [95], both of them reflect individual
thoughts and regulate communication [94]. Gestures can be divided in speech
independent and speech related gestures [93]. The first one defines gestures
that can be understood independently from speech, since they possess a well-
known verbal translation (e.g.: gestures used to represent “okay”, “peace”,
etc.). While the second one accompanies speech and is used to enhance
verbal communication [93]. Using gestures to emphasise spoken words can
ensure an animated and lively conversation, otherwise, the conversation can
be perceived as boring or tense. It is also preferable to not exaggerate and to
use appropriate gestures depending on the context (e.g.: being aware of the
meaning of gestures with respect to the cultural backgrounds of the listeners)
[83]. Postures therefore reflect the emotional states, attitudes, and intentions
of the speaker [92, 93]. It is important to sit or stand with an erect posture
when communicating with others, to lean towards the listener(s), and to not
turn your back when speaking [83].

Eye Contact or Eye Gaze refers to the eye movements and can indi-
cate the degree of interest, engagement or involvement of the listener(s) and
speaker(s). On the other side, a lack of eye contact may suggest nervous-
ness, detachment, fear, or that a person is hiding something [92, 89]. Eye

Communication 38

contact occurs 10 to 30% of the time during a conversation [94] and can help
to regulate the flow of the conversation. Differences in cultural backgrounds
may lead to breakdowns in conversations [94]. Therefore it is vital to use the
appropriate pattern of eye contact, regarding both culture and context [89].

Argyle [88] stated that facial expressions are the most important non-
verbal communication channel for expressing emotional states or attitudes.
Researchers agreed to categorise facial expression in anger, happiness, sur-
prise, fear, sadness, anger and disgust. Interpreting facial expressions should
be done in a careful manner, for example, a frown could be the effect of a
headache rather than from the difficulty of a task [89]. Pleasant facial ex-
pressions are powerful cues for transmitting messages including friendliness,
happiness, and so forth. Smiling can, for example, let others perceive the
speaker as approachable, friendly and allow the message to be remembered
by the receiver(s), while a frown or grimace will send a negative message [83].

The voice of the speaker serves as a communication channel, or medium,
during conversations or presentations. The audience is not only listening to
the words the speaker is saying, but rather on how it is said [93]. Mastering
the vocal elements or paralinguistic, such as speech rate, volume, tone,
and voice inflections, will grab the attention of the audience by adding in-
terest and meaning to the shared messages [89, 94, 83]. It is also important
that the paralanguage aligns with the accompanied verbal message [94]. Not
everyone possess the same voice as a broadcast reporter, nevertheless tactics
can be employed to use vocal techniques effectively [83, 85, 96]:

• Speech Rate is an important aspect of verbal communication and
determines the number of spoken words or syllables per time unit.
[91]. Speaking consistently at the same rate can lead to ineffective
communications comparing to a varying speech rate, which will help to
maintain the interest of the audience. Speaking quickly in combination
with an enthusiastic tone can be used to excite the audience. In the
case where information needs to be absorbed, a low speaking rate is
more preferable. However, a good speech rate for the English language
lays between 100 to 150 words per minute [85, 97].

• The voice pitch defines the frequency of speech. A more authoritative
and influential character is given to the voice when the pitch is lowered,
while raising the pitch would suggest a question or uncertainty. Even if
both pitches are useful, it is important to not take either to an extreme
or to shift the pitch of the voice in an uncontrolled manner.

39 CHAPTER 3. Related Work

• The voice volume affects the audience’s ability to hear and understand
the speaker. The speaker should speak loud enough in order to provide
a comfortable feeling to the audience. A much louder volume may
annoy and disturb the audience, while speaking too softly makes the
speech hard to hear. By varying the volume of the voice occasionally,
the speaker is able to add character to the speech. It is preferable to
raise the volume when a particular word or idea needs to be emphasised,
and to lower the voice to allow the audience to concentrate on the
speech.

• Pauses are powerful means, since they help to break up the flow of
information and to allow the listeners to process, interpret, and under-
stand the meaning of what was said. They can be used to gain the
attention of the audience before an important message or conclusion
takes place. Figure 3.2 shows that a speech becomes interesting and ef-
fective when a low pitch is combined with a varied pace and occasional
pauses.

• To improve the audience’s understanding, the speaker should articu-
late clearly each pronounced word, phrase, and sentence. By speaking
clearly, the speaker enhances the quality of the speech, and conveys a
feeling of intelligence, confidence, and competence. Another important
factor is to avoid unnecessary words, such as fillers (e.g. “uhm”), and
the repetition of words.

Proxemics refers to the personal space of an individual, and territory, which
refers to a large private area controlled by an individual [93, 89, 94]. Invading
another person’s territory may cause uncomfortable situations and create
communication barriers (noise). The extent to which people react whenever
their personal space is encroached, depends on multitude of factors, such as
culture, sex, age, etc. [89, 94]. Another important aspect of proxemics is the
distance that people tend to put between themselves or others, since it can
indicate the difference in power, feelings or attitudes [89]. It is important
that the person with the highest status in an interaction must generally
appropriate the distance regarding the relationship with the listener(s) and
to control the level of approach [89, 83].

Physical Appearance is generally the first nonverbal message acquired by
the receiver(s) and plays an important role in the interpretation, credibility
and understanding of the message [89, 94]. These static nonverbal cues, such

Communication 40

Figure 3.2: Effective use of vocal elements [83].

as attractiveness, body physique, clothes, and so forth, can develop judge-
ments about people and impact the way people perceive others as similar to
themselves. Attractiveness has shown to provide more advantages in most of
the aspects of life [93, 89, 94]. Even if certain physical properties cannot be
changed easily, a convenable dress could play a significant role [89].

Investigating the importance of nonverbal communication aspects for pre-
sentations can sometimes lead to misinformation, because of the multiple
sources using the 7%-38%-55% rule, also known as the Mehrabian Myth,
wrongly. Multiple research conducted by Mehrabian [98, 99] have led to the
conclusion that the importance of verbal communication (spoken words) is
only 7%, while 38% for para-verbal communication (voice tone), and 55% for
nonverbal communication (body language). The rectification provided by
Mehrabian in his website [100] states explicitly that this equation is only ap-
plicable when the communicator is talking about their feelings or attitudes,
and is thus not applicable to all forms of communication.

3.1.4 The Importance of Feedback

A communication process can be in one or two ways. One-way communica-
tion is a communication process that does not use any feedback, and flows

41 CHAPTER 3. Related Work

only in one direction, namely from the sender to the receiver(s). It is known
to be a faster way of communication, but lacks in terms of clarity because
the others are not taken into consideration [101]. Two-way communication
occurs when the notion of feedback is present in the communication pro-
cess. Feedback can be regarded as “information provided by an agent (e.g.,
teacher, peer, book, parent, self, experience) regarding aspects of ones perfor-
mance or understanding.” [13]. The feedback message can be in the form of
a verbal or nonverbal response, external or internal (like self-examination),
and allows the sender to adjust their message or even to consider a different
approach [101, 102]. According to Lunenburg [77], a two-way communica-
tion involving feedback is more effective and desirable compared to a one-way
communication process. It is in human nature to unconsciously look for feed-
back messages giving sense to all actions [101]. Moreover, without feedback,
no possible way of knowing whether the message has been understood cor-
rectly would exist [102]. However, feedback must be delivered properly to
reinforce and motivate people to improve, rather than putting the commu-
nicator on the defence [89]. Therefore, guidelines are available to provide
effective feedback [89]:

• Feedback should be specific by highlighting specific events instead of
providing only general advice.

• Feedback should offer ways to resolve the occurred problems.

• Feedback should be provided in a positive way, even negative feedback.

• Feedback should be problem oriented instead of people oriented.

• Feedback should be descriptive and not evaluative.

• Feedback should be well timed.

• Feedback should not cause cognitive overload by presenting too much
information the user can use.

3.1.5 Conclusion

Communication has shown its importance in multiple facets of people’s daily
life. It is practically used everywhere, in the business environment, at school,
and so on. Nevertheless, delivering a message of quality requires to master
multiple communication skills, verbal and nonverbal. Unfortunately, this
is not an easy task in terms of public speaking, since there exist no “fixed”
rules defining what a good presentation actually is. Therefore, it is important

Multimodal Feedback Systems 42

that the speaker should be aware of the identified communication skills, and
should understand the audience, in order to adapt their behaviours depending
on the presentation context.

3.2 Multimodal Feedback Systems

3.2.1 Presentation Sensei [1]

Presentation Sensei [1] is a presentation training system that provides, in real-
time, recommendations to the speaker for improving their behaviour during
presentations. Therefore, to improve the quality of the delivered message,
they only focus on five aspects of nonverbal presentation aspects, which are:

• The speaker should not speak too slow or too fast (speaking rate).

• The speech should not contain too much fillers (e.g.: “euuuh”).

• The speaker should have enough eye contact with the audience.

• The presentation should have a time limit.

• The speech should not be too monotonous.

The motivation behind selecting only these five aspects is because it is
nowadays still difficult to detect all the presentation aspects, while these
five exist in recent speech and image processing technologies. Nevertheless,
for acquiring the best performances with the system, it is better to perform
the presentation in environments such as rooms with no noise and no visual
obstacles.

Figure 3.3: Architecture of Presentation Sensei [1].

43 CHAPTER 3. Related Work

The architecture of Presentation Sensei, as presented in Figure 3.3, con-
sists of a “star”-like network where several modules are connected to a cen-
tral module. Each module, except the integration module, is responsible for
tackling one or more presentation skills aspects as explained previously. The
audio analysis module is responsible for detecting the utterance, filled pause
and the pitch of the speaker by the means of a microphone. It measures the
voice of the speaker every 10 seconds and sends continuously this data to the
integration module for processing purposes. The system can then recognise
whether the speaker should add more pauses or is speaking monotonously.

The Julian speech recognition engine, integrated in the Speech Recog-
nition module, has as purpose to count the number of moras or in other
words, the number of Japanese syllables and to send this data to the integra-
tion module for determining whether the speaker should adjust its speaking
rate or not. Since it only supports mora-based languages such as Japanese,
supporting other languages would result in the need to use other speech
recognition engines that support the speaker’s language.

Figure 3.4: The AR toolkit for detecting and tracking the head of the speaker
[1].

The Image Processing module is used to determine whether the speaker
is looking to the audience or not by tracking the position and the orientation
of the face. Two methods are proposed, one that makes use of the AR
toolkit and a more advanced one that uses Sub-space and Support Vector
Regression (SVR) method. The AR toolkit, as presented in Figure 3.4, is a

Multimodal Feedback Systems 44

Figure 3.5: The Sub-space and SVR method for tracking the head of the
speaker [1].

(a) Online feedback. The short
term statistics on the left side
and the icons on the right side.

(b) Offline feedback. Rehearsal
history of the speaker.

Figure 3.6: Presentation Sensei feedback modes [1].

special visual marker that the speaker should wear on its head. The second
method (as shown in Figure 3.5) is more advanced, since it only requires a
series of images of the speaker’s head for computing the eigenvectors for each
orientation of the face. Therefore, the orientation of the face can be detected
without making use of a marker.

Two important features are available in Presentation Sensei, which pro-
vides the speaker with the possibility of choosing between the online and
offline mode. The online mode can be used for training purposes or during
the presentation itself and is composed out of an user interface (as shown
in Figure 3.6a) that provides short term statistics, while icons are used as
“alerts”. The offline mode (as shown in Figure 3.6b) shows the statistics of

45 CHAPTER 3. Related Work

the whole presentation in the form of charts, representing the rehearsal of
the speaker, after the presentation, allowing the speaker to review the whole
session afterwards.

3.2.2 Presentation Trainer [2]

The Presentation Trainer proposed by Schneider et al. [2] is a system that
can be used for training purposes. It allows speakers to improve their non-
verbal communication skills by practicing while receiving feedback from the
system. Only the basic nonverbal communication aspects are covered by the
Presentation Sensei, which are:

• The body postures. Using the right body postures during presentations
gives the impression to the audience that the speaker is confident, open
and attentive. Therefore, they propose to stand up in an upright posi-
tion in front of the audience with the hands in front of the body above
the hips.

• Use of gestures. Using gestures in combination with speech during the
presentation can have as advantage that some contents of the delivered
message can be strengthened and give a better idea to the audience.
Nevertheless, the system does not identify specific gestures, but only
determine whether gestures are being used or not.

• Voice volume. Having a good volume during the presentation enhance
the clarity of the message and ensures the attention of the audience.

• Use of pauses and phonetic pauses. Using pauses during the presen-
tation can only have advantages, since it gives the opportunity to the
audience to refocus on the future contents of the presentations.

The user interface is designed in a way that it does not cause cognitive
overload, while the speaker can get the maximum of the system to improve
its skills. As presented in Figure 3.7, the user interface is in fact a “mirror”
of the speaker themselves where feedback is shown in real-time. Since it can
happen that several feedback events could be triggered at the same time, the
Presentation Trainer will only show one feedback event at the time and wait
at least six seconds before firing the next feedback event. Selecting the right
feedback event can be done by assigning relevance scores to feedback events
or by using the First-In-First-Out principle. The last method displays the
feedback event until the mistake is corrected. The user interface does not
consist only of a Graphical User Interface (GUI) on the screen, but uses also

Multimodal Feedback Systems 46

a wristband that produces vibrations whenever a feedback event is triggered
by the system.

Figure 3.7: The Presentation Trainer user interface and setup [2].

Feedback events can be divided into corrective and interruptive feedback.
Corrective feedback is used to alert the speaker in real-time in order to change
its behaviour. As presented in Figure 3.8a, the system displays the right be-
haviour to the speaker to correct the identified mistake. It can happen that
the same mistakes can be repeated several times or that identified mistakes
can stay for too long without being corrected. Such mistakes triggers inter-
ruptive feedbacks (see Figure 3.8b) which will not only alert the speaker but
will also stop the program and display the reason.

In order to be able to detect the previously-cited nonverbal communi-
cation skills, the Presentation Trainer uses the Microsoft Kinect for Win-
dows V2 sensor with its SDK for tracking the voice and body of the speaker.
The architecture of the system as presented in Figure 3.9 is really advanced
and allows the inclusion of more sensors. The bottom layer or the Sensor
Modalities layer is responsible for the communication between the Kinect
sensor and the system. It contains not only the current coordinates of the
body joints and the audio values of the speaker, but is also composed out
of flags for indicating whether certain events are fired or not. All these data
are used by the judgement maker for generating presentation actions, which
are actually any types of nonverbal communication mistakes. The rule anal-
yser decides based on the state of the program and the performance of the

47 CHAPTER 3. Related Work

(a) The corrective feedback event. (b) The interruptive feedback event.

Figure 3.8: The Presentation Trainer feedback modes [2].

speaker which feedback event should be triggered. The operational states
receives such feedback events and forwards them to the output channels.

3.2.3 RHEMA [3]

Nowadays, technology is becoming more advanced, powerful and designed in
a way that intelligence can be embedded in practically all everyday objects.
A good example is Google Glass [103], which is a pair of wearable eyeglasses
(as shown in Figure 3.10) running on the Android Operating System and lets
the user interact in multiple ways thanks to the embedded sensors, allowing
both gesture as well as voice-based input. An augmented reality experience is
offered to the user by showing relevant information using audiovisual content
[104].

RHEMA [3] is a smart user interface that uses the advantages of Google
Glass to provide speakers with real-time feedback during presentations. Glass
records the speech of the speaker and displays a feedback message, as pre-
sented in Figure 3.11, whenever it is needed. The feedback message is dis-
played in a way that it becomes less intrusive, minimises distraction and avoid
cognitive overloads. Google Glass is compared to other wearable displays as
a cheaper and light-weighted comfortable alternative, but it is nevertheless
not designed for running computationally intensive applications due to heat
issues. In order to avoid such problems the researchers opted for an archi-
tecture (see Figure 3.12) that makes use of a local server for processing the
audio data sent by Glass and returning a result back to the glasses. The tasks
of the server consist in analysing the audio data for determining the loudness
and the speech rate of the speaker. The TCP (Transfer Control Protocol) is
used for transferring data from the Glass to the local server since other proto-
cols such as UDP (User Datagram Protocol) and RTP (Real-time Transport
Protocol) causes unreliable packet delivery and overheating issues.

Multimodal Feedback Systems 48

Figure 3.9: The Presentation Trainer architecture [2].

3.2.4 A Real-Time Feedback System for Presentation
Skills [4]

Kopf et al. [4] provide a low-cost system that could benefit students and
young professionals by giving direct real-time feedback on their behaviour
while practicing presentations. The low-cost system is composed out of a GUI
and the Microsoft Kinect that can easily be carried out in safe environments,
which provides a comfortable sensation to the presenter, even to the more
shy ones. The system takes two kinds of feedback in consideration: the
first one is used to provide direct feedback on the presenter’s presentation
style, such as the movement, gestures and eye-contact with the audience,
while the second one provides additional feedback showing statistics about
the duration of each slide and the presenter’s speech rate. The audio and
video data during a training session is recorded so that it is made possible
for the presenter to study it for finding ways to improve the speech, gestures
and other presentation skills.

Figure 3.13 shows the main view (GUI) of the feedback system that visu-
alises the captured data from the Microsoft Kinect and makes it easy for the
presenter to configure the system. Functionalities are made available for play-
ing and recording streams from the sensor as well as evaluating the current
presentation for presenting feedback about the speech rate, slides duration,
gestures and even the viewing of the presenter (as shown in Figure 3.14).

49 CHAPTER 3. Related Work

Figure 3.10: Using the Google
Glass as a secondary display
[3]

Figure 3.11: Feedback mes-
sage displayed by Rhema on
the Google Glass [3].

The gesture recognition module, which is the most important part of the
system, is used to identify three essential behaviours of the presenter, which
are the viewing direction of the presenter, open gestures and hands below
the waistline. To determine whether the presenter is looking to the audience,
the distances from the left and right shoulder to the Microsoft Kinect are
computed and used with the assumption that they must practically be similar
in the case that the presenter is looking at the audience. This simple approach
can trigger errors in some cases (e.g.: whenever the presenter’s face is oriented
to the walls and not the shoulders) but is preferred to a more accurate but
high computational demanding face detection algorithm.

Analysing the duration of the slide is done by using the RGB stream of the
Microsoft Kinect and by measuring the amount of pixels changes. In order
to avoid significant pixels while the presenter is moving, the silhouette from
the presenter is computed and the occluded pixels are ignored as presented
in Figure 3.15 .

The speech rate of the presenter is computed by analysing the audio
stream from the Microsoft Kinect and by counting all the recognised words
with the Microsoft Speech Engine.

3.2.5 Feedback System for Presenters Detects Nonver-
bal Expressions [5, 6]

Nonverbal expressions have shown their significance during presentations,
since the use of the body and vocal elements are important for the delivery
of a message. Since self-practicing presentations in front of a mirror or by
videotape is time-consuming and not accurate enough, Nguyen et al. [5, 6]
designed an automatic multimodal system capable of analysing nonverbal
expressions in order to assist the speaker by the means of natural and infor-

Multimodal Feedback Systems 50

Figure 3.12: The Rhema architecture [3].

mative feedback. The architecture of their approach proposed in Figure 3.16
consists of three important modules:

• The Capture Device module, composed of the Microsoft Kinect, is used
to capture the speaker’s information in a non-intrusive manner, instead
of using wearable sensors. The Microsoft Kinect captures the speaker’s
body movements and voice, both enough for the processing of nonverbal
expressions.

• The Emotional Signal Detection module is the “heart” of the system.
This module serves to analyse the acquired voice and body movements
information acquired by the Microsoft Kinect to extract both good and
bad nonverbal speaker expression.

• The Performance Assessment module is finally used to provide appro-
priate feedback to the speaker based on the detected expressions.

The Emotional Signal Detection module identifies only two nonverbal
communication aspects, which are posture and gesture analysis. In order to
make the distinction between good or bad nonverbal expressions, a database

51 CHAPTER 3. Related Work

Figure 3.13: The GUI of the feedback system [4].

collecting short recorded presentations is used. These annotated samples,
composed of a colour and depth image (as shown in Figure 3.17), have been
recorded to serve as a reference point for the analysis of nonverbal expres-
sions. The analysis of gestures and postures is performed separately by the
system. The nearest-neighbour algorithm has been used to classify the good
and bad postures using the information available in the database. In the
case of gesture analysis, they implemented a method for the interpretation of
gestures based on the Laban Movement Analysis (LMA) language [105]. The
speaker’s gestures are automatically mapped to Laban’s parameters serving
to detect the good and bad gestures. The detected speaker’s postures and
gestures are assessed through a scale going from “Bad” to “Excellent” by the
Performance Assessment module, in order to provide a simple visual feedback
message shown on the computer screen.

3.2.6 Multi-sensor Self-Quantification of Presentations
[7]

Gan et al. [7] proposed a system that makes its distinction, compared to
other multimodal systems, in terms of the type of sensor technology they
use. The Multi-sensor Self-Quantification Framework, used for presentations,
works only with wearable sensors (audio, video, and motion sensors), or in
combination with existing ambient sensors (audio, video, and depth sensors),
which makes it, according to the authors, the first wearable sensor system
used to quantify the speaker’s performances during a presentation.

Multimodal Feedback Systems 52

Figure 3.14: Statistics and feedback about the presenter’s behavior from the
recorded session [4].

The methodology used to quantify the speaker’s performance, is similar to
the way presentation skills are evaluated in the field of psychology, namely, by
a rubric. A rubric, where every presentation skill is associated with different
levels of performance quality using a score, can be used by an evaluator
(human or machine) to provide informative feedback. Since providing the
speaker with a score instead of a semantically useful messages such as, for
example, “speak louder”, is not efficient enough, the authors proposed their
own assessment rubric, which contain semantically meaningful assessments
while also benefiting the analytic-algorithms for the performance analysis.
The proposed rubric, shown in Figure 3.18, consists of three hierarchical
layers:

• The category layer is a high-level categorisation of presentation skill
aspects.

• The concept layer divides each category into more detailed presentation
aspects.

• The state layer contains the semantically meaningful state of each con-
cept (for example, in terms of speech rate, the states would be: slower,
faster, and so forth).

53 CHAPTER 3. Related Work

Figure 3.15: The silhouette of the presenter [4].

TheVocal Behaviour category identifies three paralinguistic behaviours,
or concepts, which are speaking rate, liveliness, and fluency, in order to assess
the vocal quality of the speaker. In this case, liveliness is defined as being the
intonation, rhythm and loudness of the speaker’s voice, while fluency refers
to the speaker’s speech smoothness in which syllables, words, and phrases are
combined together. The raw audio data acquired by the sensors is processed
by PRAAT [106], a software library for analysing speech, which is used by
the system to quantify vocal behaviour.

Body language, such as gestures, facial expressions and body postures,
are often used by the speakers to strengthen a message, while also making the
presentation more dynamic. The Body language category identifies only
body movements and gestures as concepts. The detection of facial expressions
was not an option, since algorithms used to detect facial expressions are not
accurate enough. Similar to the vocal category, a body language category
contains three states for each concept used for the quantification process,
which are: excessive, normal and insufficient. Therefore the skeleton tracking
provided by the Kinect sensor is used.

The Engagement category is used to evaluate the level of attention of
both the speaker and the audience. For the speaker’s attention, the screen,
audience, script and “others” states were identified, listing the objects in

Multimodal Feedback Systems 54

Figure 3.16: Architecture of the system [6].

which the speaker can pay attention during the presentation. On the other
side, the audience’s attention concept defines the engagement of the audience
by the means of three states: no attention, attention without feedback and
attention with feedback. The last state can be in the form of interaction be-
tween the speaker and the audience, or just by nodding the head. Therefore,
three Google Glasses where used, one for the speaker and the others for the
audience.

The Presentation State category, with presentation state as concept,
characterises whether the presentation is in presentation state, or in question
answering (QA) state.

In order to be able to quantify the speaker’s performances identified by
the categories and concepts, the framework uses multiple sensors in order to
capture the speaker’s and the audience’s behaviour. As shown in Figure 3.19,
the framework assumes that the data of each included sensors can be mod-

55 CHAPTER 3. Related Work

Figure 3.17: Samples stored in the database. Left, the colour frame; and
right, the depth frame from the Microsoft Kinect [6].

Figure 3.18: Assessment rubric used to quantify the speaker’s performances
[7].

elled as a collection of features, making it able to extract specific features
from specific modalities m. This would help the classifier to learn, in order to
identify the state of the corresponding concept, used to quantify the identi-
fied performances. The Acoustic Feature, Visual Feature, Depth Feature, and
Motion Feature are all Machine Learning algorithms used to target specific
performance categories.

Nevertheless, even if this framework does not provide feedback messages
to the speaker in order to adapt its behaviour in real-time, it provides a
generated analytics report for each presentation session. The report consists
of three parts:

• As shown in Figure 3.20, the speaker is able to visualise the captured
footage of all the included video devices. The moment of the presen-

Multimodal Feedback Systems 56

Figure 3.19: The framework with the sensor configuration [7].

tation, highlighted by the red line in Figure 3.21, corresponds to the
frames shown in the video footage.

• The time-series analytics shown in the left part of Figure 3.21, consists
of the identified presentation concepts. Notice that the level of the line
charts have three distinct states, low, middle or high. The red marks
present in the yellow graphs consists of visualising where the speaker
pays attention to.

• The piecharts on the right side of Figure 3.21, allows the speaker to
quickly examine the accumulated status from the identified concepts.

Figure 3.20: Snapshots captured from the video devices [7].

3.2.7 Multimodal Public Speaking Performance Assess-
ment [8]

Wörtwein et al. [8] propose a multimodal framework combined with an inter-
active virtual audience used to automatically assess the speaker’s nonverbal

57 CHAPTER 3. Related Work

Figure 3.21: The generated analytics [7].

behaviours. The artificial virtual audience is based on the Cicero platform
[107], which is capable of providing feedback according to the perceived mul-
timodal speaker’s behaviour. As shown in Figure 3.22, the virtual figures
were configured in order to provide feedback to the speaker according to
their performance. The provided feedback messages, given in the form of
multiple nonverbal messages, are:

• Leaning forward and being attentive.

• Standing straight on their chairs.

• Leaning backwards.

• Nodding or shaking their heads.

Depending on the performance of the speaker, whenever the virtual char-
acters’ behaviour consist of leaning their body forwards or nodding regularly
their head means positive feedback. On the other hand, negative feedback
would result in leaning their body backwards or regularly shaking their head.
Notice that the threshold values used to trigger the nonverbal feedback mes-
sages differ from one character to another. Since they are randomly sampled,
every character will not behave simultaneously. The nonverbal communica-
tion aspects used to assess the speaker’s performance are:

• Eye Contact

• Use of gestures

• Body posture

• Flow of speech

Multimodal Feedback Systems 58

Figure 3.22: The interaction loop used to track the nonverbal behaviours
allowing the virtual audience to provide audiovisual feedback [8].

• Intonation

• Use of pause fillers

In principle, the Performance Assessment is divided in two parts, one
responsible for the assessment of the speaker’s acoustic or paralinguistic be-
haviour, while the other for the assessment of visual behaviours. The Acous-
tic Behaviour Assessment is responsible for processing the captured audio
signals with the COVAREP toolbox [108], providing robust and tested open-
source tools for speech analysis. Analysing the voiced from the unvoiced parts
of the audio signals, provides an estimation of the speech rate and pauses,
while the intonation can be assessed by computing the speaker’s voice inten-
sity in dB. On the other side, the Microsoft Kinect is used to by the Visual
Behaviour Assessment to obtain the skeleton data of the speaker’s joints
(shoulders, elbows, hands and wrists) to measure the use of gestures. The
Emotient’s FACET SDK [109] is used to extract the emotions of the speaker,

59 CHAPTER 3. Related Work

such as anger, sadness and contempt, while the OKAO vision-based tech-
nology [110] is used to get an estimation of the eye-contact ratio. During a
presentation session, the speaker is able to get an overall assessment of their
performance by the means of a bar, as shown in Figure 3.22 right above the
interactive virtual audience.

3.3 Summary of the Related Work

This section presents a summary of all the related work that has been done
so far regarding the previously presented unimodal and multimodal systems.
First, a comparison of the previously discussed multimodal systems has been
done (in Table 3.2) based on essentials criteria. Then an analysis of the table
is provided where the advantages and inconveniences of the compared systems
are discussed, which leads to the conclusion of the conducted research.

3.3.1 Comparison of the Feedback Systems

Table 3.2 compares the discussed unimodal and multimodal systems dis-
cussed in 3.2 based on headers/criteria that have been chosen to be very
relevant for systems designed for such applications. For a better comprehen-
sion and interpretation of the comparison table, an explanation of all the
criteria/headers is provided as well as their possible values in the following
paragraphs.

Identified Presentation Aspects refers to the presentation skills that
have been identified to be essentials and which are implemented in the system.
A system is considered to have a fixed set of identified presentation aspects if
it does not allow extensibility in anyway by the user or even by a programmer.
On the other hand, the value extensible is used if it is indeed the case.

In terms of extensibility, the columns Input Modalities and Output
Modalities are used to define whether the system supports only pre-defined
input and output modalities, or allows them to be customisable. The exten-
sible value is used in the case where extensibility is supported, otherwise the
value fixed.

Context of Use stands for the situation in which the speaker can use
the system. Systems designed only for training purposes are labeled with the
training, while the value real-time is used in the case where the speaker is
able to use the system during presentations. Nevertheless, it cannot be denied

Summary of the Related Work 60

Extensibility
Paper Identified

Pre-
senta-
tion
As-
pects

Input
Modal-
ities

Output
Modal-
ities

Context
of Use

Data
Pro-

cessing

Thresholds

Kurihara
et al. [1]

Fixed Fixed Fixed Hybrid Manually Fixed

Schneider
et al. [2]

Fixed Extensible Fixed Training Rule
Engine

Changeable

Tanveer
et al. [3]

Fixed Fixed Fixed Hybrid Manually Fixed

Kopf et
al. [4]

Fixed Fixed Fixed Training Manually Fixed

Nguyen
et al.
[5, 6]

Fixed Fixed Fixed Hybrid Manually Fixed

Gan et
al. [7]

Fixed Extensible Not
Men-
tioned

Real-
Time

Manually Fixed

Wörtwein
et al. [8]

Fixed Fixed Fixed Training Manually Fixed

Table 3.2: Comparison table of multimodal feedback systems.

61 CHAPTER 3. Related Work

that a third option remains possible for systems suited for both training and
real-time presentation purposes. Therefore the value hybrid is used.

Data Processing defines how the systems process raw data acquired by
the input modalities used to measure the nonverbal cues of the speaker. It
can either be done manually by using advanced algorithms, such as Machine
Learning, by programming all the different situations, or by making use of a
rule engine.

The information provided by the input modalities are mainly used to
measure the nonverbal cues of the speaker. This information serves as bench-
marks and are bounded between established minimum and maximum values.
Exceeding these values would lead to the triggering of a feedback message.
The Thresholds column identifies whether these established boundaries are
changeable or fixed.

3.3.2 Analysis of the Comparison Table

One important thing to keep in mind is the fact that the conducted study
on communication reveals that there exist no “fixed” rules defining a good
presentation. Even if multiple researchers have identified important com-
munication skills, the speaker’s presentation approach must be adequate to
presentation context. As shown in the comparison Table 3.2, all the presented
multimodal systems identified fixed essential presentation aspects (nonverbal
cues) beforehand. Since the identified presentation aspects are hard-
coded in their systems, including new nonverbal cues is not an option. More-
over, these identifications are maybe based on their cultural backgrounds,
making some of them useless depending on the audience and presenter, for
example, the use of gesture detection for impaired speakers, or the use of eye-
contact with an Asian audience. Since they all process raw data acquired
by the sensors into meaningful data, in order to trigger feedback messages
whenever needed, providing the possibility to use these meaningful data by
plug-ins, would bring their system to another level.

Input modalities are used to capture data from the tracked speaker for
the detection of nonverbal cues. Since, certain input modalities are not al-
ways affordable, it becomes important to allow the system to include different
input modalities. Of course, they should be able to structure the measured
information in a way that can be interpreted by the libraries and modules
used for detecting nonverbal cues. Compared to Kurihara et al. [1], Tanveer
et al. [3], Kopf et al. [4], Nguyen et al. [5, 6], and Wörtwein et al. [8];

Summary of the Related Work 62

Presentation Trainer [2] and Gan’s quantification framework [7] are the only
systems that allow the inclusion of input modalities. Even though they do
not explicitly explain how this could be performed, they both stated that
their architecture is indeed capable.

Output modalities are used to alert the speaker with feedback mes-
sages, by means of a display, phone, vibration (haptic feedback), and so forth.
Providing a multimodal system allowing the inclusion of output modalities
will open the system to a much broader spectrum of users (impaired or not).
Moreover, allowing the user to choose the output modality, or modalities,
can provide a comfortable feeling and not restrain the user to use specific
output modalities. Unfortunately, all the proposed systems impose a prede-
fined set of output modalities. RHEMA [3] displays feedback messages by
the means of the Google Glass, Presentation Trainer [2] and Presentation
Sensei [1] combine the display, in which the system is running, with haptic
feedback. Finally, the systems proposed by Kopf et al. [4], and Nguyen et al.
[5, 6] both use the computer display. There is no talk of output modalities
with Wörtwein’s [8] system and Gan’s quantification system [7].

The context in which the systems can be used is really important, since
some of them are designed for real-time purposes, while other ones for train-
ing purposes. The reason why Presentation Sensei [1], RHEMA [3], and
Nguyen’s feedback system [5, 6] are considered to be hybrid, is because their
user interfaces are designed in a way that allows them to be used in both
real-time and training situations. On the other hand, Presentation Trainer
[2] and Kopf’s real-time feedback system [4], provide both a user interface
“mirroring” the speaker’s body, which forces the speaker to concentrate on
the user interface in order to read the feedback messages. This could cause
unwanted distraction for the speaker, which could affect the quality of a pre-
sentation. On the other side, Gan’s quantification system [7] is identified
as being real-time, since the system is used to measure the performances of
both the speaker and the audience. Finally, Wörtwein’s system [8] can only
be used for training purposes, since the provided feedback is given by an
interactive virtual audience.

Processing meaningful data acquired by the input modalities can be a
difficult task. Depending on certain presentation skills, a programmer would
have to identify and use algorithms or hardcode all the different possibilities
in order to provide the speaker with effective feedback. A simple solution
to this problem would be to make use of rule engines, which would save a
number of lines of code, provide some intelligence, ease the maintainabil-

63 CHAPTER 3. Related Work

ity, and centralise the logic of the system. Presentation Trainer [2] is the
only identified system that uses a rule engine to process the data; while Pre-
sentation Sensei [1], Gan’s quantification system [7], and Nguyen’s feedback
system [5, 6] uses Machine Learning techniques; RHEMA [3] make use of ex-
ternal tools like PRAAT [106]; Wörtwein’s system [8] uses a combination of
open source toolboxes and machine learning techniques; and finally, Kopf’s
feedback system [4] uses calculations to detect nonverbal cues.

Thresholds values serve mainly to define ranges in order to make a
distinction between valid and non-valid detected communication skills. Al-
lowing the user to adapt the ranges would make the system more flexible.
Presentation Trainer [2] is the only multimodal system that allows the user
to modify the thresholds at runtime. All the other ones make use of Ma-
chine Learning techniques to infer values, or use fixed values obtained from
experimentations, or the literature.

3.3.3 Conclusion

Despite the fact that the presented systems in the comparison table have
shown their effectiveness, most of them fall short in terms of extensibility.
Being able to extend the functionality of a system would open much more
alternatives to the users, instead of restraining them. Moreover, this would
allow the users to customise the system according to their needs, making
presentations more effective. Therefore, comparison Table 3.2 shows in con-
sequence that a need for a flexible tool is evident. PRESMA, the proposed
approach of this thesis, allows the inclusion of different input modalities,
output modalities, logic, and identified presentation aspects, due to its ad-
vanced architecture, which draws its strength from the limitations of existing
systems. The users are free to configure the system depending on the context
of the presentation, and to their perception of what an “ideal” presentation
should look like.

Summary of the Related Work 64

4
Presentation Mate

This part of the thesis presents the architecture of PRESMA in order to allow
the inclusion of multiple input modalities, output modalities and communi-
cation skills (rules and plug-ins), providing as advantage the customisation
of the system based on the speaker’s need and the presentation context. The
architecture is designed according to the conclusions drawn from the analysis
and comparison of existing multimodal feedback systems.

4.1 Architecture

PRESMA makes its distinction over other multimodal systems in terms of
extensibility. As presented in Figure 4.1, the system consists of multiple
layers in order to provide a clear separation of concern and to allow certain
parts of the system, such as the input modalities, output modalities, plug-
ins, and rule sets to be extensible. The following sections explain the goals
and ideas behind each of PRESMA’s layers.

4.1.1 Input Modality Layer

The Input Modality Layer (IML) is the layer responsible for the inclusion
of input modalities. Since there exist a multitude of input modalities, it is
practically impossible to define a standard way for the acquisition of data.

Architecture 66

Input Modality Layer

Kinect ...

Kinect Sensorim₁ im₂ imₓ

Plug-in Layer

Speech
Rate

Loudness Gesture ...

Rule Engine Layer
FactsRules

fact₁

fact₂

…

factᵥ

rule₁

rule₂

...

ruleᵤ

Application Controller Layer

Output Modality Layer

Window ...

Computer Screenom₁ om₂ omᵢ

Speaker

Figure 4.1: Architecture of PRESMA.

Acquiring data from a camera requires different techniques than, for example,
a microphone. One way is to identify some “major” input modalities, and
allow them to be compatible with PRESMA, but this approach will require
constant updates whenever a new type of input modality would exist. This is
why the IML should implement general and basic functionalities that could be
applied to all kind of input modalities. The following identified functionalities
should be supported by each included input modality, which are defined by
a contract:

• Start: this functionality serves to start the input modality for the
acquisition of data.

• Stop: this functionality serves to stop the input modality.

• Add Subscribers: serves to add, or “subscribe”, plug-ins to an input
modality in order to receive data from it. The input modalities serves
only for the acquisition of data, while the plug-ins extracts meaningful
information form them (e.g. skeleton positions of joints). The reason
behind the separation of both concepts (input modality and plug-in) is
explained in Section 4.1.2.

67 CHAPTER 4. Presentation Mate

• Is Possible Subscriber: it is important that the plug-in receives data
from the right type. Therefore, the plug-in should implement a specific
method, in function of the input modality, for compatibility testing.
For example, a speech plug-in would have to implement a getSound()
method, allowing the Kinect modality to test for compatibility, and to
be able to redirect the stream of sound data by calling this method at
runtime.

• Get Name: each input modality should have a name serving as an
identification in the graphical user interface.

A valid input modality would have to implement all the previous ba-
sic methods serving to make the system operable. Besides these methods,
the programmer is responsible for gathering data from the input modalities
and adding specific methods/functionalities by adding as much methods as
wanted.

4.1.2 Plug-in Layer

The Plug-in Layer is responsible for adding detection logic to the system.
Since the input modalities provide only PRESMA with raw data, the plug-ins
therefore should give meaning to these data, for example, using the Kinect as
input modality for the acquisition of audio data, and a plug-in for detecting
words based on these data. Separating both layers would have as advantages
that:

• Certain input modalities can only be instantiated once. Combining
both concepts in one would result in combining multiple functionali-
ties making the code complex and unreadable (e.g. combining gesture,
speech, and so forth, in the case of the Kinect). It would also force the
user to load all the functionalities (plug-ins), even when unwanted.

• By subscribing plug-ins to input modalities, the stream of data can
therefore be redirected everywhere, and be used by a multitude of plug-
ins (see Figure 4.2). Each plug-in could implement its own logic and
be used/loaded by the user whenever wanted.

In order to allow the inclusion of detection logic by the means of plug-ins,
each plug-in should therefore implement the following basic methods defined
by a contract:

Architecture 68

Figure 4.2: Redirection of data streams between the input modalities and
plug-ins. IM : stands for Input Modality; P : stands for plug-in; and the
arrow represent the stream of data.

• Get Name: serves as an identification of the plug-in in the GUI. By
displaying the name of the plug-in, the user is able to make a distinction
between the loaded plug-ins.

• Get Configuration Page: serves to configure the plug-in by the
means of a GUI, which should be implemented by each loaded plug-in.

• Configure Plug-in: serves to configure the parameter(s), acquired
from the Configuration Page of the plug-in, in the GUI. This would
allow the user to parametrise the plug-ins in function of the context of
presentation.

• Get Facts: facts serve to hold data from the plug-ins in the data mem-
ory used by the rule engine for the triggering of feedback messages. For
a better understanding of the concept of facts and rules, Sections 4.1.3
and 5.1.3 explain the rule engine and Rete’s algorithm in detail.

• Add Fact: serves to add, or in other words, subscribe a compatible
fact to a specific plug-in. This will allow multiple facts, each tackling
specific detection logics, to benefit from the stream of meaningful data
generated by the plug-in.

69 CHAPTER 4. Presentation Mate

• An input modality-specific method: every plug-in should implement
a specific method, allowing it to be compatible with a specific input
modality and to acquire a specific stream of data at runtime.

• Compatibility Test: serves to test whether a fact is compatible with
a specific plug-in.

4.1.3 Rule Engine Layer

The rule engine is used to process the meaningful data acquired from the
plug-ins and to trigger feedback messages whenever the data, stored in facts,
satisfy certain rules. In other words, the rule engine gathers the data derived
by the detection plug-ins and uses them to validate a set of conditions (rules).
For example, a detection plug-in could count the amount of “euhm” (filler
words) uttered per minute, and if there’s a rule that says that the amount can
not go over a certain threshold, the rule engine will automatically trigger an
event so that the corresponding action can be taken. The goal is to allow the
user to load a specific set of rules depending on the context of the presentation
(e.g.: rule sets for business presentations, educative presentations, and so
forth). Since the rules and facts are extensible in PRESMA, the user should
combine compatible facts with plug-ins, in order to provide the required data
to the rule engine for the triggering of rules. The rule facts should provide
the following functionalities defined by a contract:

• Data From Plug-in: serves to acquire data from the plug-in and to
store them in the fact itself, enabling the rule engine to fire feedback
messages whenever the fact satisfies a rule.

• Fire Feedback: serves to fire a feedback message to the user whenever
a rule is satisfied.

• Configure fact: serves to configure the fact with the thresholds de-
fined by the users.

4.1.4 Application Controller Layer

The Application Controller Layer (ACL) is the intermediary layer be-
tween the Rule Engine and the Output Modality layers. Accessible to all
the facts from the rule engine, the ACL gathers and redirects all the trig-
gered feedback messages to the included output modalities, allowing them to
present the message in any form to the speaker.

Architecture 70

4.1.5 Output Modality Layer

The Output Modality Layer (OML) is the layer responsible for the inclu-
sion of output modalities. All the loaded output modalities receive feedback
messages from the Application Controller Layer, and present the information
in a form specific to the output modality. In the case of PRESMA, a sim-
ple window displaying a feedback message to improve the behaviour of the
speaker would be enough. The window should present one feedback message
at the time with a specific duration defined by the speaker in order to avoid
cognitive overload. Therefore, a valid output modality should provide the
following functionalities defined by a contract:

• Get Feedback Message: serves to acquire feedback messages from
the Application Controller and to present it to the presenter.

• Get Configuration Page: allows the user to configure the output
modality by the means of a GUI.

• Configure Output Modality: serves to configure the output modal-
ity using the values defined by the user in the GUI (configuration page).

• Start: serves to start the output modality.

• Stop: serves to stop the output modality.

5
Implementation I: Architecture

This chapter is dedicated to the implementation of the PRESMA’s architec-
ture presented in Chapter 4. Before explaining how each layer of the system
works, the software technologies used to successfully achieve the implementa-
tion are first explained, providing enough insights and technical background
needed to understand the technical parts.

5.1 Used Software Technologies

5.1.1 Managed Extensibility Framework

One of the main goals of PRESMA is to be a light-weighted and extensible
application. Managed Extensibility Framework (MEF) [111] allows an
application to be extended without touching the source code. The extensions
or plug-ins are loaded and executed at runtime, via composition. Each MEF
component, or part, defines both its capabilities and dependencies by the
means of a “contract”, often an interface. The contract interface defines basic
methods to be implemented by the plug-ins, in order to look for plug-ins
in the Dynamic Link Library (DLL) files satisfying the contract. This can
be done easily by exploring the meta-data discoverable at runtime. MEF
does not require hard and fragile dependencies, allowing to develop and test
extensions independently from the application.

Used Software Technologies 72

5.1.2 Reflection

Hardcoding is not an option for PRESMA, since it would limit the creativ-
ity of the programmers while developing plug-ins. The goal is to provide a
kind of “freedom” to the programmer, while still defining the basic mecha-
nism needed to run the tool correctly with MEF. Since everything is done
at runtime, it becomes impossible to know in advance (while compiling the
program) which modalities are compatible with the loaded plug-ins. Sys-
tem.Reflection [112] provides us the a way to access the type of an object,
to invoke methods and access the fields and properties of loaded assemblies at
runtime. Connecting input modalities with plug-ins would result in testing
whether they are compatible or not by checking the correspondent methods.

5.1.3 Rule Engine

Practically most of the presented approaches in the related work Section 3.2
process the quantity of data acquired by the input modalities by:

• Defining all the possible situations manually for the triggering of feed-
back messages to the speaker.

• Using algorithms to generate feedback messages.

Using one of these techniques would have as repercussion that the source
code becomes less maintainable, making changes in the future difficult. A
rule engine could avoid a number of issues by expressing difficult imperative
code into simple and easy to read declarative rules. By defining “what to do”
instead of “how to do it”, by means of rules, would result in less lines of
complex code, and would decouple the data from logic compared to object-
oriented languages [113]. Since all the logic is centralised in one specific
place, it becomes easy to maintain and to modify. Therefore, the plug-ins
would have to pass relevant and meaningful data to the rule engine, which
will trigger the feedback messages whenever needed.

Several rule engines are available and compatible with the C#.NET pro-
gramming language. Nevertheless, they are not all maintained and well doc-
umented (the case of Drools.NET [114]). NRules [115] is a simple and
powerful production system rule engine based on the Rete’s pattern match-
ing algorithm [116]. The rule engine contains a database composed of rules
defining the behaviour and facts containing data (acquired by the plug-ins)
in the knowledge base. As presented in Figure 5.1, the rule engine examines
the facts, in the data memory, and the rules, in the production memory, to

73 CHAPTER 5. Implementation I: Architecture

determine which rules must be triggered whenever they satisfy the facts. The
rule engine performs a kind of conflict resolution to determine which rule will
be fired. The rule is then executed.

Figure 5.1: Production system type rule engine based on the Rete’s algorithm
[116].

5.1.4 C#.NET Programming Language

C#.NET is a static, type-safe programming language running on the Mi-
crosoft’s .NET framework enabling developers to build secure and robust
Windows client applications, web services, and more [117]. C#.NET has
been preferred over other programming languages for the fact that it would
allow a possible integration of PowerPoint in the future by the means of
.NET plug-ins, which is not possible with other programming languages or
with the Mac OS X environment. Since the Kinect and Managed Extensibil-
ity Framework are all technologies developed by Microsoft, this programming

Implementation of the Input Modality Layer 74

language is incorporated with all the needed libraries to achieve the project
successfully.

5.1.5 Windows Presentation Foundation

Windows Presentation Foundation (WPF) [118] is Microsoft’s latest
user interface framework used to create GUIs for desktop applications. The
creation of rich user interfaces is simplified thanks to the eXtended Appli-
cation Markup Language (XAML) [119], which is a declarative markup
language used to create and declare UI elements. Moreover, it separates the
GUI elements from the logic situated in the code-behind files.

5.1.6 Model-View-ViewModel Pattern

The Model-View-ViewModel (MVVM) [120] is Microsoft’s MVC pattern
variation used to make a clean separation between the user interface and the
logic. As presented in Figure 5.2, the MVVM pattern has three conceptual
parts: the model, the view and the view model:

• The view can be seen as the window containing all the UI elements
that the user can see. A view is divided into two parts, the XAML
part for defining and structuring the UI elements and the code-behind
that does not contain any business logic and is practically always used
to initialise de UI elements or even to process events when they occur.

• The model is typically the layer that deals with data, for example,
classes used to interact with the database by performing SQL state-
ments.

• The view model is an intermediate layer that lays between the model
and the view. Its goal is to handle the view logic and to interact with
the classes available in the model layer. The view model can gather
data from the model layer and present it to the user by providing it
back to the view.

5.2 Implementation of the Input Modality Layer
As explained in Section 5.1.1, the Managed Extensibility Framework is
used by PRESMA to dynamically load input modalities at runtime. There-
fore, every input modality should satisfy the contract by implementing the

75 CHAPTER 5. Implementation I: Architecture

Figure 5.2: The MVVM-pattern [120].

methods of the interface IInputModality. Every method is important for
the working of the system. For a better understanding of each method, sec-
tion 4.1.1 explains the basic idea behind all of them. In order to build a new
input modality compatible with the PRESMA, the following steps should be
taken in consideration:

1. A new Class Library should be created in Visual Studio. This class
library will incorporate all classes, interfaces, and so forth, needed for
making the input modality operable.

2. There should be at least one class responsible for the implementation
of the contract listed in Listing 5.1.

3. The class library project should be compiled, generating a valid DLL
file.

4. Finally, the DLL file should be placed in a map where every input
modality will be loaded at runtime by the framework.

Listing 5.1: The input modality contract.

Implementation of the Input Modality Layer 76

public interface IInputModality
{
//This method is used to start the input modality.
void start();

//This method is used to stop the input modality.
void stop();

//This method is used for adding the plugin to the list of subscribers.
bool addSubscriber(IPlugin plugin);

//This method is used to test whether the plugin can be added to the subscribers
bool isPossibleSubscriber(IPlugin plugin);

//This method is used to return the name of the Input Modality.
string getPluginName ();

}

Whenever PRESMA is executed by the user, the constructor of the class
InputModalityFramework (listed in Listing 5.2) will automatically start
looking in the directory Plugins for assemblies, by using DirectoryCatalog.
The AggregateCatalog dictionary has the ability to collect all the exported
assemblies and to make them available for further use.

Listing 5.2: The InputModalityFramework constructor.
DirectoryCatalog directoryCatalog = new DirectoryCatalog(path);
var catalog = new AggregateCatalog(directoryCatalog);
_Container = new CompositionContainer(catalog);
_Container.ComposeParts(this);

Calling the ComposeParts(this) method on the CompositionContainer,
containing all the available imported parts of the system, will perform com-
position in order to match up the imports with the exports (e.g. the Kinect)
satisfying the contract defined by the IInputModality interface. This will
allow the ImportMany attribute specified with the type of the contract to
populate the list inputModalities with input modalities (see Listing 5.3).

Listing 5.3: The inputModalities list containing the loaded input modalities.
[ImportMany(typeof(IInputModality))]
internal IEnumerable <IInputModality > inputModalities;

In order to fulfil the import process and to fill the container with valid
exports, every input modality should declare the Export attribute in com-
bination with the type of contract right above the classname (as shown in
Listing 5.4).

Listing 5.4: The export attribute and the input modality contract.
[Export(typeof(IInputModality))]
public class KinectIM : IInputModality
{
//...

}

Now that the imported input modalities are available and ready for use,
each available input modality in the list inputModalities can be started

77 CHAPTER 5. Implementation I: Architecture

and stopped by the means of the implemented startModalities() and
stopModalities() methods defined by the contract (see Listing 5.5).

Listing 5.5: Starting and stopping input modalities.
public void startModalities ()
{
foreach (IInputModality inputModality in inputModalities)
{
inputModality.start();

}
}
public void stopModalities ()
{
foreach (IInputModality inputModality in inputModalities)
{
inputModality.stop();

}
}

5.3 Implementation of the Plug-in Layer
The concept of importing the plug-ins into the system is the same as applied
for the Input Modality Layer, with the exception of the contract which is
different. The contract IPlugin (as shown in Listing 5.6) defines the basic
methods serving to test the validity of a plug-in. The basic idea behind each
of the methods is explained in Section 4.1.2.

Listing 5.6: The Plugin Contract.
public interface IPlugin

{
// This method is used to return the plugin name.

string getPluginName ();

//This method is used to configure/initialize the plugins.
void configurePlugin(Page p);

//This method is used to get facts from the plugins.
//Facts are used as objects containing useful data for the rule/rule engine.
List <IFact > getFacts ();

//This method is responsible for adding facts to the list of facts
void addFact(IFact fact);

//This method is used to return the Page that will be used to configure the plugin and co.
//The method should return null whenever no Page is used.
Page getConfiguratorPage ();

}

Since the same method is applied for the import of plug-ins, the Plugin-
Loader class contains also the list plugins populated with plug-ins satisfying
the contract IPlugin and declared with the Export attribute (see Listing 5.7
and 5.8).

Listing 5.7: The list of imported plugins.

Subscribing Plug-ins to Input Modalities 78

[ImportMany(typeof(IPlugin))]
internal IEnumerable <IPlugin > plugins;

Listing 5.8: The export attribute and the plug-in contract.
[Export(typeof(IPlugin))]
public class GesturePlugin : IPlugin
{
//...

}

5.4 Subscribing Plug-ins to Input Modalities

The challenge resides in allowing plug-ins to subscribe to input modalities in
order to benefit from the stream of data generated by the last ones. When-
ever the user configures the system by subscribing plug-ins to input modali-
ties, the controlCompatibilities() method (see Listing 5.9) implemented
in the frmSubscriptionLinker class will first test whether those two are
compatible or not.

Listing 5.9: The compatibility checker method.
bool isPossibleSubscriber = true;
isPossibleSubscriber = selectedModality.isPossibleSubscriber(link.Key);

if (! isPossibleSubscriber)
{
if (isCompatible)
isCompatible = false;

msgError += "Plugin " + link.Key.getPluginName () + " is not compatible with " +
selectedModality.ToString () + Environment.NewLine;

}

The selectedModality is the input modality selected by the user that
should add the plug-in link.Key as a subscriber to its stream of data. If
the compatibility test fails, the user is provided with a feedback message
msgError. In the other case, the plug-in will successfully be a subscriber
of the selected modality and stored in the selected input modality. The
isPossibleSubscriber() method is guaranteed to exist since it is defined
by the IInputModality contract, making it therefore callable. Since the
subscription process occurs at runtime, the only way for the system to per-
form the compatibility test is to use Reflection. The CompatibilitySub-
scriber class implements the method hasMethod() (see Listing 5.10) allow-
ing the system to check compatibility at runtime. To be compatible, a plug-in
should implement a method capable of acquiring the stream of data from a
specific input modalities, in this case the selected one.

Listing 5.10: The method used to check the presence of a specific method
with Reflection.
public static bool hasMethod(this object plugin , string methodName)

79 CHAPTER 5. Implementation I: Architecture

{
try
{
var type = plugin.GetType ();
var method = type.GetMethod(methodName);

if (method == null)
return false;

else
return true;

}
catch (AmbiguousMatchException)
{
return true;

}
}

5.5 Implementation of the Rule Engine Layer
The rule engine NRules used by PRESMA can be regarded as being the
core of the system. The rule engine is provided with data from all the im-
ported plug-ins and has as main goal to trigger feedback messages to the
speaker whenever certain nonverbal communication aspects, measured by
the plug-ins, are not applied correctly. The rule engine consists of two parts,
namely the domain model and rules. The domain model, or facts, stores the
meaningful data acquired by the plug-ins. The rule engine also contains a
set of rules, which are checked against the domain model in order to trigger
feedback messages where appropriate.

Introducing NRules into the project as simple as executing one command
in the Package Manager Console of the Visual Studio Environment (see List-
ing 5.11).

Listing 5.11: The install NRules command.
PM > Install -Package NRules

After the installation of the rule engine, creating an instance of the
RuleEngine class allows to benefit from all its functionalities. The method
createRuleEngine() (see Listing 5.12) allows plug-ins to create a rule en-
gine from an instance of the RuleEngine class and needs as parameter a
list of facts, more precisely, the facts where the data will be stored from the
plug-ins. Therefore, the plug-in can provide the rule engine with the needed
facts by means of the getFacts() method imposed by the plug-in contract.
The repository will load all the available rules of the type IRule in order
to allow the Rete’s network (internal structure of the rule engine) to know
what the rules are and to easily match them with facts. After compiling the
rules, the next steps consists of creating a session and to insert the facts in
the rule engine’s memory.

Listing 5.12: Creating a rule engine.

Implementation of the Rule Engine Layer 80

public class RuleEngine
{

public void createRuleEngine(List <IFact > facts)
{

//Load rules (subtypes from type/interface Rule)
var repository = new RuleRepository ();
repository.Load(x => x.From(typeof(IRule).Assembly));

// Compile rules
var factory = repository.Compile ();

// Create a working session
session = factory.CreateSession ();

if (facts != null)
{
foreach (IFact fact in facts)
{
session.Insert(fact);

}
}

}

//...
}

The updateFact() provides the possibility to the plug-ins to update the
data (variables) from the facts in the engine’s memory. To avoid the system to
freeze or to slower up, every time this method is called, a thread will take care
of the update by calling the updateFactData() method (see Listing 5.13).
After finishing trying to update the fact, the session.Fire() method fires
the rules with the newly updated data in order to fire feedback messages to
the speaker.

Listing 5.13: The thread responsible for firing the rules.
//...

public void updateFact(IFact fact)
{
toUpdateFact = fact;

othreadUPD = new Thread(new ThreadStart(updateFactData));
othreadUPD.Start();
othreadUPD.Join();

}

private void updateFactData ()
{
// Update the fact
session.TryUpdate(toUpdateFact);

Thread.Sleep (10);

//Fire the rules & rule engine.
session.Fire();

}
//...

The IRule interface implemented by all the rules of the system does not
serve as a contract in this case, nor as a way to force the implementation
of specific methods, but is provided as a type (see Listing 5.14). In other
words, since all the rules would have a distinct class name, implementing
the IRule would ease the rule engine to load rules from the assemblies, by
simply checking whether the parent class is indeed IRule.

Listing 5.14: The contract used for rules.

81 CHAPTER 5. Implementation I: Architecture

public interface IRule
{
//This interface is used to load all the rules that implement this interface.

}

The facts therefore need to implement a specific behaviour since they all
share two common functionalities, which are:

• The acquisition of data from the plug-ins.

• Firing a specific feedback message.

The IFact interface (see Listing 5.15) implemented by all the facts forces
the implementation of two methods, namely feedbackFromPlugins() for
the acquisition of data, and fireFeedback() for firing feedback messages.
The first method has as parameter an array of objects containing the data
from the plug-ins. The reason behind choosing an array of type object is
that every type in C#.NET inherits direct or indirectly from it [121]. Which
means that the array is able to store objects from all types, going from audio
data, to images, and so forth. The only complication with this method of
working is to impose, programmatically or by documentation, the positions
of the data stored in the array, for example, integer x is stored in position
one, while string y is stored in position two. When a fact is subscribed to
a plug-in, the configureFact() method is called by the plug-in with the
thresholds defined by the user in the GUI.

Listing 5.15: The contract used for facts.
public interface IFact
-{
// Method used to be triggered from the plugins.

void feedbackFromPlugins(object [] parameters);

// Method used to fire feedback.
void fireFeedback ();

// Configure the fact with this method
void configureFact(object [] parameters);

}

Finally, whenever a rule is satisfied, the fireFeedback() method will be
called triggering a feedback message to the speaker.

5.5.1 Subscribing Facts to Plug-ins

Since the rule engine is extensible, the user is able to add detection logic, or
communication aspects to the system by developing or importing facts and
rules implementing the IFact and the IRule contract interfaces. When the
rule engine is initialised, all the assemblies available in the project, imported
or not, will be analysed in order to create a Rete’s network consisting of

Implementation of the Rule Engine Layer 82

rules and facts. Since a presentation should be adequate to the presentation
context and needs, rulesets can be defined programmatically, in order to
group one or more communication aspects destined to a specific kind of
presentation session. For example, one may create a ruleset for business
presentations, while another one for educational purposes. As presented in
Figure 5.3, every ruleset should implement the IFact interface as super-type.
Therefore, the rule engine will be able to allow the user to choose a ruleset
adequate to a specific kind of presentation, and to load the facts with their
corresponding rules in the Rete’s network.

Figure 5.3: Class diagram representing the IFact contract, rulesets and facts.

Since the whole process is performed at runtime, facts are not hardcoded
to plug-ins and need therefore to subscribe to their stream of data. Similar
to how plug-ins subscribe to input modalities, explained in Section 5.4, the
same method is applied for subscribing facts to plug-ins.

83 CHAPTER 5. Implementation I: Architecture

5.6 Implementation of the Application Controller
Layer

The task of the Application Controller Layer consists of gathering the feed-
back messages obtained by the facts, and to redirect them to all the loaded
output modalities. The layer consists of a static class ApplicationCon-
troller accessible by all the facts. Whenever the feedback message is trig-
gered by the rule engine, the fireFeedback() method implemented by all
the facts, should call the Application Controller’s getFeedbackMessage()
method (see Listing 5.16). The message will then be redirected to all the
imported output modalities, in order to present the feedback message in a
particular form.

Listing 5.16: The methods used to receive and redirect feedback messages.
public static void getFeedbackMessage(object [] message)
{
redirectFeedbackMessage(message);

}

private static void redirectFeedbackMessage(object [] message)
{
if (outputModalityFramework == null)
return;

foreach(IOutputModality outputModality in outputModalityFramework.getOutputModalities ())
{

outputModality.getFeedbackMessage(message);
}

}

5.7 Implementation of the Output Modality Layer
The Output Modality Layer uses Managed Extensibility Framework
to dynamically load output modalities at runtime. Therefore, every out-
put modality should satisfy the contract by implementing the methods of
the interface IOutputModality. Since the implementation of the Output
Modality Layer is similar to the Plug-in Layer, Section 5.3 can serve as a tech-
nical basis, while the basic idea behind each method is explained in Section
4.1.5.

Implementation of the Output Modality Layer 84

6
Implementation II: Plug-ins and

Rules

The previous chapter described the architecture of PRESMA, which can be
regarded as the framework that ties the various components of the system
together. In order to demonstrate the working of the system, four nonverbal
communication skills have been identified, which are the use of sufficient
gestures during a presentation, providing sufficient eye contact, speaking loud
enough, and having an appropriate speech rate. This makes the Microsoft
Kinect a good candidate for this thesis, since the sensor will provide all
the required data in order to be able to measure the identified nonverbal
presentation skills, making it also the primary input modality. Since this
part of the report focusses more on the application of the concepts explained
in the architecture chapter, it provides also a strong basis for anyone wanting
to extend the system.

The Microsoft Kinect Input Modality 86

6.1 The Microsoft Kinect Input Modality

6.1.1 Microsoft Kinect and Microsoft Kinect SDK

Human beings have multitude of senses, which allows us to see, touch, hear,
etc. [122]. While computers do not possess the same abilities (senses) as
human beings, it is nevertheless possible to simulate the senses by coupling
computers with sensors. This will not only make computers or everyday’s
objects smarter, but also allows the development of real-time information
systems [14]. Since one of the main goals of this thesis is to provide efficient
feedback in real-time, sensors can be useful for measuring and detecting the
physical properties [123] of the speaker, such as voice, gestures, heart rate,
etc. and process this information to alert the speaker when needed.

Figure 6.1: The Microsoft Kinect sensor components [124].

The Microsoft Kinect (version 1) can not only be used for game devices
such as the Xbox, but it is also available with its Software Development Kit
(SDK) in order to develop desktop applications while benefiting of all of its
advantages [125]. As shown in Figure 6.1 , the Kinect is composed out of:

• An RGB camera for capturing and storing coloured images.

• An infrared emitter and an infrared depth sensor for measuring the
distance between objects.

• A multi-array microphone for the recording of sound, determining the
location and the direction of sound.

• An accelerometer for determining the orientation of the Kinect.

87 CHAPTER 6. Implementation II: Plug-ins and Rules

Thanks to the Microsoft Kinect SDK (version 1.8) [126], developers are
provided with a sophisticated software library allowing the creation of rich
and innovative applications and Natural User Interfaces, using gesture and
voice recognition. As presented in Figure 6.2, the NUI library allows the
application to access three types of streams of data:

• Audio Stream

• Color Stream

• Depth Stream

• Infrared Stream

Figure 6.2: Interaction between Microsoft Kinect SDK and an application
[126].

As mentioned before, the Microsoft Kinect includes a four-element mi-
crophone array for capturing high quality 16-kHz, 24-bit audio data. The
Audio Stream allows an application to:

• Capturing audio from a specific direction

• Accessing raw audio data

• Identifying audio sources

• Perform speech recognition with captured audio data

The Colour Stream provides coloured image data acquired from the
Kinect’s RGB camera in different formats and resolutions. Depending on the
bandwidth available from the USB connection, one may adjust the resolution
of the frames, going from 1280x960 for a high-resolution image to 640x480
for a lower-resolution frame, in order to avoid the loss of image quality.

The Microsoft Kinect Input Modality 88

The pixels of depth frames acquired by the Depth Stream contain the
cartesian distance, in millimetres, from the Kinect sensor to the nearest ob-
ject with a particular (x,y)-coordinate as shown in Figure 6.3. The depth
frame is available in three different resolutions (640x480, 320x240, and 80x60)
and can identify up to 6 human figures.

Figure 6.3: [USE BETTER IMAGE] Depth stream distances [127].

The Skeleton Frame contains 3D position data for up to two people.
The position of each human skeleton joint (see Figure 6.4), expressed in
meters, is available through (x, y, z)-coordinates.

The AllFramesReady Stream provides the application with all the
active frames of the Kinect sensor. When new frames are captured and
made available, an event will be fired, making it able to access the coloured
image frame, depth frame and skeleton frame at once.

6.1.2 Implementation of the Kinect Input Modality

Even if the system supports different kinds of input modalities, the only input
modality used so far is the Microsoft Kinect, since it provides the system

89 CHAPTER 6. Implementation II: Plug-ins and Rules

Figure 6.4: The human skeleton joints [128].

with audio, depth, and skeleton data about the speaker, allowing the plug-
ins to work correctly and successfully. In order for the Microsoft Kinect to be
loaded by the framework and to be recognised as being a valid input modality,
the KinectIM class should therefore satisfy the input modality contract
by implementing the IInputModality interface (listed in Listing 5.1), and
declare the Export attribute (see Listing 6.1). Doing this will also force the
class to implement the specified methods in order to make the system work
correctly.

Listing 6.1: The Kinect sensor as a valid input modality.
[Export(typeof(IInputModality))]
public class KinectIM : IInputModality
{
//...

}

The goal of the Microsoft Kinect is to generate the streams of data and to
redirect them to plug-ins as presented in Figure 6.5. In order to do so, every
plug-in should be subscribed to the appropriated stream of data. Therefore,
the KinectIM class implements a List for every stream, allowing to store
the subscribed plug-ins, which are:

The Microsoft Kinect Input Modality 90

• The list audioSubscribers holds the plug-ins requiring audio data, such
as the Speech Rate and Loudness plug-in.

• The list skeletonSubscribers holds the plug-ins requiring skeleton data,
such as the Gesture plugin.

• The list allFramesReadySubscribers holds the plugins requiring all the
Kinect frames at once, such as the Sight plug-in responsible for the
measuring of “eye contact” by the means of face tracking.

• The list videoSubscribers holds the plug-ins requiring the coloured im-
ages generated by the Kinect. Up to now, no plug-ins are using this
stream of data, but could be useful in the future, especially while build-
ing a plug-in showing recorded sessions of the speaker annotated with
with feedback messages.

Figure 6.5: Redirection of the streams of data from the Microsoft Kinect to
the plug-ins.

Compatibility Testing

Before being able to add plug-ins to one of the identified lists, the plug-ins
must be compatible with the Kinect input modality sensor. Since the Kinect
class is forced to implement the isPossibleSubscriber() method with a

91 CHAPTER 6. Implementation II: Plug-ins and Rules

plug-in as parameter, the programmer is therefore responsible for perform-
ing the compatibility test with the CompatibilitySubscriber.hasMethod()
method using Reflection (see Listing 6.2). A specific plug-in is compatible
with the Kinect sensor whenever it implements at least one of the following
methods:

• The getAudio() method that will be called for sending audio data to
the plug-in.

• The getImageFrame() method that will be called by the Kinect sensor
for sending an coloured image frame.

• The getSkeletonFrame() method that will be called by the Kinect
sensor for sending a skeleton frame.

• The getAllFrames() method that will be called by the Kinect sensor
for whenever all the frames are ready.

Listing 6.2: The compatibly tests using Reflection.
public bool isPossibleSubscriber(IPlugin plugin)
{
bool isCompatible = false;

if (Compatibility.CompatibilitySubscriber.hasMethod(plugin , "getAudio"))
{

isCompatible = true;

//Add to audio list
if (null == audioSubscribers)

audioSubscribers = new List <IPlugin >();

audioSubscribers.Add(plugin);
}
if (Compatibility.CompatibilitySubscriber.hasMethod(plugin , "getImageFrame"))
{

isCompatible = true;

//Add to video list
if (null == videoSubscribers)

videoSubscribers = new List <IPlugin >();

videoSubscribers.Add(plugin);
}
if (Compatibility.CompatibilitySubscriber.hasMethod(plugin , "getSkeletonFrame"))
{

isCompatible = true;

//Add to skeleton list
if (null == skeletonSubscribers)
skeletonSubscribers = new List <IPlugin >();

skeletonSubscribers.Add(plugin);
}
if (Compatibility.CompatibilitySubscriber.hasMethod(plugin , "getAllFrames"))
{

isCompatible = true;

//Add to All frames ready list
if (null == allFramesReadySubscribers)

allFramesReadySubscribers = new List <IPlugin >();

allFramesReadySubscribers.Add(plugin);
}
return isCompatible;

}

The Microsoft Kinect Input Modality 92

6.1.3 Subscription to the Kinect Streams

The Kinect’s event model allows the acquisition of the data stream captured
by the Kinect sensor by the means of event subscription. Whenever the
application is subscribed to one or more event handler, the sensor will con-
tinuously send new frames until the application is stopped or unsubscribed.
The sensor variable available in the KinectIM class contains an instance of
the connected Kinect sensor, allowing it to be used by the whole class.

Subscription to the Audio Stream

Subscribing the application to the audio stream event results in starting the
Kinect’s AudioSource, and starting the tAudioReading thread responsible for
recording the audio stream. This thread is independent from the application’s
main thread, and will therefore avoid freezing the GUI.

The tAudioReading thread records the audio captured during a presen-
tation session and store it into a WAV audio file, for further use. Since the
thread continuously reads and stores audio data in a buffer audioBuffer, the
AudioSourceReady() method (see Listing 6.3) will be called, serving to send
the buffer to all the plug-ins subscribed to the audio stream.

Listing 6.3: The method used to redirect audio data to the subscribed plug-
ins.
private void AudioSourceReady ()
{
if (audioSubscribers != null)
{
string [] nameOfParameters = new string [1] { "audioBuffer" };

object [] parameters = new object [1] { buffer };

foreach (IPlugin plugin in audioSubscribers)
{

plugin.GetType ().InvokeMember("getAudio", BindingFlags.InvokeMethod , null , plugin ,
parameters , null , null , nameOfParameters);

}
}

}

For each subscribed audio plug-in available in the audioSubscribers list,
the AudioSourceReady method uses Reflection to invoke the getAudio()
method dynamically at runtime with the buffer containing the audio data
stored in the parameters array.

Subscription to the Skeleton Stream

The skeleton stream provided by the Kinect allows to receive information
from the recognised users, such as the position of the limbs, which is useful
for tracking the face and the limbs of the speaker. Identical to the audio
stream, the application has to subscribe to the skeleton events, providing

93 CHAPTER 6. Implementation II: Plug-ins and Rules

the skeleton frames obtained by the Kinect. Therefore, the Kinect’s Skele-
tonStream must be enabled which will capture the skeleton frames by the
means of the SkeletonFrameReady event handler.

Whenever a skeleton frame is ready to use, the SkeletonFrameReady
event handler will redirect the skeleton frame skeletonFrame to all the sub-
scribed plug-ins stored in the skeletonSubscribers list, by invoking the method
getSkeletonFrame() by the means of the Reflection’s InvokeMember()method
(see Listing 6.4).

Listing 6.4: The method used to redirect the skeleton frames to the sub-
scribed plug-ins.
private void Sensor_SkeletonFrameReady(object sender , SkeletonFrameReadyEventArgs e)
{

using (SkeletonFrame skeletonFrame = e.OpenSkeletonFrame ())
{

if (skeletonFrame != null)
{

// skeletonFrame.CopySkeletonDataTo(this.skeletonData);
if (skeletonSubscribers != null)
{

string [] nameOfParameters = new string [1] { "skeletonFrame" };
object [] parameters = new object [1] { skeletonFrame };

// invoke with reflection
foreach (IPlugin plugin in skeletonSubscribers)
{

plugin.GetType ().
InvokeMember("getSkeletonFrame",

BindingFlags.InvokeMethod , null , plugin ,
parameters , null , null , nameOfParameters);

}}}}}

Subscription to the AllFramesReady Stream

The AllFramesReady stream provides the application with a coloured image,
a skeleton frame, and a depth image at the same time, allowing to perform
face tracking to compute the sight line, or “eye contact”, of the speaker. Since
the skeleton stream is already enabled, the depth and colour streams should
be enabled before subscribing to the AllFramesReady events.

Whenever the Sensor_AllFramesReady() event is fired by the Kinect
sensor, the all frames ready argument e makes it possible to access the
coloured, skeleton, and the depth frame captured by the sensor. This allows
the event handler to redirect the three frames, stored in the array parame-
ters, to the plug-ins subscribed in the allFramesReadySubscribers list using
the Reflection’s InvokeMember method (see Listing 6.5).

Listing 6.5: The method used to redirect all the frames to the subscribed
plug-ins.
private void Sensor_AllFramesReady(object sender , AllFramesReadyEventArgs e)
{

if (sensor == null)
return;

ColorImageFrame colorFrame = e.OpenColorImageFrame ();

Gesture Detection Plug-in 94

SkeletonFrame skeletonFrame = e.OpenSkeletonFrame ();
DepthImageFrame depthFrame = e.OpenDepthImageFrame ();

if (allFramesReadySubscribers != null)
{

string [] nameOfParameters = new string [4] { "sensor",
"skeletonFrame",
"depthFrame",
"colorFrame" };

object [] parameters = new object [4] { sensor ,
skeletonFrame ,
depthFrame ,
colorFrame };

// invoke with reflection
foreach (IPlugin plugin in allFramesReadySubscribers)
{

plugin.GetType ().InvokeMember("getAllFrames",
BindingFlags.InvokeMethod , null , plugin ,

parameters , null , null , nameOfParameters);
}

}

Starting and Stopping the Kinect Sensor

Now that the plug-ins are subscribed to one of the Kinect’s stream of data,
the last thing that remains is to call one of the identified methods when-
ever a frame of data is ready. When PRESMA is configured and executed,
the framework will start and stop the input modalities by the means of
the start() and stop() methods forced by the IInputModality contract.
The Kinect class will look for the connected Kinect sensor and start the au-
dio, video, skeleton, and all frames ready streams. Ending a session with
PRESMA will stop all the data streams and remove the reference to the
Kinect sensor.

6.2 Gesture Detection Plug-in

The use of gestures has been identified as being one of the most impor-
tant nonverbal communication skills, making presentations more dynamic
while also strengthening the delivered message. Similar to the Presenta-
tion Trainer [2], the gesture plug-in does not detect specific gestures, but
determines whether the speaker is using gestures or not. Taking advantage
of the skeleton frame from the Kinect, providing the positions of the limbs,
the gesture plug-in is able to determine whether gestures are used by simply
computing the angle between the forearms and arms, and between the arms
and shoulder blades [2]. Whenever the angle starts increasing or decreasing,
making the angle exceed a certain amount of degrees, signifies that a gesture
has been detected. The user of PRESMA is free to define the value of the
angle, but the Presentation Trainer authors [2] recommend 5 degrees.

95 CHAPTER 6. Implementation II: Plug-ins and Rules

6.2.1 Importing the Gesture Plug-in

The GesturePlugin class is able to be loaded by the PluginLoader class,
since it implements the IPlugin contract, making it a valid plug-in, and
declares being an Export of type IPlugin (see Listing 6.6). The working of
this plug-in is ensured by the contract, since it forces the plug-in to implement
the methods listed in Code 5.6.

Listing 6.6: Declaring the gesture plug-in as a valid plug-in.
[Export(typeof(IPlugin))]
public class GesturePlugin : IPlugin
{
//...

}

6.2.2 Computing the Gesture Angle

During the configuration of PRESMA, the implementation of the method
getSkeletonFrame() ensures the gesture plug-in to be compatible with the
Kinect sensor (see Listing 6.7). The skeletonData array is initialised, which
will store the positions of the tracked speaker’s limbs. The obtained skeleton-
Frame from the sensor is then forwarded to the getTrackedUser() method,
responsible for copying the skeleton data from the frame to the skeletonData
array, which will be used later on to compute the angle.

Listing 6.7: Acquiring the skeleton frame from the input modality.
public void getSkeletonFrame(SkeletonFrame skeletonFrame)
{
skeletonData = new Skeleton[skeletonFrame.SkeletonArrayLength];
getTrackedUser(skeletonFrame);

}

The gesture plug-in makes a distinction between two kind of gestures,
the ones performed by the left side of the speaker’s body, and the ones per-
formed by the right side. Therefore, the positions of the elbow, wrists, and
shoulders of the tracked speaker are stored in vectors with their correspon-
dent 3-dimensional (x, y, z)-coordinates. Computing the angles α and β
(see Figure 6.6) necessary for the detection of gestures requires two vectors,
one obtained by subtracting the elbow and shoulder vectors, and the second
one by subtracting the elbow and the wrist vectors. Based on the two ob-
tained vectors, the AngleBetweenTwoVectors() method is able to compute
the angle as follows:

1. Normalising both vectors with the following formula:

û =
−→u
‖ −→u ‖

(6.1)

Gesture Detection Plug-in 96

2. Multiply both normalised vectors using the dot product methodology
as follows:

−→u · −→v = ux · vx + uy · vy + uz · vz (6.2)

3. Computing the angle in degrees with the following formula, where d is
the dot product obtained in the previous step:

ang le =
arccos (d)

π
180 (6.3)

Figure 6.6: Angles α (right angle) and β (left angle) computed by the means
of the wrists, elbows, and shoulders positions.

Finally, the AngleBetweenTwoVectors() method will return the angle of
type double. Notice that the same principle is performed for both sides of
the speaker’s body.

6.2.3 Gesture Facts

As previously explained, the facts present in the rule engine’s memory serve
to store meaningful data obtained by the plug-ins. In the case of the gesture
plug-in, the facts responsible for gesture detection should store the following
variables:

• The angle’s amount (in degree) defining a valid gesture.

97 CHAPTER 6. Implementation II: Plug-ins and Rules

• The time limit (in seconds) in which gestures should occur. Whenever
the speaker does not use gestures within the defined time limit, the
rule engine should trigger a feedback message.

Notice that a third optional parameter isActivated defines whether the
plug-in is activated or not, which could be necessary depending on the con-
text of the presentation, for example, deactivating the eye contact plug-in
depending on the culture of the audience.

When the gesture angle is computed (for both sides) by the AngleBetweenTwoVectors()
method, the processAngle() method updates the angles in the subscribed
facts (see Listing 6.8). To do so, the gestureFact.feedbackFromPlugins()
method imposed by the IFact interface ensures the implementation of this
method, making it callable by the gesture plug-in.

Listing 6.8: Updating the computed angles in the facts.
private void processAngle(double angleL , double angleR)
{
object [] param = new object [2] { angleL , angleR };

foreach (IFact fact in getFacts ())
{
fact.feedbackFromPlugins(param);

}

updateFact ();
}

The updateFact() method will ask the rule engine to modify the angles
of the facts in the memory, and fire the rules, in order to trigger feedback
messages if needed.

6.2.4 Gesture Rules

The gesture rules, used for both sides of the speaker’s body, implemented in
the rule engine are responsible for updating variables from the gesture fact
and to trigger feedback messages to the speaker whenever needed. In this
case, the rule engine will be provided with a continuous stream of angles
computed by the gesture plug-in in order to detect valid increasing and de-
creasing gestures defined by the user. To perform this, the rules were divided
in three parts:

• Detector Rules responsible for detecting valid gestures.

• Update Rules responsible for updating variable from the gesture fact.
They also serve to keep a short history of angles in order to allow the
Detector Rules to detect gestures.

• Feedback Rule responsible to alert the speaker with feedback mes-
sages.

Gesture Detection Plug-in 98

Gesture Detector Rules

The rules isIncreasingGesture and isDecreasingGesture are responsible
for detecting gestures whenever one of the following rules are satisfied:

| firstI ncreasedAngle − currentAngle |≥ gestureAngle (6.4)

where the firstIncreasedAngle was the first detected increasing angle, or by

| firstDecreasedAngle − currentAngle |≥ gestureAngle (6.5)

where the firstDecreasedAngle was the first detected decreasing angle. When-
ever the absolute value of firstIncreasedAngle, or firstDecreasedAngle, sub-
tracted with the current computed angle is equal or greater than the gesture-
Angle, which is the angle defining a valid gesture by the user, the isIncreasingGesture()
or isDecreasingGesture() method will be called by one of the two rules in
order to modify the datetime of the last detected gesture, or in other words,
tell to the rule engine that the speaker is using gestures and no feedback mes-
sages should be triggered. Notice that the same principle is used for both
sides of the speaker’s body.

Gesture Updater Rules

The angle computed by the gesture plug-in may follow the flow of an in-
creasing or decreasing gesture. Since they are not yet recognised by the rule
engine as being valid gestures defined by the user, they nevertheless still
posses useful information that should be stored in order to allow the rule
engine to “predict” whether the gesture will be an increasing and decreas-
ing one. Detecting the first potential increasing or decreasing gesture, and
updating the previous angle is done as follows:

The IncreasingAngleRule and DecreasingAngleRule rules define
whether the gesture will be an increasing or decreasing one. Consider the
firstIncreasingAngle to be the currentAngle if and only if the previousAngle
is less or equal than the currentAngle, and the firstIncreasingAngle should
be empty, stating that no firstIncreasingAngle has been detected before.

firstI ncreaseAngle = currentAngle ⇔
[(firstI ncreaseAngle == nul l) ∧ (prev iousAngle ≤ currentAngle)]

(6.6)

When the IncreasingAngleRule “predicts” the current gesture to be an
increasing angle, the isPossibleIncreasingGesture() method available in

99 CHAPTER 6. Implementation II: Plug-ins and Rules

the GestureFact class will be called by the rule in order to update the first
increasing angle firstIncrAngle, which will be useful for determining future
gestures by the gesture detectors. The same principle is applied for detecting
a decreased gesture, with the exception that the previousAngle should be
greater or equal to the currentAngle.

Gesture Feedback Rule

The FeedbackGestureRule is responsible for triggering feedback messages
to the speaker whenever the use of gestures was not sufficient enough. When
no valid gestures have been detected by the rule engine during a certain
amount of time defined by the user, a feedback message will be fired. There-
fore the following rule should be satisfied:

[t(lastDetectedG esture) < t(currentC omputedAngle − timeLimit)]

⇒ fireFeedback

(6.7)

When the time t of the lastDetectedGesture is lower than the time of
the currentComputedAngle subtracted by the feedback time limit timeLimit
defined by the user, a feedback message will be triggered to the speaker, in
order to adapt their behaviour by using more gestures during the speech.

6.3 Sightline Plug-in
Eye contact during presentation has proven to increase the credibility of the
delivered message and to give a certain degree of importance to the audience.
Even though it is not appreciated in certain cultures, it still remains an
important nonverbal communication skill. Unfortunately, performing eye-
tracking for determining the sightline of the speaker is practically not possible
with the Microsoft Kinect, since the sensor is designed to use between one to
four meters, making it unsuitable for acquiring detailed information about
the eyes. Nevertheless, performing face-tracking is possible with the Face
Tracking SDK in combination with the Kinect SDK, allowing to track the
speaker’s head position and to deduce facial expressions [129]. By including
the face-tracking SDK in the project, PRESMA is able to capture the head
pose angles (see Figure 6.7) from the tracked speaker, which are:

• The speaker’s head Pitch determines whether the speaker is looking
downwards or upwards. The values, expressed in degrees, range from -

Sightline Plug-in 100

90 to +90, where 0 is neutral. Nevertheless, the tracking work whenever
the head’s pitch is less than 20 degrees.

• The speaker’s head Yaw angle, also expressed in degrees, allows to
determine whether the speaker’s head is turned towards the left or
right shoulder. The values range from -90 to +90, where 0 is neutral.
Similar to the pitch angle, tracking the speaker’s head yaw works best
when it is less than 45 degrees.

• Roll: The speaker’s head Roll determine whether the speaker’s head
is horizontal parallel with one of its two shoulders with values ranging
between -90 and +90, where 0 is neutral.

Figure 6.7: The speaker’s head pose angles (yaw, pitch, and roll) [129].

By allowing the pitch and yaw angles to be configured manually by the
sightline plug-in, the speaker is able to adapt its visual axis, as presented in
Figure 6.8, depending on the presentation’s context. Moreover, this method
allows also to adapt the speaker’s vision depending on obstacles present in
the presentation room, as shown in Figure 6.9. The idea behind the sight
plug-in is to allow the speaker to graphically define the range of the yaw and
pitch angles. Whenever the speaker does not look to the audience during
a defined time, by having a yaw and pitch angle exceeding the pre-defined
range, the plug-in should trigger a feedback message by the intermediary of
the rule engine. Therefore, the rule engine will be provided with a stream of
yaw and pitch angles.

101 CHAPTER 6. Implementation II: Plug-ins and Rules

Figure 6.8: Adapting the angles in function of the presentation’s context.

6.3.1 Importing the Sightline Plug-in

The SightPlugin class is able to be loaded by thePluginLoader class, since
it implements the IPlugin contract, making it a valid plugin, and declares
being an Export of type IPlugin (see Listing 6.9). The working of this plug-
in is ensured by the contract, since it forces the plug-in to implement the
methods listed in Code 5.6.

Listing 6.9: The sight plug-in as a valid plug-in.
[Export(typeof(IPlugin))]
public class SightPlugin : IPlugin
{
//...

}

6.3.2 Computing the Head Pose Angles

In order to compute the angles needed to configure the speaker’s sight,
the SightPlugin class uses the Microsoft.Kinect.Toolkit.FaceTracking
project in order to perform the face-tracking. This report does not explain
in detail how the FaceTracking project works, which is well explained in
[129], but only how to acquire the head pose angles.

In order to make the FaceTracking work, the SightPlugin class needs
the skeleton frame, depth image frame, and the colour image frame from the
Kinect sensor. Since the SightPlugin class implements the getAllFrames()

Sightline Plug-in 102

Figure 6.9: Adapting the angles in function of the obstacles.

method, it succeeds the Kinect’s compatibility test, making it subscribed to
the AllFramesReady event. The reference to the Kinect sensor is also passed
to the FaceTracking project for configuration purposes. Whenever the
frames are received from the Kinect sensor, the getTrackedUser() method
tests whether all the frames contain effectively data, since they are all im-
portant for the face-tracking, before copying them locally (see Listing 6.10).

Listing 6.10: Acquiring all the frames from the input modality.
public void getAllFrames(KinectSensor sensor , SkeletonFrame skeletonFrame , DepthImageFrame

depthFrame , ColorImageFrame colorFrame)
{
his.sensor = sensor;
getTrackedUser(skeletonFrame , depthFrame , colorFrame);

}

Succeeding all the tests in the getTrackedUser() method makes it pos-
sible to look for the tracked users in the skeletonData array with a Skele-
tonTrackingState.Tracked as tracking state. Such kind of skeletons provide
detailed information about the position of twenty user’s body joints. A user
with a SkeletonTrackingState.PositionOnly as tracking state has information
about the user’s position, but not about the body joints. The trackedSkele-
tons dictionary serves to keep a record of any skeletons, whether tracked or
not. Since each user has its own skeletonFaceTracker object, used to per-
form face-tracking, it is important to use the right object, in other words,
the speaker’s skeletonFaceTracker object containing precious data for the
FaceTracking project. The Kinect identifies every tracked user with an

103 CHAPTER 6. Implementation II: Plug-ins and Rules

ID, accessible by the means of the TrackingID member. Therefore, the
speaker’s skeletonFaceTracker object becomes accessible, allowing to call
the skeletonFaceTracker.OnFrameReady()method in order to update each
frame obtained by the Kinect.

When the speaker is identified, and the frames updated, theOnFrameReady
method from the SkeletonFaceTracker class is able to acquire the yaw and
pitch angles, by accessing the positions of the limbs. Therefore, a user with a
tracked TrackingState is necessary. Succeeding the test checking whether the
speaker’s tracking state is indeed Tracked, make it possible to try initialising
the faceTracker object, which will track faces.

The last step consists of providing the Track() method from the face-
tracking project with the freshly updated frames received from the Kinect
sensor and with the skeleton data of the speaker. This will return a frame
allowing to determine whether the tracking has been successful or not, and to
acquire the yaw and pitch angles from the speaker’s face. The stored angles
in the faceOrientations array will be used to update the facts for the rule
engine by the means of the updateFact() method (see Listing 6.11).

Listing 6.11: Updating the orientations in the fact.
if (frame.TrackSuccessful)
{
//Yaw & Pitch

if (faceOrientations == null)
faceOrientations = new float [2] { frame.Rotation.X, frame.Rotation.Y };

updateFact ();

}

6.3.3 The Sightline Fact

The SightFact is responsible for storing the stream of pitch and yaw an-
gles acquired by the SightPlugin, making it possible for the rule engine to
fire rules. Whenever the sight plug-in is configured by the speaker, the con-
structor of the SightFact class is called in order to initialise the following
variables:

• The minYaw and maxYaw defining the minimum and maximum of the
yaw’s range.

• The minPitch and maxPitch defining the minimum and maximum of
the pitch’s range.

• The feedbackTime variable holds the time limit (expressed in seconds)
in which the speaker is authorised to not look to the audience. When

Sightline Plug-in 104

the speaker’s pitch or yaw exceed the defined ranges during the time
limit, the rule engine will trigger a feedback.

• The boolean isActivated serves to activate or deactivate the plug-in
during a session.

Since the sight fact is forced, by the IPlugin contract, to implement the
feedbackFromPlugin() method, this one will be used by the updateFact()
method from the SightPlugin class whenever the angles need to be updated.

6.3.4 The Sight Rules

The sight rules implemented in the rule engine are responsible for updating
variables from the sight fact and to trigger feedback messages to the speaker
whenever needed. Therefore, a continuous stream of yaw and pitch angles
will be provided to the rule engine. To perform this, the rules were divided
in two parts:

• Update Rules responsible for updating variable from the sight fact.

• Feedback Rule responsible to alert the speaker with feedback mes-
sages.

The Updater Rules

The SightPitchUpdate and SightPitchUpdate rules responsible for up-
dating the actual computed yaw and pitch angles work similarly. Therefore,
only one of them will be explained, which is the SightPitchUpdate rule.
When the sight plug-in updates the yaw and pitch angles in the sight fact,
the rule engine needs to be informed by calling its updateFact() method,
in order to perform the changes in the engine’s memory. Whenever this is
done, the rule engine will try to fire rules satisfying the data contained in the
fact. The SightPitchUpdate rule is responsible for updating the datetime
of the last valid received pitch, in other words, whenever the actualPitch lays
between the range of pitch defined by the user, the lastDetectedPitch’s time
will be updated.

[(minPitch ≤ actualPitch) ∧ (actualPitch ≤ maxPitch)]

⇒ update(lastDetectedPitch)
(6.8)

The rule will call the pitchDetected() method from the fact in order to
update the last detected pitch variable, which will avoid the rule engine to
trigger a feedback message to the speaker.

105 CHAPTER 6. Implementation II: Plug-ins and Rules

The Feedback Rule

The SightFeedbackRule rule is really simple, since it uses only the datetime
of the last detected pitch and yaw angles considered to be valid ones. What
this rule basically does is to check whether the last detect pitch, or yaw,
has exceeded a certain time duration defined by the user. If this becomes
the case, a feedback message will be triggered, informing to speaker to pay
attention for the audience. The rule works as follows:

Whenever the time t of the currentPitch subtracted with the defined
feedbackTime duration, defined by the user, is greater than the lastDetected-
Pitch, means that the speaker has not been looking for the audience during
the defined limit feedbackTime. The rule will alert the speaker by calling the
SightFact’s method fireFeedback().

[t(lastDetectedPitch) < (t(currentPitch)− f eedbackT ime)]

⇒ fireFeedback
(6.9)

Notice that an Or statement is to be found in the SightFeedbackRule,
meaning that the same concept is also applicable for the yaw angle.

6.3.5 Limitations

Testing the sight plug-in has shown its limitations, since the FaceTracker
third-party project is not always able to track the speaker’s head. Moreover,
when the yaw, or pitch angles exceed a certain amount of degrees, the Kinect
sensor is no longer able the track the face correctly, since the orientation of
the face hides certain important facial elements used to compute the angles.

Therefore, a second approach is implemented, which uses the distance
from the Kinect to the shoulders to determine whether the speaker’s body is
oriented towards the audience. As shown in Figure 6.10, when the difference
between d1, being the distance between the speaker’s right shoulder and the
Kinect, and d2, being the distance between the speaker’s left shoulder and the
Kinect, exceeds a certain defined threshold, defined by the user, means that
the speaker’s body is not oriented towards the audience. The rule engine will
trigger a feedback message to the speaker, stating to look at the audience.
Note that this method is not always accurate, since the body of the speaker
could be oriented towards the audience while the speaker is not looking at
the audience.

Speech Analysis 106

Figure 6.10: A second approach for measuring eye-contact.

6.4 Speech Analysis

The SpeechRatePlugin and LoudnessPlugin are both plug-ins used to
perform speech analysis on the sound captured by the Kinect sensor. One
is responsible for the computing the speech rate of the speaker, while the
other one the loudness, or voice volume. PRAAT [106] is a light-weight and
flexible tool offering all the needed procedures to measure different properties
of sound. Similar to RHEMA [3], PRESMA uses PRAAT to measure the
loudness and compute the speech rate of the speaker. Since both plug-ins
share some similarities, common subjects will be explained together, knowing
that they are implemented in different classes.

6.4.1 Importing the Speech Rate and Loudness Plug-ins

Both SpeechRatePlugin and LoudnessPlugin classes are able to be loaded
by the PluginLoader class, since they both implement the IPlugin con-
tract, making them valid plug-ins, and declare being Exports of type IPlugin
(see Listing 6.12 and 6.13). The working of these plug-ins are ensured by the
contract, since they are forced to implement the methods listed in Code 5.6.

107 CHAPTER 6. Implementation II: Plug-ins and Rules

Listing 6.12: The loudness plug-in as a valid plug-in.
[Export(typeof(IPlugin))]
public class LoudnessPlugin : IPlugin
{
//...

}

Listing 6.13: The speech rate plug-in as a valid plug-in.
[Export(typeof(IPlugin))]
public class SpeechRatePlugin : IPlugin
{
//...

}

6.4.2 Acquiring Audio Data

Both plug-ins are considered to be compatible with the Kinect sensor, since
they both implement the getAudio() method, needed to subscribe to the
stream of audio data. When the Kinect has read audio data enough to
fill the audioBuffer, both SpeechRatePlugin and LoudnessPlugin will
benefit from it, making them able to perform some audio analysis. Since
PRAAT is an external application, it is not possible to redirect the audio
stream to it in real-time. The only possible way is to save the audio data
into separate samples, identical to how RHEMA [3] proceeds, in order to
allow PRAAT to analyse the audio samples. In order to do so, the user of
PRESMA is engaged to define the time of the audio samples, which will serve
to:

1. Fill the audio sample files with a limit, expressed in seconds, defined
by the user.

2. Define the reactiveness of the feedback messages. In other words, if the
samples are five seconds long, it will take at least five seconds before a
possible feedback message will be triggered by the rule engine.

Whenever the samples are ready, the second step consists of analysing
them, by calling PRAAT in a different thread. Avoiding the main appli-
cation thread to perform this, will make PRESMA more reactive, espe-
cially the user interface. The sampleAnalyzer thread will use either the
computeLoudness(), or the computeSpeechRate() method (depending on
the plug-in), to start the PRAAT process with the following parameters:

• The SpeechRatePlugin calls PRAAT with the script used to compute
the pitch, and the sample file with its name ending by “_speechRate_wav.WAV”.

Speech Analysis 108

• The LoudnessPlugin calls PRAAT with the script used to compute
the intensity, and the sample file with its name ending by “_loud-
ness_wav.WAV”.

The sampleAnalyzer thread will wait until PRAAT has finished to analyse
the samples, before giving the authorisation to the plug-ins to open the files
containing the analysis.

6.4.3 Computing the Speech Rate

PRESMA uses the same script, provided by RHEMA [3], to get a rough es-
timation of the speech rate. Therefore, the SpeechRate plug-in calls PRAAT
with the pitch script in order to use its Pitch Detection Algorithm on the
audio sample. The algorithm provides a file containing all the pitch values,
making it possible to “draw” the pitch contour (as shown in Figure 6.11),
while being able to discern the voiced from the unvoiced areas (as shown in
Figure 6.12).

Figure 6.11: The pitch contour of a sample in PRAAT [106].

Figure 6.12: The pitch contour of a sample in PRAAT [106] with the unvoiced
areas (in red rectangles).

The analyzePitch() method provides an estimation of the speech rate
by counting the number of times the values go from an voiced to an un-
voiced area, in other words, counting the number of discontinuities. The
speechRate variable, containing the speech rate of the current analysed sam-
ple, is then sent to the SpeechRateFact, by the intermediary of the im-
plemented feedbackFromPlugins() method. Calling the re.updateFact()
method from the rule engine will perform the changes in the engine’s memory,
used to fire the satisfied rules (see Listing 6.14).

109 CHAPTER 6. Implementation II: Plug-ins and Rules

Listing 6.14: Update the speech rate in the facts.
private void updateFact(int speechRate)
{
object [] parameters = new object [1] { speechRate };

foreach (IFact fact in getFacts ())
{
fact.feedbackFromPlugins(parameters);

}

foreach (IFact fact in getFacts ())
{
re.updateFact(fact);

}
}

The Speech Rate Fact

The constructor of the SpeechRateFact has as parameters the minimum
speech rate and maximum speech rate, defined by the user, in which the
estimated speech rate should lay. The isActivated boolean serves to activate
or not the plug-in. Whenever the feedbackFromPlugins() is called by the
plug-in with the actual estimated speech rate, the speechRate variable will be
used as a placeholder for the rules, responsible for the triggering of feedback
messages to the speaker.

The Speech Rate Rule

Triggering feedback messages to the speaker is really simple, since the only
thing that the SpeechRateRule has to do is to check whether the estimated
speech rate in the fact lays between the defined range by the user. Therefore
the following rule is used:

Whenever the actual estimated speech rate actualSpeechRate is lower than
the minimum speech rate minSpeechRate, or, greater than the maximum
speech rate maxSpeechRate, the rule engine will trigger a feedback message
to the speaker (fireFeedback).

(actualSpeechRate < minSpeechRate)⇒ fireFeedback (6.10)

(actualSpeechRate > maxSpeechRate)⇒ fireFeedback (6.11)

6.4.4 Computing the Loudness

Computing the loudness of an audio sample is similar as computing the
speech rate. Calling PRAAT with the intensity script provided by RHEMA [3],

Speech Analysis 110

will calculate the loudness, in decibel, of each sound frame from a specific
given audio sample. Afterwards PRAAT provides a file containing the loud-
ness of each frame, making it possible to calculate the average loudness, used
to trigger feedback messages when needed.

The analyzeLoudness() method will be called whenever PRAAT has
finished processing the audio sample, which will open the file containing the
analysis to calculate the average loudness. Afterwards, the averageLoudness
will be sent to the fact, which will be updated in the rule engine’s memory.

6.4.5 The Loudness Fact

The constructor of the SpeechRateFact has as parameters the minimum
and maximum loudness, defined by the user, in which the calculated average
loudness should lay. The isActivated boolean serves to activate or not the
plug-in. Whenever the feedbackFromPlugins() is called by the plug-in
with the actual average loudness, the avgLoudness variable will be used as a
placeholder for the rule, responsible for the triggering of feedback messages
to the speaker.

6.4.6 The Loudness Rule

The LoudnessRule rule works similarly to the SpeechRateRule, since it
only checks whether the average loudness lays between the range defined by
the user. If it is not the case, the rule will trigger a feedback message to the
speaker. The following rule determines whether the speaker should speak
louder or not:

Whenever the actual average loudness is lower than the minimum loud-
ness minLoudness, or, greater than the maximum loudness maxLoudness, the
rule will trigger a feedback message to the speaker (fireFeedback).

(actualAvgLoudness < minLoudness)⇒ fireFeedback (6.12)

(actualAvgLoudness > maxLoudness)⇒ fireFeedback (6.13)

111 CHAPTER 6. Implementation II: Plug-ins and Rules

6.5 The WPF Window Output Modality
Output modalities are used to present feedback messages to the speaker in a
particular form (e.g. haptic feedback, visual feedback, and so forth). In the
case of the PRESMA, a simple Windows Presentation Foundation (WPF)
window is used, showing informative feedback messages. In order to avoid
cognitive overload, the window is designed to present messages up to two
words. Nevertheless, the system is not limited to GUI windows, but sup-
ports different kinds of output modalities thanks to its extensibility. There-
fore, each valid output modality should implement the IOutputModality
contract and declare the Export attribute (see Listing 6.15).

Listing 6.15: The WPF window as a valid output modality.
[Export(typeof(IOutputModality))]
public partial class frmComputerDisplayModality : Window , IOutputModality
{
//...

}

The getFeedbackMessage() method allows the window output modality
to acquire feedback messages from the application controller, which are stored
in a queue. A thread, responsible for continuously reading the queue, is used
to present one feedback message at the time. Since, the possibility that
multiple feedback messages are triggered consecutively remains, the thread
is designed to wait a certain amount of time, defined by the user, before
displaying the next feedback message, in order to avoid cognitive overload
and to put the speaker on the defence.

The WPF Window Output Modality 112

7
Use Case

The previous chapters explained the used technologies making the implemen-
tation of PRESMA possible, going from the architecture to the inclusion of
input modalities, output modalities and plug-ins. Since the extensible parts
are all designed in a way allowing the speaker to customise a presentation
session based on his needs, this chapter walks through a scenario explaining
how the GUI should be used to configure the tool. The GUI has been kept
simple, since the main goal of this thesis was to build an extensible system
capable of providing feedback messages to the speaker.

7.1 The Main Window

The main window of PRESMA’s GUI serves mainly for configuration pur-
poses. As stated before, it is important that the speaker should be able
to configure the system depending on the context and needs. As presented
in Figure 7.1, the main window consists of three important functionalities,
which should be triggered in the following chronological order:

1. The Configure Plug-ins phase consists of subscribing the loaded
plug-ins to the available input modalities by the means of the Linker
button.

Configuring the Plug-ins 114

2. The Configure Facts phase allows to load different rule sets and to
subscribe one or multiple facts (detection logics) to a specific plug-in
by the means of the Facts Linker button.

3. The Configure Output Modalities phase consists of configuring the
output modalities used to present the feedback messages to the speaker
by the means of the Configurator button.

When all the previous steps have been achieved, the system will be able
to run properly, by the means of the start button. On the other hand, the
stop button serves to stop a session correctly.

Figure 7.1: The main window of PRESMA’s GUI.

7.2 Configuring the Plug-ins

The first configuration step in PRESMA consists of redirecting the streams of
data generated by the input modalities to the plug-ins. Since in this scenario
only the gesture, sightline, loudness, speech rate and eye-contact plug-ins are
available, it is important that the system should be configured as presented
in Figure 7.2, in order to allow them to detect, or measure, nonverbal cues.

115 CHAPTER 7. Use Case

Figure 7.2: Redirection of the streams of data from the Microsoft Kinect to
the plug-ins.

7.2.1 Subscribing Plug-ins to Input Modalities

Whenever the Linker button is clicked by the user, a new dynamically created
window is automatically opened, allowing the user to redirect the streams of
data generated by the available input modalities to the loaded plug-ins. As
presented in Figure 7.3, the window is divided in two columns, the left side
represents the loaded plug-ins, while the right side represents the included
input modalities.

The comboboxes next to each plug-in are populated with the available
input modalities. Selecting one of the list, as presented in Figure 7.4, will
associate the plug-in to it only if both are compatible. Since in this scenario
the Microsoft Kinect is the only available input modality, each combobox
will only consist of this one.

Finally, clicking on the Link button (see Figure 7.3) will finish the sub-
scription process.

7.3 Configuring the Facts

The main goals of a fact is to store the data obtained by the plug-ins and
fire feedback messages when certain rules are satisfied. Since the platform
supports rule sets to be imported, as presented in Figure 7.5, the user is

Configuring the Facts 116

Figure 7.3: The plug-in subscription linker window.

Figure 7.4: Subscribing a plug-in to a specific input modality.

responsible for selecting the set of rules that will be used during a presen-
tation session, for example, a set of rules destined for business purposes,
educational purposes, and so forth. The type of the selected ruleset will be
used to look for all the facts and rules having the same type as parent (super
class). Afterwards, as shown in Figure 7.6, the facts should be added to the
corresponding plug-in, in order to benefit from the stream of data. Clicking
on the Link button will finish the configuration process and allow the user
to configure the thresholds of each plug-in, which will be stored in the facts
for the rules.

7.3.1 Configurator Pages

The plug-in contract IPlugin forces the plug-ins to implement the method
getConfiguratorPage(), which is a WPF page used to configure the plug-
in thresholds through a GUI. After the subscription process, PRESMA will

117 CHAPTER 7. Use Case

Figure 7.5: Selecting rulesets for a presentation session.

Figure 7.6: Configuring the facts from a specific ruleset.

get all the pages from the loaded plug-ins and show them to the user. The
entered values are vital, since they serve to parametrise the facts used by the
rule engine in order to trigger feedback messages to the speaker.

Gesture Plug-in Configurator

The gesture plug-in determines whether the speaker is indeed using gestures
during the presentation or not. Therefore, as presented in Figure 7.7, the
user should enter two important values, namely:

• The Angle value, expressed in degree, defines the value of a valid ges-
ture. In this scenario, a valid gesture is a gesture with an increasing or
decreasing angle of minimum 15 degrees.

• The Time Feedback value, expressed in seconds, is the time limit in
which the speaker is able to not use gestures. In other words, whenever

Configuring the Facts 118

the time of the last detected gesture exceeds 10 seconds, the rule engine
will trigger a feedback message stating to use gestures.

Figure 7.7: The gesture plug-in configurator.

Sightline Plug-in Configurator

The sightline plug-in serves to determine whether the speaker is indeed paying
enough attention to the audience or not by the means of the speaker’s face
orientation. By defining the pitch and yaw angles, the system is able to
determine where the speaker is looking at. As presented in Figure 7.8, the
user is able to configure the plug-in as follows:

• The Time Feedback value, expressed in seconds, is the time limit in
which the speaker is allowed to not look at the audience. In other words,
whenever the speaker does not look to the audience during 10 seconds
(in this scenario), the rule engine will trigger a feedback message.

• The Min. and Max. Pitch, and the Min. and Max. Yaw, all expressed
in degrees, serves to define the area in which the speaker’s visual axis,
or sightline, should be situated1.

1For a better understanding of these values, the face-tracking tutorial by Microsoft can
serve as a basis: https://msdn.microsoft.com/en-us/library/jj130970.aspx

119 CHAPTER 7. Use Case

Figure 7.8: The sightline plug-in configurator.

Loudness Plug-in Configurator

The loudness plug-in serves to determine whether the speaker’s message can
be understood clearly by the audience by speaking loud enough. The plug-in
will compute the average loudness, which will allow the rule engine to trigger
feedback messages whenever needed. Therefore, as presented in Figure 7.9,
the user needs to fill the following thresholds:

• The Sample Time value, expressed in seconds, defines the length of the
audio samples used to compute the average loudness of the speaker. In
this case, the average loudness will be computed every 5 seconds by the
system. Entering a low value is recommended, since it will make the
system more reactive.

• The Min. and Max. Loudness Filters, expressed in decibel (dB),
are thresholds used to filter out the noise present in the environment.
In this scenario, the system will not take in consideration loudnesses
lower than 30 dB and greater than 80 dB.

• The Min. and Max. Loudness, expressed in decibel (dB), defines
what a valid loudness should look like. The system will trigger a feed-
back message whenever the computed average loudness does not lay
between both values.

Configuring the Facts 120

Figure 7.9: The loudness plug-in configurator.

Speech Rate Plug-in Configurator

The speaker’s speech rate is computed by the speech rate plug-in. Being one
of the most important nonverbal communication aspect, it is important that
the speaker does not speak too fast or two slow. As presented in Figure 7.10,
the user can configure the plug-in as follows:

• The Sample Time value, expressed in seconds, defines the length of the
audio samples used to compute the speech rate of the speaker. In this
case, the speech rate will be computed every 5 seconds by the system.
Entering a low value will make the system more responsive regarding
the speaker’s speech rate.

• The Min. and Max. Speech Rate, expressed in number of words
per time unit, where the time unit is in this case the sample time,
define the boundaries of the speech rate. In this scenario, whenever
the computed speech rate is lower than 5 words or higher than 15
words, the rule engine will trigger a feedback message. Notice that the
methodology used to compute the speech rate is not accurate, therefore
it is important to widen the wished boundaries with a few words.

Eye-Contact Plug-in Configurator

The eye-contact plug-in is a second approach used to determine whether the
speaker is looking at the audience or not. As presented in Figure 7.11, the

121 CHAPTER 7. Use Case

Figure 7.10: The speech rate plug-in configurator.

user can configure the plug-in as follows:

• The Time Feedback value, expressed in seconds, is the time limit in
which the speaker is allowed to not look at the audience. In other words,
whenever the speaker does not look to the audience during a certain
defined time limit, the rule engine will trigger a feedback message.

• The Distance Difference value, expressed in centimetres, is used to
determine whether the speaker’s body is oriented towards the audience
or not. Whenever the difference between the Kinect and both shoulders
exceeds this value, means that the speaker is not paying attention to
the audience.

Saving the Plug-in Configurations

Whenever all the plug-ins have been configured, clicking on the Save button
available in the configurator window browser (see Figure 7.10) will call the
configurePlugin() method available in each plug-in with their correspond-
ing configuration page, which will allow them to acquire the values defined
by the user and to configure the facts.

Configuring the Output Modalities 122

Figure 7.11: The eye-contact plug-in configurator.

7.4 Configuring the Output Modalities
Configuring the output modalities is practically the same as the methodology
used for the plug-in configurators. As presented in Figure 7.1, theConfigure
Output Modalities will automatically open a window allowing the user to
browse over all the configurator pages of the loaded output modalities in
order to configure them.

7.4.1 The WPF Window as Output Modality

The only output modality used to demonstrate the working and effectiveness
of PRESMA consists of a simple WPF window, which will be used to display
informative feedback messages to the speaker. Before being able to use it,
the window should first be configured. As presented in Figure 7.12, the
configurator expects the following values to be defined by the user:

• The Display Time, expressed in seconds, defines the time in which a
feedback message will be displayed in the WPF window. In this sce-
nario, each triggered feedback message will be displayed for 5 seconds.

• The Interval, expressed in seconds, defines the time interval between
feedback messages. In other words, the window will wait for 6 seconds
before displaying the next feedback message. This feature is important,
since it allows the system to not constantly distract, or cause cognitive
overload, by displaying all the feedback messages in a row.

123 CHAPTER 7. Use Case

Figure 7.12: The WPF window output modality configurator.

The WPF window has two states, one with and one without feedback
messages. The first state, as presented in Figure 7.13, is the one where no
feedback message needs to be displayed. Two horizontal green bars are shown,
stating that the speaker’s behaviour is conform to the defined values during
the configuration steps. On the other hand, as presented in Figure 7.14,
a simple feedback message with maximum two words in combination with
horizontal red bars are shown to the speaker. The reason behind displaying
only two words is that it will not cause cognitive overload and allow the
speaker to quickly adapt their behaviour by simply reading two words. The
red horizontal bars show that a nonverbal communication aspect has not
been respected.

Configuring the Output Modalities 124

Figure 7.13: The normal state of the output modality.

Figure 7.14: The feedback state of the output modality.

8
Conclusions and Future Work

In order to build PRESMA, an extensible multimodal system capable of pro-
viding informative feedback to the speaker in real-time during presentations,
the first step was to investigate the communication process, allowing the
identification of important elements present and needed while performing
presentations. This led to the conclusion that there exist no “fixed” rules
defining a good presentation, since not only verbal communication aspects
should be taken in consideration, but also the speaker’s nonverbal behaviours
should be adequate to the presentation context. Presentation rules might be
different depending on the culture of the audience, for example, the use
of eye contact ratio with Asian audiences will differ from Western cultures.
Moreover, the speaker’s approach will be different for a business presentation
than for an educational one. Therefore, it becomes important to identify the
characteristics of the audience in advance.

Then, an investigation, analysis and comparison of existing multimodal
feedback systems was conducted. The result of the comparison, based on
important criteria, led to the conclusion that a need for extensibility was ev-
ident. Moreover, most of the analysed systems did not allow the inclusion of
input and output modalities, or even identified a fixed set of communication
aspects in advanced, which is contradictory with the conclusion obtained in
the study of the communication process.

Contributions 126

Afterwards, the findings from the conducted literature study enabled the
implementation of PRESMA. Using the advantages and inconveniences of
existing multimodal feedback systems as a strong basis, the design and im-
plementation of an elaborated architecture allowing the system to be exten-
sible by the means of plug-ins was possible. Each part of the system was
designed in way to allow the speaker to adapt the system based on the needs
and context of a presentation session.

Finally, based on important nonverbal communication aspects, a set of
plug-ins were developed, serving to prove the working and effectiveness of the
system. The imported plug-ins were able to measure the speaker’s perfor-
mances and to provide informative feedback, allowing the speaker to adapt
his behaviour.

8.1 Contributions

The first contribution of this thesis is an overall study of Human-Machine
Interaction, especially about interaction techniques and the impact of user
interfaces on people’s daily life. Based on their limitations, the field of mul-
timodal systems has emerged, attracting the attention of a number of re-
searchers. The literature provided about Multimodal User Interfaces (MUI)
and Multimodal Interaction helps to understand multimodal systems and
how using them for extracting meaningful information about users is feasi-
ble.

The second contribution is the study of the communication process. Since
public speaking is a form of communication, identifying important commu-
nication aspects and communication elements was possible. These findings
could serve as a basis for the preparation and rehearsal of presentations.

Finally, the last contribution is an extensible multimodal system capable
of measuring the speaker’s nonverbal cues to provide feedback messages,
called PRESMA. Due to its elaborated architecture, users are free to extend
the system’s functionalities by means of plug-ins, bringing the system to
another level. Compared to existing multimodal feedback systems [1, 2, 3,
4, 5, 6, 7, 8], PRESMA is the only one allowing the inclusion of presentation
aspects, making it possible to customise the system according to the context
and needs of a presentation session. Moreover, users are able to define their
own thresholds used to trigger feedback messages, which were predefined
in most of the discussed multimodal feedback systems [1, 3, 4, 5, 6, 7, 8].
Compared to [2, 4, 7, 8], PRESMA is able to assist the speaker during both
real-time presentations and training situations due to its ability to include
output modalities from different kinds, used to present the system in an

127 CHAPTER 8. Conclusions and Future Work

adequate form. In terms of input modalities, PRESMA allows the user to
specify which ones to use during a presentation session. One can use the
in-build components of a laptop for business purposes, while using more
advanced ones for other purposes, which is not the case for [1, 3, 4, 5, 6, 8].
The user is provided with a less constraint feeling and is able to adapt the
system according to their “ideal” perception of presentations, context and
needs.

8.2 Future Work
PRESMA is mainly designed to tackle the gaps of existing multimodal feed-
back systems. However, the system’s GUI is not as elaborated and friendly
as it should be. Due to the limited time, the GUI focusses only on the config-
uration of the system, it should therefore be improved to allow the users to
save their configurations for further use and to allow the testing of included
plug-ins in order to be able to derive the ideal thresholds for a specific pre-
sentation. Also more logic should be implemented to automatically configure
the system by the means of compatibility testing.

Another important aspect is to allow the users to visualise their presen-
tation sessions. Currently, the system is able to save a session’s speech and
video data obtained from the Kinect from, which could be used in combina-
tion with annotations to show the speaker’s presentation issues. Instead of
showing statistics, the speakers would be able to visualise their performances
and improve their behaviours for future presentations.

Up to now, the implemented plug-ins focusses only on nonverbal cues.
Nevertheless, it is possible to introduce Microsoft PowerPoint into the system
to detect whether keywords of a specific slide have been said by the speaker
by simultaneously analysing audio data.

Finally, the system needs a user evaluation to assess the quality and
efficiency for future refinements or improvements.

Future Work 128

Bibliography

[1] K. Kurihara, M. Goto, J. Ogata, Y. Matsusaka, and T. Igarashi, “Pre-
sentation Sensei: A Presentation Training System Using Speech and
Image Processing,” in Proceedings of the 9th international conference
on Multimodal interfaces, New York, USA, November 2007, pp. 358–
365.

[2] J. Schneider, D. Börner, P. Van Rosmalen, and M. Specht, “Presen-
tation Trainer: a Toolkit for Learning Non-Verbal Public Speaking
Skills,” in European Conference on Technology Enhanced Learning,
Graz, Austria, September 2014, pp. 522–525.

[3] M. I. Tanveer, E. Lin, and M. E. Hoque, “Rhema: A Real-Time In-Situ
Intelligent Interface to Help People with Public Speaking,” in Proceed-
ings of the 20th International Conference on Intelligent User Interfaces,
Atlanta, USA, March 2015, pp. 286–295.

[4] S. Kopf, D. Schön, B. Guthier, R. Rietsche, and W. Effelsberg, “A Real-
time Feedback System for Presentation Skills,” in EdMedia: World
Conference on Educational Media and Technology, Montréal, Canada,
June 2015, pp. 1686–1693.

[5] A.-T. Nguyen, W. Chen, and M. Rauterberg, “Feedback System for
Presenters Detects Nonverbal Expressions,” SPIE Newsroom, 2012.

[6] ——, “Online Feedback System for Public Speakers,” in IEEE Sym-
posium on E-Learning, E-Management and E-Services (IS3e), Kuala
Lumpur, Malaysia, October 2012, pp. 1–5.

[7] T. Gan, Y. Wong, B. Mandal, V. Chandrasekhar, and M. S. Kankan-
halli, “Multi-sensor Self-Quantification of Presentations,” in Proceed-
ings of the 23rd ACM international conference on Multimedia, Bris-
bane, Australia, October 2015, pp. 601–610.

BIBLIOGRAPHY 130

[8] T. Wörtwein, M. Chollet, B. Schauerte, L.-P. Morency, R. Stiefelha-
gen, and S. Scherer, “Multimodal Public Speaking Performance Assess-
ment,” in Proceedings of the 2015 ACM on International Conference
on Multimodal Interaction, Seattle, USA, November 2015, pp. 43–50.

[9] P. A. DeCaro, “Origins of Public Speaking,” in The Public Speaking
Project, 2011, pp. 311–324.

[10] A. Nikitina, Successful Public Speaking. Bookboon, 2012.

[11] J. A. DeVito, The Essential Elements of Public Speaking. Allyn and
Bacon, May 2002.

[12] J. Schneider, D. Börner, P. Van Rosmalen, and M. Specht, “Stand Tall
and Raise your Voice! A Study on the Presentation Trainer,” in Design
for Teaching and Learning in a Networked World. Springer, 2015, pp.
311–324.

[13] J. Hattie and H. Timperley, “The Power of Feedback,” Review of edu-
cational research, vol. 77, no. 1, pp. 81–112, March 2007.

[14] J. Schneider, D. Börner, P. Van Rosmalen, and M. Specht, “Augment-
ing the Senses: A Review on Sensor-Based Learning Support,” Sensors,
vol. 15, no. 2, pp. 4097–4133, February 2015.

[15] B. Dumas, D. Lalanne, and S. Oviatt, “Multimodal Interfaces: A Sur-
vey of Principles, Models and Frameworks,” in Human Machine Inter-
action. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 3–26.

[16] P. Booth, An Introduction to Human-Computer Interaction (Psychol-
ogy Revivals). Psychology Press, September 2014.

[17] F. Karray, M. Alemzadeh, J. A. Saleh, and M. N. Arab, “Human-
Computer Interaction: Overview on State of the Art,” International
Journal on Smart Sensing and Intelligent Systems, vol. 1, no. 1, pp.
137–159, March 2008.

[18] G. J. Kim, Human-Computer Interaction: Fundamentals and Practice.
CRC Press, February 2015.

[19] P. M. Encyclopedia, “Definition of User Interface,” accessed: 2016-05-
08. [Online]. Available: http://www.pcmag.com/encyclopedia/term/
53558/user-interface

131 BIBLIOGRAPHY

[20] S. Oviatt and P. Cohen, “Perceptual User Interfaces: Multimodal In-
terfaces That Process What Comes Naturally,” Communications of the
ACM, vol. 43, no. 3, pp. 45–53, March 2000.

[21] A. Soriano, “Revolutionary User Interfaces,” accessed: 2016-05-
08. [Online]. Available: https://timeline.knightlab.com/examples/
user-interface/

[22] D. Engelbart, “Revolutionary User Interfaces,” accessed: 2016-05-
08. [Online]. Available: http://www.foresightinhindsight.com/article/
show/1164

[23] M. Turk and G. Robertson, “Perceptual User Interfaces (Introduc-
tion),” Communication of the ACM, vol. 43, no. 3, pp. 32–34, March
2000.

[24] E. S. Raymond and R. W. Landley, “Chapter 2. History: A Brief
History of User Interfaces,” accessed: 2016-05-08. [Online]. Available:
http://www.catb.org/esr/writings/taouu/html/ch02.html

[25] A. Van Dam, “Post-WIMP User Interfaces,” Communications of the
ACM, vol. 40, no. 2, pp. 63–67, February 1997.

[26] V. Bush, “As We May Think,” SIGPC Notes, vol. 1, no. 4, pp. 36–44,
April 1979.

[27] T. Burghart, “Post-WIMP Interfaces,” Beyond the Desktop, pp. 78–86,
April 2013.

[28] J. Nielsen, “Noncommand User Interfaces,” Communications of the
ACM, vol. 36, no. 4, pp. 83–99, April 1993.

[29] R. J. K. Jacob, “A visual language for non-WIMP user interfaces,” in
Visual Languages, 1996. Proceedings., IEEE Symposium on, Medford,
USA, September 1996, pp. 231–238.

[30] M. Green and R. Jacob, “SIGGRAPH 1990 Workshop Report: Soft-
ware Architectures and Metaphors for non-WIMP User Interfaces,”
SIGGRAPH Comput. Graph., vol. 25, no. 3, pp. 229–235, July 1991.

[31] R. J. Jacob, A. Girouard, L. M. Hirshfield, M. S. Horn, O. Shaer, E. T.
Solovey, and J. Zigelbaum, “Reality-based Interaction: A Framework
for post-WIMP Interfaces,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, New York, USA, April 2008,
pp. 201–210.

BIBLIOGRAPHY 132

[32] H. Ishii, “Tangible User Interfaces,” in Human-computer Interaction:
Design Issues, Solutions, and Applications, D. Lalanne and J. Kohlas,
Eds. New York, USA: CRC Press, 2007, pp. 469–487.

[33] M. Weiser, “Ubiquitous computing,” IEEE Computer, vol. 26, no. 10,
pp. 71–72, October 1993.

[34] D. Kirk, A. Sellen, S. Taylor, N. Villar, and S. Izadi, “Putting the Phys-
ical into the Digital: Issues in Designing Hybrid Interactive Surfaces,”
in Proceedings of the 23rd British HCI Group Annual Conference on
People and Computers: Celebrating People and Technology, Swinton,
UK, September 2009, pp. 35–44.

[35] H. Ishii, D. Lakatos, L. Bonanni, and J.-B. Labrune, “Radical Atoms:
Beyond Tangible Bits, Toward Transformable Materials,” Interactions,
vol. 19, no. 1, pp. 38–51, January 2012.

[36] D. Herzner, “Organic User Interfaces,” Beyond the Desktop, pp. 9–14,
April 2013.

[37] R. Vertegaal and I. Poupyrev, “Organic User Interfaces,” Communica-
tions of the ACM, vol. 51, no. 6, pp. 26–30, June 2008.

[38] K. Lyytinen and Y. Yoo, “Ubiquitous Computing,” Communications
of the ACM, vol. 45, no. 12, pp. 63–96, December 2002.

[39] D. Mestre, P. Fuchs, A. Berthoz, and J. L. Vercher, “Immersion and
Presence,” Le traité de la Réalité Virtuelle 3ème édition., vol. 1, pp.
309–338, March 2006.

[40] R. T. Azuma, “A Survey of Augmented Reality,” Presence: Teleop-
erators and Virtual Environments, vol. 6, no. 4, pp. 355–385, August
1997.

[41] N.-N. Zhou and Y.-L. Deng, “Virtual Reality: A State-of-the-Art Sur-
vey,” International Journal of Automation and Computing, vol. 6, no. 4,
pp. 319–325, November 2009.

[42] F. P. Brooks, “Grasping Reality Through Illusion–Interactive Graphics
Serving Science,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, New York, USA, June 1988, pp. 1–11.

[43] ——, “The Computer Scientist As Toolsmith II,” Communications of
the ACM, vol. 39, no. 3, pp. 61–68, March 1996.

133 BIBLIOGRAPHY

[44] P. Milgram and F. Kishino, “A Taxonomy of Mixed Reality Visual Dis-
plays,” IEICE TRANSACTIONS on Information and Systems, vol. 77,
no. 12, pp. 1321–1329, December 1994.

[45] H. Tamura, H. Yamamoto, and A. Katayama, “Mixed Reality: Future
Dreams Seen at the Border Between Real and Virtual Worlds,” IEEE
Computer Graphics and Applications, vol. 21, no. 6, pp. 64–70, August
2001.

[46] M. Billinghurst and H. Kato, “Collaborative Mixed Reality,” in Pro-
ceedings of the International Symposium on Mixed Reality, Yokohama,
Japan, March 1999, pp. 261–284.

[47] M. Bajura, H. Fuchs, and R. Ohbuchi, “Merging Virtual Objects with
the Real World: Seeing Ultrasound Imagery Within the Patient,” in
ACM SIGGRAPH Computer Graphics, New York, USA, July 1992,
pp. 203–210.

[48] P. Sajda, K.-R. Müller, and K. V. Shenoy, “Brain-Computer Inter-
faces,” IEEE Signal Processing Magazine, vol. 25, no. 1, pp. 16–17,
January 2008.

[49] M. D. Linderman, G. Santhanam, C. T. Kemere, V. Gilja, S. O’Driscoll,
M. Y. Byron, A. Afshar, S. I. Ryu, K. V. Shenoy, and T. H. Meng, “Sig-
nal Processing Challenges for Neural Prostheses,” IEEE Signal Process-
ing Magazine, vol. 25, no. 1, pp. 18–28, January 2008.

[50] M. Turk, “Review Article: Multimodal Interaction: A Review,” Pattern
Recognition Letters, vol. 36, pp. 189–195, January 2014.

[51] H. Bunt, R.-J. Beun, and T. Borghuis, Multimodal Human-Computer
Communication: Systems, Techniques, and Experiments. Springer
Science & Business Media, April 1998.

[52] S. Oviatt, “Advances in Robust Multimodal Interface Design,” IEEE
Computer Graphics and Applications, vol. 23, no. 5, pp. 62–68, Septem-
ber 2003.

[53] J. A. Jacko, The Human-Computer Interaction Handbook: Fundamen-
tals, Evolving Technologies, and Emerging Applications. CRC press,
May 2012.

[54] R. A. Bolt, “&Ldquo;Put-that-there&Rdquo;: Voice and Gesture at
the Graphics Interface,” in Proceedings of the 7th Annual Conference

BIBLIOGRAPHY 134

on Computer Graphics and Interactive Techniques, New York, NY,
USA, July 1980, pp. 262–270.

[55] A. Farner, “Report on Speech Gesture Recognition Systems,” 2009,
accessed: 2016-08-18.

[56] A. Popescu-Belis, H. Bourlard, and S. Renals, Machine Learning for
Multimodal Interaction IV. Springer-Verlag, September 2008.

[57] P. Cohen, D. McGee, S. Oviatt, L. Wu, J. Clow, R. King, S. Julier, and
L. Rosenblum, “Multimodal Interaction for 2D and 3D Environments,”
IEEE Computer Graphics and Applications, vol. 19, no. 4, pp. 10–13,
July 1999.

[58] E.-L. Sallnäs, K. Rassmus-Gröhn, and C. Sjöström, “Supporting Pres-
ence in Collaborative Environments by Haptic Force Feedback,” ACM
Transactions on Computer-Human Interaction (TOCHI), vol. 7, no. 4,
pp. 461–476, December 2000.

[59] E. Tse, S. Greenberg, and C. Shen, “Multi User Multimodal Tabletop
Interaction over Existing Single User Applications,” in Adjunct Proc
ACM CSCW, Banff, Canada, November 2006, pp. 111–112.

[60] N. Negroponte, “An Iconoclastic View Beyond the Desktop Metaphor,”
International Journal of Human-Computer Interaction, vol. 1, no. 1,
pp. 109–113, September 1989.

[61] N. Sebe, “Multimodal Interfaces: Challenges and Perspectives,” Jour-
nal of Ambient Intelligence and Smart Environments, vol. 1, no. 1, pp.
23–30, January 2009.

[62] S. Oviatt, “Ten Myths of Multimodal Interaction,” Communications of
the ACM, vol. 42, no. 11, pp. 74–81, November 1999.

[63] A. K. Bhowmik, Interactive Displays: Natural Human-Interface Tech-
nologies. John Wiley & Sons, January 2014.

[64] M. Tavanti, “Multimodal Interfaces: A Brief Literature,” Human-
Computer Interaction, vol. 12, pp. 93–129, April 2007.

[65] L. M. Reeves, J. Lai, J. A. Larson, S. Oviatt, T. S. Balaji, S. Buisine,
P. Collings, P. Cohen, B. Kraal, J.-C. Martin, M. McTear, T. Raman,
K. M. Stanney, H. Su, and Q. Y. Wang, “Guidelines for Multimodal
User Interface Design,” Communications of the ACM, vol. 47, no. 1,
pp. 57–59, January 2004.

135 BIBLIOGRAPHY

[66] L. Schomaker, J. Nijtmans, A. Camurri, F. Lavagetto, P. Morasso,
and C. Benoît, “A Taxonomy of Multimodal Interaction in the
Human Information Processing System,” 1995, accessed: 2016-08-18.
[Online]. Available: http://www.ai.rug.nl/~lambert/projects/miami/
reports/taxrep-300dpi.pdf

[67] D. A. Norman, The Design of Everyday Things: Revised and Expanded
Edition. Basic books, November 2013.

[68] P. K. Atrey, M. A. Hossain, A. El Saddik, and M. S. Kankanhalli,
“Multimodal Fusion for Multimedia Analysis: A Survey,” Multimedia
systems, vol. 16, no. 6, pp. 345–379, November 2010.

[69] L. Nigay and J. Coutaz, “A Design Space for Multimodal Systems:
Concurrent Processing and Data Fusion,” in Proceedings of the INTER-
ACT 1993 and CHI 1993 conference on Human factors in computing
systems, New York, USA, April 1993, pp. 172–178.

[70] J. A. ter Heerdt, “Design Spaces, Mechanisms and Architectures for
Multimodal Interfaces,” 1st Twente Student Conference on IT, June
2004.

[71] D. Lalanne, L. Nigay, p. Palanque, P. Robinson, J. Vanderdonckt, and
J.-F. Ladry, “Fusion Engines for Multimodal Input: A Survey,” in Pro-
ceedings of the 2009 international conference on Multimodal interfaces,
Cambridge, USA, November 2009, pp. 153–160.

[72] R. Sharma, V. I. Pavlovic, and T. S. Huang, “Toward Multimodal
Human-Computer Interface,” Proceedings of the IEEE, vol. 86, no. 5,
pp. 853–869, May 1998.

[73] M. E. Foster, “State-of-the-Art Review: Multimodal Fission,” COMIC
project Deliverable, vol. 6, no. 09, September 2002.

[74] J. Coutaz, L. Nigay, D. Salber, A. Blandford, J. May, and R. M. Young,
“Four Easy Pieces for Assessing the Usability of Multimodal Interac-
tion: the CARE Properties,” in INTERACT: IFIP International Con-
ference on Human Computer Interaction, Lillehammer, Norway, June
1995, pp. 115–120.

[75] L. Nigay and J. Coutaz, “Multifeature Systems: The CARE Proper-
ties and Their Impact on Software Design,” in Multimedia Interfaces:
Research and Applications, July 1997.

BIBLIOGRAPHY 136

[76] D. Tzovaras, Multimodal User Interfaces: From Signals to Interaction.
Springer Science & Business Media, February 2008.

[77] F. C. Lunenburg, “Communication: The Process, Barriers, and Im-
proving Effectiveness,” Schooling, vol. 1, no. 1, pp. 1–11, 2010.

[78] SkillsYouNeed, “What is Communication?” 2016, accessed: 2016-
05-08. [Online]. Available: http://www.skillsyouneed.com/general/
what-is-communication.html

[79] J.-P. Brun and C. Cooper, Missing Pieces: 7 Ways to Improve Em-
ployee Well-Being and Organizational Effectiveness. Springer, January
2009.

[80] D. C. Summers, Quality Management: Creating and Sustaining Orga-
nizational Effectiveness. Pearson Prentice Hall, January 2005.

[81] M. Yate, Hiring the Best: A Manager’s Guide to Effective Interviewing
and Recruiting. F+ W Media, Inc., August 2005.

[82] E. M. Eisenberg, H. L. Goodall Jr., and A. Trethewey, Organizational
Communication: Balancing Creativity and Constraint. Macmillan
Higher Education, November 2013.

[83] C. Learning, “Understanding the Basics of Verbal Com-
munication,” 2009, accessed2016-02-01. [Online]. Available:
http://assets.cengage.com/pdf/4004_1111063796_Understanding\
%20the\%20Basics\%20of\%20Verbal\%20Communication.pdf

[84] S. Adrignola, “Survey of Communication Study/Chapter 2
- Verbal Communication,” 2009, accessed: 2016-08-18. [On-
line]. Available: http://www.saylor.org/site/wp-content/uploads/
2012/05/COMM001_Wikibooks_-Survey-of-Communication-Study_
Chapter-2_5.11.2012.pdf

[85] S. R. Van Hook, “Verbal and Nonverbal Communication,” 2009,
accessed: 2016-08-18. [Online]. Available: http://www.saylor.org/site/
wp-content/uploads/2013/03/CUST105-1.4-FINAL.pdf

[86] SkillsYouNeed, “Non-Verbal Communication,” 2016, 2016-
07-06. [Online]. Available: http://www.skillsyouneed.com/ips/
nonverbal-communication.html

[87] N. Ambady and R. Rosenthal, “Nonverbal Communication,” Encyclo-
pedia of mental health, vol. 2, pp. 775–782, 1998.

137 BIBLIOGRAPHY

[88] M. Argyle, Bodily Communication. Routledge, April 2013.

[89] T. Dixon and M. O’Hara, “Communication Skills,” 2013. [Online].
Available: http://cw.routledge.com/textbooks/9780415537902/data/
learning/11_Communication\%20Skills.pdf

[90] J. B. Stiff, J. L. Hale, R. Garlick, and R. G. Rogan, “Effect of Cue
Incongruence and Social Normative Influences on Individual Judgments
of Honesty and Deceit,” Southern Journal of Communication, vol. 55,
no. 2, pp. 206–229, March 1990.

[91] H. Ellgring, Non-Verbal Communication in Depression. Cambridge
University Press, November 2007.

[92] SkillsYouNeed, “Body Language, Posture and Proximity,” 2016,
accessed: 2016-07-06. [Online]. Available: http://www.skillsyouneed.
com/ips/body-language.html

[93] M. L. Knapp, J. A. Hall, and T. G. Horgan, Nonverbal Communication
in Human Interaction. Cengage Learning, January 2013.

[94] W. Bank, “Non-Verbal Communication,” 2010. [Online]. Avail-
able: http://siteresources.worldbank.org/EXTGOVACC/Resources/
NonverbalCommweb.pdf

[95] E. Goldman, As Others See Us: Body Movement and the Art of Suc-
cessful Communication. Routlegde, 2004.

[96] SkillsYouNeed, “Effective Speaking,” 2016, 2016-07-03. [Online]. Avail-
able: http://www.skillsyouneed.com/general/what-is-communication.
html

[97] L. Wong, Essential study skills. Cengage Learning, January 2014.

[98] A. Mehrabian and M. Wiener, “Decoding of Inconsistent Communica-
tions,” Journal of personality and social psychology, vol. 6, no. 1, p.
109, May 1967.

[99] A. Mehrabian and S. R. Ferris, “Inference of Attitudes from Nonverbal
Communication in two Channels,” Journal of consulting psychology,
vol. 31, no. 3, p. 248, June 1967.

[100] A. Mehrabian, ““Silent Messages” – A Wealth of Information About
Nonverbal Communication (Body Language),” Personality & Emotion
Tests & Software: Psychological Books & Articles of Popular Interest.
Los Angeles, CA: self-published, vol. 7, no. 31, p. 2011, 2009.

BIBLIOGRAPHY 138

[101] A. Georgievska, “Comunication, the Importance of Feedback and a
Study Research on the Rating of the Two Courses “Advanced Fife Sup-
port” and “Emotional Management in the Areas of Emergency”,” De-
cember 2011.

[102] J. Ford, J. Knight, and E. McDonald-Littleton, “Learning Skills: A
comprehensive Orientation and Study Skills Course Designed for Ten-
nessee Families First Adult Education Classes,” Knoxville: University
of Tennessee, Knoxville Center for Literacy Studies, vol. 16, p. 2009,
November 2001.

[103] Google, “Glass,” accessed: 2016-02-09. [Online]. Available: https:
//developers.google.com/glass/

[104] M. Rouse, “Google Glass,” accessed: 2016-02-09. [Online].
Available: http://internetofthingsagenda.techtarget.com/definition/
Google-Glass

[105] I. Bartenieff and D. Lewis, Body Movement: Coping with the Environ-
ment. Routlegde, January 1980.

[106] P. Boersma and D. Weenink, “Praat, a System for Doing Phonetics by
Computer,” Glot international, vol. 5, no. 9/10, pp. 341–345, October
2002.

[107] L. Batrinca, G. Stratou, A. Shapiro, L.-P. Morency, and S. Scherer,
“Cicero - Towards a Multimodal Virtual Audience Platform for Public
Speaking Training,” in International Workshop on Intelligent Virtual
Agents, August, Edinburgh, UK 2013, pp. 116–128.

[108] G. Degottex, J. Kane, T. Drugman, T. Raitio, and S. Scherer, “CO-
VAREP – A Collaborative Voice Analysis Repository for Speech Tech-
nologies,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Florence, Italy, May 2014, pp. 960–964.

[109] Imotions, “Emotient Module: Facial Expression Emotion Analysis,”
2016, accessed: 2016-08-01. [Online]. Available: https://imotions.com/
attention-tool-facet-module-facial-action-coding-system-facs/

[110] S. Lao and M. Kawade, “Vision-Based Face Understanding Technolo-
gies and their Applications,” in Advances in Biometric Person Authen-
tication. Springer Berlin Heidelberg, 2004, pp. 339–348.

139 BIBLIOGRAPHY

[111] Microsoft, “Managed Extensibility Framework (MEF),” 2016, accessed:
2016-07-16. [Online]. Available: https://msdn.microsoft.com/en-us/
library/dd460648(v=vs.110).aspx

[112] ——, “Reflection in the .NET Framework,” 2016, accessed: 2016-
07-17. [Online]. Available: https://msdn.microsoft.com/en-us/library/
f7ykdhsy.aspx

[113] Redhat, “Why use a Rule Engine?” 2016, accessed: 2016-07-17.
[Online]. Available: https://access.redhat.com/documentation/
en-US/JBoss_Enterprise_SOA_Platform/4.3/html/JBoss_Rules_
Reference_Guide/the_rule_engine-why_use_a_rule_engine.html

[114] C. Open-Source, “Drools.NET,” 2014, accessed: 2016-07-17. [Online].
Available: http://www.csharpopensource.com/droolsdotnet/

[115] S. Nikolayev, “NRules,” 2015, accessed: 2016-03-15. [Online]. Available:
https://github.com/NRules/NRules

[116] B. Schneier, “The Rete Matching Algorithm,” 2002, ac-
cessed: 2016-03-15. [Online]. Available: http://www.drdobbs.
com/architecture-and-design/the-rete-matching-algorithm/184405218

[117] Microsoft, “Introduction to the C# Language and the .NET
Framework,” 2016, accessed: 2016-07-17. [Online]. Avail-
able: https://msdn.microsoft.com/en-US/library/z1zx9t92.aspx?f=
255&MSPPError=-2147217396

[118] ——, “Windows Presentation Foundation,” 2016, accessed: 2016-
07-17. [Online]. Available: https://msdn.microsoft.com/en-us/library/
dd460648(v=vs.110).aspx

[119] ——, “XAML Overview (WPF),” 2016, accessed: 2016-07-17. [Online].
Available: https://msdn.microsoft.com/en-US/library/ms752059(v=
vs.110).aspx

[120] ——, “The MVVM Pattern,” 2016, accessed: 2016-07-17. [Online].
Available: https://msdn.microsoft.com/en-us/library/hh848246.aspx

[121] ——, “Object (C# Reference),” 2016, accessed: 2016-07-22. [Online].
Available: https://msdn.microsoft.com/en-us/library/9kkx3h3c.aspx

[122] W. K. Pediaopolis, “The 5 Senses,” 2016, accessed: 2016-02-01.
[Online]. Available: http://udel.edu/~bcarey/ART307/project1_4b/

BIBLIOGRAPHY 140

[123] Oxford, “Sensor,” 2016, accessed: 2016-02-01. [Online]. Available:
http://www.oxforddictionaries.com/definition/english/sensor

[124] Microsoft, “Kinect for Windows Sensor Components and Spec-
ifications,” 2016, accessed: 2016-02-01. [Online]. Available:
https://msdn.microsoft.com/en-us/library/jj131033.aspx

[125] ——, “Meet Kinect for Windows,” 2016, accessed: 2016-02-01. [Online].
Available: https://developer.microsoft.com/en-us/windows/kinect

[126] ——, “Kinect for Windows Architecture,” 2016, accessed: 2016-
07-16. [Online]. Available: https://msdn.microsoft.com/en-us/library/
jj131023.aspx

[127] ——, “Coordinate Spaces,” 2016, accessed: 2016-07-16. [Online].
Available: https://msdn.microsoft.com/en-us/library/hh973078.aspx

[128] ——, “Tracking Users with Kinect Skeletal Tracking,” 2016, accessed:
2016-07-16. [Online]. Available: https://msdn.microsoft.com/en-us/
library/jj131025.aspx

[129] ——, “Face Tracking,” 2016, accessed: 2016-07-23. [Online]. Available:
https://msdn.microsoft.com/en-us/library/jj130970.aspx

