
Graduation thesis submitted in fulfilment of the requirements for the degree of
Master of Applied Sciences and Engineering: Computer Science

FLOWDOCS: ONBOARDING
SOFTWARE ENGINEERS AT
SCALE

Stefan-Calin Crainiciuc

June 2024

Promotors: Prof. Dr. Beat Signer
Advisors: Yoshi Malaise

sciences and bioengineering sciences

Contents

Abstract iv

1 Introduction 1

1.1 Problem Statement . 1

1.2 Contribution . 1

2 Related Work 3

2.1 Maintainer Lookup . 3

2.1.1 Knowledge Management and Transfer . 3

2.1.2 Onboarding of Employees in Large Companies 4

2.1.3 Interdepartmental Integration and Global Software Development 6

2.2 Flow Documentation . 7

2.2.1 Code Comprehension . 7

2.2.2 Microservice Architecture . 8

2.2.3 Source Code Visualisation . 10

2.2.4 Large Graph Visualisation . 12

2.2.5 Dependency Visualisation and Code Exploration 13

2.2.6 Dependency Visualisation in a Microservice Architecture 15

2.3 Literature Review Contribution . 16

2.4 Research Conclusion . 17

3 Prototyping 19

3.1 Methodology . 19

3.1.1 Research Questions . 19

3.1.2 Design Science Research Methodology . 19

3.2 Iterations . 19

3.3 Prototyping Conclusions . 23

4 Solution 25

4.1 Concepts . 25

4.2 Onboarding Use Case . 26

4.3 Microservice Architecture Use Case . 27

4.4 FlowDocs Walkthrough . 27

4.5 Extension Details . 29

4.6 Additional Remarks . 30

ii

CONTENTS iii

5 Implementation 33
5.1 Overview . 33
5.2 The VSCode API . 34
5.3 VSCode Manifest . 34
5.4 Flow Documentation Feature . 35

5.4.1 Extracting Routes, Functions and Flow Markers 36
5.4.2 Recursive AST Code Retriever . 36
5.4.3 Route Identification and Extraction . 36
5.4.4 AST to Graph Conversion . 36
5.4.5 Graph Interpretation and Display . 37

5.5 Maintainer Lookup Feature . 38
5.5.1 The Maintainer-to-Code Map . 38
5.5.2 The Maintainer Viewer . 39

6 Evaluation 41
6.1 Experiment Design . 41
6.2 Participants . 41
6.3 Preliminary Form . 42
6.4 Interview Design . 42
6.5 Methodology . 43
6.6 Threats to Validity . 44
6.7 Preliminary Form Results . 45
6.8 Qualitative Interviews . 46
6.9 Experiment Results Discussion . 52
6.10 Research Questions Answers . 55
6.11 Limitations . 57
6.12 Future Work . 58

Conclusion 60

Abstract

As software systems become more complex, developers face challenges in understanding and
debugging large codebases, particularly in large-scale projects with many moving parts, leading to
communication difficulties between developer teams. In this thesis, we introduce a novel approach
to address these challenges by presenting a Visual Studio Code (VSCode, or VSC) extension
designed to aid developers in comprehending complex Python codebases and communicating
with their peers. The extension employs static code analysis to generate function call graphs
and a real-world mapping between code fragments and code maintainers.

The main purpose of our extension is to provide an enhanced visual representation of the code
execution flow, helping developers identify code fragments that interact with different microser-
vices and better comprehend the interaction. By evaluating the extension, we can accomplish
the objective of our thesis, which is to gain deeper knowledge in the context of developers’ un-
derstanding of complex codebases, and the methods of communication employed by developers
in a large company.

We gathered data about developer issues through a preliminary form, which collected 44 re-
sponses, followed by a qualitative interview conducted with 4 developers. We interpreted the
data to collect information about the issues developers encounter within our context and relevant
feedback how they perceive our extension.

iv

Chapter 1

Introduction

1.1 Problem Statement

The assimilation of new developers in a large company introduces many challenges to both the
newcomers and other employees, who may be tasked with helping the newcomer fit in. The
challenges range from understanding the newcomers’ personality and culture to creating a de-
tailed tutorial to guide them through the code base and getting them in touch with a mentor or
instructor. Additionally, when projects have many moving parts, as is the case with microser-
vices, communication becomes a major challenge. The software engineer will have to interact
with different developers across teams, this scenario is further exacerbated in the context of
global software development, where employees can have different schedules and work in different
timezones. In the fortunate case, the newcomer could resort to a spreadsheet which contains
the contact information of the team leaders or code maintainers. This solution is a relatively
common approach to managing communication in a large company. However, there is a risk
that old versions or even conflicting versions of the file circulate in the company, so there is no
longer one source of objective truth. We argue that this approach can be improved in terms of
efficiency, by merging it into the code analysis and comprehension workflow. We aim to help
users to follow data and actions as they move through the codebase, and make it easy for them
to identify a human point of contact that can help them with any questions or doubts, for every
component, directly from the comfort of their integrated development environment (IDE). More
hurdles and solutions for onboarding will be discussed in Section 2.1.2.

To summarise, within the context of onboarding new developers in a large company, we
have identified two problems to which we propose a solution. The first problem is the difficulty
developers experience while trying to learn, comprehend, and interact with the microservice
ecosystem within the context of their new job. The second problem is the difficulty of knowing
who to contact in case of a question or remark concerning existing code. The problems can
even intersect with each other, thus becoming more difficult to untangle, in the case where
a developer does not understand the current code and needs to ask clarifications from more
experienced developers.

1.2 Contribution

The first contribution of our thesis is the extensive literature review conducted on the topics
of knowledge management and transfer, onboarding in large companies, code comprehension

1

Beat Signer
Highlight

2 CHAPTER 1. INTRODUCTION

and code visualisation. We collect a set of common issues experienced in code comprehension
by onboarding developers and developer working in large scale GSD companies with complex
codebases and architectures. We create a map between these issues and state-of-the-art solutions,
and through this we find shortcomings and potential improvements.

We further explore the topic, starting by building prototype solutions. By taking advantage
of our constructed map, we are able to efficiently run prototyping iterations. We gain meaningful
knowledge on which possible solutions have shortcomings themselves, finding indications on which
parts of the solution space should be further explored and which show little sign of being effective
at overcoming the identified obstacles.

We take the most promising prototype and develop it in a full-fledged solution, which com-
bines the conclusions drawn from the literature review and the lessons we learned from proto-
typing. The solution takes the shape of a VSCode extension which aims to better integrate the
social and communication-based aspect of working in a large company inside the daily developer’s
routine, as well as provide a visual aid for understanding microservice workflows.

Finally, we design an evaluation methodology, with which were are able to answer our pro-
posed research questions. With the use of a survey, we gain a large-scale and general idea of
the perceived usefulness of our solution as well as confirm the issues identified by the literature.
Then, by conducting a set of qualitative interviews we gain valuable information on developer
needs when facing code comprehension and communication issues, and we get an in-depth show-
case of user interaction with our tool, leading us to identify both strong points and shortcomings
of our extension. We gain inspiration on how to further develop our solution to more successfully
answer the needs of the developers. As our study focuses on two distinct problems, our proposed
solution can also be divided in two features, each aiming to solve one of the identified obstacles.

The first feature has the goal of helping developers better comprehend microservice code. We
will refer to this feature “Flow Documentation”. This feature aims to find whether visualising
function execution as a graph (i.e. a flowchart) within VSCode helps developers better understand
code with a microservice architecture.

The second feature targets newly employed developers who have questions or remarks about a
piece of code, and will help them connect faster with other developers responsible with maintain-
ing or developing that code. We will refer to the responsible developers as “code maintainers”
or “maintainers” and to the second feature as “Maintainer Lookup”. This feature aims to assist
developers who are new to a large company in connecting sections of code with code maintainers,
who have complex knowledge about the code they oversee. “Maintainer Lookup” stands as a
replacement for other common ways of finding code maintainers, such as asking coworkers, asking
the HR department, or looking up the information in a shared spreadsheet.

Chapter 2

Related Work

We will separate the literature review into two sections, one for each of the features that we have
built. The literature review of “Flow Documentation” focuses on the microservice architecture
and different code comprehension and visualisation techniques, while the literature review of
“Maintainer Lookup” will discuss the issue of onboarding new employees in a company, knowledge
management and transfer, interdepartmental integration and global software development.

2.1 Maintainer Lookup

2.1.1 Knowledge Management and Transfer

In his 1966 book “The Tacit Dimension”, Michael Polanyi [23] discusses the concept that much
of human knowledge is implicit and cannot be fully articulated. Polanyi introduced the idea of
“tacit knowledge” to describe this form of understanding, which contrasts with explicit knowledge
that can be easily communicated through words and symbols.

In “The Knowledge-Creating Company” [20] and “The knowledge-Creating company: How
Japanese companies create the dynamics of innovation” [21], Nonaka et al. explore how Japanese
companies, especially those in dynamic industries, maintain competitive advantage through con-
tinuous innovation, creating, and managing knowledge. The authors argue that these companies
keep the advantage by converting tacit knowledge, which is personal and hard to formalise, into
explicit knowledge that can be shared and leveraged across the organisation. This process of
knowledge creation is seen as central to their business strategy and operational success.

The authors introduce four ways of knowledge conversion: socialisation, articulation, combi-
nation, and internalisation. Socialisation involves sharing tacit knowledge through shared expe-
riences, while articulation converts tacit knowledge into explicit concepts, often through dialogue
and reflection. Combination involves integrating different pieces of explicit knowledge to form
a more complex understanding, and internalisation is the process by which explicit knowledge
becomes tacit again through practice and learning.

Grundstein [11] explores the evolution of knowledge management (KM) and the methods of
conversion between explicit and tacit knowledge within an organisation. Grundstein points out
that conversion means more than capturing and storing knowledge, as it also includes actively
managing and utilising it for organisational benefit. Knowledge conversion involves transforming
individual, often tacit knowledge into explicit knowledge that can be shared across the organi-
sation. Grundstein builds on the idea that tacit knowledge, which is deeply rooted in personal
experience and context, is difficult to articulate but essential for innovation.

3

4 CHAPTER 2. RELATED WORK

Figure 2.1: The methods of knowledge conversion, Source: “The Knowledge-Creating Company,
Oxford Press, 1995”

Argote et al. [2] define knowledge transfer (KT) as the process by which individuals or groups
acquire new knowledge or skills from others. They argue that knowledge transfer is essential for
success because it enables organisations to adapt quickly in response to changing market con-
ditions. They highlight that effective knowledge transfer has increased the success of intercon-
nected organisations such as franchises. The article also highlights that personnel training and
communication are effective methods of improving knowledge transfer within an organisation.

2.1.2 Onboarding of Employees in Large Companies

The process of onboarding integrates new employees into an organisation’s culture and processes.
Its goal is to help new employees quickly adapt to their roles, understand responsibilities, and
become productive team members. Onboarding typically includes orientation sessions, training,
mentorship, and resource sharing. For software developers, onboarding also involves technical
training to familiarise them with the development environment, tools, technologies, and coding
standards. Onboarding is a process that occurs predominantly in larger companies or commu-
nities, as larger companies are more likely to have a shared and structured knowledge system
and more experienced developers. In smaller companies or startups, a new employee might take
over some of the responsibilities of another established employee, in which case a less formal
“onboarding” will occur, in the sense that the older employee will transfer some of their work
related knowledge to the new employee. The process of onboarding can be guided (with the
help of a mentor) or independent (through shared company knowledge and documents). We will
focus our attention on the guided onboarding process in a large company or community.

Steinmacher et al. [26] conducted a systematic literature review (SLR), followed by interviews
with 36 open source contributors, to identify 58 barriers newcomers face when placing their first
contribution in an open source project, including 13 social barriers. The authors claim that
the “newcomers’ seamless onboarding is important for online communities that depend upon
leveraging the contribution of outsiders”. While acknowledging that each project has unique
challenges, the study aimed to solve this issue by considering different projects and developer
profiles.

2.1. MAINTAINER LOOKUP 5

Figure 2.2: The two main categories of company knowledge, Taken from [11]: “From Capitalizing
on Company Knowledge to Knowledge Management”

The systematic literature review included studies on all phases of the joining process, not just
the first contribution, while interviews focused on barriers faced during the joining process. The
authors categorise the 13 social barriers into answer reception issues, newcomer communication
issues, orientation issues, and cultural differences. Other technical issues that might be encoun-
tered by newcomers are a lack of documentation (design documents, code documentation, project
structure documentation), and cognitive problems (understanding architecture/code structure,
understanding flow of information). The “Flow Documentation” feature aims to solve the cogni-
tive problems that developers encounter while browsing large codebases, while the “Maintainer
Lookup” feature helps with the social issue of providing orientation to newcomers by connecting
them with a mentor, which will answer their codebase related questions.

Helic et al. [12] describe Web-Based Training (WBT) systems. Traditional WBT systems have
limitations in supporting various training scenarios, which can be addressed through approaches
collected from the literature, such as web-based tutoring, mentoring, knowledge mining, profiling,
and delivery. The authors have built the WBT-Master tool to incorporate all the mentioned
improvements. The tool works with the concept of “Knowledge Cards”, which are descriptions of
a particular topic or concept, for example “Database Technology” or “Information Systems”, and
contain information on learning resources for this concept. The knowledge cards are combined
into a semantic network and linked through “is a part of” relationships. The authors highlight
that the semantic network describes a graph structure as opposed to a hierarchical structure.

Helic et al. evaluated the WBT-Master with three partners over the course of two years,
focusing on learning effectiveness analysis, usability analysis, and cost-benefit analysis. Results
varied among participants, with some reporting improved learning effectiveness and others noting
usability concerns that affect the learning outcomes.

The authors claim that knowledge cards have many benefits to traditional document browsing,
such as providing a consistent structure to information, automatic inference of details based on
the semantic relationships of the card, reducing repeated knowledge transfer, and acting as an
entry point to topic exploration and server resources.

6 CHAPTER 2. RELATED WORK

Figure 2.3: A Knowledge card, Taken from [12]: “Knowledge Transfer Processes in a Modern
WBT System”

2.1.3 Interdepartmental Integration and Global Software Development

Interdepartmental integration is the process of ensuring that different departments within an
organisation work together smoothly. This involves coordinating activities, sharing information,
and aligning goals in areas such as marketing, production, finance, and human resources. The
goal is for all departments to collaborate towards the organisation’s objectives efficiently. This
kind of integration makes use of explicit information which is shared across departments.

Kahn [13] conducted a mail survey to examine the effects of interdepartmental integration
on product development and management performance. The questionnaire participants were
individual department managers from marketing, manufacturing, and R&D departments in the
electronics industry. Of the respondents, 177 were marketing managers, 157 manufacturing man-
agers, and 180 R&Dmanagers. The author examined the impact of interdepartmental integration
through the lens of collaboration (achieving collective goals, mutual understanding, shared vi-
sion) versus interaction (transactions, communication). The study found that collaboration had
a significant positive effect on performance in five of six interdepartmental relationships. These
results support the importance of collaboration in interdepartmental integration, contrasting
previous research which emphasises interaction alone.

Wikis are another way in which tacit information can be collected and disseminated. Buffa [5]
summarised their personal experience with wikis in a case study involving two French organisa-
tions. The author claims that a company needs a wiki to share knowledge between employees
and improve productivity by capturing valuable information on their intranet. The intranet
plays different roles in an organisation, serving as a communication tool, and even becoming its
memory by improving knowledge sharing between members. However, the main challenge lies
in capturing knowledge and making it searchable online. Buffa claims that Wikis can help with
knowledge sharing and creativity among employees, but for a wiki to be successful, technical
skills are required for software installation and maintenance, as well as social aspects, such as
user participation and local guru support.

Taweel et al. [27] have analysed the difficulties encountered in distributed software projects
through a case study. They claim that the physical distance between teams reduces the fre-
quency of informal communication between colleagues, which in turn lowers the success rate of
projects. They identified two issues, namely inadequate synchronous and asynchronous collab-

2.2. FLOW DOCUMENTATION 7

oration mechanisms and lack of regular coordination between team members. After observing
the evolution of the project, the authors suggest several ways of improving interdepartmental
collaboration, including: the need for regular synchronous meetings scheduled in advance, the
availability of multiple communication channels, and knowledge management tools.

Mazorodze and Buckley [17] organised a user study with 112 participants from Namibian
knowledge-intensive organisations and found that a community of practice is the most effective
tool for knowledge transfer in knowledge-intensive organisations, with 40% considering it effective
and 27% very effective. A community of practice is a group of people who share a common interest
and interact regularly to improve their knowledge and skills. Mentoring is the second most
effective solution, with 54% considering it effective and 11% very effective. Other plans, such as
storytelling, succession plans, coaching, and knowledge repositories were found less effective. The
authors highlight that mentoring provides professional socialisation and improves self-confidence
for mentees, while also allowing mentors to reflect on their own practice.

Nidhra et al. [19] discuss knowledge transfer in global software development (GSD), identi-
fying challenges and mitigation strategies. The authors have conducted a systematic literature
review containing 35 studies and conducted 8 interviews with industry professionals. The authors
argue that insufficient KT can lead to project failure, and delays in communication can cause
a loss of important information and context-dependent knowledge that is difficult to transfer.
According to one of the interviewees in the study, an additional cost is incurred at the client end
for repetitive KT, that is, due to a variety of reasons, the same knowledge has to be transferred
multiple times. According to the authors, companies adopt person-to-person communication and
collaboration to create and share knowledge.

Sourcing from Betz et al. [3], Nidhra et al. [19] highlight that remote team members, espe-
cially from Asia, use emails as their preferred method of communication within their company.
Additionally, team members who are not confident with their English language skills prefer asyn-
chronous communication because they get more time to comprehend and compose a response,
compared to synchronous methods, such as instant messaging apps or video conferences.

The authors have identified a total of 47 challenges from the systematic literature review,
and 29 challenges from developer interviews. Two of these issues are particularly interesting
to us, namely delays due to centralised communication flow and loss of information
due to centralised communication, which were identified by both the literature review and
interviews. The solutions proposed by the authors for these issues are: client-vendor informal
face-to-face meetings, promoting high volume of communication, building up team knowl-
edge to reduce single points of failure, and direct communication of offshore teams with
onsite teams. We chose to focus on these issues while developing the “Maintainer Lookup”
feature of our extension. We aim to find out how promoting a high volume of communication
and supplying direct communication of offshore team with onsite teams can solve the presented
issues. Now let us explore the second section of our research, which focuses on the microservice
architecture and different code comprehension and visualisation techniques, in order to build the
second feature, “Flow Documentation”.

2.2 Flow Documentation

2.2.1 Code Comprehension

Xia et al. [29] try to find out how much time developers spend to comprehend a software program.
Previous studies show that program comprehension takes up a large portion of time spent on
software maintenance. The authors conducted a large-scale field study with 78 developers in
7 industrial projects, recording 3148 working hours of activity data. Their analysis found that

8 CHAPTER 2. RELATED WORK

developers spend up to 58% of their time analysing software, often using web browsers and
document editors. The authors challenge the popular assumption that senior developers spend
less time on software comprehension, as the results do not show a significant difference between
junior and senior developers. The authors claim that the percentages of time spent on software
comprehension are also affected by the phase of a project. In the development phase, the team
is relatively stable, so the time spent understanding code is shorter, while in the maintenance
phase, the teams lose and gain developers, which means that newcomers have to spend more time
to understand the code. The authors conclude that code comprehension takes a large portion of
developers’ time and can be improved by providing targeted tools and support.

Dias et al. [9] have created Hunter, which is a visualisation tool designed to help devel-
opers understand JavaScript applications by analysing code dependencies and structure. The
interactions in Hunter allow programmers to analyse software metrics and identify components
that need refactoring or can be removed (i.e. dead code). Previous studies have shown that
developers use development environments for code comprehension tasks. Therefore, the authors
designed Hunter as a development environment focused on software comprehension, comparing
its capabilities with those of Visual Studio Code. The authors mention that Treemaps, Voronoi
treemaps, and tree visualisations have been proven effective for representing hierarchical struc-
tures like software systems, though these were not used in the Hunter prototype. The authors
have designed a controlled user experiment that included 16 software engineers in order to prove
the effectiveness of their tool. Their results show that participants have better accuracy and
speed in software comprehension tasks when using Hunter.

Figure 2.4: Overview of Hunter, Taken from [9]: “Evaluating a Visual Approach for Understand-
ing JavaScript Source Code”

2.2.2 Microservice Architecture

To put the code comprehension information into a more specific context, let us explore the
domain of microservice architectures. The microservice architecture is an approach to software
development where a large application (i.e. a monolith) is broken down into smaller, loosely
coupled services. Each service is designed to perform a specific business function and can be
developed, deployed, and scaled independently. These services communicate with each other

2.2. FLOW DOCUMENTATION 9

through APIs, typically using protocols like HTTP or messaging queues.

Simhandl et al. [25] examine how developers comprehend call hierarchies in microservice and
monolith architectures. Forty-two students were recruited for the experiment, which focused
on typical interviewing or onboarding tasks when joining a new software development team.
Participants were asked to perform feature location and source code modification tasks in both
microservice and monolith systems. The results showed that developers comprehend call de-
pendencies faster and spent about 8% less cognitive effort in the monolith variant. They also
show that after studying the code for a longer time, the microservice tasks were completed
with a better accuracy than the monolith tasks. The results show that participants applied a
bottom-up strategy when comprehending microservices and applied a top-down strategy when
comprehending monoliths.

Bogner et al. [4] investigated how Microservice API Patterns (MAPs) impact the under-
standability of service interfaces. The researchers conducted a controlled user experiment with
65 participants, where they present the developers six MAPs, such as: communicating and pro-
cessing errors in the service, informing the API provider at runtime about the data the client
is interested in, helping the user interpret the message content correctly, and increasing com-
munication efficiency by reducing the number of API calls. The authors found that five out of
six examined patterns had a significant positive impact on understandability, with effect sizes
ranging from small to medium. Their results suggest that familiarity with MAPs is important
to combat the increased complexity of the APIs and recommend educational efforts in academia
and knowledge sharing among developers. They argue that future research should provide em-
pirical evidence for other MAPs regarding quality attributes such as usability, maintainability,
and reliability.

Aksakalli et al. [1] conducted a systematic literature review on deployment and communica-
tion patterns in microservice architectures, including 239 articles, 38 of which were selected as
primary studies. They have mentioned many industrial issues, one of which is relevant to us.
The authors refer to the issue of architectural complexity, which states that as a microservice
architecture grows, operational complexity also increases, because more interactions occur be-
tween the microservices. The authors claim that managing connections among microservices and
deploying thousands of services effectively becomes a concerning issue in terms of operational
costs. They claim research should focus on developing management tools to control complexity
and ease deployment and communication of microservices.

Zhang et al. [30] investigate the gaps between the developers’ vision of microservices and
reality through semi-structured interviews with 13 experienced participants from various soft-
ware industries. The results show that while microservices offer benefits, such as independent
development and scaling, they also bring difficulties. Microservice independence allows for eas-
ier development, testing, and deployment of services, but can lead to decreased testability and
increased complexity in debugging, as encountered by 6/13 interviewees. API management is
a significant challenge, as identified by 4/13 interviewees, due to the need for consistent un-
derstanding among teams and the lack of effective ways to ensure this consistency. Monitoring
microservices is also problematic, as identified by 4/13 interviewees, with developers struggling
with automated operation, troubleshooting, and threshold settings. The authors highlight the
importance of addressing these pains to improve the adoption and implementation of microser-
vices in industry. We will return to how code comprehension issues can be solved in a microservice
architecture in Section 2.2.6.

10 CHAPTER 2. RELATED WORK

2.2.3 Source Code Visualisation

Source code and software visualisation can help developers better understand how code is struc-
tured and reduce the cognitive load that they experience when analysing unfamiliar code by
presenting it in a familiar format. Software visualisation has been thoroughly studied in the past
decade, so there exist many software visualisation tools. Many of them focus on dependency anal-
ysis, which is a method used to understand and manage relationships between different elements
or components within a system or project.

Dependency analysis helps software developers understand the relationships between compo-
nents and make informed decisions during development. Limited support in integrated devel-
opment environments (IDEs) forces developers to use standalone tools or sacrifice screen space.
Code dependency analysis facilitates understanding of software architecture, debugging, refac-
toring opportunities, decision-making, and identifying code anti-patterns [10].

Daniel et al. [8] have created a node-link dependency visualisation tool, Polyptychon, and
organised a case study to test it on a large Java repository, Netty. They created the dependency
graph of Netty and qualitatively analysed the visualisation. Polyptychon is used to identify
“problematic” nodes, which create tangles in the graph. The authors do not argue for the
efficiency of the visualisation, but only its potential usage for software architecture evaluation.
The authors identify that dependency information can be represented as node-link diagrams or
matrix-based representations. They argue that node-link diagrams work well with small graphs
but become difficult to navigate as the graph grows. Matrix-based representations have better
scalability, but have a learning curve and are limited for pathfinding operations.

Figure 2.5: Polyptychon visualisation of the dependencies of Netty, Taken from [8]: “Polypty-
chon: A Hierarchically-Constrained Classified Dependencies Visualisation”

Similarly, Telea et al. [28] identify that large dependency sets are difficult to comprehend.
In a small user study, five developers with no prior knowledge on five large-scale libraries were
introduced to node link diagrams (NLD) and hierarchical edge bundle (HEB) visualisation meth-
ods. The developers used the two visualisation methods to answer generic questions about the
systems’ components, modularity, polymorphic interfaces, and dead code (a code artefact that
is not called during the program execution and can be removed). Specific questions were also
asked, such as which interfaces a component calls or provides and where an interface is used. The
developers agreed that the hierarchical edge bundle layout is superior to node-link diagrams for
navigating large graphs because it shows more data on screen, has less cluttered edges, and pro-
vides faster interaction. However, the developers also mention advantages of node link diagrams,
including manual layout editing freedom, easier pathfinding, and reduced node proximity issues

2.2. FLOW DOCUMENTATION 11

compared to the hierarchical edge bundle’s circular layouts. With this taken into account, we
chose to implement the graph view of the “Flow Documentation” feature using a node-link dia-
gram, as this makes it easier to follow a path, as we expect pathfinding to be the most performed
action in software comprehension tasks.

Figure 2.6: Visualisation of the bison call graph using bubble trees, Taken from [28]: “Extraction
and Visualisation of Call Dependencies for Large C/C++ Code Bases: A Comparative Study”

According to Lungu et al. [15], software systems are often developed in parallel, with many
companies, research institutions, and open source communities working on multiple related
projects. These collections of projects form a software ecosystem. A super-repository is defined
as a collection of versioned repositories for the projects in an ecosystem, containing information
about the evolution of the projects and developers. The authors claim that the importance of
super-repositories lies in their ability to provide reliable information about the ecosystem, as
documentation can become outdated or inaccurate. They also contain valuable data on social
aspects of the ecosystem, such as developer collaboration and movement between projects. The
authors claim that visualising inter-project relationships helps identify important projects by
revealing those others depend on.

Lungu et al. [15] have created the Small Project Observatory (SPO), which serves as a map
into a super-repository. It contains several features for software developers, such as the Developer
Collaboration Map (see Figure 2.7), which is a tool that shows how developers collaborate within
an ecosystem across project boundaries, in the form of a graph. Nodes represent developer names,
and links represent that the two developers collaborated in one or more projects. The edge also
encodes which project the developers collaborated on, using the colour attribute. It is constructed

12 CHAPTER 2. RELATED WORK

by tracking modifications made by developers in projects. The Developer Collaboration Map
reveals moderately coupled communities within an ecosystem where half of contributors work on
multiple projects while others work individually.

Figure 2.7: The Developer Collaboration Map in the Bern ecosystem, Taken from [15]: “The
small project observatory: Visualizing software ecosystems”

The authors have validated the SPO using multiple methods. First, they used the project in
open source case studies and discovered it enabled reasoning about project structure and devel-
oper collaboration. They also tested it with an industrial partner, who installed and analysed
their own projects using SPO. Although the industrial partner had a unique approach to defin-
ing projects, Lungu et al. adapted the tool to accommodate their needs and received positive
feedback overall. Finally, the authors conducted an experiment with students at the University
of Lugano, where they tested their understanding of software ecosystems and usability of SPO
by answering questions and rating their understanding on a Likert scale. The results showed
that the students succeeded in forming a general idea of the relationships between developers
and the project in the ecosystem.

2.2.4 Large Graph Visualisation

In this section, we will explore general graph visualisation techniques and standards.
Purchase [24] organised two controlled experiments with 55 computer science students, to

compare certain graph aesthetic metrics in order to see which metrics affect the reader’s ability
of comprehending the graph. Based on their results, they claim that edge crossing is the metric
that influences large graph readability the most. Edge bends and graph symmetry slightly
influence graph comprehension, while orthogonality and minimum angle had no effect.

2.2. FLOW DOCUMENTATION 13

Landesberger et al. [14] conducted a state-of-the-art investigation and discussed the visual
techniques for analysing large graphs. While analysing directed and undirected graphs, they
also identify the techniques of node-link diagrams, matrix-based representation, and treemaps.
The authors claim that node-link diagrams require careful node placement to support readability
and aesthetics metrics, such as minimising node and edge overlaps, minimising edge crossings,
and equalising edge lengths. In order to do this, they have identified several graph layouts.
Force-based layouts simulate mechanical forces and work well for small graphs. Constraint-based
layouts extend these with positional constraints. Multi-scale approaches lay out a coarser graph
first, by using node aggregation, then refine it. Layered layouts, mainly for directed graphs, place
nodes on parallel layers, representing a certain hierarchy or structure.

In addition to graph layout, graph readability can be improved by edge-bundling, the removal
of node overlap, the usage of directed edges and arrows, node and edge colouring, and colour
and thickness transitions. The authors also claim that preprocessing graph properties can help
in visualising complex graphs by using positioning algorithms or highlighting important parts.
Preprocessing can be automatic and involves graph filtering and aggregation. Stochastic graph
filtering randomly selects nodes and edges, while deterministic filtering uses algorithms based
on graph properties, such as edge betweenness centrality or node centrality. Graph aggregation
merges nodes and edges to simplify graphs. With graph aggregation, the nodes and edges are
merged into a single node, reducing the size of the graph. Similarly, Ma and Muelder [16]
claim that extracting subgraphs from the overall graph simplifies the graph according to certain
aesthetic metrics.

2.2.5 Dependency Visualisation and Code Exploration

There are several tools used in the industry to analyse and visualise dependencies between
projects, using different formats. Doxygen1 is a documentation generation tool primarily used
for creating comprehensive, browsable documentation from annotated source code. It supports a
multiple programming languages, including C++, Java and Python. Doxygen can automatically
generate documentation in formats such as HTML, LaTeX, and RTF. Doxygen can also generate
class and collaboration diagrams using Graphviz, a graph visualisation software (for an example
of a diagram, see Figure 3.3). This feature allows developers to visualise the structure and
relationships within their code, thus improving codebase comprehension. However, Doxygen has
its drawbacks as a graph visualisation tool. The generated diagrams can become cluttered and
hard to read for large and complex codebases. The dependency on Graphviz also means that
users must install and configure an additional tool, which can add to the setup complexity. While
Doxygen excels in static analysis and documentation, it lacks the interactivity and dynamic
features found in more modern graph visualisation tools. Doxygen is a great tool for code
documentation and basic visualisation, but it may not be the best choice for advanced graph
visualisation.

GitHub Copilot2 provides code suggestions and completions as developers write code, intro-
ducing them to new coding techniques, libraries, and patterns. It suggests alternative implemen-
tations and context-sensitive suggestions from the code. Copilot also suggests relevant snippets
or entire functions based on the project context. This helps developers navigate large codebases
and gain a deeper understanding of component interactions.

For example, GitHub Copilot can answer questions such as “What is the dependency tree
of this module?”. The answer can be a starting point into how different functions, modules, or
libraries interact within the codebase. In the future, tool like GitHub Copilot could, in theory,

1https://www.doxygen.nl/
2https://github.com/features/copilot

https://www.doxygen.nl/
https://github.com/features/copilot

14 CHAPTER 2. RELATED WORK

answer the questions that our extension tries to solve. However, currently there are several
limitations to Large Language Model (LLM) tools. The attention layer of such models is limited
to around 1000 to 2000 tokens, which means that the tool can misremember any information
which was provided before the token limit. Additionally, LLM tools follow a nondeterministic
answering process, which can lead to false results (hallucinations). The tool can not distinguish
between a real fact and a hallucination, meaning that it is very difficult to persuade it that a
result is false, once it establishes that it is true. This leads to confusion for the developer and
hinders the learning process. We believe that it is worthy to continue investigating LLMs, as
once these hurdles are overcome, the tools could provide much faster and accurate responses,
which analyse not only the code and its structure, but even comments and file structure, which
can lead to more nuanced results. With the context of the current LLM landscape in mind, let
us analyse some theoretically possible interactions between a developer and GitHub Copilot.

When it comes to understanding code in a microservice architecture codebase, a developer
could ask questions such as “Can you help me understand how this feature interacts with other
parts of the system?”, “What are all the places in the codebase where this specific function is
called?”. GitHhub Copilot could answer by providing the feature dependencies, API endpoints,
and data flows, and generate a list of the locations where the function is used.

When it comes to finding people who are responsible for a certain piece of code, the user could
ask questions such as: “Who wrote this function and when was it last updated?” or “Can you
show me the most recent changes to this file/function/module?”. GitHub Copilot could connect
to GitHub in order to identify the author of a piece of code, along with the commit creation
date, and display a diff view of the latest commits affecting that file/function/module.

We can overcome the limitations of modern day LLMs by using traditional software analysis
visualisation tools, which use either static or dynamic source code analysis. Such tools exist for
most programming languages, and we will pick Python as an example.

Sourcetrail3 is a tool that statically analyses source code in C++, Java and Python. It parses
files to extract symbol declarations and references and then identifies dependencies between
function calls and variable references. Sourcetrail visualises the dependencies using a flowchart,
which allows users to explore the codebase and understand how components interact visually.
Users can search for specific symbols or filter them by type, location, or usage context. Sourcetrail
integrates with Visual Studio, Eclipse, and JetBrains through extensions which communicate
with the main program through websockets.

Pydeps4 is a Python package that extracts and analyses dependencies between modules in
a project. It detects imported modules by searching for import opcodes in compiled Python
files. Pydeps creates a graph where nodes are files, and directed edges indicate that the target
node imports the start node in the code source. Pydeps can export the graph as a PNG or
SVG file or the intermediate graph representation as a DOT file. A developer could then analyse
the resulting PNG file to improve their understanding of the import and code structure. As
Pydeps analyses compiled Python files, it only detects modules which are imported statically
and excludes dynamic imports (e.g. modules imported using the import function). Pydeps
also analyses module-level dependencies only, meaning that it can not tell whether a class or
function inherits another class or function, which can be limiting for the developer who tries to
understand the codebase.

Pyan5 is very similar to Pydeps. The main difference between the two modules is that Pyan
extracts dependencies at module-level, function-level, class-level, and method-level, while Pydeps
is focused on module-level dependencies only.

3https://github.com/CoatiSoftware/Sourcetrail
4https://github.com/thebjorn/pydeps/
5https://github.com/davidfraser/pyan

https://github.com/CoatiSoftware/Sourcetrail
https://github.com/thebjorn/pydeps/
https://github.com/davidfraser/pyan

2.2. FLOW DOCUMENTATION 15

Figure 2.8: SourceTrail Visualisation of C++ Program, Source: https://github.com/

CoatiSoftware/Sourcetrail

PyCallGraph6 is a visual profiling tool that tracks function calls and execution times, by
overriding function callbacks when entering or leaving functions to gather information on function
names, call relationships, and execution metrics. PyCallGraph uses dynamic code analysis to
extract dependencies.

2.2.6 Dependency Visualisation in a Microservice Architecture

The microservice architecture allows for independent development, deployment, and scaling of
services, leading to rapid development and improved performance. However, the decoupling of
services can make it difficult to maintain a holistic view of the system and ensure consistency
between services. Bushong et al. [6] propose a method of Software Architecture Reconstruction
(SAR) that uses static code analysis to recover the data model and interservice communication.

SAR can be accomplished through different methods, such as dynamic, static, or manual
analysis of the code. Bushong et al. [6] use static analysis to identify microservice endpoints
and calls between individual microservices. This allows them to extract a view of the system
architecture before deployment. Their approach also provides an updated view of service APIs
and interactions as code changes, which the authors claim is an important feature for monitoring
tools.

The authors describe a method for creating a context map for a system composed of multiple
microservices. They defined the context map as a visual representation of the relationships
between entities and services in a system. The method involves two main steps: extracting
bounded contexts from each microservice and combining the bounded contexts into a map for
the entire system. Their method also uses standardised formats and annotations to identify
metadata about endpoints and calls between services.

To demonstrate their approach, the authors implemented a prototype and applied it to the
TrainTicket microservice benchmark, which consists of 41 microservices written in Java, Python,

6https://github.com/gak/pycallgraph

https://github.com/CoatiSoftware/Sourcetrail
https://github.com/CoatiSoftware/Sourcetrail
https://github.com/gak/pycallgraph

16 CHAPTER 2. RELATED WORK

JavaScript, and NodeJS. The results showed that the tool was able to recover most of the entities,
properties, and relationships in the system, but missed some due to ambiguity in the code.

Cerny et al. [7], in collaboration with Bushong, further developed the idea asking if it
is feasible to use static code analysis to visualise microservice interaction in a large code-
base. The authors use the SAR (Software Architecture Reconstruction) approach, similarly
to Bushong et al. [6], which now involves three phases: extraction, construction, and manipula-
tion. In the extraction phase, information is collected from each microservice. The construction
phase compiles the information, creating Component Call Graphs (CCGs). The manipulation
phase combines all CCGs into a single complete graph.

Cerny et al. [7] have implemented Prophet, a tool that statically analyses Java-based microser-
vices using the Spring Boot framework. The authors conducted two case studies to test their
tool, namely The Teacher Management System (TMS), which contains three microservices and
TrainTicket, which contains 41 microservices. Prophet can represent the TMS project structure
nicely, but the TrainTicket graph is convoluted and hard to read as there are more microservices,
which communicate more frequently. The authors have also experimented with alternative visu-
alisations within three-dimensional space and augmented reality (AR). This solves some graph
complexity issues, as it visualises data in three dimensions instead of two.

Figure 2.9: Sample service view extracted from the TMS benchmark, Taken from [7]: “From
Static Code Analysis to Visual Models of Microservice Architecture”

The authors acknowledge several limitations in Prophet. The prototype tool is restricted to
Java-based microservices using the Spring Boot framework and cannot detect event-driven com-
munication between microservices. The study did not examine the way in which microservices
evolve, which can predict software architecture degradation. Finally, the authors explored 2D,
3D, and AR visualisations, leaving room for further exploration in the virtual reality domain.

2.3 Literature Review Contribution

Following from the research we conducted, we have identified improvement opportunities in the
field of newcomer onboarding and microservice architecture comprehension. Newcomer onboard-
ing suffers from the common problem of finding a mentor for new employees in a large company,
as previously identified by Steinmacher et al. [26] and Nidhra et al. [19]. In this thesis, our aim is
to provide a solution to ease this issue, while also improving the inderdepartmental collaboration,
which Kahn [13] identified as a way to improve product success in a company. We will achieve
this goal by providing a solution integrated within the newcomer’s IDE and workflow, in the form
of a VSCode feature called “Maintainer Lookup”. The features will use several techniques which

2.4. RESEARCH CONCLUSION 17

improve knowledge management and transfer, as identified by Nonaka [20] and Helic et al. [12],
such as knowledge articulation and combination, web-based knowledge delivery and knowledge
cards.

Xia et al. [29] have described the issue of code comprehension taking up to 58% of the
developer’s time, which we believe can be lowered using various software visualisation techniques.
Simhandl et al. [25] have further analysed the issue of code comprehension in the microservice
architecture vs. the monolith architecture. The authors claim that, while initially developers
spend more time understanding microservices, after allowing some comprehension time, they
perform modification tasks more accurately. We have also analysed the work of Cerny [7] et al.,
Bushong [6] et al., which aims to ease the task of microservice architecture comprehension by
visualising the interaction between microservices using a graph. The authors have conducted
a case study in which they show the usability of their tool on projects with both a large and
small number of microservices. Their results seem promising for smaller scale projects, and we
claim that their tool can be improved for large-scale projects. Their tool, Prophet, provides
support for data exploration, but not enough for data modification, which is an important part
of a software developer’s routine. We acknowledge that the increasing visualisation complexity is
inevitable when working with a large codebase, but it can be simplified by a couple of methods
extracted from the literature. First, it is not always necessary to interact with the entire graph
at once, so it can be simplified by looking at a smaller portion of a code (i.e. a business flow,
as described in Section 4), which improves the readability of the graph according to Ma and
Muelder [16]. We can also improve the readability of the graph by reducing the edge crossing
using a force-directed graph algorithm, as identified by Landesberger et al. [14]. Additionally, by
making the graph more interactive, certain nodes can be expanded/contracted on demand by the
user, which can contract the size of the graph. Finally, using colours, we can separate the nodes
in the graph by function or by the microservice that they belong to, making it easier for the user
to distinguish between related and unrelated services, as identified by Landesberger et al. [14].
We use visualisation techniques which are particularly suitable for pathfinding operations, as
identified by Telea et al. [28] and Daniel et al. [8]. As Freire et al.[10] highlight, the limited
support of dependency analysis and software comprehension in IDEs forces developers to use
standalone tools. We challenge this belief, by creating an IDE extension and comparing it to
other standalone tools, such as Hunter (developed by Dias et al. [9]), SPO (Lungu et al.[15]), and
Prophet (Bushong et al. [6] and Cerny et al. [7]). We chose to use a static analysis component
in our library, following the exploration of both static and dynamic analysis of Bushong et al.[6].
The “Flow Documentation” static analysis of the code requires programming language-specific
libraries and tools, but does not make the entire feature language dependent.

As the study of Cerny et al. [7] is closely related to the issues we want to solve with our
“Flow Documentation” feature, we will integrate the proposed alternatives to create a more
user-friendly experience, which will hopefully help developers better understand codebases with
a microservice architecture.

2.4 Research Conclusion

In this chapter we have identified several ongoing issues in the state-of-the-art research relating
to code comprehension tasks, and a need for developers to connect to a mentor when onboarding
in a large company. We will detail how we tackled these issues in Chapter 3, and describe our
solution in Chapters 4 and 5.

We are surprised to find so little research in the field of integrated solutions for connecting
developers to mentors, since it is such an important issue in the context of large companies, which

18 CHAPTER 2. RELATED WORK

can determine project success and newcomer integration. Similarly, there is a lack of comparative
research on whether interactive visualisations offer benefits in terms of content comprehension,
compared to static visualisations.

When it comes to support for IDE integrated tooling, we have only found knowledge manage-
ment tools, such as Foam and Obsidian (later described in Chapter 3), but not for code analysis
tools, which are implemented as separate application in the state-of-the-art (Doxygen, Source-
Trail, Prophet [6], Hunter [9], SPO [15], Polyptychon [8]). While acknowledging that integrated
tooling has less dedicated screen space [10] as a pitfall, we will focus our efforts to advance the
research in the field of integrated software analysis and visualisation. We will also focus on over-
coming issues related to microservice interaction visualisation in Prophet [6], by using several
techniques identified by Landesberger et al. [14].

Chapter 3

Prototyping

3.1 Methodology

3.1.1 Research Questions

We design the prototyping, solution and evaluation chapters of our thesis with the goal of an-
swering the following research questions (RQs):

• RQ1: What challenges do software developers face when trying to understand codebases
with a microservice architecture and locating maintainers?

• RQ2: How do developers perceive the usefulness of FlowDocs for understanding codebases
and locating maintainers?

• RQ3: How does FlowDocs influence developers’ performance and accuracy in different
tasks?

Research question 1 aims to confirm the validity of the issues we identified in Chapter 2.
RQs 2 and 3 aim to demonstrate the effectiveness of our extension in solving these issues.

3.1.2 Design Science Research Methodology

The Design Science Research Methodology (DSRM) process model, first introduced by Pef-
fers et al. [22] is a structured approach to conducting research in the field of Information Systems,
particularly aimed at creating and evaluating IT artefacts (or prototypes) that address identified
problems. The authors have defined DSRM as an iterative approach composed of six steps: prob-
lem identification and motivation, inferring the objectives of a solution, design and development,
demonstration, evaluation, and communication. The process is illustrated in Figure 3.1.

With DSRM in mind, we started exploring the field of code comprehension with the goal
of identifying common issues of developers in the state-of-the-art approaches. We will describe
the problems we identified, our approach to solutions and how it fits within the DSRM process
model.

3.2 Iterations

The first issue we wanted to look at is the need for better code comprehension tools, which
was identified by Xia et al. [29], Telea et al. [28], and Dias et al. [9]. The state-of-the-art

19

20 CHAPTER 3. PROTOTYPING

Figure 3.1: The Design science research process model, Taken from [22]: “A design science
research methodology for information systems research”

literature highlights the large amount of time which developers spend while analysing and trying
to comprehend existing code. We tried to solve this issue with two separate solutions, one
involving knowledge management tools, such as Foam1 and Obsidian2, and the other involving
code documentation and graph generating tools, such as Doxygen3.

Foam works primarily with MarkDown files and enhances them with a number of useful
shortcuts and reference symbols, such as: [[folder/path/to/reference.md]] - adds a link in the
current file which points to reference.md, [[#tag]] - attaches the keyword ‘tag’ to your current
file, and special properties, such as the note title and type. All these features help the user with
keeping their information organised and up to date. The links, tags and special properties in
a MarkDown file can then be compiled into a graph representation and displayed in a separate
view, in order to visually and interactively represent the connection of information in the user
system (see Figure 3.2).

We tried to extend this functionality to code with the purpose of generating code flow graphs.
Each file or function would be converted into a note, and links would be created between func-
tions that call each other and files which import each other. This solution has the objective
of enhancing code comprehension by creating these navigable reference graphs with the help of
Foam. We implemented a static analyser of Python code, as will be described in Section 5.4.2.
The analyser had the purpose of generating an intermediate graph representation from Python
code, which would then be passed to Foam for parsing and displaying. The process of generating
the intermediate graph structure turned out to be quite convoluted. The Python files had to be
annotated with the [[link]] delimiters, so that the corresponding file nodes could be clicked in the
graph. While this prototype idea can work with larger projects, we think that it is not worth
pursuing since the added annotations clutter the code file with information which makes code
harder to follow and comprehend.

Separately, we also looked at how code documentation tools, such as Doxygen, can help de-

1https://github.com/foambubble/foam
2https://obsidian.md/
3https://www.doxygen.nl/

https://github.com/foambubble/foam
https://obsidian.md/
https://www.doxygen.nl/

3.2. ITERATIONS 21

Figure 3.2: Foam Graph, Source: “https://foambubble.github.io/foam/”

velopers with the task of code comprehension. While the diagrams generated by Doxygen are
quite comprehensive, they tend to become overly technical, with class names and scopes that
span a large chunk of the visual graph. We hypothesise that the overabundance of information,
along with the fact that generated graphs and documentation are static and do not allow user
interaction, inhibits the developer’s code comprehension efforts. The graph interactivity can be
improved in several ways. For example, the user can view the graph in parallel with the code that
they are trying to analyse. The user can pan and zoom the graph to focus on the information
that they want to capture. The nodes of the graph can be clicked to either see the codes to
which they refer, or they can highlight the interactions between that specific function or part
of the code with the other functions that it calls, thus making the graph smaller and easier to
understand. The edges can be clicked to open the line of code where the function call is located.
We propose a solution, which uses Doxygen to produce the intermediate graph representation of
a piece of code (that is, in DOT notation), then instead of rendering the graph with GraphViz,
it reverse engineers the DOT file into a machine-readable format, such as JSON, and passes it to
a custom graph renderer (as it will be described in Subsection 5.4.5). The graph labels can be
simplified and displayed in a dynamic graph, which the user can use to navigate the codebase.
While this sounds good on paper, we were confronted with the issue of simplifying node labels,
which turned out to be nontrivial. For example, let us consider the node std::stack<const
DocNodeVariant*, std::deque<const DocNodeVariant*>>. How should we go about sim-
plifying the structure? Removing all the template parameters and keeping only std::stack

does not convey sufficient information to the reader, and many nodes will have the same label,
further confusing the developer. Removing access modifier and reference information turns the
label into std::stack<DocNodeVariant, std::deque<DocNodeVariant>>, which is more un-
derstandable, but still occupies too much space on the screen. This is also a relatively simple
example, since the namespace only consists of one level std::, while real world code contains
many nested namespaces, which makes it even more difficult to label. We consider that if this
issue is overcome, there is potential in creating interactive graphs from Doxygen DOT files, which

https://foambubble.github.io/foam/

22 CHAPTER 3. PROTOTYPING

Figure 3.3: Doxygen Graph, Source: “https://www.doxygen.nl/”

can help the developer better comprehend the code.

After building the Python code analyser and the JSON graph renderer, we began to explore
whether the “Flow Documentation” feature could be adapted for debugging purposes. The idea
is that the interactive graph can also serve as a valuable tool for developers diagnosing and
solving unintended behaviour in their project. We offered the hypothesis that that by tagging
a function containing unintended behaviour as the starting point of a flow, developers could
generate a flow call graph to trace which other functions or external services are involved during
program execution.

To test this hypothesis, we have created a prototype which implemented the debugging helper
features (see Figure 3.4). We can right-click on the nodes of the graph to either place a breakpoint
in the code where the start of the function or view the function definition. We can also right-click
on the edges in the graph to place a breakpoint at the line (or lines) of code in which the function
call (from the start to the end node) is located or reveal the lines in the editor. The breakpoints
present in the system are highlighted in the graph by colour, either by a red outline on a node
or a red edge. The interactive graph, with clickable nodes and edges for adding breakpoints and
starting debugging sessions, seemed promising.

We evaluated our prototype by conducting a small study with three developers who regularly
fix bugs and unintended behaviour. This initial feedback phase revealed that our extension
did not integrate well with their usual debugging workflows. These developers emphasised that
their debugging process relies heavily on line-by-line code analysis, rather than starting with
an overview and then delving into the details. One developer pointed out that the default
Python debugger, along with the stack-trace viewer, is more efficient for locating the exact line
of code where a bug occurs. This method proved to be equally effective for identifying bugs in
external services, as placing a breakpoint after a service call and analysing the return variable
was straightforward and easier to understand.

Similarly, we experimented with the “Affected Files” feature (Figure 3.5), which was designed
to display a tree view of files potentially containing bugs. Our hypothesis was that this view
could help developers isolate bug locations more efficiently by narrowing down the list of files or
modules to inspect. The files can be displayed in a list, where the user can see all of the files and
modules that might contain the bug. The nodes can be clicked to open the function definition
in the code, or right-clicked so that they are focused and highlighted in the graph. However,

https://www.doxygen.nl/

3.3. PROTOTYPING CONCLUSIONS 23

Figure 3.4: Using Flow Graphs as a Debugging Helper

the feedback from our study indicated that this feature did not seamlessly integrate into their
debugging processes. While it received neither positive nor negative feedback, it was clear that
it did not add significant value to their workflow.

The work of Simhandl et al. [25] shows that microservices are generally more difficult to
understand at first sight than monolithic codebases. Our final and most advanced prototype
is focused on making microservice codebases more understandable to any developer, including
newcomers. The prototype will be described in Sections 4, 5 and evaluated in Section 6.

3.3 Prototyping Conclusions

Throughout this iterative development process, each round of feedback guided us to a more
refined view of the goals of our extension. We learned that if we want users to better understand
code structure, we have to provide several features. The graph visualisation method can condense
the code in an entire project in an intuitive way for the user. The visualisation has to be
interactive, such as Foam’s graph, because static graphs, such as Doxygen’s, tend to get lost
in the documentation and get relatively low attention from developers. We learned that our
solution has to be integrated in the existing tooling, or at least should communicate smoothly
with a popular IDE, in order to lower the cognitive effort of developers to switch between different
software for the same task. As it stands, the solution should not interfere with the traditional
debugging workflow, as it does not comply with the line-by-line approach that many developers
take.

24 CHAPTER 3. PROTOTYPING

Figure 3.5: Using Affected Files to Identify the Scope of the Bug

Chapter 4

Solution

In this chapter, we will discuss our proposed solution to the issues, as described in Section 1.2.
We will do so based on two uses cases which will each serve as an illustration of one of the features.
We will provide two use cases as it allows us to better describe the features and showcase their
usefulness. Even though the two features have stand-alone benefits it is important to note that
they complement each other and can and be used together.

4.1 Concepts

In order to provide the reader with understandable use cases we first need to introduce some
concepts.

API Endpoint or Endpoint: API endpoints are the point of contact where an application
or microservice receives HTTP requests and returns responses.

Route: a line/piece of code which points to another service, typically an API endpoint.
The route has the purpose of remotely executing a function or procedure (typically belonging to
another microservice).

Business Flow or Flow: an action, which is composed of a sequence of physical operations,
which have been abstracted and implemented with code. For example, thinking about a physical
store, cashing out products at the counter can be split into the following operations: a person
approaches the counter, identifying the owner of a cart, locating their cart, scanning the products
in their cart, calculating the total sum of the products, and proposing a method of payment for
those products. In the digital space, we can think of each of these steps as individual operations,
and encode them into functions, all of which compose the buy-cart flow.

Route-to-Project map or RTP map: A map which holds a set of associations (i.e.
records) between a route and the project/microservice that it is part of. The map also con-
tains information about the functions defined in the project (with the goal that they can be
uniquely identified by project and file), and information about the identified business flows.

Maintainer-to-Code map orMTC map: A map which holds a set of associations between
the maintainers of a project and the folders, files or pieces of code that they maintain.

We identify use cases for two types of users which could benefit from our application: a devel-
oper being onboarded in a large company, and a developer working with a microservice codebase.
The onboarding developers are interested in understanding the codebase, implementing new fea-
tures, and fixing potential bugs in the system. The microservice developer is interested in com-
prehending the interaction between the microservices in the codebase, implementing features, or
changing existing features.

25

26 CHAPTER 4. SOLUTION

Figure 4.1: An example of a business flow

4.2 Onboarding Use Case

When working in a multi-team environment, some cross-cutting problems will arise, which means
developers from different teams will need to collaborate. In a dynamic environment, it may not
always be clear who is responsible for a certain project / piece of code. This is where our
application can help, by offering a way to access this knowledge, directly from within the IDE.
The developer can select a piece of code, right-click and select the “Find Maintainer” context
menu action, which will trigger a search within the extension for any records that match the
code, then return the maintainers, in the form of “Knowledge Cards” [12].

The “Find Maintainer” functionality gives the user the contact information of the code main-
tainer. This action is especially useful when integrated with the developer’s daily activities. Let
us assume that the developer is tasked with finding the root cause of a system problem. After
starting a debugger and going through the lines of code, they notice a call to an external route
in the code, which returns a faulty result.

After checking that the input for the call is correct but the returned result is false, they
conclude that the issue is in the external service. By performing a “Find Maintainer” check,
they notice that the service is maintained by another team, and their contact information. Now,
they have an idea who to contact in order to either get more information about the expected
behaviour or share the relevant traceback details, in order to delegate the bugfixing task to the
appropriate team.

The maintainer-to-code map is able to display information that is either scraped from the
project structure or an external service, such as Git, or manually created by a system admin-
istrator. Existing records can be edited or appended as needed, which encourages information
reuse. The intermediate maintainer-to-code map should be stored in a readable format, and
should be easy to share, version and synchronise. If users prefer to browse manually the existing
map, which is displayed as “Knowledge Cards”, they should have the freedom to do so.

Moreover, the newcomer can also focus on a specific line of code which contains an exter-

4.3. MICROSERVICE ARCHITECTURE USE CASE 27

nal API call and either match it with the existing record or create a new association with a
known point of contact. This new association can then be shared with colleagues to encourage
information reuse and help repeated communication in the future.

4.3 Microservice Architecture Use Case

According to Bushong et al. [6], a developer working with microservices is interested in under-
standing the holistic overview of the system in order to modify it in the future. We provide a
way for the developer to quickly see how microservices interact with each other and whether they
are tightly coupled or not, thus identifying a potential future problem. The developer can define
the area of code that they want to analyse or comprehend better, by adding a marker/comment
at the root of the execution tree. The app then analyses the code starting from that marker,
keeping track of function and module references and creates a graph structure, which displays
the functions which would be called during the code execution.

While analysing the code, calls to internal routes are extracted and mapped to function
definitions which can be explored recursively as nodes in the graph, while external routes are
displayed as dummy nodes, with basic information attached. This graph is then simplified
and displayed, where nodes in the graph indicate microservice functions and directed edges
indicate calls from one function to the other. With this graphical view of the software, we argue
that it is easier to gain a holistic view of the system and deduce which components are highly
connected/coupled and require special attention in the future.

The graph can also be useful for the software developer as it allows them to get a better
general picture of the code execution order. This is more effective when getting acquainted with
an unfamiliar piece of code, which generally happens during onboarding, but can also happen
when changing teams or simply working on a different part of the project.

4.4 FlowDocs Walkthrough

Following the onboarding use case described in Section 4.2, let us follow how a developer might
use our tool and the “Maintainer Lookup” feature to connect with a more experienced developer
within their company. The developer starts their day by noticing a new task in their pipeline.
They are tasked to solve a bug concerning a wrong output of a function. While debugging to un-
derstand where the code logic goes wrong, they reach a folder called stock account, and within
the code they notice a comment: “According to Belgian form 281.50” (Figure 4.2). The devel-
oper does not have knowledge about this specific form, so they need to gather more information
from the accounting department. To do so within VSCode, they right-click on the file which con-
tains the code logic and select the ”Find Maintainer” action (Figure 4.3). They could also opt to
right-click on a file in the explorer view to get a feel for who manages the entire stock account

folder, not specifically the file which contains the code. This opens the VSCode sidebar which
contains an interactive view with three entries: stock, account, and stock account (Figure 4.4).
They figure out that someone who is knowledgeable about the domain must be either under the
account or stock account entries. They expand the stock account entry (since the code logic
is in the folder called stock account), and find a list of code maintainers, then expands one of
the maintainer headers to find the contact information of the product owner, which should know
more information about the specific accounting rule (Figure 4.5). Finally, they can contact the
product owner and receive relevant information about the code.

Following the microservice architecture use case described in Section 4.3, let us follow how a
developer might use our tool and the “Flow Documentation” feature to understand the microser-

28 CHAPTER 4. SOLUTION

Figure 4.2: A situation where a developer needs additional information

vice codebase faster with the use of flow graphs. The developer starts their day by noticing a
new task in their pipeline, which requires a code change in the payment section of the buy cart

business flow. Within VSCode, the developer opens the “Flow Documentation” sidebar which
reveals a list of flow markers and their location in the code (Figure 4.6, (1)). They then click
on the “Create Graph” button, which opens a new window which contains two main aspects.
First a graph, where the nodes represent functions in the graph or calls to external APIs, and
edges represent that the source node makes a call to the target node within the code (Figure 4.6,
(2)). The buy cart function is found at the top of the graph, as it represent the beginning
of the business flow. The nodes are coloured according to the legend on the right (Figure 4.6,
(3)), which means that a node’s source code is located within the microservice with the same
colour in the legend. Each microservice is given a different colour, according to the editor theme
(light/dark) and the colours are maximally distinct. If a node makes multiple API calls, the
corresponding nodes are ordered vertically, giving a sense of timeline progression or order within
the code. The user can interact with the graph by either clicking on a node, which then opens
the function definition in the code (Figure 4.7), or by clicking on an edge, which opens the line
of code where the source node calls the target node (Figure 4.8). The user could also take the
alternative approach of manually browsing through the code (or even starting a debugger session)
until they reach an API call that they are not familiar with. Then, they could highlight that
line of code, right click on it, then click “Highlight in Flow Graph”, which switches to the graph
view and temporarily animates the node containing the target API function code (Figure 4.9).
If they choose to highlight a piece of code that is not tied to any API call, then the graph will
highlight the function which contains that line of code. This will directly show them the function
that they are interested in, and they can start modifying the code there. Alternatively, without
browsing the code, the developer can just look at the graph, visually see what is the flow of in-
formation. As the graph in Figure 4.6 reveals, we sequentially make calls to the user, cart, order,
and payment microservice. They remember that the flow concerns the payment microservice
code, so they jump to those functions by clicking the payment nodes on the graph and continue

4.5. EXTENSION DETAILS 29

Figure 4.3: A developer right-clicks on a file (1) and clicks on “Show Maintainer”

exploring the codebase from there.

4.5 Extension Details

When the extension is loaded, it can already start analysing the current working folder for routes,
in order to generate or update the RTP and MTC maps. After this, the user has the option to
generate a workflow graph or highlight a piece of code and find its maintainer. Generating the
flow graph does not update the mapping by default, using an internal cache instead. However,
the user can opt to refresh the graph, which reanalyses the project for new routes and updates
the mapping. The “Find Maintainer” action reads only from the MTC map.

Our extension uses graphs, but VSCode is not specifically designed for graph views, thus the
navigation does not have instant feedback at times, especially when analysing large codebases.
We believe that this is a necessary trade-off (as identified by Freire et al. [10]), as developers can
see the graph without leaving the comfort of their IDE, rather than having an independent and
more feature-rich program, like Hunter[9], Prophet[6] or SourceTrail1.

The function call graphs generated by our extension outline the flow of information, by
analysing calls to external services. They also provide a visual representation that fits the
mental model of the developer by displaying a flowchart. The graphs offer the option of hiding
functions which do not interact with other projects, in order to simplify the structure of the code
and focus on the problematic sections which might generate a system fault.

In terms of scope, the application should be language agnostic, which means that it should
support all major programming languages (C++, Java, JavaScript, Python, etc.). The route
and flow extraction is easier to abstract through regular expressions, potentially just checking
the file extension type. The maintainer-to-code map is stored as a JSON file, which makes it
easy to edit, share, and store.

1https://github.com/CoatiSoftware/Sourcetrail

30 CHAPTER 4. SOLUTION

Figure 4.4: A list of maintainers

4.6 Additional Remarks

The application should be a helper for everyday tasks of both onboarding developers and mi-
croservice developers, and help them while they perform software comprehension and modifica-
tion tasks.

The extension also analyses and documents API calls made to external services, such as
those using the Python requests library. These calls are automatically linked with other local
project components, enabling developers to discover potentially incorrect behaviour beyond their
internal code. System administrators can manually associate calls with a human point of contact
to facilitate future developer communication.

The “Flow Documentation” feature integrates with developers; daily workflows and provides a
concrete solution to discovering and comprehending large Python codebases. The flow diagrams
generated by the extension help developers comprehend the microservice architecture of their
codebase faster and without needing to resort to external documentation. In this sense, the
newcomer can generate a call graph and identify external calls to other project components
while still being connected to their integrated development environment (IDE).

The “Maintainer Lookup” feature provides an integrated way of looking for code experts
within the developer’s IDE. It is a mode of articulating tacit knowledge (“Who are the people
responsible with a piece of code?”) into explicit knowledge (a shared list of code maintainers).
The feature provides a higher level of interactivity than a company spreadsheet or document,
while still allowing the user to freely communicate with the code maintainer, if they choose
so. We use the concept of “Knowledge Cards”, introduced by Helic et al. [12] to display the
maintainer information in a structured manner and to facilitate maintainer-to-maintainer relation
exploration.

4.6. ADDITIONAL REMARKS 31

Figure 4.5: The detailed information of a maintainer

Figure 4.6: An example of a flow graph. (1): List of flow markers, (2): Flow Graph, (3): Flow
Graph Legend

32 CHAPTER 4. SOLUTION

(a) User clicks on node (1) ... (b) ... and the function is revealed (1)

Figure 4.7

(a) User right-clicks on edge (1) ... (b) ... and the call to target node is revealed (1)

Figure 4.8

(a) User right-clicks on code line (1), then clicks on
“Highlight in Flow Graph” (2) ... (b) ... and node in graph is highlighted (1)

Figure 4.9

Chapter 5

Implementation

In Chapter 4 we have presented a conceptual solution to the issues that we discovered and
introduced in Chapter 2. Now, we will focus on the technical details of our VSCode extension.

First, because of time and resource constraints, we chose to focus on and provide support for
the Python programming language. This means that currently, the static code analyser described
in Section 5.4.2 will only recognise projects containing Python code. However, the extension is
modular and allows for future extension in terms of supported programming languages.

Our extension started as one integral project which aimed to help developers which work
with microservices better comprehend and navigate the codebase. Sometimes, developers do not
have access to the entire codebase, as some services’ source code might be only accessible to a
specific team or department, mainly because of security reasons. While still using the extension,
they could then connect with people who maintain the inaccessible code and either request
explanations or report an endpoint issue to the concerned team. However, while developing, we
encountered several issues with code compatibility, in the sense that working with microservice
code was only suitable for a small number of projects, while looking up maintainers of code was
a broad issue which impacted many large-scale projects. So, we have observed that we could
reach our extension’s goal more effectively by splitting it in two separate features. The features
were introduced previously: “Flow Documentation” and “Maintainer Lookup”.

5.1 Overview

In this section, we will describe the basic interaction between the FlowDocs components. Flow-
Docs is composed of two features, “Flow Documentation” and “Maintainer Lookup”(Figure 5.1).
The “Flow Documentation” feature begins its interaction in the VSCode backend, where it parses
the Python files in the open VSCode workspace, identifying routes, flows and functions, as de-
scribed in Subsection 5.4.1. The identified flows are displayed as a list in the sidebar, where the
user can decide to create a flow graph. If the user creates a flow graph, then a Python script
is started, which recursively analyses the Python codebase and extract abstract syntax trees,
starting from the base flow function (see Subsection 5.4.2). The AST are then compiled into
an intermediate graph structure (see Subsection 5.4.4) and returned to the backend. Then, the
flow is rendered into a flow graph by the VSCode frontend (see Subsection 5.4.5). The “Main-
tainer Lookup” feature works similarly. The VSCode backend requests the latest maintainer map
JSON (see Subsection 5.5.1), which is parsed and aggregated based on maintained concept and
maintainer name. The aggregated maintainer information is then sent to the VSCode frontend
and rendered into a list (see Subsection 5.5.2).

33

34 CHAPTER 5. IMPLEMENTATION

Figure 5.1: The FlowDocs Architecture

5.2 The VSCode API

Visual Studio Code (VSCode) is an integrated development environment (IDE) developed by
Microsoft. VSCode is a popular tool used by many developers worldwide, with an active con-
tributor community. The Visual Studio Marketplace contains user created VSCode extensions
and plugins which enhance the developer’s experience while coding and provide integration with
other services and products, such as GitHub. We have chosen to implement our app as a VSCode
extension because of its popularity and extension support.

The extension makes use of the VSCode Application Programming Interface (API), which
is a set of tools and functionalities provided by Microsoft to allow developers to extend and
customise the VSCode editor. The extension uses a NodeJS back-end to handle the intensive
computations, and for creating and displaying panels with which the user will interact. The
front-end uses the VSCode Webview API to display the graph in an interactive and responsive
manner to the user. For example, the user can click a node in the graph to open the function
definition in the code. The VSCode API implementation allows for asynchronous communication
between the back-end and the front-end through the postMessage and onDidReceiveMessage

functions.

5.3 VSCode Manifest

VSCode extensions must have a manifest file called package.json at the root of the extension,
which contains details about the extension, as well as the default configuration for the extension’s
settings (see Listing 1). Some notable settings include the activationEvents field, which triggers
the initial computation of the route-to-project map (RTP), when there exists at least one Python
file in the workspace, and the commands field, which defines globally available functions exported
by our extension. This includes the “Create Graphs” command, which is a one-click solution for
generating the graphs of all flows found in the project, and the “Find Maintainer” command,
which allows for contextual search of the maintainer-to-code (MTC) map. Extra configuration
settings include the MTC map location and extra workspace locations on the user’s device, which
should always be scanned for changes.

5.4. FLOW DOCUMENTATION FEATURE 35

{

"activationEvents": [

"workspaceContains:**/*.py"

],

"contributes": {

"views": {

"explorer": [

{

"type": "webview",

"id": "flow-documentation.flowsView",

"name": "Flow Documentation"

}

]

},

"commands": [

{

"command": "flow-documentation.createGraphs",

"title": "Create Graphs"

}

],

"configuration": {

"title": "FlowDoc",

"properties": {

"flow-documentation.extraFolders": {

"type": "array",

"default": [".", "C://Code/demo"],

"description": "List of extra folders to scan."

}

}

}

}

}

Listing 1: Extract of the manifest file

5.4 Flow Documentation Feature

In order to extract and display a flow graph to the user, the extension needs to apply the following
steps:

• Extract routes, functions, and flow markers from the source files

• Extract the abstract syntax tree (AST) of the Python source code

• Recursively analyse the AST

• Identify and extract routes

• Convert the AST into a graph-like structure

• Interpret the graph-like structure and display it to the user

36 CHAPTER 5. IMPLEMENTATION

In the following sections, we will detail each step individually.

5.4.1 Extracting Routes, Functions and Flow Markers

When opening the VSCode editor, our extension scans through the open workspaces for specific
keywords, which are then stored in the RTP map. Each keyword consists of a regular expression,
which is used to either identify a route, a python function or a flow marker. After the scan is
complete, every identified object is stored in a global context object, provided by the VSCode
API. This creates a cache which persists through multiple sessions, in order to limit the resource
consumption of this process when it is repeatedly applied to large codebases. This step is located
in the NodeJS back-end using TypeScript.

5.4.2 Recursive AST Code Retriever

After refreshing the RTP map, our extension launches a Python program with the flow name
and the RTP map as parameters, which will parse the Python code’s Abstract Syntax Tree
(AST). This can be achieved using Python’s internal meta-analysis library ast. The ast.parse
function takes as input the syntactically correct Python code and returns the corresponding
abstract syntax tree. We also make use of the ast.NodeVisitor class, which allows us to visit
an AST and add custom logic to nodes (see Listing 2). In order to create a dependency map
of the flow, first we specify a starting point for the AST, which is usually a function name, and
then we recursively visit the tree, keeping track of imported modules, functions, and API calls
(for future extraction and parsing).

The final AST goes through a final processing step which serves the purpose of simplifying
AST trees by removing nodes that do not contain function calls or references. The SimplifyAST
class inherits from ast.NodeVisitor, takes an AST as input, and returns a smaller AST, which
only contains nodes relevant to the graph. After executing some performance analysis, we have
concluded that this module does not greatly impact the graph generation time, so at this point
in the project it does not bring any added value. Perhaps this will change when creating the
graph of more intricate projects.

5.4.3 Route Identification and Extraction

While visiting the function AST in the previous step, we keep track of AST nodes which contain
routes. We took a heuristic approach to identifying the nodes, by selecting a popular Python
library which creates and manages HTTP requests, namely the requests library. The route
nodes are marked with an additional indicator, which will be useful in the final step when we
match the routes to the functions before displaying the graph.

5.4.4 AST to Graph Conversion

After the AST is extracted and simplified, it is converted to an intermediate graph-like structure
that will be parsed by the extension front-end in the next step. Listing 3 shows an example
of such a graph representation. The nodes contain information about the represented function
name and other meta information of the function, including file path, module, line number, file
name, etc. The edges, in addition to the start and end node, contain information about which
is the code line number which contains the function call.

The example graph of Listing 3 will contain one node called parse code, and one directed
edge, which goes from parse code to itself. The intermediate graph structure is then returned
from the Python program and to the NodeJS back-end.

5.4. FLOW DOCUMENTATION FEATURE 37

class ImportVisitor(ast.NodeVisitor):

visits the entire file AST

def visit_Import(self, node):

self.update_imported_modules(node)

def visit_FunctionDef(self, node):

fw = FunctionVisitor()

new_imports, new_functions = fw.visit(node)

for import in new_imports:

iv = ImportVisitor()

newer_imports, newer_functions = iv.visit()

self.update_imported_modules(newer_imports)

class FunctionVisitor(ast.NodeVisitor):

visits the actual function AST

def visit_Call(self, node):

...

walker = ImportVisitor()

all_imports, all_functions = walker.visit(tree)

Listing 2: Simplified snippet of the recursive AST generation function

5.4.5 Graph Interpretation and Display

The app front-end makes use of the VSCode Webview API, which allows extensions to create
fully customisable views within Visual Studio Code. There are other view types, such as the
ListView and the Treeview, which are more optimised for performance, but do not suit our user
interaction needs, as they cannot display graphs. A Webview can render almost any HTML
content in its frame and communicates asynchronously with the extension using messages.

The graph viewer is a Webview which contains the graphical representation of a business flow.
The nodes in the graph represent functions in a microservice, and the directed edges connect
the nodes where the start node calls the end node in the code. We can consider that the start
function in the flow represents the “root” node in the graph, but it is important to note that
the graph is not a tree since it can contain cycles (e.g. generated by recursive functions). The
back-end converts our intermediate graph structure into MermaidJS style notation, which is then
parsed by the Mermaid library1, and inserted into the HTML code.

While implementing, we have encountered several situations in which we have to first generate
and render the Mermaid graph, then target specific nodes and edges to add custom behaviour to
them. Currently, this is a working approach, but if the custom features increase in complexity
in the future, we will consider using a more powerful graphing library, such as d3.js2, which
allows the injecting of custom behaviour in the graph before rendering it.

1https://mermaid.js.org/
2https://d3js.org/

38 CHAPTER 5. IMPLEMENTATION

{

"graph": {

"nodes": {

"function_1": {

"module": "gpt",

"file": "C:\\Code\\main.py",

"func_name": "parse_code",

"id": 0,

"lineno": 47,

},

...

},

"edges": [

{

"start_node": "parse_code",

"end_node": "parse_code",

"call_lines": [

56,

],

},

],

},

}

Listing 3: Intermediate Graph Representation

The Flow Viewer

The flow viewer is a panel displayed on the sidebar of VSCode. This is where developers can
see the flows present in the project. It contains a button which retrieves all the flow marker
locations in the open workspaces and displays them in a list view. Once the flows are retrieved,
the user can choose to either generate or refresh the flow’s graph representation (which triggers
an RTP map recalculation) and view it in the graph viewer.

5.5 Maintainer Lookup Feature

5.5.1 The Maintainer-to-Code Map

In order for users to create and share maintainer information, visualised as “Knowledge cards”,
they must be stored consistently. We chose to create a JSON mapping, as it is easy to share
across multiple users. As an alternative, we could have used a database, which would satisfy the
ACID principles, but we argue that this method introduces a large overhead and provides too
little benefit for our current purposes.

Listing 4 shows a sample record in the MTC map. The record consists of a contact object,
which contains the contact details of a maintainer, and the maintains object, which contains a
list of all relative paths in a project that are maintained. The MTC map can be easily shared
between users, by exporting and importing a JSON file, through the extension’s settings page.
The map can be created and maintained by a system administrator and then shared to the other

5.5. MAINTAINER LOOKUP FEATURE 39

Figure 5.2: A Flow Graph Example

Figure 5.3: The Flow Viewer Sidebar

employees in the company.

5.5.2 The Maintainer Viewer

When initialising the extension, it searches for maintainerMap.json file in the user’s workspace
or project, which contains the MTC map. The MTC map could be uploaded to the company’s
file sharing software, from which the developers can download it and use it locally. If the map
is found, then a sidebar is displayed, which contains the list of the most active contributors to
the codebase. This is the default view, which can already show the user who is the contributor
who might know most about the codebase. A high number of contributions does not necessarily
correlate with overall codebase knowledge, but is a good approximation.

The user can modify the information displayed by using the “Find Maintainer” action on a
file or folder. Then, the maintainer viewer displays all maintainers of the user-selected code. The
way in which the MTC map is interpreted allows for partial path matching and regex matching,
which means that the user will see maintainers not only of the selected file, but also the parent
folders, or regex matched paths. So, the maintainer view can show multiple related maintainers,
in order of relevance.

40 CHAPTER 5. IMPLEMENTATION

{

"contact": {

"name": "Antoine Dubois",

"team": "R&D - Accounting",

"position": "Developer",

"email": "antoine_dubois@example.com",

"discord": "antoine_dubois#0000",

"github": "antoine_dubois"

},

"maintains": [

{

"type": "folder",

"regex": true,

"path": "account"

},

{

"type": "file",

"path": "accounting/models/invoice.py"

}

]

},

Listing 4: Maintainer-to-Code map record example

(a) The Default Maintainer Viewer Sidebar
(b) The Maintainer Viewer Sidebar looking at a spe-
cific file

Figure 5.4: Different states of the Maintainer Viewer Sidebar

Chapter 6

Evaluation

6.1 Experiment Design

Our user study follows the norm of evaluating code visualisation software, which is usually
conducted with a user study (Telea et al. [28], Dias et al. [9], Bogner et al. [4]) or a case study
(Daniel et al. [8], Lungu et al. [15] and Cerny et al. [7]).

We have adapted the experiment design of Dias et al. [9], which is similar to our use case, in
the sense that both projects implement a visualisation tool for source code with the aim of easing
software comprehension for developers. The tools are tested through a user study in terms of
both design quality and developer efficiency. One main difference is that Hunter is a standalone
application, whereas our tool is an extension for VSCode.

Merino et al. [18] organised a systematic review of the literature on software visualisation
methodologies and created a framework to define the scope of experiments in software visual-
isation. They describe this framework as “a starting point for researchers who are planning
to evaluate a software visualisation approach”. We can describe the scope of our experiment
through the framework proposed by Merino et al. [18] as such:

“Analyse <the FlowDocs visualisation tool> executing in a <machine using VSCode> to
support <code comprehension and modification tasks> using a <node-link diagram>, as well
as <code maintainer location tasks> using a <list view> displayed on a <standard computer
screen> for the purpose of <comparing functionalities available in Visual Studio Code> with
respect to <effectiveness> in terms of <user performance> and <user experience> from the
point of view of <software developers>.”

We have selected software developers who are familiar with VSCode to participate in our ex-
periment. Each developer was tasked with solving a set of tasks using VSCode (and additionally
their installed extensions), and VSCode with the FlowDocs extension. Within our experiment,
the two features of our extension, namely “Flow Documentation” and “Maintainer Lookup”,
were tested separately by our participants. Every participant was able to select which feature
they wanted to experiment with.

6.2 Participants

To start recruiting developers for our interview, we shared a link to a Google Forms survey (see
Section 6.3) to see who might be interested in participating in online interviews. Every person
who was interested in “FlowDocs” and met the prerequisites was invited to take an interview to

41

42 CHAPTER 6. EVALUATION

further discuss it. We share this link with three main groups:
Odoo employees: As a former Odoo employee, I have faced the issue of not knowing who

is the maintainer of a certain file multiple times, so we assume that other employees would be a
good fit for testing the “Maintainer Lookup” feature.

Vrije Universiteit Brussel (VUB) students: We also posted the form link on the VUB
Discord server to involve students which are following the Bachelor or Master in Applied Sciences
and Engineering: Computer Science programme. There, we should find software developers with
different cultures and ideas, so the group of participants is more diverse.

Social media: Besides reaching out to specific groups, we also shared the survey link on
the social media platform, Reddit. The survey was shared on different programming related
subreddits, such as r/surveyexchange, r/compsci, r/opensource etc., with the purpose of exposing
“FlowDocs” to the community. The form stayed open for about two weeks, until we gathered
enough respondents. In this way, we hoped to attract an even more diverse group of software
developers, outside the Belgian community.

6.3 Preliminary Form

A preliminary Google Form was used to select participants. The first set of questions aims to
select developers who are comfortable using VSCode and have some work experience. The ques-
tions (“Have you worked for a company where the codebase was structured using a microservice
architecture?” and “What is the largest size of a software development team (or department) you
have been a part of across all your previous roles?”) played the role of a heuristic to estimate
which people might be interested in which feature, although they did not fully determine our
selection process.

The following two sets of questions describe one feature each. The set starts with a small
description of the feature and its intended use case, followed by a video which describes a possible
scenario where this feature might be useful, ending with a mix of Likert scale questions about the
first impression on the usability of the tool and long answer questions about general impressions.
Each set contained the following targeted questions:

• “How frequently have you encountered the same issue described in the video?”: aims to
answer RQ1 if participants encounter these issues in their day-to-day work routine. The
question is graded on a Likert scale, and answer values 3-5 suggest that participants face
this issue regularly.

• “Do you think you might like to use Flow Documentation in the future?”: aims to answer
RQ2 and if participants believe that FlowDocs improves their workflow. The question is
graded on a Likert scale, and answer values 3-5 suggest that participants find our tool
useful.

The form conclusion ends with an invitation for the participants to test the extension by
themselves in the extension’s GitHub repository1 and join us for an interview where we can talk
more in-depth about how they use our extension and answer RQ3.

6.4 Interview Design

After selecting developers who have completed the form and are also familiar with VSCode and
visualisations, we have invited them to an interview in which we aim to answer RQ3.

1https://github.com/blox-dev/flow-documentation-example

6.5. METHODOLOGY 43

After confirming the participant’s consent, we recorded video and audio from interviewees’
laptops for analysis and timing measurements. In the case where they did not consent to having
the conversation recorded, we noted task times, main ideas and suggestions in a text file. Each
task was read aloud by an experimenter. The participants answered verbally and had unlimited
time to complete tasks, with the option to ask questions at any point. During the interview, we
validate RQ3 by presenting the users with two different kinds of tasks.

In the first task the user will have to locate a function which is supposed to be modified in
the provided sample code, either with or without using the “Flow Documentation” feature. We
are interested to see how does a user navigate a microservice-based architecture and how the
“Flow Documentation” feature helps them navigate the code (RQ3).

The second task is a maintainer finding task, where the user will have to find the person
responsible for a certain file or folder, either with or without using the “Maintainer Lookup”
feature. A maintainer spreadsheet is provided to simulate a company communication resource.
Similarly, our goal is to see how a user navigates this task in general and whether using the
extension helps them perform the task faster and more accurately (RQ3).

With both tasks, we measure the time that it takes for participants to complete them and
the accuracy of their answers. Additionally, we test our assumption that developers are actually
facing this issue regularly (RQ1) by the way in which they solve the issue without using our
extension. After solving the tasks, we have an open set of questions to see how the participants
feel about using FlowDocs. Here is the set of qualitative questions that we used:

• Do you think that the tasks we presented are representative of the problems that you
encounter at your job? Why / Why not?

• Do you think that browsing the flow graph is easy?

• Do you think that finding maintainer information is easy?

• Did using either feature feel natural to you or would you go about solving the task differ-
ently?

• Do you think that you had enough information to finish the task? If not, what other
information would you require?

• Did you feel that looking for information was easy?

• Did you ever feel confused while using FlowDocs?

• Did you find it more enjoyable/easier to solve the tasks using FlowDocs?

6.5 Methodology

For each of the two features, we have two exercises from which we randomly select one exercise to
be accomplished with plain VSCode (VSC) and another exercise with VSCode and the feature.
We split the participants in 4 groups, using the “counterbalanced within-subjects design” de-
pending on the order of the tasks and the order of medium (plain VSC or VSC with FlowDocs).
We will discuss the advantages of counterbalanced within-subjects design before justifying our
decision of experiment design.

• Maintainer Lookup (ML) first, then Flow Documentation (FD)

– VSC, VSC+ML, VSC, VSC+FD

44 CHAPTER 6. EVALUATION

– VSC+ML, VSC, VSC+FD, VSC

• Flow Documentation (FD) first, then Maintainer Lookup (ML)

– VSC, VSC+FD, VSC, VSC+ML

– VSC+FD, VSC, VSC+ML, VSC

Since the same participants are exposed to both conditions (feature and plain VSCode),
personal variables such as skill level, familiarity with VSCode, and problem-solving abilities are
controlled. This means any observed differences in performance or experience are more likely
to be due to the features themselves rather than individual differences between participants.
Participants are directly comparing their experiences with and without the features, meaning
that the collected data shows how each feature impacts their task-solving process.

By changing the order of participants using plain VSC and VSC with a feature, we ad-
dress potential order effects that can bias the results. For example, the learning effect happens
where participants improve their performance because they become more familiar with the tasks
through repeated practice. If participants use plain VSCode first, they might perform better
when they later use VSCode with the feature, not necessarily because the feature is more effec-
tive, but because they have become more skilled at the tasks through practice. Fatigue effects
represent another potential order effect. Participants may become fatigued or lose concentration
as they progress through tasks.

To address these order effects, we use counterbalancing. This involves varying the order in
which participants accomplish the tasks. By splitting participants into two groups, with one
group using plain VSCode first and the other using the feature first, learning and fatigue effects
are balanced out. Additionally, we consider the implications of the fatigue effect by splitting the
groups in two once again, the first group will try the “Flow Documentation” feature first, and
the second group will try the “Maintainer Lookup” feature first.

We have considered the use of other experiment designs, such as “between-subjects design”
and “pairwise design”, before settling on the current approach. The between-subjects design does
not require us to take into account the previously mentioned order effects. We could have used
this design by splitting the participants in 3 groups: plain VSCode, VSCode with “Maintainer
Lookup” and VSCode with “Flow Documentation”. Each group will be given the same set of
tasks to perform, without the need for task counterbalancing. These benefits also come with a
couple of disadvantages. Firstly, individual differences between participants in different groups
can introduce variability, making it harder to detect the true effect of the features. Also, each
condition requires a separate group of participants, which means that we would need many more
answers participants to draw a meaningful conclusion. Given that we would not be able to collect
many interviews within the given time frame, we decided to not use the between-subjects design.

Pairwise design implies participants being matched in pairs based on relevant characteris-
tics. Participants are matched and then randomly assigned to different conditions, meaning
comparisons are made between different but matched individuals. This approach can control for
some individual differences but not as effectively as comparing the same individuals across condi-
tions. Although participants are matched on key characteristics, there may still be unmeasured
differences that can introduce variability and affect the results.

6.6 Threats to Validity

Odoo employees may be biased when using the “Maintainer Lookup” feature because the task
involves using the Odoo codebase. However, since the feature has a broad enough developer

6.7. PRELIMINARY FORM RESULTS 45

reach, it can be implemented in other projects without much hassle, and thus we believe that
the tasks represent the broader industry standard.

Odoo employees already know some of the people who manage different parts of the software.
We managed this issue by finding a part of code of which they were not sure about. The Odoo
codebase is too large for anyone to memorise. Additionally, this is information that an employee
needs from time to time, so it is unlikely that they remember every maintainer.

The project for the “Flow Documentation” feature only contains 5 microservices and does
not reflect industry standards for a microservice codebase. This issue was not mitigated in the
current iteration of the experiment. In Section 6.9, we will describe how one of the participants
has changed their behaviour because of the small size of the project, and how we plan to address
it in the next iteration.

In an attempt to reach a representative sample of real world developers we selected developers
from different Reddit communities, which should have different backgrounds and experiences.
Participants may also not have the same degree of familiarity with VSCode and the extension.
We solved this by selecting users who are already adequately familiar with VSCode from the
preliminary form.

To ensure valid results from the interviews, we guarantee that the interviewees’ answers will
be anonymous and confidential. We were available to clarify any misunderstandings during in-
terviews to ensure clarity. The question structure was reviewed before conducting the interviews,
and participants had some experience with either large codebases or microservice architecture.

6.7 Preliminary Form Results

The preliminary form described in Section 6.3 has received 43 responses, one of which was
removed because of the respondent not having any programming experience. The respondents
occupy different positions in the software development industry, with an average of 6.1 years of
experience in the field (median 6). 25 out of 42 participants reported a score of familiarity with
VSCode of 3 or higher (mean 2.85, median 3), while 21 said that the use data visualisations
while coding (mean 2.42, median 2.5). 88.1% of developers (37/42) have previously worked
with a microservice architecture, while 78.6% have worked in a company containing 250 or more
software developers.

We will interpret the results of the two separate features, where all scaled questions are rated
on a scale from 1 to 5 (mean 3). Participants who responded to the qualitative questions with
a score of 4 or 5 will be considered as having a positive experience. We will not include 3 as a
positive score, as that indicates neutrality.

Regarding the “Flow Documentation” feature, 36 out of 42 participants encountered a sim-
ilar scenario as described in our microservice architecture use case (Section 4.3). 15 out of
42 participants rated the intuitiveness and user-friendliness of the feature with a score of 4 or
above (mean 2.95, median 3), and similarly, 15 participants thought that the feature was easy
to use (mean 3.11, median 3). Finally, 19 participants said that they might like to use “Flow
Documentation” in the future (mean 3.28, median 3).

Regarding the “Maintainer Lookup” feature, 28 out of 42 participants encountered a similar
scenario as described in our onboarding use case (Section 4.2). 13 out of 42 participants rated the
intuitiveness and user-friendliness of the feature with a score of 4 or above (mean 3.16, median 3),
and similarly, 14 participants thought that the feature was easy to use (mean 3.09, median 3).
Finally, 21 participants said that they might like to use “Flow Documentation” in the future
(mean 3.30, median 3.5). Out of the current 43 preliminary form respondents, four have booked
an appointment for the qualitative interview.

46 CHAPTER 6. EVALUATION

6.8 Qualitative Interviews

Following from the qualitative interviews, we can determine two main approaches that developers
take to locate the source of an issue in the codebase: debugging, and lookup techniques.

Debugging means that a developer locates the initial function or flow that produces a bug,
creates a breakpoint at the beginning of the function, starts a debugging session, then follows the
code line-by-line, checking after every line that the result they expect from executing the code is
the same as the result that they get. Whenever the result differs, then they place a breakpoint
at that line, and then recursively debug it. This technique is more time-consuming, but it makes
sure that the developer does not miss any potential interaction or bug source in the codebase,
as every line of code is checked.

Alternatively, a developer can also follow a lookup strategy to identify the source of an
issue. This means that the developers locates the initial function or flow that produces a bug,
then tries to find relevant variables or function names which are called within the flow. They
reason about the which variables or functions are probably responsible for the bug, then place
a breakpoint in different “hotspots”, such as: the variable definition, the line of code where a
variable is modified, the function definition, the line of code where the function is called, the
line of code where a function result is returned, etc. Then, they start a debugging session, skip
through code which they did not consider a hotspot, and only stop at the designated hotspots,
where they similarly reason whether the result they expect at the time of execution is the result
they get. This technique is less time-consuming than traditional debugging, as the developer
does not have to check every line of code, but sometimes it misses the correct bug source.

Developers tend to employ a mix of the debugging and lookup methods. For example, they
might start with the lookup technique and look for hotspots, but then continue debugging for
a couple of lines of code after it, to get a more solid grip on how variables change over time,
before skipping to the next hotspot. Similarly, a developer who starts traditional debugging,
might lose interest in the current bit of code that they are following, so they skip ahead and add
a breakpoint to the next hotspot, from which they resume the debugging workflow.

We will now describe the individual interviews and how the participants reacted to the tasks
and our extension. We will interpret the qualitative feedback and improvement opportunities
in Section 6.10. We will describe the interviews one by one. In order to remove duplicate
information, if two participants gave the same piece of feedback, a small mark will be added
after describing the feedback, as such: (+ P2, P3). If this particular annotation is present
after a piece of feedback from participant 1, it means that participant 2 and participant 3 gave
the same feedback as participant 1. All participants have completed the preliminary form and
tested both the “Flow Documentation” and the “Maintainer Lookup” features. The makeup
of the individual interview sections will be as follows. First, we present relevant background
information collected about the participant, then we present relevant observations made during
task execution, followed by remarks and feedback given by the participant. Last, we present the
relative performance increase or decrease in completing the given task with or without the use
of the extension. We repeat this structure for both the Flow Documentation and Maintainer
Lookup features, using the same order in each interview.

Though P1 does not work with microservices directly, they have worked with database inte-
gration before. In their work environment calls are made directly from the application to different
databases, after which the results are combined and used within the application.

P1 does not normally use a debugging feature in their regular workflow. They attributed this
to the fact that their technology stack has limited debugging possibilities. Their usual approach
to locating the piece of code containing the bug is the following: They separate the code in
chunks after which they add a log statement in each chunk. After running the code, they can

6.8. QUALITATIVE INTERVIEWS 47

and see how the state of the relevant variables is changing. If all the values are as expected they
conclude that the faulty behaviour happens later in the code. They then follow the execution
flow until the bug is found. P1 also remarks that they do not use VSCode in their day-to-day
job environment.

When tasked with the function identification task, they did not approach the problem through
a debugging perspective, line by line, but rather started locating variables useful to the task,
looking for where they are defined, modified, and used (+ P2, P3). They found the variable
relevant to the task in the main file, but expressed their confusion as they could not find where
the variable was being overwritten. Later in the interview they said that this was the moment
when they realised that a microservice might be involved. P1 then opened the graph without
looking further into the main file. First, they clicked on the node containing a main file function.
This led to some confusion as they expected to be directed to the microservice file and not the
main file. After returning to the graph they clicked on the correct node containing the function
within the microservice file. After which they located the problem and implement the correct
logic to solve the problem.

When asked about the experience of using the Flow Documentation feature they said that
with the graph, “I skipped the process of having to find the bug location [...], and thinking more
on a concept-scale [...], I knew my problem was about users, so looking at the node names I
instantly saw where the problem could be located”, as well as “It really helps me locate the issue”.
P1 explains that before we do debugging, we think about code in a conceptual way and that this
can be improved through an overview of the code.

When asked about how they experienced navigating through the graph they said that brows-
ing the flow graph is easy, but they would like to see the whole graph at once on the screen.
Related to this P1 expressed that they expected the graph to be zoomable, instead of the window
scrolling down (+ P2). P1 also said they would like to see which is the structure of data objects
being returned from API calls and passed to the next one. Furthermore, when looking back at
the graph they remarked that they did not see the legend on the right (+ P2). The fact that
API calls happen sequentially in the graph was also not immediately obvious to them (+ P4).
P1 also said that they forgot about the sidebar tabs, which is one of the VSCode features. As a
closing remark, P1 said they were “amazed at the speed of which the file is opened when clicking
on a node”. P1 completed the task 79.5% faster when using Flow Documentation compared to
when they were not using the feature.

Within the company P1 works at, the developers mainly handle code maintaining issues
through their project manager (PM). These project managers usually know who is writing what
code, so they can connect the developers involved with each other. P1 then told an anecdote
in which they were contacted by a PM about a specific piece of code, which was not written by
them. The confusion arose because two developers had worked on the same file and the PM did
not remember which developer wrote which specific code section.

Within P1’s current team they usually know who to contact because of its small size. P1’s
team is the only development team in the company, and consists out of 5 developers. Even
though a convention exists where the developer who creates a script, adds their name at the top,
P1 still feels they have to mentally keep track of who is responsible for a specific piece of code,
saying that: “I have to rely on my knowledge, remembering who did what”. P1 is more interested
in finding the person who is most knowledgeable about a certain concept than the person who
is the responsible for a piece of code within the company structure. They argue that project
managers and product owner, even though they overlook a lot of code, might not be the most
knowledgeable of a concept they are faced with in their programming task.

When opening the maintainer record during the task P1 received two matches, one being
‘account’ and the other being ‘/security’. They assumed person listed under ‘account’ occupied

48 CHAPTER 6. EVALUATION

a higher position. When asked why, they pointed out that there were many folders in the main
structure of the project whose names start with ‘account’. They assumed that the person listed
under ‘/security’ was a developer maintaining this specific folder. Additionally, they point out
that ‘security’ was the name of the direct parent folder of the file that was being inspected.
P1 said they would choose to contact the person listed under ‘/security’ as they seemed more
directly involved with the code. P1 also added that seeing the name of the maintainer in the title
card instead of the GitHub username made them perceive the maintainer as more approachable,
which according to themselves, was another factor in P1’s decision. They also noted that they
were confused by the word “regex” next to the matched routes (+ P2, P4). They said that they
would like to have more clarification on what the keyword actually means. They exemplify, if the
keyword would be ‘account’, does this refer to a concept (within the business and programming
logic), a folder (with in the project file structure) or a department (within the company).

P1 did not immediately notice the section of the knowledge card containing the information of
git maintainers. They said that the git maintainer section removes their concern of information
staleness. They mentioned that the displayed git information was overwhelming to them. The
commit hash made them feel that the rest of the information displayed was not worth reading.
The participant remarked that they were confused about the meaning of the ‘account’ keyword,
and added that because of the reduced size of the explorer they had to scroll up before being
able to see the root folder, which was called ‘account’. They remarked that the sidebar felt “a
bit crowed” when actively using both the maintainer tab and file explorer (+ P2, P3, P4).

P1 closed the maintainer tab and clicked on the “show maintainer” context menu item,
which did not return a visual response. The participant stated that they expected this action to
open the maintainer tab again or for the results of their search to be present after opening the
maintainer tab manually after having clicked the menu item.

When asked about idea on how to improve the feature P1 said that they would like the
contact information to be clickable, which would then allow them to more easily navigate to
their preferred communication channel and set up to contact the person (+ P3, P4). P1 feels
like the position (job title) of the maintainer should be more visible (+ P2, P4). They also
suggested that each maintainer could add a personal note to their card showing their availability
or a list of frequently asked questions. Concerning the user interface, they suggest splitting the
card into two sections. One containing information about the person (name, team, position) and
the other containing the communication information (GitHub, email, phone number). When
talking about the user interface P1 mentioned that they found the used colour scheme to be
attractive. Finally, P1 thinks that it would be useful to them to be able to add their own
maintainer information, and that they could imagine using the feature. P1 completed the task
47% faster when using Maintainer Lookup compared to when they were not using the feature.

P2 has interacted with microservice architectures during their studies, but has never worked
with a large scale microservice application. When asked about debugging, P2 mentioned that
they accomplish this sort of task daily, as they work as a bug fixer. They tell us that working
with business use cases and large codebases is very relevant to their day-to-day job. Since the
codebase P2 works with has its own object relational mapper and the classes have a custom
inheritance scheme, it is not usually straight forward to see which functions are actually called.
In these cases, P2 starts a debug session, to see which function gets called, even though it might
take a long time to accomplish.

They approached the function identification task by opening the microservice file directly.
Just as P1, they did not approach the problem through a debugging perspective, line by line,
but rather started locating variables useful to the task. When asked why they did not follow the
same debugging approach as in their work context, they said it was because they felt the scale
of the project that we provided did not require this. They felt it was easier to just look at the

6.8. QUALITATIVE INTERVIEWS 49

code and read through it, while in a larger project this might be unfeasible, because of the large
quantity of code. They noted that with the flow graphs, it was straightforward to see which
functions are being called, without needing to go line by line in the codebase to locate them.

When asked about their experience while interacting with the Flow Documentation feature,
they felt like it was easy to interact with the graph and that they liked that clicking on a function
takes you to the function definition. They remarked the graph is easier to follow than reading
code, and that it gives a high-level overview.

They said that if it were to use the extension frequently with the same project, they would
like to be able to manually edit the graph. They imagine doing so by reordering the nodes in
the graph or adding notes to certain parts of the graph. They would also like to be able to hide
certain nodes that they are not interested in. They suggest this could be done by clicking on the
corresponding item in the legend. If for example, they would be part of the payment team, they
would hide nodes which are not related to payment.

P2 notes that for languages like C++, having the entire function signature would be more
useful, compared to only having the function name. This could be useful in case of overloading.
Another possibility that they mentioned is to keep displaying only the name as the node label,
and to display more information like the signature and docstrings when they hover over the node.
They like the simplicity of the graph view, as additional information does not distract from the
main feature, which is the graph. If the graph is too tall, it should be split in several smaller
graphs, or nodes should be collapsible, in order to get the whole graph on the screen. They think
that the content provided is sufficient for the task at hand (+ P1, P3, P4). P2 completed the
task 23.3% faster when using Flow Documentation compared to when they were not using the
feature.

P2 works in a company that has over 500 developers, who are part of different teams. When
it comes to finding maintainers, P2 asks their senior team members about whom they should
reach out to (+ P3, P4). The response P2 can expect is either the name of a team or the
name of a specific person within that team. Even if they have access to a company spreadsheet
which contains information about product owners and project managers, they still rely on their
teammates’ help. They stated that it feels easier and more accurate to them, even if it takes
more time to get a response. When requested to elaborate, P2 proceeds by presenting a situation
they had found themselves in, in which they noticed a potential issue with using the spreadsheet.
After being hinted by code references to the concept of an “XML report” in their codebase, they
looked to contact the maintainer responsible for this concept. They did not find the manager
of “XML reports” in the spreadsheet. However, they had the prior knowledge that the “XML
report” concept is a subpart of the “Document” concept, which did have a manager in the
spreadsheet. They add that the company spreadsheet would be much more useful if it contained
all the concepts present in the codebase, not only the generic ones, even though acknowledging
that this would increase the spreadsheet size considerably, and reduce the readability.

P2 was dealing with the issue of finding maintainers almost daily when first employed, for up
to 2 months. At the time they were working with modules that were very often interconnected.
Now, their work has a narrower scope, and they say that they encounter this issue very rarely (+
P3, P4). P2 mentions that they also find additional information on who to contact through an
internal company app. This app contains all employees of the company and for each employee the
following information is present: GitHub username, email, phone number, job position, manager,
coach and work location. The participant remarks that the information may not be up-to-date,
as the employees have to manually edit this information while according to P2, they might not
have the incentive to do so. P2 states that they search for code maintainers while exploring
the codebase. They would check who wrote a certain piece of code with the git blame feature
of the GitLens extension. According to P2, the git blame feature is useful when one person

50 CHAPTER 6. EVALUATION

implemented the function in question. However, when a function is often edited by multiple
people it becomes more difficult to find the right person (+ P1, P4). P2 states that either it
takes more time or it is impossible to find the developer who first wrote the function because
of successive commits on certain lines, which are either added or removed, which causes the git
tool to lose track of original code author.

After using the Maintainer Lookup feature of the extension P2 said that they would like to
change the path name, which is the header of the matches after look up, with the maintainer
name and position. The position in particular is very important to them, as it is the first thing
they want to check (+ P3). When asked for suggestions on how to improve the git related
knowledge card the participant said that they felt clicking the git maintainer should highlight
the lines of code which they edited. P2 also mentions the visual history feature of GitLens, which
gives a visual intuition of who made the latest commits on a file, and the largest commit, by
using a bubble chart. As for the information on the cards, P2 says that seeing the commit title
is more important than the git author name. P2 mentions liking the “one-click” usability of the
Maintainer Lookup. Finally, the participant noticed that when the sidebar was really thin, the
information displayed became almost unreadable because of the limited space (+ P4). As an
alternative, P2 suggests using tooltips to show the complete information only while hovering over
the displayed maintainer name or team. They also suggest adding a “copy all” button to the
knowledge cards. P2 completed the task 60% slower when using Maintainer Lookup compared
to when they were not using the feature.

P3 worked with microservice in their university courses, where they had to create separate
microservices and scale them horizontally and vertically as part of the course project descrip-
tion. They stated that they feel confident with their understanding of microservices. They also
drew a parallel between microservice concepts and their work codebase. The work environment
has a “micropackages” structure where many tools call the same packages, the only difference
being that calls are performed locally rather than over a network. When P3 is asked to modify
something in their codebase at work, they start by first searching for the function they intuit to
be relevant by name or signature. They noted that their intuition is based on a combination of
previous experience and general code knowledge. They then place a breakpoint on one or several
functions to start a debugging process. They follow a lookup approach not because the tool they
use has limited debugging powers (XCode), but because the code structure is inheritance-heavy,
and debugging would take a lot of time to reach the relevant function which contains the code
logic.

While performing the task using the Flow Documentation feature, P3 did not notice all the
buttons in the sidebar (create graph, refresh graph). They clicked on the flow graph name which
they assumed would start the flow generation, which confused them slightly, as that button
only redirected them to the flow definition. P3 suggested adding a two-step flow when using the
feature: the first step would be to click on the flow name, which would reveal the buttons “create
graph” and “refresh graph”, which could be clicked to actually open the graph.

P3 also mentioned that they would find it useful to have a similar functionality as in XCode
(as well as VSCode) where the user can go to a function definition by using the “Ctrl + Left
Click” shortcut. P3 did not notice that a similar functionality exists in Flow Documentation,
which resides in the context menu option “Highlight in Flow Graph”. After the interviewer
brought attention to this functionality, they acknowledge its usefulness, but said that they would
like to see the use of the same “Ctrl + Left Click” shortcut. They felt Flow Documentation
was very intuitive and easy to use. They underline this by saying: “The graph legend was very
useful in perceiving the code as modular, but interconnected”. P3 felt the graph design was very
intuitive as well, knowing what every call means and clicking on the buttons was described as a
“cool” functionality. The participant expressed that they found the graph was very responsive.

6.8. QUALITATIVE INTERVIEWS 51

P3 completed the task 33.3% slower when using Flow Documentation compared to when they
were not using the feature.

P3 works in a company where developers are split in two teams, both managing the dif-
ferent mobile implementations of the same app, one for Android and one for IOS/Apple. The
code is structured as a monorepository, so almost every module is shared with other teams
and is designed to be modular and reusable. It happens quite often that P3 needs to contact
other developers or engineering managers, who are the first point of contact, or product design-
ers/managers/owners, who are the second point of contact. In practice, it happens more often
that they contact product owners than engineering managers. P3 estimates that they contact
developers 60% of the time and product owners/engineering managers 40% of time.

In the case of contacting developers, P3 uses git blame to actually find the developer, then
by using their GitHub username, P3 can find them on Slack and contact them. When it comes
to contact product managers P3 can only contact his own product manager for questions. If the
problem that he has to solve reaches a common library/package or a feature of another app, P3
will contact their manager, who will then reach out to the other product manager responsible
for the concerned common library. This process can delay communication by two to three
days, during which their task is blocked. Questions aimed for developers usually concern code
reusability. On the other hand, they stated that they have to talk to other maintainers/product
managers almost every day.

P3 started by reading through the default intro message to find out how to operate the
extension. While completing the task, they verbally expressed that they did not understand the
difference between “Most recent Git Maintainer” and “Most Relevant Git Maintainer”.

During the task when P3 was using plain VSCode, they identified several keywords within
the code file one at a time. Some keywords did not exist in the spreadsheet, so they had to
switch back and forth between VSCode and the spreadsheet multiple times, in search of the
correct keyword. After completing the task using the Maintainer Lookup feature, P3 stated
that they find the feature very easy to use and intuitive, saying “At first glance, I knew who is
maintaining this feature or product, so I could contact them directly”. According to P3 the tool
was very intuitive. They said that they would add the team name and position to the title card
of the maintainer, so that they do not have to click on each individual card to find the product
owner, or the relevant person in the team. They would like the maintainers to be split in two
groups: technical and non-technical people. P3 also mentioned that the “Show Maintainer”
button is not very accessible, so a separate button always visible in the header would be a better
solution according to them. Another suggestion given by P3 was a “minimap”, with the list of
maintainers, with toggled visibility. They also suggested that the sidebar could update when a
user changes file. P3 completed the task 49.3% faster when using Maintainer Lookup compared
to when they were not using the feature.

P4 currently works within a company which integrates different hotel services into one shared
database. They say that they feel familiar with using microservices, as they have to interact with
different websites and external API’s almost every day. They often do not have access to the
external services API, so when they have an issue with external code, P4 has to contact the
different service providers and ask them to fix the issue. This process is usually time-consuming,
for both locating who to contact, and also waiting for a reply and, eventually, a fix in their code.
This process usually takes between one and four weeks.

P4 employs a traditional debugging technique when tasked to identify and fix an issue in the
code. They place a breakpoint at the start of the function, the analyses each code line, checking
if the results that they expect are actually returned. When this is not the case, they place a
breakpoint at that specific line and continue debugging from there.

When performing the faulty function location task without the Flow Documentation feature,

52 CHAPTER 6. EVALUATION

VSCode VSCode + FD VSCode VSCode + ML
P1 83s 17s 42s 22s
P2 30s 23s 8s 19s
P3 50s 75s 75s 38s
P4 37s 66s 25s 19s

Table 6.1: Task time completion (in seconds)

they debug the code line by line and reach the faulty API within 20 seconds. They confirm that
the function returns false results, then look for a similar route name in the microservice code.
Comparatively, when using the Flow Documentation feature, P4 creates the graph, then browses
through the code names. They mention that they were confused when seeing so many nodes
which were unrelated to the task at hand. After clicking on several nodes which seemed relevant
to them and placing breakpoints at the start of each function, they resume the debugging process.
They spend more time in the debugging stage, as several breakpoints are actually irrelevant to
the issue that we described. P4 said that they were becoming frustrated by the fact that “some
nodes in the graph did not lead to anything”. They suggest that the graph should be smaller
and only contain nodes that are relevant to the task. P4 completed the task 43.9% slower when
using Flow Documentation compared to when they were not using the feature.

P4 works in a company which has over 500 developers. They encounter the issue of having
to locate a relevant person quite frequently, as they are still a new employee in the company.
When they have a question about a piece of code, they use git blame to locate the last developer
who modified the code. When they have a question about the functionality of a feature, P4 goes
through a spreadsheet of maintainers, provided by their company. They describe the spreadsheet
as being very descriptive, where every module of their code is handled by either a senior developer
or a product owner. If neither git blame nor the spreadsheet provide sufficient information, P4
asks a colleague about who should they contact about a certain feature or how to fix the problem.
They mention that this happens very rarely, in about 10% of cases.

P4 started the maintainer identification task without our feature, and they identified a rele-
vant keyword in the file they were analysing, which lead them to the correct maintainer in the
spreadsheet. They mentioned that they perceived the task as relatively easy. While using our
feature, they identified a list of two maintainers, one of which was a product owner, and the other
a team leader. Based on this difference, they picked the product owner as the person they would
contact next. P4 completed the task 24% faster when using Flow Documentation compared to
when they were not using the feature.

6.9 Experiment Results Discussion

We have gathered plenty of feedback from both the preliminary form and the qualitative inter-
views. We will start by interpreting the results of the preliminary form first, where the feedback
is less detailed, as the participants did not experiment with the tool for themselves. We will then
move on to the more detailed feedback collected from the qualitative interviews where partici-
pants had the freedom of experimenting with the tools by themselves, and through completing
microservice architecture comprehension and maintainer identification tasks.

The preliminary form gives us insight about how users have previously experienced and
solved the issue of finding the relevant function within a microservice architecture codebase.
The most common approach developers employ is debugging or asking a colleague, while some
users prefer searching the codebase for the endpoint route name and manually linking them

6.9. EXPERIMENT RESULTS DISCUSSION 53

with an exposed API endpoint (through different ways: grep2win, double shift in IntelliJ, Find
Usages in VSCode), asking for an explanation from the developer who last modified the code,
browsing through the GitHub pull request section to see which files have been added or changed,
or exploring the code documentation.

Similarly, people who have experienced the issue of not knowing who to contact to get more
information about a piece of code have tried different approaches as well. The most common
approach is using git blame (through git or other extensions which incorporate it), a company
spreadsheet which contains maintainer information, or reaching out to other teammates, devel-
opers or project managers, through direct communication or instant messaging apps.

From the participants responses, we can conclude that a majority of users have sometimes
encountered both issue (36/42 encountered the microservice issue, 27/42 encountered the main-
tainer issue), meaning that we reached our target audience when sharing the form. Since the
majority of users try to solve the microservice issue through debugging, we have to ask if the
“Flow Documentation” feature is helpful to them. As we discovered during prototyping (Chap-
ter 3), our extension did not integrate well with developer’s usual debugging workflow. These
developers emphasised that their debugging process relies heavily on line-by-line code analysis,
rather than starting with an overview and then delving into the details. The prototyping feed-
back is now confirmed, as 3 out of 4 participants in our qualitative interview did not follow a
debugging procedure while solving the tasks, and all of them found the feature useful, while
one programmer debugged the code, and found the feature less useful. This leads us to a key
takeaway from our experiment:

The “Flow Documentation” feature is most effective when combined with a
lookup approach to code modification.

P2 did not follow a lookup approach to solve our task, but did mention that they do usually
follow a debugging approach in their company setting. They go on to explain that before starting
the task, they assessed the size of our showcase code as being relatively small, and they thought
following a lookup approach would yield simpler results. This explanation leads us to consider
using a larger microservice codebase in future experiments, where the developers would be more
inclined to follow their usual approach, although this can force other developers into a style of
problem-solving which might not be their preferred way. For example, due to the mentioned
limitations of their company work environment, P3 prefers to avoid debugging as it is usually
faster to employ a lookup approach.

From the interviews of P2 and P4, we can suggest that the maintainer identification task is
predominantly done when a developer first joins their company, and it decreases in frequency as
they acquire more experience. This happens because the more time a developer spends in a team,
department, or company, they get to know more people and learn who is responsible for what
code. As we learned from the interviews, many companies have different approaches to internal
communication. All interview participants except P1 note that they use git blame to find the
developer who is responsible for the code. Additionally, all participants ask their teammates for
more information either as a first attempt to find the code responsible (P1, P2, P3) or as a backup
to git blame (P4). This is also reflected by the responses from the preliminary form, where 10
out of 42 developers say they use git blame or similar tools to find the responsible, while 14 out
of 42 developers said they prefer in-person communication. When we questioned the interview
participants why do they ask their colleagues for information as a main strategy of finding a code
maintainer, the answers varied. P1 does it because they feel more at ease with communicating
with their colleagues rather than using software tools. P2 asks their teammates because of
commodity. In P3’s company, they are restricted to contacting their engineering manager when
having a question about a feature, even if the feature is under another team’s supervision. P4

54 CHAPTER 6. EVALUATION

does not use it as a first strategy, but they ask their colleagues for more information when git
blame and the company maintainer spreadsheets do not provide sufficient information. This
indicates that we should not ignore the developer’s human connection needs when designing our
tool.

“Maintainer Lookup” should not aim to replace human communication, but
rather make the process smoother and more effective by providing additional
maintainer information.

All interview participants except P1 felt like the Maintainer Lookup feature improves their
knowledge on the field. P1 brought up a very good argument for in-person communication during
the interview, noting that: “By using it [the Maintainer Lookup feature] I get an answer to who
is the maintainer, but currently I don’t get the reasoning behind the answer”.

P1 further explains that when they encounter code written by another developer, they might
ask the manager, who usually speaks their thoughts out loud. So P1 could additionally find
out that the code piece is linked to a certain feature, a certain view or a certain project, and
who is maintaining all of these components in the codebase. This lead us to understand the
importance of linking maintainers not necessarily to a file or a folder in the codebase, but rather
to a concept. To explain this, let us consider the example of a Python file which manages
the rendering of financial data on the frontend. Within this file, we can already identify three
concepts: accounting information, frontend rendering, and Python code. Each of these concepts
can have different maintainers, which should be accounted for in the maintainer to code map.

“Maintainer Lookup” should link maintainers to code concepts, rather than
files or folders.

The “Maintainer Lookup” feature can be further improved in terms of functionality and
developer reach. Currently, we assume that the last person who edited a certain file or the
person who contributed the most commits within the last month is the current maintainer of
that file. We could scrape additional information from their GitHub profile, such as their public
email address, and social media links to include as contact information on the maintainer card.
This would make setting up the extension less demanding of the system administrator. However,
judging from the qualitative interviews’ feedback, P2 mentioned that a similar feature exists in
the GitLens VSCode extension. The GitLens extension allows the user to view the latest commits
in the current file either in a list view or visually with a bubble timeline graph (Figure 6.1). Then,
the user can achieve even more accurate conclusions than by using the “Maintainer Lookup” git
feature. However, GitLens does not offer the possibility to see real world information about the
maintainers, and, in this case, it can only recognise developers that contributed to the code. In
this sense, the git functionality might draw the user away from the intended use of “Maintainer
Lookup”, which is locating experienced people within the company, including not only developers,
but also product owners, administrators and project managers.

Several common design improvements were suggested by participants in the qualitative in-
terviews, which could improve their perception of the presented information. For example, the
“Flow Documentation” graph legend can be highlighted more (P1, P2), and the graph could
have more interaction: zooming, panning (P1, P2), node rearranging and shuffling (P2). Several
participants noted that the “Maintainer Lookup” list view gives the same level of importance
to information about the maintainer position, team, and name as contact information, such as
email, phone number, GitHub username. P1, P2 and P3 perceived that the first type of in-
formation as more important than contact information, so they argue that it should be better
highlighted. Additionally, P1 and P2 note that they have to work with a limiting space while us-
ing the “Maintainer Lookup” feature, within the VSCode sidebar, while P2 and P3 suggest that

6.10. RESEARCH QUESTIONS ANSWERS 55

Figure 6.1: GitLens bubble timeline graph

the maintainer information can be displayed similarly to the flow graph, in a separate window,
a minimap, or a button in the file editor header.

All participants have noticed that the workspace is cluttered while using the extension, es-
pecially visible while using the “Maintainer Lookup” feature. P2 mentioned that this is not an
issue that bothers them, as they still find it more useful to have everything integrated within the
IDE, than having to switch between windows. During the interview, the other participants had
to change the size of the sidebar in order to fit their needs, which can be seen as a disadvantage
while working, as there is less visible space for the code itself. Although they did not explicitly
mention this a negative point, we still need to take this into account when designing an integrated
tool, leading us to our final remark:

Developers need to have enough screen space while coding.

We hypothesise that this issue can be mitigated by using a bigger display screen, or using a
multiscreen setup. We believe that this issue should be further investigated in research.

6.10 Research Questions Answers

To reiterate our initial purpose, we have designed the prototyping, solution and evaluation chap-
ters of our thesis with the goal of answering the following research questions (RQs):

• RQ1: What challenges do software developers face when trying to understand codebases
with a microservice architecture and locating maintainers?

• RQ2: How do developers perceive the usefulness of FlowDocs for understanding codebases
and locating maintainers?

• RQ3: How does FlowDocs influence developers’ performance and accuracy in different
tasks?

After analysing the literature, we found that developers spend a considerable time of their
code modification tasks by trying to comprehend the codebase. Also, when working with mi-

56 CHAPTER 6. EVALUATION

croservice architectures, they initially spend more time comprehending the microservice interac-
tions before trying to modify the code. From the interviews of P2, P3 and P4, we notice that
the issue of debugging large codebases is present in industry code, because of the large scale
of the codebase and the code inheritance structure which limits the developer’s IDE function
locating capabilities. The developers often have to rely on a lookup approach, by identifying
relevant functions or variable names, placing breakpoints by intuition or experience, and only
then starting a debugging session.

Similarly, in the context of newcomer onboarding, the literature reveals issues about delays in
communication and loss of information between developers due to a centralised communication
flow. The interview with P3 confirms this issue concerning centralised communication. At the
same time, from the interviews with P2 and P3, we can see developers trying to practice direct
communication with their team members, and by using tools likeGitLens for locating maintaining
developers. P2 mentions that the limitations of a spreadsheet to find maintainers discourages
them from using it, and pushes them towards relying on their teammates to get maintainer
information. The limitations of spreadsheets are the speed of browsing through them, as we
can find out from P1, the inability to capture all code concepts and having to rely on personal
knowledge of concept interconnection, as P2’s interview reveals.

We can answer RQ1 by concluding that the issues we identified in the litera-
ture review affect a considerable portion of our experiment participants.

After interpreting the results of the qualitative interviews, we can give an answer to RQ2.
Regarding the “Flow Documentation” feature, P1 highlights that some developers interpret code
in a conceptual way, rather than seeing it as individual lines of code. Using “Flow Documenta-
tion”, P1 skipped the process of having to find the bug location, and could follow their conceptual
way of thinking about code. P1, P2, P3 said that the “Flow Documentation” graph is easy to
interact with, and it is easier to follow the graph than reading the code, and it gives a high level
overview of the code. P4, as they use plain debugging to understand code logic, did not find
that “Flow Documentation” improved their workflow. P1 and P3 separate code into logic pieces
based on intuition, which is itself based on their understanding the code. The expert developers
will solve a task with the information that they gathered through prior experience. A newcomer,
in contrast, does not have sufficient experience and have to analyse the code line by line to
comprehend the codebase. P2 said that it is easier to read a graph than it is to read code, which
leads to faster code comprehension, by avoiding the analysis of many lines of code which do not
contribute to advancing the code logic. On the other hand, people who are more experienced,
could benefit from the graph visual aid (enhances mental map), and fast user interface features,
which P3 said would be essential to make their task faster. P1, P2 and P3 consider that the
graph enhances their lookup workflow. By contrast, P4 argues that the debugging workflow does
not benefit from the conceptual map put forward by the code graph overview.

Regarding the “Maintainer Lookup” feature, the speed of user interaction is greatly appreci-
ated by all participants, who highlight the usefulness of being a click away from the information
in their own IDE. At the same time, we see that users have the desire to customise what in-
formation is displayed and how. Different developers have different communication approaches
and, as such, different information and communication channels are interesting to them. We
appreciate that we could further explore this field, by analysing the different developers’ com-
munication needs, and also research how developers think about code conceptually rather than
through folders and files.

6.11. LIMITATIONS 57

We can answer RQ2 by concluding that the participants perceived the “Main-
tainer Lookup” as useful, while the “Flow Documentation” feature is useful
only when developers employ lookup techniques for code comprehension.

While using the “Flow Documentation” feature, P1, P2, and P4, who quickly navigated the
flow graph, were faster at completing the interview task. P3 did not intuitively know how to
use the tool; we observe that they took longer to notice the buttons, which resulted in them
completing the task slower with the feature than without. This explains the large increase in
P3’s time when using the tool compared to the other interviews. The accuracy of completing
the tasks for everybody involved was 100%. There is an indicator that the tool can help with
speeding up the function locating task, which is a task often accomplished by developers within
their daily jobs, but it is also clear that the learning curve of the tool should be smoothed out
by adding more visual indications of progress and tooltips.

While using the “Maintainer Lookup” feature, the participants generally had a faster task
completion time. P2 is the only participant who performed slower with the feature. When
completing the task without the feature, they identified the maintainer almost instantly since
the name of the file they were looking at pointed directly to one of the entries in the spreadsheet.
When using the feature, the maintainer list displayed multiple maintainers, which made them
reconsider their initial choice. All participants approached the task by searching for a certain
concept or keyword in the file they were investigating, in order to increase their chances of finding
a maintainer. P3 even identified a keyword which did not have anyone associated with it in the
spreadsheet, which increased the spreadsheet lookup time further. When using the “Maintainer
Lookup” feature, the participants could identify at least one of the concepts in the sidebar and
chose this person as the most relevant maintainer. P1 picked the most relevant maintainer by
looking at the file hierarchy and picking the closest parent of the file they were analysing, while
the other participants picked a maintainer based on the contact position. This means that they
picked the person who had the most important perceived role in the company, which in our
experiment was also the intended answer. Our interview results indicate that developers tend to
search the right person to contact either based on previous interactions with other developers or
project managers, or with the centralised point of communication. We believe that more effort
should be spent analysing whether the increased amount of possible maintainers for a file also
increases the success rate of choosing and contacting the most appropriate person for the task,
considering the code concepts that they manage.

We can answer RQ3 by concluding that FlowDocs has the potential to improve
developers’ speed when performing comprehension and maintainer identifica-
tion tasks, as long as it can account for individual differences in communica-
tion styles and conceptual understanding of code.

6.11 Limitations

Before talking about future plans, we must acknowledge the limitations of our extension and
the user study. The “Flow Documentation” flow graphs still suffer from the same issue of
overcrowding when analysing large-scale microservice codebases, though to a lesser extent than
the Prophet tool[6]. The “Maintainer Lookup” feature can only extract limited maintainer
information from git, such as the username and email, so developers will have to mostly rely on
contact information added manually by a system administrator.

The user qualitative interview includes four participants. Their actions were tracked in a
virtual environment and over a short period of time (an interview lasts between 45 minutes and

58 CHAPTER 6. EVALUATION

one hour), which does not typically represent a real world situation or task that they might
have to perform on the job over a longer period of time. Tracking user interaction over a longer
period of time could be beneficial for analysing the “Maintainer Lookup” feature. In this way,
we could encounter how often do developers need to perform the lookup task in a real-world
environment and also track people from different teams/countries, in a GSD environment. The
tasks presented during the “Flow Documentation” feature analysis only cover a small architec-
ture codebase, which again might not represent a real industry use case and can only give us
limited information about user comprehension in a large distributed project. The microservice
architecture allows users to develop smaller projects individually and gives them the freedom to
choose any technology stack that they desire. The “Flow Documentation” feature only targets
Python microservices and can detect endpoints generated with the Flask2 framework. This is
only a small sample of what the microservice architecture can offer.

6.12 Future Work

To address the limitations, we propose several improvements that can be achieved in the future.

The “Flow Documentation” feature can be functionally extended by adding support for de-
tecting endpoints in multiple frameworks, and by statically analysing code implemented with
different programming languages. This is made easier by the modularity of the code and the
intermediate JSON flow graph representation, which eases the interaction between parsing the
code (language specific) and displaying the flow graph (language agnostic). This is important
because even within a single project, there can be microservices written in different languages,
and analysing just some of them gives an incomplete image of the microservice interaction.

The flow graph feature can also benefit from several improvements. When a developer creates
the graph, they could view only the interaction between microservices, while the specific functions
can be abstracted away, so they can get a sense of how interconnected their microservice is with
other microservices. Additionally, two participants in the qualitative interview have theorised
that the graph can become complex and hard to follow when there are many microservices, so
hiding some user-selected nodes can mitigate this issue. After they get this general picture, they
could switch to the current functional view, where all the details of the function call stack are
exposed. Considering the research of Landesberger et al. [14], we could also experiment with node
aggregation and filtering based on certain metrics, such as grouping nodes that belong to the same
microservice, or filtering nodes that are a certain path length away in the path from the start
node. Similarly, force-based graph approaches could be implemented in the interactive graph
in order to improve readability metrics such as minimising node and edge overlaps, minimising
edge crossings, and equalising edge lengths.

Some questions in the future work of Bushong et al. [6] remain relevant to our extension as
well. Microservices change structure over time and this can lead to bottlenecks and architectural
degradation. The tool could take into account the evolution of a microservice and prevent
the mentioned issues by comparing microservice versions and general trends of microservice
interaction. Dynamic analysis of the code can be considered, as it can give detailed information
on code execution and potential bugs present in microservice interactions, even if it does not
generate the complete tree of possible paths of execution and interaction.

Zhou et al. [31] have created a benchmark system for microservices which includes 24 mi-
croservices related to business logic and a high level of interaction between them. The benchmark
is developed using different programming languages (Java, NodeJS, Python, Go) and databases

2https://flask.palletsprojects.com/en/3.0.x/

https://flask.palletsprojects.com/en/3.0.x/

6.12. FUTURE WORK 59

(MongoDB, MySQL). We could use their code to test our “Flow Documentation” feature, once
we extend it to other programming languages other than Python.

Let us reiterate the meaningful future directions of research, as they were introduced in this
chapter. We believe that more research should be conducted in the field of developers’ commu-
nication needs, in order to understand how developers perceive the hierarchy in a company. Do
they perceive product owners, project managers, or otherwise other middle management employ-
ees as being more knowledgeable about a certain feature of their codebase, or do they trust fellow
developers more? Does code knowledge relate to product or conceptual knowledge?

This also creates the question of how do developers approach code modification tasks. Are
traditional debugging and lookup debugging the only methods developers employ? How can we
encourage developers who use these methods to combine their regular workflow with other tools
and extensions in the most effective way?

Additionally, we should explore how developers think about their code. Is it a conceptual
process, where they think in terms of concepts, such as “Documents” and “Accounting infor-
mation”, or do they interpret code based on location and context, such as the folder and file
hierarchy? Drawing from the experience of P2, we can ask: “Does the size of a codebase influence
the way in which developers perform code modification tasks?”

These questions can further lead the development of understanding how developers think
and interact with large and small codebases, creating new opportunities for effective tools and
extensions.

Conclusion

In this study, we have explored the issue of onboarding new developers in a large-scale company,
with many independently moving projects or microservices. We have split the issue into two
smaller issues, which are interlinked, but can be viewed separately as well. In Chapter 2, we
performed a literature study to obtain information about the fields of knowledge management
and transfer, onboarding new employees in large companies, global software development, code
comprehension, dependency visualisation and microservice architectures.

Based on our findings, we create several hypotheses and follow the design science research
methodology in order to develop conceptual and code prototypes to further explore the realm
of possible solutions. In Chapter 4 we describe an ideal tool which will solve the identified
problems, by helping developers understand the microservice interaction and their code base
more quickly, and get in code maintainers in their company. In Chapter 5, we describe the
technical implementation of our VSCode extension, detailing each of the individual features:
“Flow Documentation” and “Maintainer Lookup”.

In Chapter 6, we organise a preliminary survey with software developers, then follow it
with 4 qualitative interviews to gain a deeper understanding of the problems developers face,
as well as their solutions to the problems. Following the evaluation, within the context of
software comprehension, we conclude that understanding large codebases still poses problems
to software developers. As codebases become more complex and interlinked, the tools that are
available within and outside the developer’s IDE become more limited. We identify that certain
developers approach codebase exploration in different ways. Some view code through a factual
lens, following the folders, files, and line of code hierarchy, and employ traditional debugging
techniques, while others view code through a conceptual lens, following a hierarchy of concepts,
and employ lookup techniques. We try to fix their issues with “FlowDocs” and achieve moderate
success with developers who employ lookup techniques when modifying code. Similarly, in the
context of developer communication, we find that developers use a combination of tools and
in-person communication to find information in their company. We notice that this difference
arises from the way in which companies either enforce rules and hierarchy, or leave developers
to use their own means of communication. We aim to aid developers in following their preferred
means of communication, by providing additional contact information of maintainers. In this
context, “FlowDocs” was perceived positively and improved the experience of our interviewees
when looking for a code responsible. We believe more research should be conducted in the field
of developer comprehension of codebases in general and whether that is impacted by the way in
which they perceive the code structure.

60

Bibliography

[1] Işıl Karabey Aksakalli et al. “Deployment and Communication Patterns in Microservice
Architectures: A Systematic Literature Review”. In: Journal of Systems and Software 180.1
(Oct. 2021), p. 111014.

[2] Linda Argote et al. “Knowledge transfer in Organizations: Learning from the Experience
of Others”. In: Organizational Behavior and Human Decision Processes 82.1 (May 2000),
pp. 1–8.

[3] Stefanie Betz, Andreas Oberweis, and Rolf Stephan. “Knowledge Transfer in IT Offshore
Outsourcing Projects: An Analysis of the Current State and Best Practices”. In: 2010
5th IEEE International Conference on Global Software Engineering. Princeton, USA, Aug.
2010, pp. 330–335.

[4] Justus Bogner, Pawel Wójcik, and Olaf Zimmermann. “How Do Microservice API Patterns
Impact Understandability? A Controlled Experiment”. In: arXiv preprint arXiv:2402.13696
(2024).

[5] Michel Buffa. “Intranet Wikis”. In: Proceedings of the IntraWebs Workshop 2006 at the
15th International World Wide Web Conference. Edinburgh, Scotland, May 2006, pp. 811–
817.

[6] Vincent Bushong et al. “Using Static Analysis to Address Microservice Architecture Re-
construction”. In: 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). Melbourne, Australia, Nov. 2021, pp. 1199–1201.

[7] Tomas Cerny et al. “From Static Code Analysis to Visual Models of Microservice Archi-
tecture”. In: Cluster Computing 27.3 (Apr. 2024), pp. 1–26.

[8] Donny T Daniel et al. “Polyptychon: A Hierarchically-Constrained Classified Dependen-
cies Visualization”. In: 2014 Second IEEE Working Conference on Software Visualization.
Victoria, Canada, Sept. 2014, pp. 83–86.

[9] Martin Dias et al. “Evaluating a Visual Approach for Understanding JavaScript Source
Code”. In: ICPC 2020: Proceedings of the 28th International Conference on Program Com-
prehension. Seoul, Republic of Korea, July 2020, pp. 128–138.

[10] Dussan Freire-Pozo et al. “DGT-AR: Visualizing Code Dependencies in AR”. In: 2023
IEEE Working Conference on Software Visualization (VISSOFT). Bogotá, Colombia, Oct.
2023, pp. 95–99.

[11] Michel Grundstein. “From Capitalizing on Company Knowledge to Knowledge Manage-
ment”. In: International Conference on Systems Thinking in Management 2.1 (Apr. 2000),
pp. 42–53.

61

62 BIBLIOGRAPHY

[12] Denis Helic, Hermann Maurer, and Nick Scerbakov. “Knowledge Transfer Processes in a
Modern WBT System”. In: Journal of Network and Computer Applications 27.3 (Aug.
2004), pp. 163–190.

[13] Kenneth B Kahn. “Interdepartmental Integration: A Definition with Implications for Prod-
uct Development Performance”. In: Journal of Product Innovation Management 13.2 (Oct.
1996), pp. 137–151.

[14] Tatiana von Landesberger et al. “Visual Analysis of Large Graphs.” In: Eurographics (State
of the Art Reports). Norrköping, Sweden, May 2010, pp. 37–60.

[15] Mircea Lungu et al. “The Small Project Observatory: Visualizing Software Ecosystems”.
In: Science of Computer Programming 75.4 (Apr. 2010), pp. 264–275.

[16] Kwan-Liu Ma and Chris W Muelder. “Large-scale Graph Visualization and Analytics”. In:
Computer 46.7 (July 2013), pp. 39–46.

[17] Alfred H Mazorodze and Sheryl Buckley. “A Review of Knowledge Transfer Tools in
Knowledge-Intensive Organisations”. In: South African Journal of Information Manage-
ment 22.1 (Oct. 2020), pp. 1–6.

[18] Leonel Merino et al. “A Systematic Literature Review of Software Visualization Evalua-
tion”. In: Journal of Systems and Software 144 (Oct. 2018), pp. 165–180.

[19] Srinivas Nidhra et al. “Knowledge Transfer Challenges and Mitigation Strategies in Global
Software Development-A Systematic Literature Review and Industrial Validation”. In: In-
ternational Journal of Information Management 33.2 (Apr. 2013), pp. 333–355.

[20] Ikujirō Nonaka and Hirotaka Takeuchi. “The Knowledge-Creating Company”. In: Harvard
Business Review 85.7/8 (July 2007), p. 162.

[21] Ikujirō Nonaka and Hirotaka Takeuchi. The Knowledge-Creating Company: How Japanese
Companies Create the Dynamics of Innovation. Oxford University Press, Sept. 1995.

[22] Ken Peffers et al. “A Design Science Research Methodology for Information Systems Re-
search”. In: Journal of Management Information Systems 24.3 (Jan. 2007), pp. 45–77.

[23] Michael Polanyi. The Tacit Dimension. The University of Chicago Press, May 2009.

[24] Helen C. Purchase. “Effective Information Visualisation: A Study of Graph Drawing Aes-
thetics and Algorithms”. In: Interacting with Computers 13.2 (Dec. 2000), pp. 147–162.

[25] Georg Simhandl, Philipp Paulweber, and Uwe Zdun. “Developer’s Cognitive Effort Main-
taining Monoliths vs. Microservices-An Eye-Tracking Study”. In: 2023 30th Asia-Pacific
Software Engineering Conference (APSEC). Los Alamitos, USA, Dec. 2023, pp. 339–348.

[26] Igor Steinmacher et al. “Social Barriers Faced by Newcomers Placing their First Contri-
bution in Open Source Software Projects”. In: Proceedings of the 18th ACM conference
on Computer supported cooperative work & social computing. New York, USA, Feb. 2015,
pp. 1379–1392.

[27] Adel Taweel et al. “Communication, Knowledge and Co-ordination Management in Glob-
ally Distributed Software Development: Informed by a Scientific Software Engineering Case
Study”. In: 2009 Fourth IEEE International Conference on Global Software Engineering.
Limerick, Ireland, Aug. 2009, pp. 370–375.

[28] Alexandru Telea et al. “Extraction and Visualization of Call Dependencies for Large
C/C++ Code Bases: A Comparative Study”. In: 2009 5th IEEE International Workshop
on Visualizing Software for Understanding and Analysis. Edmonton, Canada, Sept. 2009,
pp. 81–88.

BIBLIOGRAPHY 63

[29] Xin Xia et al. “Measuring Program Comprehension: A Large-scale Field Study with Pro-
fessionals”. In: IEEE Transactions on Software Engineering 44.10 (July 2017), pp. 951–
976.

[30] He Zhang et al. “Microservice Architecture in Reality: An Industrial Inquiry”. In: 2019
IEEE International Conference on Software Architecture (ICSA). Hamburg, Germany,
Mar. 2019, pp. 51–60.

[31] Xiang Zhou et al. “Benchmarking Microservice Systems for Software Engineering Re-
search”. In: Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings. New York, USA, May 2018, pp. 323–324.

	Abstract
	Introduction
	Problem Statement
	Contribution

	Related Work
	Maintainer Lookup
	Knowledge Management and Transfer
	Onboarding of Employees in Large Companies
	Interdepartmental Integration and Global Software Development

	Flow Documentation
	Code Comprehension
	Microservice Architecture
	Source Code Visualisation
	Large Graph Visualisation
	Dependency Visualisation and Code Exploration
	Dependency Visualisation in a Microservice Architecture

	Literature Review Contribution
	Research Conclusion

	Prototyping
	Methodology
	Research Questions
	Design Science Research Methodology

	Iterations
	Prototyping Conclusions

	Solution
	Concepts
	Onboarding Use Case
	Microservice Architecture Use Case
	FlowDocs Walkthrough
	Extension Details
	Additional Remarks

	Implementation
	Overview
	The VSCode API
	VSCode Manifest
	Flow Documentation Feature
	Extracting Routes, Functions and Flow Markers
	Recursive AST Code Retriever
	Route Identification and Extraction
	AST to Graph Conversion
	Graph Interpretation and Display

	Maintainer Lookup Feature
	The Maintainer-to-Code Map
	The Maintainer Viewer

	Evaluation
	Experiment Design
	Participants
	Preliminary Form
	Interview Design
	Methodology
	Threats to Validity
	Preliminary Form Results
	Qualitative Interviews
	Experiment Results Discussion
	Research Questions Answers
	Limitations
	Future Work

	Conclusion

