
Graduation thesis submitted in partial ful�llment of the requirements for the degree of

Master of Science in Applied Sciences and Engineering: Computer Science

Mashup Tool for Distributed Physical-Digital

User Interfaces

TIM LEENAERS

Academic year 2017 - 2018

Promoter: Prof. Dr. Beat Signer

Advisor: Audrey Sanctorum
Faculty of Science and Bioengineering

c©Vrije Universiteit Brussel, all rights reserved.

Afstudeer eindwerk ingediend in gedeeltelijke vervulling van de eisen

voor het behalen van de graad

Master of Science in de Ingenieurswetenschappen: Computerwetenschappen

Mashup Tool for Distributed Physical-Digital

User Interfaces

TIM LEENAERS

Academiejaar 2017-2018

Promotor: Prof. Dr. Beat Signer

Advisor: Audrey Sanctorum
Faculteit Wetenschappen en Bio-

ingenieurswetenschappen

c©Vrije Universiteit Brussel, all rights reserved.

i

Abstract

Over the years, the amount of data in our lives is increased drastically. Not
only the Web, but also devices around us overwhelm us with data. To man-
age this �ood of data, mashups have been created over the years. While �rst
generation mashups were focussed on the Web, new technologies like Dis-
tributed User Interfaces (DUIs) and the Internet of Things (IoT) o�ered new
opportunities for a new generation of mashup tools. Mashup tools for DUIs
and IoT have been developed over the years, but none of them integrates
both.

This thesis o�ers a solution, namely the creation of a mashup tool for
Distributed Physical-Digital User Interfaces. Related work in the �elds of
mashup tools, DUIs and IoT is investigated. Afterwards a general solution
is de�ned following an iterative design process. Web technologies are used
to implement the �nal product. Flowcharts are being used to construct the
mashups.

With the designed mashup tool, users are able to connect Web of Things
(WoT) devices and several display devices (phone, tablets, computers) to the
system and design Physical-Digital User Interfaces. A mashup which allows
di�erent display devices to control a WoT device, or get data from other
physical devices are example applications.

A user study with unexperienced programmers showed that the system
is easy to use and helped them create advanced applications. In addition,
some limitations are described and possible solutions to overcome them in
the future are given. Last but not least, some extensions that can be made
to the system in the future are discussed.

ii

Acknowledgements

First of all, I would like to thank both the promotor and the advisor of
this thesis: Prof. Dr. Beat Signer and Audrey Sanctorum. Without their
guidance and support, things would be a lot more di�cult. Their feedback,
together with those of fellow students during progress presentations, was of
a great help for improving this thesis.

Next, I would like to thank all the other people that tested the devel-
oped program during multiple stages of the process. This tool was made for
unexperienced developers, so their feedback and advice was of great value.

Furthermore, a word of thanks and appreciation for all the teachers I had
during my life as a student, going from pre-school to high school, from the
university college to this university. In the end, each of them had a small or
big role in becoming who I am.

Finally, a big thank you to my parents, my family, all of my friends and
my dog. If school was hard sometimes, coming home, meeting up or going
for a walk were the ideal ways to keep going.

Contents

1 Introduction

2 Related Work

2.1 Mashup Tools . 5
2.2 Distributed User Interfaces . 10
2.3 The Internet of Things . 13

2.3.1 The Web of Things . 14
2.4 Mashup Tools Integrating DUIs and IoT 16

2.4.1 Internet of Things and Distributed User Interfaces . . . 16
2.4.2 Mashup Tools for Distributed User Interfaces 17
2.4.3 Mashup Tools for IoT and WoT 21
2.4.4 Conclusion . 23

3 Solution

3.1 General Description . 26
3.2 Guidelines to Create Web Things 27
3.3 Guidelines to Create a DUI 28
3.4 Personas . 28
3.5 Scenario . 29
3.6 De�ne Users & Usability Requirements 32

3.6.1 User Class Descriptions 32
3.6.2 Usability Requirements 33

3.7 User Task Analysis . 37
3.7.1 Admin Tool . 37
3.7.2 Hasys . 47

3.8 User Object Modeling . 48
3.8.1 Users and Groups . 49
3.8.2 Applications . 50
3.8.3 Mashups . 51
3.8.4 Elements . 52

3.9 Style Guide . 53
3.9.1 Standards for Window Interaction 53

CONTENTS iv

3.9.2 Standard Window Layout 54
3.9.3 Standards for Menus and Push Buttons 55
3.9.4 Standards for Use of Keyboard Keys 55
3.9.5 Standard Use of Colour, Type and Fonts 55
3.9.6 Standards for Use of Tables 56
3.9.7 Standards for Use of Data Types 57

3.10 Prototyping . 57

4 Implementation

4.1 Choosing for the Web . 59
4.1.1 Designing Applications 60
4.1.2 RESTFUL Web Service 61
4.1.3 Calling the API . 64
4.1.4 Real-time Updates . 65

4.2 Creating Mashups . 68
4.2.1 Dragging Elements to the Canvas 69
4.2.2 Connecting Elements 71
4.2.3 Constructing Functions 72

4.3 User App . 75
4.3.1 Homescreen . 75
4.3.2 Engine.js: Drawing and Managing the Application . . . 75
4.3.3 Interpreter.js: Handling Functions 76

5 User Study

5.1 Setting up the Experiment . 81
5.1.1 Participants . 81
5.1.2 Setup . 82
5.1.3 Training . 82

5.2 Creating the Mashup . 82
5.3 Questionnaire Results . 83

5.3.1 Quantitative Data Analysis 84
5.3.2 Qualitative Data Analysis 85

6 Future Work

7 Conclusion

A Appendix

1
Introduction

Data is everywhere. Since the introduction of the Web, the amount of data
is increased drastically. A lot of personal data is �oating around, websites
overwhelm us with articles, and since the introduction of the Internet of
Things it is possible for physical things to share data and to be controlled
over the Web. For a person, it becomes hard to manage all these fragmented
data. Luckily, solutions have been proposed during the years.

As the Web 2.0 was introduced new functionalities became possible [55].
Third parties could be accessed by an API and data could be extracted.
Users were then able to select data from multiple resources and build their
own application with it. This technique is done by the use of mashups [36].
Early examples of mashups are Yahoo Pipes! [58], Microsoft Pop�y [40] and
Intel MashMaker [16]. All of them could scrape data from the internet and
make new applications with it. With Microsoft Pop�y [40] for example, it
became possible to get all the photos of a Flickr account and show them in
a carousel. With Yahoo Pipes!, users were able to get data from multiple
online newspapers and create their own news site with it. Nonetheless, most
of these mashups tools are not available anymore, or the development of them
was stopped [7, 15, 64].

However, technology kept evolving and new opportunities for a new gen-
eration of mashup tools arose. One of them is the introduction of Distributed
User Interfaces [71]. With DUIs, users are able to distribute their work over

2

multiple screens, to share it to others, or work together in a group with
multiple devices. This cross-device interaction became the subject of a new
generation mashup tools that helped developers create distributed interfaces.
Examples of such mashup tools are MultiMasher [31], Panelrama [76], XD-
Studio [52], Weave [8] and DemoScript [9].

Figure 1.1: Mashup tools for DUIs and IoT exist, but limited research is
done to develop a mashup tool for digital-physical user interfaces

Together with Distributed User Interfaces, the Internet of Things is a
remarkable new technology. With IoT, physical devices become digitally
available. Sensor data can be requested for over the Internet, lights can be
turned on and o� with mobile phones. New opportunities for di�erent �elds
emerged [1]. Over the years, some mashup tools are developed in order to
create applications that are able to control smart things. Open Sen.se [56],
Node-RED1, WoTKit [5] and glue.things [35] are some examples.

Until now, limited research is done on how to integrate DUIs and IoT/-
WoT into a single mashup tool. The goal of this thesis will be to develop
a mashup tool where it is possible to combine these two technologies. With
this tool, users should be able to create, for example, an application where
a smartwatch can be used to control a WoT lightbulb, a smartphone can
change a map that is displayed on a tv screen, while sensor data shown on a
tablet will be updated based on the new location of the map. Meaning the
mashup tool should have the possibility to distribute data across multiple
devices as well include information retrieved from smart things. In addition,
these smart things should be controllable.

1https://node-red.org/

3 CHAPTER 1. Introduction

The goal is to make the tool as simple as possible where the end user
should not know any programming language in order to use the tool. In
this way, unexperienced developers should be able to create an advanced
application, only by dragging and clicking around in the mashup tool.

In order to start with the development of this tool, existing work is inves-
tigated. First, related work in mashup tools, Distributed User Interfaces and
the Internet of Thing (and Web of Things) is done separately. Next, research
to overlapping �elds is done. Mashup tools for DUIs will be examined, as well
as mashup tools for IoT and WoT applications. Likewise, the combination
of DUIs and the IoT and WoT is studied.

Based on the related work, a general solution will be proposed. Important
guidelines from the literature reviews will be taken in mind and integrated
in the �nal solution. Personas and a scenario are de�ned in order to test
the program afterwards. A User Interface Design Process is performed be-
fore actually creating the application. User Class Descriptions, Usability
Requirements, Tasks Modeling, User Object Modeling, a Style Guide and
�nally Prototyping are part of this process.

Done testing the prototypes, the �nal mashup tool is implemented. The
Implementation chapter will provide all the technical details about how the
tool is developed. A User Study is performed in order to evaluate the newly
constructed mashup tool. Finally, Future Work is discussed and a Conclusion
about this thesis given in the �nal chapter of this thesis.

4

2
Related Work

In this chapter, the domain of mashup tools, Distributed User Interfaces
(DUIs) and the Internet of Things (IoT) will be investigated. First, all the
di�erent topics are considered separately. Afterwards, work in overlapping
�elds is discussed.

2.1 Mashup Tools

The term `mashup' originally comes from the music scene. It is derived from
mixing songs to create a new song, regardless of the sources [28]. Nowadays,
mashups are present in multiple domains like digital, video and web. In the
paper �Elucidating the Mashup Hype: De�nition, Challenges, Methodical
Guide and Tools for Mashups� [36], the authors propose the following def-
inition for the term mashup: �a mashup is a web-based application that is
created by combining and processing on-line third party resources, that con-
tribute with data, presentation or functionality�.

The major breakthrough for mashups occurred when the Web 2.0 was
introduced and new functionalities became possible [54]. Computers could
now get dynamic access to data by using AJAX, APIs are used in order to
share data. The web is now interactive, where it is possible for users to not
only download, but also upload content. A lot of data is available and can be
used by multiple parties [49]. This enabled new ways of creating mashups,

Mashup Tools 6

with the consequence that a lot of them were created since the introduction
of the term Web 2.0 back in 2004 [2]. A good example is housingmaps.com1,
which was the very �rst Google Maps mashup. On this site, houses that are
on Craigslist are shown on Google Maps. It is said to be the �rst Web 2.0
application [62]. An example of housingmaps is shown in Figure 2.1. At the
top of the page, users can choose what kind of accommodation they want to
see (e.g. houses for rent of for sale). Next, some �lters can be applied. Users
can select a city they want to live in, together with a price range. Once these
�lters are applied, the results are shown in a list on the right side of the page
and on a map on the left side.

Figure 2.1: Example of housingsmaps.com: Houses on the right that match
the �lters are marked on the map

Murthy [48] de�nes the process of creating a mashup as follows: �rst,
we obtain data from di�erent sources, then combine them in a new applica-
tion. We do this by a process that consists of three parts: data extraction,
data matching (the transformation of data in the expected format for an
endpoint) and data integration. With the introduction of these techniques,
new challenges arose. Multiple unique mashups can be made, and it is not
feasible to only let expert developers create those mashups. Together with
these experienced users, an average Internet user should be able to create
a mashup. But for them it may be hard to just create the desired mashup
at once. Creating mashups namely requires the knowledge of programming
languages like PHP, JavaScript and HTML [79]. Maybe, it would be better
to serve a set of ready services to a user (a toolkit) with which the user can
experiment and create their own content. It might be challenging to develop
such a toolkit, but it the end, it can pay o� [10]. This is an example of a

1http://www.housingmaps.com/

7 CHAPTER 2. Related Work

user-driven product evaluation where users get a set of tools and build prod-
ucts on their own [67]. In the past years, multiple of those mashup tools were
developed in order to help users construct their own mashups [61]. One ex-
ample of a mashup tool is Yahoo! Pipes [58]. The author of the book `Yahoo!
Pipes' describes that the Internet is our new database, and we need a tool to
merge, sort, search and �lter the data that is available on the web. Yahoo!
Pipes focuses mainly on news feeds and lets their users create custom feeds.
There are more than 24 modules that will help the user create his new web
application. The user is able to just drag and drop some feeds on a canvas
and combine them with some connectors. Users are able to save their pipes
and share them with other users. An example of the interface can be found in
Figure 2.2. Unfortunately, Yahoo stopped the development of Yahoo! Pipes
in 2015 [64]. In the early years, a disadvantage of Yahoo! Pipes was the lack
of presenting and understanding the RDF format. To overcome this, DERI
Pipes [38] was created. DERI Pipes is built with Yahoo Pipes! in mind,
but is able to understand RDF and output data in the RDF format. They
call themselves a Semantic Web Pages engine (SWP) and enable the user to
create semantically-enhanced mashups.

Figure 2.2: The Yahoo Pipes! interface

A drawback of Yahoo! Pipes and DERI Pipes is the absence of a visual
representation of output data. The user is only able to view their results in
plain text format. Mashmaker [16] is a mashup tool developed by Intel that
allows users to visualise the collected data. Like the previous tools discussed,
the main goal of Mashmaker is to allow non-expert users to easily create their
own mashups. An example application can be the following: when a user

Mashup Tools 8

wants to buy a house, they can add a housing website to Mashmaker. Once
this is done, Mashmaker will create a data tree. When the user then clicks on
a node (i.e. a house), Mashmaker will suggest widgets to apply to the node
(e.g. look for shops nearby this house). These widgets can be edited by the
users if they want to (e.g. specifying that `near' means `1 kilometer'). The
disadvantage of Intel Mashmaker is that it is only possible to visualise data,
and not to store the data in a XML �le for other usage. Just like Yahoo
Pipes!, Mashmaker is not available on the Internet anymore [15].

Microsoft Pop�y [40] is a mashup tool that combines the best of both
worlds and makes it possible for the user to visualise their results, but they
also store output data in text formats (e.g. XML). It is said that the end user
does not need any skill of programming languages to use Microsoft Pop�y,
but does need a little bit understanding of data formats. Blocks need to
be connected in order to build a successful web application. An example
application can be to select all pictures of a Flickr pro�le and show them in
a carousel (see Figure 2.3). In this way it di�ers from the previous tools. A
common point is the ability to store the created web application online so
other users are able to reuse the created program and, if they want, edit it
for their needs. Unfortunately, also Microsoft Pop�y does not exist anymore
these days [7].

Figure 2.3: Microsoft Pop�y: easily combine a Flickr account and an image
scraper to show images in a carousel

Depending on the proposed classi�cation of mashups by the authors of
the paper Elucidating the Mashup Hype: De�nition, Challenges, Methodical

9 CHAPTER 2. Related Work

System Main features Type
Yahoo!
Pipes [58]

- Create mashups from news feeds
- Output during design time
- Control features like loop, union, �lter

�ow

Intel Mash-
Maker [16]

- Helpful widgets to �lter results
- Visual representation of output
- Suggests mashups to users

�ow

Microsoft
Pop�y [40]

- Create mashups from di�erent services
- Visual and textual representation of output
- Share created mashup with other users

�ow

Dapper [21] - Highlight and extract text from any web page
- Create API based on any website
- Share data with other users

extract

Marmite [74] - Combine existing web content and service
- Visual and textual representation of output
- Template data-�ows available

extract

Table 2.1: Overview of well-known mashup tools

Guide and Tools for Mashups [36], the tools that currently have been dis-
cussed are �ow mashups. Here, users customise the resource �ow of a web
page by combining multiple resources from di�erent sources. Afterwards,
these resources are transformed and integrated in the mashup application.
The other kind of mashups the authors de�ne, are the extraction mashups.
These mashups are data wrappers that collect and analyze resources from
di�erent sources and merge them in one content page. As an example they
give Dapper [21], a mashup tool that (just like the others) is not in use
anymore. With Dapper, users were able to highlight content of a website
that they wanted to extract. This data could be outputted in the desired
format and shared with other users afterwards. Dapper lets users create an
API based on any website. When creating Marmite [74], Wong and Hong
had a look at Dapper and discovered that it is more a tool for programmers
who can make use of the output Dapper produces: users had to be able to
transform the generated XML �le in a visual representation. With Marmite,
users can add multiple steps and choose to see the result in a spreadsheet
format, to visualise the results on a map, to directly insert in a database, or
to make a combination of two or more. The interface of Marmite exists of 3
columns. In the �rst column, a number of operations are listed. Users can
drag one or more operations to the second column and combine them with
pipes to create a data �ow. The operations can extract and process data

Distributed User Interfaces 10

from web pages. Output results are shown in the third column in the chosen
format(s). If multiple formats are chosen, Marmite will generate a list box in
this third column where the user can choose which format he wants to see.
For example, the user can create a data �ow where the results �rst will be
outputted in a spreadsheet format, and afterwards will be shown on a map.
In the output column, a list box with options `spreadsheet' and `map' will be
generated in order to choose the format in which the results will be shown.

As a conclusion of this part, we can say that the �rst generation mashup
tools are not that successful anymore given the fact that a lot of products
are discontinued. However, new technologies were introduced, together with
new possibilities to create next generation mashups. In Table 2.1, an overview
of some mashup tools is given. In the following sections, two of these new
technologies (Distributed User Interfaces and the Internet of Things) are
discussed. Afterwards, some examples of mashup tools that were created to
support the development of mashing up DUI and IoT applications are given.

2.2 Distributed User Interfaces

Distributed User Interfaces (DUIs) are user interfaces that try to surpass the
classic user interfaces that only can be manipulated by one user at the time
on one screen. They enable the users to distribute a UI element on their
screen to one or many other screens at design and/or runtime [71]. A new
environment is created when multiple displays and devices are connected to
each other. Key factors of such a new system are the scale (that depends
on the biggest device in the environment) and the amount of individual pos-
sibilities for users [66]. The creation of DUIs gained interest because of a
cost reduction of digital displays and can nowadays be found in indoor and
outdoor environments [19]. The introduction of new communication tech-
nologies like web services gave the opportunity to fully utilize the potential
of interconnected mobile devices to create a distributed interaction space [41].

To come up with a general de�nition of a Distributed User Interface,
Vanderdonckt considers the de�nition of distributed computing, which is
�a distributed system that consists of multiple autonomous computers that
communicate through a computer network � [69]. He took this de�nition as a
basis for the de�nition of a UI distribution, which �concerns the repartition of
one or many elements from one or many user interfaces in order to support
one or many users to carry out one or many tasks on one or many domains in
one or many contexts, each context of use consisting of users, platforms and
environments�. Distributed User Interfaces thus allow for a UI to be divided
over a set of devices and displays. They take advantage of these multiple

11 CHAPTER 2. Related Work

devices and displays instead of relying on just one of them [3]. Multiple
forms of distributed interfaces exist and de�ne a set of characteristics for
these DUIs [45]. The following list gives an overview of di�erent DUIs and
their characteristics that have been investigated by other researchers:

• Multiple monitors on the same computing platform can be used by one
user. In their paper, Bi and Balakrishnan [4] did a week-long study
and compared the use of a small monitor and the use of a bigger screen
(with more space for di�erent windows and tasks) by a user. Results
showed that users unanimously preferred the use of a large display.
They thought it was easy and less time consuming not have to switch
continuously between windows when completing a task.

• Multiple platforms, that are in sync, can be used by one user. In [32]
the authors did a study to investigate the di�erence between a single
monitor user and a multi monitor user. They did this in order to know
if new design principles should be developed for multi monitor users.
They logged the window management activity of both single and multi
monitor users. Results of the tests have shown that multi monitor users
tend to use a taskbar less and do more window interactions to switch
between windows. Di�erent windows were also longer visible to the
users as they did not have the need to close or hide them to perform
another task.

• Information belonging to di�erent users can be shared over multiple
platforms. Already in 1998, Dewan and Shen [12] developed a mul-
tiuser framework to support access control in multiuser interfaces. It
should be possible to insert data in a database and access it on another
device. The framework supported a set of protected objects like ses-
sions, windows and hierarchal active variables. It is designed to control
shared operations and add policies in a �exible way.

• Some information can be held private on the personal screen of the
user. As discussed above, not everything should be shared and some
things should only be accessible by the user speci�cally. Users have to
be able to share interaction components with other users, but this has
to require negotiation of interaction resources in a dynamic way [3].

• Information can be moved between displays on a single platform. In [43]
a virtual toolkit is proposed in order to create virtual applications in
a single user space with multiple displays available. In their example
application, they show that it has to be possible to control the lighting

Distributed User Interfaces 12

and heating (physical UIs) in a room by a computer, and share this
data with other displays in the room.

• Partitioning tasks across di�erent displays for a single user. Win-
Cuts [65] was a program where users were able to cut pieces out of
a page and load it in new, smaller windows. These smaller windows
could afterwards be distributed to other displays. Next to this, it was
also possible for multiple users to share a cut of their screen to a central
shared screen. This situation is depicted in Figure 2.4.

Figure 2.4: Users share information from their laptop by using WinCuts

A good example of a DUI where a single user can distribute multiple
UI elements, is the `Attach me, Detach me' program from Grolaux, Vander-
donckt and Van Roy [22] where it was possible for one single user to choose
on which device and display certain UI elements should be available in order
to accomplish a given interaction task in a better way. An example applica-
tion they give is the painter's palette: the user can use one screen to make a
painting, and another one to place his virtual color palette on to choose other
colors. Another example is a digital version of the game Pictionary. Multiple
smaller devices and a shared large device can be used to play the game. To
prevent cheating, the toolkit provides some distinctions between users [44].
Further, Sjolund, Larsson and Berglund [63] created a remote GUI control
on their smartphone that controls a Windows Media Player that is displayed
on their TV. Users are able to play, stop and pause music numbers with their
smartphone that are playing on TV.

Over time, mashup tools were created to help non-programmers create
DUIs. Examples of these mashup tools are given later in this chapter. Next,
the Internet of Things (IoT) will be discussed. With the introduction of IoT,
new opportunities for Distributed User Interfaces became possible [37] and
will help the world to work in a more optimal way.

13 CHAPTER 2. Related Work

2.3 The Internet of Things

The Internet of Things is a collective term for various aspects that connects
the digital world with the physical world. A whole new class of applica-
tions and services will be enabled due to new developments in information
and communication technologies [46]. The term IoT was introduced almost
20 years ago. The AutoID Labs at MIT were creating some RFID infras-
tructures at that time. In general, this is seen as the start of the Internet of
Things [1]. Since then, new technologies have come along and so the scope
IoT is far extended beyond RFID [75]. Nowadays we have phones, sensors,
NFC tags, infrared tags, etc. that will be able to interact with each other to
reach common goals [20].

IoT is characterized by the combination of physical and digital compo-
nents that let us create new business models [77]. New opportunities for
di�erent industries will arise and the competition between competitors will
change [57]. In their paper `The Internet of Things: a Survey', Atzori et
al. [1] listed some domains where they think the Internet of Things will play
a big role: transportation and logistics, assisted driving, mobile ticketing,
monitoring environmental parameters, tracking people's health, industrial
plans, smart museums and gyms, the list is endless. Figure 2.5 shows an
overview of multiple domains that will bene�t of the IoT. Now, several years
later, a lot of the proposed solutions are present in our daily lives.

However, there is one problem: the Internet of Things is more focused on
the lower layers of the networking stack and much less on how to facilitate the
development of new applications. In other words: the main attention goes to
how transmit data between di�erent actors and not how data can be collected,
processed and visualised. The reason for this is that the early IoT systems
were designed to operate in isolation, with the consequence that the IoT is a
fragmented world. A lot of protocols have been proposed in the last decade,
but none of them has made it to be the standard protocol for developing
the Internet of Things. The authors of [25] therefore proposed the Web of
Things (WoT). With WoT, known methods that are used on the Internet
like REST APIs are used to allow communication between devices. IoT uses
layers 1 to 6 from the OSI model, WoT only uses layer 7 (the application
layer). With WoT, users can create programs, integrate data and services,
deploy and maintain large systems more easily. IoT is ideal for hard-wired
solutions and are more lightweight and optimized for embedded devices. IoT
gives the everyday device an IP address and makes them interconnected with
the Internet, WoT enables the devices to speak the same language [70].

The Internet of Things 14

Figure 2.5: Interesting domains for the Internet of Things

2.3.1 The Web of Things

All things that are accessible by the Internet are called a resource. Each
resource has a unique identi�er (a URI) that is needed to be accessed by
other devices and share its state with them. All of this can be done if we put
things to REST. The main idea is to design applications which implement
their functionality completely by de�ning a set of URI-addressable resources.
HTTP is used as the access method for interaction between the resources.
The big advantage is that each thing can be accessed like a web resource.
In this way, things can be reused in di�erent contexts and applications [73].
This approach of integrating things into the Web, is described by O'Sullivan
and Igoe [53] as Physical Computing.

REST is nor a technology, nor a standard, but has an architectural style
that de�nes how to use HTTP as an application protocol. Services are based
on the HTTP protocol itself [17]. HTTP methods GET, POST, PUT and
DELETE can be used to manipulate resources [33]. With REST, smart
things can be linked together. The interaction between smart things can
almost entirely happen from a browser, a tool that most users are familiar
with and know how to use [34]. The resources can be linked and bookmarked
and the results will be directly visible in the browser [26].

In their paper `Towards the Web of Things: Web Mashups for Embedded
Devices', Guinard and Trifa [24] list two alternative methods to enable REST-

15 CHAPTER 2. Related Work

based interaction with embedded devices. In the �rst method, the device is
directly made part of the web. When more and more devices become IP-
enabled and have embedded HTTP servers, they can share their RESTful
APIs on the web and are directly integrated. The second method works
with Smart Gateways: this is an element in the middle that will function
as a bridge between a device that does not talk IP and the web. Each
gateway will have an IP address in order to communicate with the web and
understands the protocols of the di�erent devices that are connected to it.
The �rst option seems to be the more promising one for the future and will
be used during this thesis.

Linking physical objects with the web is known for several years. An early
example is the linking a physical token (like a barcode) to a webpage [72].
In this way, users are directed to that page and can see more info about
the product . Later, when new technologies were available, tiny web services
could be integrated into most devices [13]. A famous example is the Cooltown
Project of Intel where URIs and pages were associated to people, places
and things. Infrared tags in the environment could be scanned in order to
gain information [55]. The SenseWeb project is a platform that let people
share their sensory readings using web services to transmit data to a central
server [23]. However, all these approaches only have the ability to push data
because the actors are considered to be passive. The Web of Things makes
it possible to not only let actors push, but also retrieve data and to act on
it [27].

Previously mentioned authors Guinard and Trifa founded a new company,
called EVRYTHNG 2, that specialises in bringing the Internet of Things to
REST. Their believe is that every physical thing can come alive digitally in
some shape or form. In their book [25], they list some domains that will take
of advantage of the Web of Things:

• Wearables: integrating them on the web so that the data is directly ac-
cessible by other devices and applications. With all this data available
on the web, it should be much easier to develop new applications for
health, �tness or elder care. It also ensures not to have a separate app
for each of them.

• Smart homes and buildings: the problem of this domain are the many
standards and protocols that are present to connect things to a network.
With their company EVRYTHNG, they already created a smart home
with smart products of di�erent manufacturers, but they managed to
let them talk to each other by using the Web of Things.

2https://evrythng.com/

Mashup Tools Integrating DUIs and IoT 16

• Smart cities: using web standards makes it easy to share sensor data
with the public. Developers can use this real-time data and integrate
it in various applications like tra�c information on maps.

• Industry 4.0: all elements in a company can be connected due to the
WoT. Companies can easier adapt to changing environments and actors
can automatically decide how the best performance can be done, thanks
to stored data.

• Marketing 2.0: digital content can be attached to products in order to
make the product more alive. At EVRYTHNG, they worked together
with a whiskey supplier: people could order a bottle of whiskey for Fa-
ther's Day and write a special message which was then transformed to
a QR code that was placed on the bottle. Fathers could later scan this
code with their mobile phone and read the message of their children.

2.4 Mashup Tools Integrating DUIs and IoT

2.4.1 Internet of Things and Distributed User Interfaces

With the introduction of the Internet of Things and wearable devices, new
opportunities for Distributed User Interfaces arose [37]. People can use their
smartphone, laptop and smartwatch as an input device or output display to
communicate with other devices [30]. In order to allow users to fully take
advantage of all possible devices, they have to let them communicate with
each other. It is important to combine the strengths of each device to build
a multi-device ecosystem [11]. Examples of smartphones or smartwatches
acting as a remote control for a TV are well known [59]. A famous example
is Google Chromecast 3 where users can connect a small device to their TV
(see Figure 2.6), and use their smartphone or laptop to send media to it. In
addition, controlling this media (e.g. pause a video) and playing games with
your smartphone as a controller are possibilities [14].

Likewise, multiple examples in the sports industry exist. Runkeeper4 and
Strava5 are systems that keep track of people's positions and heart rates
during physical activities using the built-in sensors and trackers in a smart-
watch or smartphone. Additional functions are present to share live data
with others, who can follow the user running or riding on their own tablet
or computer. Coaches can follow if their athletes ful�ll the required training

3https://store.google.com/product/chromecast_2015
4https://www.runkeeper.com
5https://www.strava.com

17 CHAPTER 2. Related Work

program (e.g. running 5 minutes at a high heart rate, afterwards cool down
for 10 minutes at a low heart rate).

Figure 2.6: Google Chromecast (orange) connected to a TV using HDMI

Many more examples of controlling smart things with smart devices exist
in multiple domains. People are able to control the thermostat in their house
by using their computer, or another smart device that is present [60]. IoT
and DUIs are loosely coupled these days and begin to play an important role
in both people's professional and private life. However, not all people have
programming skills to create their own applications. In order to overcome
this problem, multiple mashup tools and toolkits for creating DUI and IoT
applications were developed over time.

2.4.2 Mashup Tools for Distributed User Interfaces

Several toolkits are developed in order to help programmers develop new
cross-device applications. In this sections, the following toolkits will be inves-
tigated: MultiMasher [31], Panelrama [76], XD-Studio [52], XD-Browser [51],
a framework by Frosini and Paterno [18], Tandem Browsing Toolkit [29],
Weave [8] and DemoScript [9]. An overview of these tools is given in Ta-
ble 2.2

MultiMasher [31] presents itself as a visual tool for multi-device mashups.
The goal is to build a tool to facilitate the quick and easy creation of web
content of multiple sources, without the need for programming. Devices need
to be connected to the MultiMasher server. Afterwards, the user can load
the websites they want to mashup, select UI elements of that website and dis-
tribute these to the connected devices. The main limitation of MultiMasher
occurs when interactions generate a list of updates to a database, for exam-
ple when a comment is posted on one device, the submit button is triggered
also on all the other devices. Another disadvantage is that sites that require

Mashup Tools Integrating DUIs and IoT 18

authentication like Facebook and Twitter, cannot be easily integrated in a
mashups. It is also not possible to design mashups for devices that are not
connected to the system at runtime. Finally, the �lesystem of users cannot
be used.

The Tandem Browsing Toolkit [29] is similar to MultiMasher in the
sense that multiple devices and multiple users are supported. However, like
MultiMasher, Tandem Browsing Toolkit does not have the ability to access
the �lesystem of di�erent users. It is more a tool to give the users privacy in
a situation where a shared display is used. A login screen can be shown on a
mobile screen of the user, while non-private information is shown on a public
display. The Tandem also allows for improved communication within a group
of users, which can simultaneously manipulate pages. A drawback of Multi-
Masher and Tandem Browsing Toolkit is the need for a �xed server. Frosini
and Paterno [18] developed a framework where no �xed server is needed,
distribution can be done across a dynamic set of devices using peer-to-peer
communication. Multiple user roles can be created and multiple kinds of
devices can be used. Distribution updates are processed by taking into ac-
count these roles and devices. As an example application, they present a
giant screen with a QR code that can be scanned in by tourists by their
mobile phone or tablet. Once they are connected to the program, they see a
presentation on their screens that can be manipulated by the guide.

The previous toolkits all focus on multiple users using their own screen
and sharing data to others and a central device. Panelrama [76] is a toolkit
that is created for a single user, working with multiple devices. A user can
divide a UI of an application into multiple panels. For each panel, a score
can be added to show the importance of certain device characteristics to
the usability of the panel. When used in a room with multiple devices, the
panels can be distributed to the best-�t devices for an optimal experience.
For example, a user can de�ne a video on a page as one panel and assign
to it that it is best �tted to a large screen. Afterwards, the video will be
distributed to a large screen in the room. The key advantage of Panelrama is
the use of existing web technologies to split down individual HTML elements,
but it has also a disadvantage: with this technique, it is not possible to, for
instance, split a video stream element in multiple parts and play all of these
parts on di�erent devices.

Another great advantage of Panelrama is the high control for the devel-
opers to automate UI distribution. This is something that is not available in
Weave [8]. Weave allows developers to create cross-device wearable interac-
tion by scripting. Thanks to a high-level JavaScript-based API, developers
can distribute UI output and combine sensing events and user input across

19 CHAPTER 2. Related Work

System Main features
MultiMasher [31] - Administrator role for one user

- One screen divided in zones.
- Users send UI elements to shared screen

Tandem Browsing
Toolkit [29]

- Give users privacy in certain situations
- Multi-display and multi-user applications
- Simultaneously manipulate pages in a group

Frosini and Pa-
terno [18]

- Distribution across dynamic set of users
- Di�erent roles between users
- No need for �xed server

Panelrama [76] - For single user with multiple displays
- De�ne UI elements in application
- Show UI elements to best �tted devices

Weave [8] - Emulating behavior of devices
- Visualize JavaScript programming language
- Expert programmers

XD Browser [51] - Extend existing browsers
- Parallel usage of multiple devices
- Attention to unexperienced programmers

Table 2.2: Overview of mashup tools for Distributed User Interfaces

Mashup Tools Integrating DUIs and IoT 20

mobile and wearable devices. Cross-device behaviours can easily be tested
on emulators or live devices. A drawback is the need to know a programming
language (JavaScript) and less experienced users will not be able to create
their own application. For expert developers, it is a good tool to test their
code immediately and to simulate di�erent input events. However, the de-
velopers of Weave found out that in this setting, it was di�cult to see how
the abstract application logic is executed with what devices and what kind
of exact device behavior is mapped back to the code.

With DemoScript [9] they made an extension for Weave in order to an-
swer the question how to bridge the gap between abstract programming logic
and concrete UI behaviours. DemoScript visually illustrates a step-by-step
execution of a selected portion of the entire program. It does this by gen-
erating automatically a cross-device storyboard. DemoScript analyses the
program as the developer enters it, and generates the visualization in real-
time. It can do this by understanding the underlying syntax and semantics of
a cross-device framework. Like Weave, the disadvantage is that users need to
know JavaScript in order to create applications. In Figure 2.7, a comparison
between Weave and DemoScript is given.

(a) Weave (b) DemoScript

Figure 2.7: Weave (a) shows devices on the right side where developers can
emulate actions. DemoScript (b) shows a storyboard, showing how devices
react and how they are connected to each other

XDStudio [52] is a tool that is more suitable for users with a basic knowl-
edge of web technologies. This program allows users to design for a multi-
device environment on a single device by simulating other devices and their
behavior, but also has the possibility to distribute the design process itself
over multiple devices. The goal is to support the combined use of multiple
devices for the same task and to support multiple users working on the same
application. XDStudio uses techniques that are used in MultiMasher [31]:
all parts of the DUI are continuously monitored and updated if needed. This

21 CHAPTER 2. Related Work

is done by using a event replaying mechanism that sends local DOM events
to the server, which sends the events back to all the clients involved.

Two years later, XDBrowser [51] was created with more attention to unex-
perienced programmers. This cross-device web browser was built in order to
help non-technical users to adapt single-device web interfaces for cross-device
use while viewing them in the browser. In their paper, they investigate how
existing web browsers can be extended to support parallel usage of multiple
devices. A drawback of the system is the ability to only work with pages
that are served locally or stored o�ine. Many top sites forbid iframe embed-
ding and browsers prevent cross-side scripting. A solution to overcome this
problem is to work with proxy servers. Another disadvantage is the need
to login on each device for sites that maintain a session. XDBrowser is still
in its starting phase and is not that extensive. It only works well for a few
interfaces like a mailing application and more research has to be done. The
goal of XDBrowser is to reshu�e an existing interface over multiple devices,
and less attention is given to users who want to recon�gure an interface on
their own. In 2017, a new version XDBrowser2.0 [50] with a semi-automatic
generation of cross-device interfaces was introduced.

2.4.3 Mashup Tools for IoT and WoT

With the introduction of the Internet of Things, new problems regarding
creating mashups arose. Multiple sensors and devices with an internet con-
nection (other than computers and smartphones) are all around us. It is said
that in 2017, more or less 834 billion connected �things� will be in use. That
is 31 percent more than in 2016. In total, the world will spend over 2 trillion
dollars on these devices [68]. The biggest question is how are we going to
let them work all together. One thing we should keep in mind, namely the
main characteristics of mashup tools: simplicity, usability and ease of ac-
cess [78]. Some examples like Clickscript [42], Open Sen.se [56], WotKit [5],
glue.things [35] and Node-RED6 are already in use.

Clickscript [42] is a Firefox plugin that lets the user create mashups by
combining building blocks (like websites) with operations (e.g. a loop, if-
else). A user should be able to, for example, create a program where every
10 seconds it checks the temperature (done by a sensor). If the temperature
is higher than a de�ned threshold by the user, a cooler will be turned on. All
of this can be done by combining building blocks. Clickscript is fully written
in JavaScript and can easily access REST APIs using AJAX. Likewise, Open
Sen.se [56] does similar work and uses REST APIs to connect with di�erent

6https://nodered.org/

Mashup Tools Integrating DUIs and IoT 22

devices. It retrieves sensor data using HTTP and stores it. It allows for
time scaling, averaging, summing, etc. Users can create a Sense Board where
plugins can be used in order to visualise and process data. However, Open.se
does focus more on the Internet of Everything, where Clickscript is designed
for the Web of Things.

Figure 2.8: Node-RED interface

Node-RED is designed to create the Web of Things. It is similar to
Clickscript and lets users create mashups by combining blocks. However, it
reduces the need to write code and therefore is more user friendly. Devices,
web services and software platforms are blocks that can be connected [35].
All �ows are represented in the JSON notation and can easily be shared
online. This cannot be done with Open Sen.se. An example of the interface
over Node-RED is given in Figure 2.8.

Likewise, Open.se does not allow to share inserted devices with other
on the platform itself. This is one problem that has been tackled by the
developers of WotKiT [5]. WotKit has a sensor gallery (provided by the user
himself and by the WotKit system). Users can generate and place widgets
on a dashboard where all information will be shown. Users can create new
sensor data from the ones they received on a management pipe. By means
of a combination of modules and wires, a new pipe will be created. Users
are then able to use this pipe to show data on the dashboard. A di�erence
between WotkiT and Node-RED are the �ows. The �ows on di�erent tabs
or pages are not separated in Node-RED, there is only one �ow for the entire
system [6].

Glue.things [35] is a system that is built on Node-RED. It extends
Node-RED with easy-to-use and prede�ned trigger and action nodes for de-
vices and web services to create a mashup tool that focuses more on the user

23 CHAPTER 2. Related Work

System Main features
ClickScript [42] - Connect building blocks with operations

- Easy access to RESTful APIs
Open Sen.se [56] - Collections of plug-ins to use

- Visualize and process data
Node-RED7 - Share mashups (stored in JSON format)

- Browser-based �ow editing
WotKit [5] - Prede�ned trigger and action nodes

- Publish and share device data streams
glue.things [35] - Prede�ned trigger and action nodes

- Publish and share device data streams

Table 2.3: Overview of mashup tools for IoT/WoT applications

and less on the developer. Glue.things works in the following way: �rst, users
have to register their device at the Device Manager. Then, the Composer
can be used to aggregate, manipulate and mashup device data streams in a
visual way, using a web-based �ow editor. It is this Composer that is built
on Node-RED and makes it more easy for users to combine things. The
Distribution Manager can be used to publish and share device data streams
and distribute the mashup applications to customers. It is also possible to
assign multiple users to one project and give them special roles. A summary
of all the tools can be found in Table 2.3.

2.4.4 Conclusion

Multiple mashup tools exists, as well for creating Distributing User Interfaces
(DUIs) as developing Internet of Things (IoT) applications. However, so far
no mashup solution is present to combine both DUIs and IoT. This means
that only expert developers can create distributed physical-digital applica-
tions and non-programmers are left out.

The goal is to create a mashup tool that will overcome this problem. The
tool should be easy enough for end users without technical knowledge and
therefore be less complex than the other mashup tools described, which still
expect some knowledge of a programming language in some cases.

Mashup Tools Integrating DUIs and IoT 24

3
Solution

In this chapter, a solution to create a mashup tool for Distributed Physical-
Digital User Interfaces is proposed. This solution should overcome the cur-
rent problem, namely that no mashup tool exists that integrates both Dis-
tributed User Interfaces and the Internet of Things. First, a general descrip-
tion is given on how to solve the problem. In this section, the solution is
compared with the related work discussed in the previous chapter. Some
interesting guidelines and requirements that are mentioned in those papers
and books which will be useful for this thesis will be described. Afterwards,
some personas that will use the system are de�ned. These will play an im-
portant role in the scenario: an example of how the personas could use the
system is given and will later on be used to test the system. Next, the design
approach described by Moore and Redmond-Pyle in their book Graphical
User Interface Design and Evaluation: A Practical Process [47] is followed.
User classes will be de�ned and a list of usability requirements is given. Once
the users and requirements are de�ned, a style guide can be made and an
analysis about user tasks can be done. This will be helpful to start designing
the UI and iteratively make changes to it.

General Description 26

3.1 General Description

To create a mashup tool for Physical-Digital User Interfaces, a combination
of both Distributed User Interfaces and a Web of Things application should
be made. For both topics, mashup tools are available as seen in the previous
chapter, but none integrate both. However, it will not be easy to just alter
an existing mashup tool to work for both a DUI and a WoT application.
Both have di�erent requirements and were not created with the intention to
include things (in case of DUIs) or to show things di�erently on di�erent
displays (in case of WoT).

One thing that both have in common, is the separation of user levels. In
most applications, there is an admin role (the creator of the mashup tool)
and some user roles (the ones that use the application and do not have to
know much about designing the application). Examples can be found in as
well as in solutions for mashups tools for DUIs, like MultiMasher [31], for
the Web of Things, like glue.things which is built on top of Node-RED [35].
For this thesis, a solution is proposed where there is one admin and multiple
users. The admin can setup applications on one speci�c device. This device
will act as a server and will receive all requests from di�erent users (which
will be display devices). These requests will be handled in the right way
and the correct response will be sent back. This is the same approach as
MultiMasher and the Tandem Browsing Toolkit [29], and most WoT mashup
tools. Once an application is created, the administrator should be able to
deploy it and share it with the right users.

It should be possible to distinguish multiple users. This can be done
by assigning di�erent display devices (also called users in this system) to
di�erent groups. In this way, a speci�cation is possible where application
A can only be shown on an iPad, while application B can only be used by
users that are assigned to the group `Parents'. It thus should be possible to
assign users to one ore more groups. However, it should also be possible to
add and remove users individually to a list afterwards. An example situation
can be that the groups `Parents' and `iPads' are selected for an application,
but one iPad belongs to a child. The administrator should be able to delete
this device from the participation list. Some applications require to be used
by only one user at a time. This should also be speci�ed upon the creation
time of the app. An example application can be a music player, which only
can be controlled by one user at a time.

Other requirements that came back in multiple papers were the need to
add displays, devices and sensors to the system, the use of a �owchart to
create applications, and the possibility the manage active users and applica-
tions. These requirements are explained in detail in the section `De�ne Users

27 CHAPTER 3. Solution

& Usability Requirements' later in this chapter.

3.2 Guidelines to Create Web Things

One key to make the mashup tool easy to use for the administrator is an
easy integration of Things. Thanks to the introduction of the Web of Things,
it becomes much easier to communicate between di�erent kind of physical
devices. The book of Guinard and Trifa [25] contains a lot of good examples
and guidelines to build the Web of Things. It is important that each device
provides a REST API that is very clear for the users, so they know exactly
what to do and what to get. Some of the most important guidelines given in
the book are the following:

• Use meaningful URLs. Names with semantic value can be very helpful
for the users. Do not use verbs in a URL, verbs are for HTTP methods.
Use a plural form for aggregate resources, if a thing can do multiple
actions, use `actions' in the URL, and not just `action'.

• Web Things must expose their properties in a hierarchical structure. In
this way resources can easily be discovered. In addition HTML web
pages can be generated to provide some more info about resources.
Ideally the page www.example.com/pi/sensors should be accessible in
json format and in HTML format. Using the HTML format, it is much
easier for the user to read and discover more things about the resource.
A list of all sensors can be given on this page so the user knows what
he can request for.

• Use JSON as the default representation. The Things can support as
many representations as they want, but should at least provide one
in JSON at the minimum. It should also support UTF8 encoding for
requests and responses. Object names in JSON payloads should be
named using camelCase.

• Web Things must support all the HTTP methods. GET will be used to
retrieve a resource, POST to create one, PUT to update and DELETE
to remove an existing resource. A GET must be supported on the root
URL so clients can receive information about the device.

• HTTP status codes should be implemented. The Web Thing should
answer each request with a valid HTML response like 200 if the request
was successful.

Guidelines to Create a DUI 28

3.3 Guidelines to Create a DUI

One of the main goals of a distributed user interface is to make it easier for
the user to perform tasks. With the use of multiple screens, productivity
will increase with 10 to 30 percent [71]. In this system, it will be up to the
administrator (the creator of the mashup) to show the right content on the
right devices. The mashup tool itself should provide the creator all the tools
they needs in order to perform his tasks successfully. The di�erent kind of
DUIs explained in [45] should be kept in mind. This means the following:

• One user should be able to use multiple display devices. The mashup
tool should allow the possibility to create applications that can be dis-
tributed over multiple displays. An example application can be that
the user uses his smartphone to search for a city, when afterwards all
the necessary info is shown on a tablet.

• Partitioning of tasks across di�erent displays. This is closely related to
the previous one and the same example can be used. Multiple displays
will make it easier for the user to perform certain tasks.

• Information belonging to di�erent users can be shared over multiple
displays. The mashup tool should allow users to work together to �nish
a task. As an example, the previous situation of searching for a city
can be given, but now with di�erent users owning di�erent devices.

• Information can be held private on the personal screen of the user. The
mashup tool should allow to build applications where some information
is only been shown on the screen of the user. An example application
can be that the user can scroll between a personal photo album and
select a picture to be shared to a central screen that everyone can see.

• Information can be moved between displays. This is slightly di�erent
than the �rst point. In this case, the mashup tool should allow that a
current state on a certain device of a user can be copied and placed on
another device. If the user enters a text in a �eld, he should be able
to copy the current state (including the current value of the �eld) and
show it on another device.

3.4 Personas

Some personas are described to have a look on potential users of the system.
This personas will later on play an important role in the scenario.

29 CHAPTER 3. Solution

Jacob Daniels is a 21-year old who still lives at home with his parents and
his little sister. Jacob studies Economics and has no programming experience.
However, he knows how to use a computer and has basic knowledge of popular
spreadsheet and presentation programs. He is interested in new technologies
and owns a smartwatch, smartphone, tablet and laptop. He likes to use
these smart things and is excited about new automation systems, but does
not have time to fully understand the technology behind it and create one
on his own.

Jane Daniels is the 19-year old sister of Jacob and studies Physics. Like
Jacob, Jane has basic knowledge of computer programs, but has no interest
in creating one on her own. Jane likes to travel and is looking for an easy
way to see as much info about a city as possible. Sometimes Jane can be
very lazy and refuses to stand up to turn on or o� a light. People in the 21st
century should be able to use their smart devices to do tasks like this, she
thinks. Because of her laziness, she is not the person that is gonna spend
much time on developing a system that is capable of doing so.

Ed Daniels is the 50-year old father of Jacob and Jane and works as an
accountant. He uses some specialised programs to do his job, but does not
know that much about computers. He owns some smart devices, but does
not really have a clue how to use them. If it takes more than four steps
to use a program, it is marked `di�cult' by him. Nonetheless, just like his
son Jacob, he is interested in new technologies that change the world. He is
prepared to invest in some smart things to use in the house, but does not
want to pay external people to install all these things. His kids should be
smart enough to make it work.

Rosa Daniels is the mother of the family and is a nurse. She does not have
to use a computer often at work and does not care much about technology.
She thinks it is all `too much', but uses technology as it suits her. Since all
her friends have a smartphone, she eventually also bought one. Currently she
is against a smart home, but in the end she will adapt to the new situation
and use her phone to control things.

3.5 Scenario

When all de�ned functional and non-functional requirements requirements
are met and the program is ready to be used, the users should be able to
create applications and use the system. To check if everything works well
and is clear for the users, the following scenario should be completed.

1. Jacob starts up the system for the �rst time. No one has used it before,
so Jacob has to enter a new password before entering the system. For

Scenario 30

now on, every time someone wants to use the mashup tool and manage
devices and users, the password should be given in order to enter the
system.

2. Jacob creates some groups he can later on add devices to.

3. Jacob connects a few of his devices to the system. He takes his phone
and tablet, passes the correct url and clicks on `Connect' to send a
request to the server. The administrator program pops up message
that a particular device wants to connect to the system. Jacob accepts
this device, gives it a name, and assigns it to di�erent groups.

4. Jacob is not able to use any applications yet, since none are created at
this moment. He uses the `Disconnect' button on his smartphone and
smartwatch to log o� the system.

5. Jacob adds some WoT devices to the system:

(a) A Raspberry Pi with a temperature and light sensor, and some
LEDs.

(b) A light bulb which can be controlled over wi-�.

6. Jacob creates three di�erent applications which can be used by the
users:

(a) The �rst application shows a map from Google Maps on a com-
puter. Users with a smartphone are able to change the location
and get some detailed information that is provided by Google
Maps. Jacob speci�es that only one smartphone user at a time
can use this application. Tablet users can get more detailed infor-
mation about the location (how to get there, the current weather,
things to see, ...).

(b) The second application makes it possible for all display devices
to show some sensor data from the Raspberry Pi and from pub-
lic sensors in one application. Jacob speci�es the widths of each
UI element in order to align it properly on di�erent types of dis-
plays.

(c) The third application involves only smartwatches and smartphones.
Those devices should be able to control a light bulb. The appro-
priate text should be shown on the button to turn on/o� the light
on all devices.

31 CHAPTER 3. Solution

7. Jacob is eager to test one of his programs. He takes his smartphone and
tablet with him and connects again to the system. Since both devices
were already accepted by the system in an earlier stage, they do not
have to be accepted again and just see a list of applications they can
use. On his smartphone, all three applications are listed. On his tablet,
the third application to turn on and o� the light is not available due
to the passed settings.

8. Jacob �res up application 2 on his smartphone and tablet. On both
devices he sees sensor data from the Raspberry Pi and third party
sensors. The layout of the page is di�erent on both devices, thanks to
the settings that were de�ned whilst creating the application.

9. Jane sees her brother using the app and asks for the address to connect
to the system. Jacob gives it and Jane connects to the system with her
smartphone. Jacob now has to accept this new device and assign it to
a group. When Jane gets accepted, she will not see any applications.
Jacob has to add the device to various applications it can use. He gives
the smartphone of Jane the permission to use all the applications.

10. Jane �res up the �rst application to search for some cities for her next
trip in the summer. She asks Jacob to use his tablet, who gives it
to her. On her phone she searches for `Berlin, Germany'. The tablet
shows more information about Berlin. Jacob tries to connect to the
application with his smartphone, but gets rejected. He is happy that
this happens, because he now knows his settings are working (only one
smartphone user at a time can use Application 1).

11. The battery level of Jacob's tablet is very low and he wants to charge
it. Jane has to connect her own tablet to the system if she want to
work further. She does this and clicks the `Distribute' button on top
of the page on her smartphone. After doing this, she selects her tablet.
On her brother's tablet, Application 2 will automatically be opened in
the correct state.

12. Ed and Rosa want to see what their kids are doing. Ed is immediately
interested and connects his computer to the system. After trying ev-
erything out, he gets Rosa to connect her smartphone to the system.
Both are using Application 3 and are playing around by turning the
light on and o�.

13. Jacob wants to use Application 1, but cannot enter it because Jane is
still using it with her smartphone. Jane rejects to close the application,

De�ne Users & Usability Requirements 32

so Jacob kicks her out of the session by using the administration tool.

14. Jane is very stubborn and quickly connects again to Application 1
before Jacob even has a chance. Jacob takes desperate measures and
not only kicks Jane out of the application, but also blocks from using
it again.

15. Jane is very angry now and starts annoying the others by misusing the
other applications. Jacob is tired of all this and blocks her completely
from the system.

3.6 De�ne Users & Usability Requirements

This section will be used to describe the �rst steps in the design process
described by Moore [47], namely the identi�cation of the end users of the
system. When doing this, it will become clear what the characteristics of
the di�erent users are. This will be helpful to specify usability requirements
afterwards.

3.6.1 User Class Descriptions

Two user classes will play an important role in this system: Administra-
tor and User. Administrators will create di�erent applications, which can
be used by various users (which own a display device to interact with the
applications).

Administrator

The administrator is a human who has some knowledge of designing appli-
cations, without the need of an actual programming language. Some basic
logical thinking and hints provided by the program should be enough to con-
struct a simple application. As creating an app requires more knowledge than
just using one, the minimum age to use this program will be a bit higher.
For this system, the minimum age is set at 15. The administrator has full
control (accepting and adding devices, creating an app, deleting an app, kick
users out of the system) and should therefor be trusted by all the users in
the network.

User

A user is a human who owns a display device like a smartphone, tablet or
computer. The user only has to connect to the system once by entering

33 CHAPTER 3. Solution

the ip address of the server. they can always disconnect from a system and
afterwards easily reconnect without entering the ip address again. The use
of the applications should be very simple and therefor even a beginner is able
to use the program. The minimum age for using the di�erent applications
of the system can be set to 12. At this age they should be old enough to
not just play around with applications that, for example, can turn on and
o� lights. However, it is always possible for the administrator to block some
applications for speci�c users.

3.6.2 Usability Requirements

Specifying some usability requirements will be of a great help to evaluate the
program later on. It will also re�ect the usability early in the development
and provides concrete objects to be ful�lled. A division between functional
requirements (what the system should do) and non-functional requirements
(how the system should do it) is made. At the end of this section, some
detailed information of certain requirements is given.

Functional Requirements

1. The product should only give access to authorised administrators.

2. The product can only be used by users/groups/devices the administra-
tor granted access to.

3. The product should allow the administrator to manage things and dis-
play devices (add, delete, update).

4. The product should provide an overview of all things and display de-
vices.

5. The product should allow the administrator to create, update and
delete applications.

6. The product should allow the administrator to accept and deny devices
that want to connect.

7. The product should provide a live overview of all connected display
devices.

8. The product should provide a live overview of all applications in use.

9. The product should allow the administrator to kick display devices out
of a session.

De�ne Users & Usability Requirements 34

10. The product should provide an overview of all applications that can be
used by the user.

11. The product should allow the users to disconnect from it.

12. The product should allow the users to distribute their current state to
another device.

13. The product should allow the users to close an application.

Non-Functional Requirements

1. The product should give user feedback when performing actions.

2. The product should show a clear message in case of errors.

3. The product should show hints to the administrators to help them
create applications.

4. The product should be easy to use, both for administrators and users.

5. It should not take longer than 1 minute to login to the administrator
panel.

6. It should not take longer than 1 minute to connect a display device to
the system.

7. It should not take longer than 2 minutes to connect a thing to the
system.

8. It should not take longer than 2 clicks to access an application.

9. It should not take longer than 2 minutes to enter the basic properties
of an application (name, devices, users).

10. It should take a training of maximum 10 minutes to know how to create
a mashup.

Easy to Use Mashup Tool

When groups and displays are selected to participate in a certain application,
the administrator can start developing the program. In order to make this
mashup tool accessible for non experienced programmers, the tool should
be as simple as possible with a minimum need for programming. This can
be achieved by selecting and connecting di�erent UI controls to perform the

35 CHAPTER 3. Solution

desired actions. For the more experienced users, some special attributes can
be provided (e.g. a function UI component where the administrator can edit
data the way he likes). Using �ow charts is a popular way to develop mashups
in as well the �rst generation mashup tools like Yahoo! Pipes [58] and Mi-
crosoft Pop�y [40], as mashup tools for the Web of Things (Open Sen.se [56],
glue.things [35]).

Possibility to Manage Displays, Devices and Sensors

The key is to work with multiple WoT devices and displays. The administra-
tor should be able to add both of them. For displays (phones, smartwatches,
laptops, ...), the users should be able to connect to the system by pressing a
button on their device, in case they are not connected yet. Afterwards, the
administrator can grant access to the users and assign them to one ore more
groups if desired. Next, the list of applications is loaded on the screen of the
users, who can see all applications they have access to. Applications that are
not accessible for the user, should not be shown on the homescreen. Some
extensions are possible, for example, the mashup tool can give the adminis-
trator the power to grant access for a certain period (an hour, for a week,
forever, ...).

Next to display devices, other devices (like a Raspberry Pi which can
control things, a lightbulb with wi-� access, ...) should be able to be con-
nected to the mashup tool. These could be devices in the local network, or
somewhere else on the Internet. All of them have their own URL, which
can be used by the administrator to add them to the system. At all time,
the administrator should be able to delete a display or WoT device from the
di�erent lists.

Using Flowcharts to Create Mashups

With �owcharts, applications can easily be created by just dragging an drop-
ping attributes to a canvas. Afterwards, it is possible to connect di�erent
elements to each other, which results in one big application. The adminis-
trator should be able to name the elements and give them a unique id. In
this way, it becomes possible to `catch' a certain element and perform actions
with it (e.g. when a user clicks on `ButtonA', do action `Light Out'). Situa-
tions will exists where two attributes cannot be linked to each other, because
it would result in an useless action. To help the administrator discover such
actions, the mashup tool should give hints. This can be done by disabling
certain attributes when an element on the canvas is selected, or to disable
input and/or output ports of an element that is already on the canvas when

De�ne Users & Usability Requirements 36

another one is dragged towards it.
A challenge for the �owchart will be the creation of di�erent user inter-

faces: how to align UI elements on a mobile phone? How to show them on a
tv screen? One option would be to give the administrators as much freedom
as possible and let them create a UI for each display. Another option is to
de�ne some rules in advance, and to let the program itself create the design
of an application. Scores can be added to attributes to show them correctly
to the user. As an example, the following situation can occur: assume there
are two elements, a map and a button. The map should always be shown
over the full width of the page, no matter which display device is in use. In
this case, the administrator can enter the same score for each display. In
case of the button, it will not always be stylish to show it over the full width
of a page. Here, the administrator can specify to show the button over the
full width of the page if the application is shown on a mobile phone, and to
show a smaller button if the application is running on a laptop. An option
should be o�ered to the administrator to edit these widths for each applica-
tion separately, meaning that buttons can have di�erent widths in di�erent
applications shown on an iPad.

As mentioned earlier, administrators should be able to design actions with
the �owchart. If the administrator wants to create an application where a
textbox and button are shown on a smartphone, and a map on a tv screen
where it is possible to enter a city on the smartphone wich will be shown
on the map on tv when the button is clicked, it should be very easy for the
admin to implement by means of a special `function' element. As administra-
tors with no programming experience should be able to use this application,
there is a need for a simple way to de�ne these if-then structures. Next to
actions, some �lter elements should be available to �lter sensor data. It is
also important to notice to automatically update the look of certain applica-
tions if an action is performed. Assume users can turn on and o� a light by
clicking on a button on their phones. The text value of this button should
be `Turn light on' if the sensor data tells us that the light is o�, and vice
versa. If one users clicks this button, the text on this button should change
not only for this user, but for all users that are using the app.

Node-RED1 can be used as an inspiration for this �owchart. An extension
of Node-RED, Node-RED-dashboard2 shows some nice features to automat-
ically create a dashboard application with di�erent UI elements. In order to
make the applications distributed, new elements should be added, with re-
spect to characteristics given in [45]. How this can be achieved, is mentioned

1https://www.nodered.org
2https://github.com/node-red/node-red-dashboard

37 CHAPTER 3. Solution

later in this chapter.

Managing Active Applications

When multiple users are using the same application, problems may arise.
For example, multiple devices can join a session where photos of a mobile
phone are sent to and shown on the television. When two or more users are
continuously sending photos to the server, the user experience will be bad.
The administrator then can kick one or more users out of the application if
needed.

3.7 User Task Analysis

In this section, Concurrent Task Trees (CTTs) will be developed to identify
and de�ne the tasks of the users that need to be supported. CTTs are based
on the hierarchical decomposition of a task and allow to express temporal
relationships between activities. The graphical notation will give a better
look how the program has to work and how tasks can be completed by the
user.

3.7.1 Admin Tool

Figure 3.1: Administrator tries to login to the system

The admin tool allows an administrator to manage users, groups, applica-
tions and create mashups once the correct credentials are passed. Bellow, an
overview of all possible actions is given. Notice that not all CTTs are shown
here. Some of them are very similar to one that is explained earlier and are

User Task Analysis 38

left out (e.g. creating and editing a group is very similar, only the CTT to
create a group is given).

In Figure 3.1 the connection from an administrator to the system is de-
picted. If the administrator is not logged in yet, a password has to be entered.
This will be `admin' the �rst time someone tries to connect to the system.
Later on this password can be changed by the administrator. A negative
feedback is shown when the password is incorrect.

Manage User Requests

Once the administrator is logged in, the system can be used. The actions that
can be performed are described in Figure A.2. In Figure A.1, the situation is
depicted what will happen if a new user tries to connect to the system. All
current tasks will be stopped until the administrator has made a decision.
The admin can accept the user by entering a username, selecting a type
and connect the user to some groups and applications. Validation errors are
shown if needed. The admin can also choose to deny access to the user. The
system will send an appropriate message to the user and will continue with
the task that was paused.

Using the System

As long as no new user tries to connect, the administrator can use the system
in the preferred way. Choices can be made to see the homepage, see users
(the di�erent display devices), groups, WoT devices or applications. It is
also possible to change the password or logout. The CTT can be found in
the Appendix, Figure A.2.

Homescreen

Figure 3.2: Possibility to manage di�erent kinds of data and see live appli-
cations and users

39 CHAPTER 3. Solution

The CTT in Figure 3.2 gives an overview of all the possibilities when con-
necting to the administration tool. On the homescreen, the admin can choose
to manage users, groups, devices or applications. When clicked on a link,
the system will redirect to the correct page. Also shown on the homescreen
are live applications and online users.

Homescreen - Stop Live Apps

Figure 3.3: Stopping a live application

From the list of live applications, one app can be chosen and stopped if
desired. The administrator is asked for a con�rmation once the stop button
is clicked. The CTT in Figure 3.3 shows this process.

Homescreen - User Using a Live App

The administrator can view all the users that are currently using the live
application, as depicted in Figure A.3. If a user has to be removed from a
live application, this is possible: a con�rmation is asked to only kick the user
from the session, or also block the user from using the app again.

Homescreen - Live Users

Figure A.4 shows also an overview of all live users is provided, together with
the application they are using (if applicable). Users can be stopped from
using the application, or blocked entirely from the system after con�rmation.

User Task Analysis 40

Users

Figure 3.4: A list of all users is provided. Actions to update, block or remove
users are available

The administrator can ask for a list of all users in the system. It is shown
whether a user is online or not. If the user is online and using an application,
this application can be stopped. This will happen in the same way as in the
previous subsection. Users can also be blocked, edited or removed. A list
of groups the user is connected to can be shown. All of this is displayed in
Figure 3.4.

Users - Show Groups

Users can be connected to multiple groups. An overview of all connected
groups can be requested. The administrator has the possibility to add a new
group to the user (redirecting to the `Edit' page), or remove a group from
the list. Con�rmation in case of removal is asked. The CTT is given in
Figure A.5.

Users - Edit

Figure 3.5: Updating a user

41 CHAPTER 3. Solution

Figure 3.5 shows a user can be edited by changing the name, select another
type, (un)block the user, or add/remove some groups to/from the user. An
update button sends all the new data to the server.

Users - Delete

Figure 3.6: Deleting a user

If the administrator choses to delete a user, a con�rmation screen will pop up.
The admin then can accept or cancel the deletion of the user. The process
is shown in Figure 3.6.

Groups

A list of groups will be shown together with some actions that can be per-
formed: showing users connected to a group, edit a group, remove a group
and create a new one (see Figure 3.7). Since showing users of a group is
similar to showing groups of a user, this CTT is skipped. In Figure A.5 a
similar CTT can be investigated. Removing a group is similar to removing a
user, so this CTT is also not provided. See Figure 3.6 to get an idea how it
works. Next, the creation of a new group is given in Figure 3.8. As updating
a group is done in a similar way, the CTT of updating a group is skipped.

User Task Analysis 42

Figure 3.7: Showing groups

Groups - New

Figure 3.8: Creation of a new group

To create a new group, the administrator has to pass a name and select some
users who will be connected to the group. Once this is done, the group can
be created. As mentioned earlier, updating a group is very similar and will
not be discussed in detail.

43 CHAPTER 3. Solution

WoT Devices

Figure 3.9: Overview of WoT devices

Selecting to show WoT devices will give the administrator an overview of all
the things that are already inserted, as shown in Figure 3.9. Devices can
be deleted and updated, and a list of all the getters and setters of a certain
device can be asked. The CTTs to update and delete a WoT device will
not be shown. Next, the CTT to create a WoT device and assign getters
and setters to it are given. Choosing to view all the getters and setters of a
certain WoT device by selecting it in the list, will result in a redirect to the
getters and setters page of a WoT device, which is shown in Figure 3.11.

WoT Devices - New

Figure 3.10: Adding a new WoT device to the system

Depicted in Figure 3.10 is what happens when adding a new WoT device.
The administrator has to pass an ID, a name and a base url. This base url

User Task Analysis 44

will be the url to control the device and get data from it. When selecting the
action to add the device, the administrator is redirected to an overview of
all the getters and setters of this device (which will be empty in this stage).

WoT Devices - Getters and Setters

Figure 3.11: Overview of all the di�erent getters and setters of a WoT device

A list of all di�erent getters and setters for one WoT device will be shown.
An administrator has the possibility to delete or update existing getters and
setters), or to add new ones (see Figure 3.12 to add a getter and Figure 3.13
to add a setter).

WoT Devices - New Getter

Figure 3.12: Adding a new getter

To add a new getter, several �elds have to be �lled in. The admin should
pass a unique name, a part of a url and a JSON response �eld. The part
of the url should be the part that comes after the previously de�ned base
url. If both urls are correctly inserted by the admin, the combination of them

45 CHAPTER 3. Solution

should result in getting a JSON object. To get the correct value of this JSON
object, the passed JSON �eld is used. Updating a getter is similar and this
CTT will not be given.

WoT Devices - New Setter

Figure 3.13: Adding a new setter

Adding a new setter is very similar to adding a new getter: a unique name
has to be passed, together with a part of a url. The only di�erence is that
several json �elds can be passed. These will act as parameters when using
this setter. Again, updating a setter is very similar and will not be discussed
in detail.

Apps

Figure 3.14: Overview of applications

An overview of all applications is shown when selecting the Apps page. An
admin can block an application, edit or remove one, or create a whole new

User Task Analysis 46

one. If an application is live, the app can be stopped or a list of active
users can be asked. Active users can be kicked out of the session, or blocked
entirely from using the app again, as displayed in Figure 3.14. These actions
are similar as in Figure 3.3 and Figure A.3 and will not be discussed again.

Apps - New

Figure 3.15: Creating a new app

Creating a new application (Figure 3.15) requires a name, a blocked status
and some users connected to the app. A list of groups is provided: when
a group gets selected, all the connected users get selected. These users can
be deselected individually afterwards. When the admin selects `Create App',
the app gets created and the admin gets redirected to the mashup creation
page. Editing an app is very similar and thus will not be shown here. The
only di�erence is that updating an app does not result in a redirect to the
mashup. Instead, a link to the mashup is provided on the update screen.

Apps - Mashup

Figure A.6 displays the creation of a mashup. All available elements that
can be dropped to a canvas are shown. When dropping an element to the
canvas, the admnistrator has to provide some information: this is di�erent
for each element, the only thing they have in common is an ID. The admin
can con�rm the element and afterwards the element will be dropped on the
canvas (if validation checks are ok). The admin can also cancel the operation.
Elements on the canvas can be moved and edited (which open the same
window as when inserting a new element, but with data �lled in). When the
user is satis�ed with the mashup or just wants to save the work, the `Deploy'
option can be used.

47 CHAPTER 3. Solution

3.7.2 Hasys

`Hasys' stands for HomeAutomationSystem and is the app users can work
with to see the di�erent applications made by the administrator. Below,
an overview how the users should connect to the system, how they can use
applications, how they can distribute and stop applications and how they
can logout from the system is given.

Connecting to Hasys

Figure 3.16: Sending a connection request to the system

When a user wants to connect to Hasys, a check is made if the users is not
already connected to the system. If so, the user is redirected immediately
to Home. If not, the user has to enter the ip address of the server Hasys is
running on. The administrator will receive this request and decides if the
user may connect to the system or not. While waiting for an answer, the user
can always abandon the connection request. All these tasks are depicted in
Figure 3.16.

User Object Modeling 48

Homescreen of Hasys

Figure 3.17: Displaying the home screen of Hasys

Once the user is allowed to use the system, a list of all possible applications is
shown from which the user can choose (see Figure 3.17). After choosing, the
correct app will be displayed to the user. A disconnect button is available to
logout from the system.

Using an Application

After selecting the preferred application, Hasys will generate the correct ap-
plication. When using the app the user can perform some generated actions,
or can choose to distribute the application to another device. A close button
is present to cancel the action to distribute. When the user is done using the
application, he can click on the right button for it. The CTT of these tasks
can be found in Figure A.7.

3.8 User Object Modeling

To identify and understand the objects users will manipulate during their
tasks, an ORM diagram is developed. In this ORM diagram di�erent entities
exist and the relationships between them are shown. The complete ORM
diagram can be found in the Appendix, Figure A.8. In this section, the ORM
will be described in detail. To make things readable, the ORM diagram is
split up in di�erent parts.

49 CHAPTER 3. Solution

3.8.1 Users and Groups

Figure 3.18: User and Group entities

A group only has an ID and a name as value. It can be connected to multiple
users, and can be selected when creating an application. Users on their turn
can be connected to multiple groups and have access to multiple applica-
tions. Each user is actually a display device that is connected to the system.
Therefore, an IP address for each user will be saved. Furthermore, a name,
block status, online status and type is stored. The type will be the device
type, which can be a smartwatch, smartphone, tablet or laptop. All of these
are mandatory.

User Object Modeling 50

3.8.2 Applications

Figure 3.19: Application entity

As mentioned before, an application can be used by di�erent groups and
users. Each application also holds a list of all the live users that are currently
using the app. None of these are mandatory. Next, a name and block
status is given for each app. To create an app, a mashup should be made.
Therefore a mashup ID will be connected to the app. This will be a one-to-
one relationship.

51 CHAPTER 3. Solution

3.8.3 Mashups

Figure 3.20: Mashup entity, consisting of MashElements and Wires

A mashup exists of several elements that can be connected to each other. One
element can be connected to multiple other elements, but this is not manda-
tory. The connection is stored in a Wire entity, which expects a MashEle-
ment as starting point and another one as ending point. These points are
mandatory: a wire cannot exists without these points. A MashElement is
an element, together with some special options. These options depend on
the type of element and are not described in detail in the ORM diagram.
An example can be the options value, placeholder and ID for a textbox
element. For each MashElement the PositionX and PositionY are stored to
draw it correctly on the canvas.

User Object Modeling 52

3.8.4 Elements

Figure 3.21: Mashup entity, consisting of MashElements and Wires

All elements that can be used in the mashup tool will be stored. Each
element has an ID, a name, an icon, a category, a colour and the number
of times the element can be dragged to the canvas while creating a mashup
(for displays, this is limited to one time, ui elements can be dragged multiple
times). Possible categories are `display', `ui', `function', �sensor� and �wot�.
All these �elds are mandatory. An optional �eld for some elements will be
the BaseURL. For WoT devices, this �eld can be used to store the url to
connect with a device.

Also the input and output port of each element is stored. For both type of
ports the availability status and elements they can connect to are described.
In case of a UI element, sensor or WoT device, it is possible to assign setters
to the PortIn entity. A setter exists of a mandatory name, some parameters
(optional) and in some cases a PartURL. This PartURL will be used when

53 CHAPTER 3. Solution

the element is a WoT device and stores a part of a url (the one that comes
after the base url) to access the device. For the PortOut, some getters can
be added. A getter has a name, and in the WoT case a PartURL and a
JSONField. This JSON�eld will store a �eld from the JSON response that
will be requested. Next to setters, an event can be connected to the PortOut
if needed. For example, the event `onclick' can be added to the PortOut of
a ui button element.

All these getters, setters and events will play an important role when
de�ning functions inside a mashup. More detailed information can be found
in the `Implementation' chapter.

3.9 Style Guide

A good style guide will result in a consistent UI style and increases produc-
tivity because users will make less errors and will learn faster how to use the
system correctly. This thesis will use Bootstrap v4.1 3 to create web pages,
meaning the style will be based on the general Bootstrap style guidelines.

3.9.1 Standards for Window Interaction

• A navigation bar on top will allow the user to navigate between di�erent
windows. This navigation bar will always be fully expanded and be
�xed at the top of the page.

• Some buttons are provided in the navigation bar to distribute or stop
an application.

• Clicking on a link will result in opening a dialog box, or going to another
page.

• On the homescreen, shortcuts are provided to go another page.

• A dialog box can be closed by pressing a cancel button, or to con�rm
the action that is being asked for in the box.

• Clicking on an item in a list box, will result in a redirect to the correct
application.

3https://getbootstrap.com/docs/4.1/components/

Style Guide 54

3.9.2 Standard Window Layout

The main window has a navigation bar on top which will always be expanded
and �xed to the top of the page. This bar has links to other pages, and in
case of the user some buttons to perform particular actions like distributing
an applications or stop using one.

Figure 3.22: Standard Window Layout

In most cases, the title of the page is present bellow this navigation bar,
following by the actual content of the page as shown in Figure 3.22. This
content area can have a table, a list box or some buttons, depending on which
page is displayed.

For the creation of an actual mashup, the window layout is a bit di�erent
as depicted in Figure 3.23. The navigation bar is still present, but the rest
of the page is constructed di�erently. On the left side, a list of elements will
be given which can be dragged to the canvas on the right. On top of this
canvas, an action to deploy the constructed mashup is provided.

Figure 3.23: Mashup Layout

55 CHAPTER 3. Solution

3.9.3 Standards for Menus and Push Buttons

The Bootstrap library provides a prede�ned set of buttons. The primary
button (blue colour) will be used to perform actions that result in inserting
new data or alter existing data. To cancel operations, the light button (light
grey colour) is being used. Buttons or icons that link to a destructive action
like removing an application are using the danger colour (red). Each time
when performing a destructive action a con�rmation is being asked. To
con�rm the action, one has to select a primary button to de�nitively perform
the destructive action, or select the light button to cancel the operation. An
overview of these buttons is give in Figure 3.24.

(a) Primary button (b) Destructive button (c) Cancel button

Figure 3.24: Di�erent types of buttons

The Bootstrap v4.1 standards for buttons 4 and navigation menus 5 can
be found on the site.

3.9.4 Standards for Use of Keyboard Keys

Since both applications will be created using web technologies, the standard
keyboard keys that can be used using a browser will be available for the
users and administrator. For example, when a number has to be inserted in
a number input �eld, the arrow up and arrow down keys can be used to alter
the number in the input �eld. When constructing a mashup, the delete key
can be used to remove the currently selected wire or element.

3.9.5 Standard Use of Colour, Type and Fonts

As mentioned earlier, the primary colour of Bootstrap (blue) will be used
to perform actions that result in inserting or altering data. The light colour
(grey) will cancel operations. Destructive actions will have a danger colour
(red) assigned. This danger colour will also be used to show validation errors.
The success colour (green) will be used to show successful messages. The
other possible colours like info (light blue) and warning (yellow) will be used

4https://getbootstrap.com/docs/4.1/components/buttons
5https://getbootstrap.com/docs/4.1/components/navbar

Style Guide 56

Name Colour HEX code Actual colour
Primary Blue #007BFF example
Secondary Gray #6C757D example
Success Green #28A745 example
Danger Red #DC3545 example
Warning Yellow #FFC107 example
Info Light blue #17A2B8 example
Light Light grey #F8F9FA example
Dark Black #343A40 example

Table 3.1: Overview of prede�ned Bootstrap colours

in various ways. In Table 3.1 all the colours provided by Bootstrap, together
with their HEX code are given.

A complete overview of the Bootstrap Text/Typography can be found on
the site of w3schools 6. The default font-size of Bootstrap is 16px, with a line-
height of 1.5. The default font-family is set to `Helvetica Neue', Helvetica,
Arial, sans-serif. Bootstrap provides 6 di�erent headings, going from <h1>
to <h6>. <h1> has a font-size of 40px, <h2> 32px, from hereon the amount
of px drops by 4px for each following heading. Each heading has a bolder
font-weight to be distinguishable from normal texts.

3.9.6 Standards for Use of Tables

The table header of a table will have a grey colour and headings will be
in a bold style to make a separation from the other rows containing data.
The table body holding all the data will have a white background. At the
bottom of each row, a thin light grey line is added to clearly see the di�erence
between two rows. Data cells that always will have the same data within it
(like `Edit', `Delete' and `Show'), will be assigned a �xed width that is just
enough to save space for other data cells. Icons will be used where possible
to save even more space (e.g. a red remove sign to �ll a delete cell). An
example of such a table can be found in Figure 3.25.

6https://www.w3schools.com/bootstrap4/bootstrap_typography.asp

57 CHAPTER 3. Solution

Figure 3.25: Table containing all the users. Icons and/or small cell widths
are used on the 3 last cells to save some space for the other cells

3.9.7 Standards for Use of Data Types

• For booleans a single checkbox will be used.

• For the input of number, a number �eld will be present.

• When making a choice out of less than four options, a radio button
group will be used.

• When the number of possible choices is bigger than three, a dropdown
list is chosen.

• For choices accompanied by a picture, radio buttons are used (e.g. a
list of possible icons to assign to a WoT device).

• For all other possible types of input, a standard textbox is being used.

3.10 Prototyping

The last step in the design process is to create the user interface, based on
the models and the style guide. First some drawings on paper were made and
after an evaluation online mockups were made on MockingBot 7. Several of
these (uncoloured) mockups can be found in the Appendix. Based on these
mockups, the �nal application was created.

7https://www.mockingbot.com/

Prototyping 58

4
Implementation

Following the User Interface Design process, the �nal step is to develop the
application. In this chapter, all the technical details about the implemen-
tation of the mashup tool will be given. This mashup tool should be able
to solve the shortcoming of current mashup tools for Distributed User Inter-
faces (DUIs) and for the Internet of Things (IoT), namely integrating both
DUIs and IoT into one mashup tool. To start with, an overview of the used
technologies is given, together with some example code to receive and send
data from/to a server. Afterwards, a section about creating the mashup itself
using jQuery and svg elements is discussed. To end with, it is shown how an
interpreter on the user side will draw all applications correctly and perform
de�ned functions in the right way.

4.1 Choosing for the Web

The �rst question was how this application should be created. On the user
side, multiple options exist: one could create separate Android and iOS
applications, or could choose to use a framework like Ionic1 to nicely create
applications for both Android and iOS at the same time. A third option was
to just use the browser on mobile devices and create web applications. As the

1https://ionicframework.com/

Choosing for the Web 60

third option was most interesting for this thesis, this one was chosen. Native
web technologies could be used and users should only have a web browser
on their device to make the application work. The same code will work
on as well a tablet, a smartphone as a computer. On the admin side, also
multiple options were possible like programming in Java or C# and making
a connection to a server. However, for this part the choice for the Web was
also made. This way the same programming languages are used for all the
di�erent parts and one should only know web languages like HTML, CSS
and JavaScript to extend the system.

4.1.1 Designing Applications

(a) Connect to system (b) Waiting for approval (c) All accessible apps

Figure 4.1: The user goes to the correct url. When the user is not connected
to the system yet, he has to press the `Connect' button (a). After sending
the request, the user has to wait for the administrator to accept it. It is
always possible for the user to abandon the request (b). When accepted by
the administrator, a list of all possible applications for this particular user is
shown

Before setting up a server and letting things communicate with each other,
the design of both the user and administration applications were done. To
do this, basic web technologies like HTML and CSS were used. To get some

61 CHAPTER 4. Implementation

help, the popular toolkit Bootstrap v4.02 is used. Bootstrap o�ers front-end
components which quickly and easily can be used to create web applications.

On the user side, the design of the application got some minor changes
compared to the �nal mockups. Since the user should surf to the correct url
in order to login to the system, there is no need to provide an extra textbox
for the user to enter the ip address of the system. A simple button with
the value `Connect' is enough to connect to the right system. In Figure 4.1,
the 3 main screens of the user application are shown: the connection screen,
the screen while waiting for the administrator to accept the connection, and
the home screen where all the available applications for the particular user
are listed and can be chosen to use. On the admin side, no great changes
took place. Further in this chapter, the most tricky part (the creation of the
mashup tool itself) is discussed in detail.

4.1.2 RESTFUL Web Service

var http = r equ i r e (' http ') ;
var expre s s = r equ i r e (' expre s s ') ;

var app = expre s s () ;
var s e r v e r = http . c r e a t eS e rv e r (app) ;

s e r v e r . l i s t e n (3000 , f unc t i on () {
conso l e . l og (' Server s t a r t ed on port 3000 ') ;

}) ;

Listing 4.1: Setting up a simple Express.js server

In order to provide some interaction in both applications, a server should
be set up which can share data over the di�erent systems. As said before,
a RESTFUL web service will be created in order to do so. In this project,
Express.js3 is used to develop an API to share data with others. Express.js is
a lightweight Node.js4 web application that provides all the necessary features
to setup a RESTFUL web service. In addition to all the great features, it is
also very easy to install. One should �rst install Node.js and afterwards use
the package manager (npm) to import the Express.js package. Once this is
done, only a few lines of code are needed to de�ne the server (see Listing 4.1).
First, an index �le for the server should be created. In this case, this index
�le will be called server.js. In this �le, Express has to be required and
invoked afterwards. Likewise, http should be required and could then be
used to create a http server by using the invoked express variable. The user

2https://getbootstrap.com/
3https://expressjs.com
4https://nodejs.org

Choosing for the Web 62

now only has to specify the port the server is running on, and a �rst test
can be performed. The server can be started by running the command node

server.js in a console.

Storing Data

{
" us e r s " : {
"5pmcs1th47d28qh" : {
" ip " : " 192 . 168 . 0 . 2 40 " ,
"name" : "user_1" ,
" type" : " desktop " ,
" blocked " : f a l s e ,
" on l i n e " : f a l s e ,
" activeApp" : f a l s e ,
" groups " : [
{
" groupId" : "1 vwp2lhzoic8364 " ,
"name" : "group_1"

}]
} ,
"mjyo5p03mdbsulb" : {
" ip " : " 192 . 168 . 0 . 1 02 " ,
"name" : "user_2" ,
" type" : " desktop " ,
. . .

Listing 4.2: A part of the users.json �le

To store data, the choice was made to just use simple JSON �les. In
the future, other solutions like storing data in database like MongoDB5 or
CouchDB6 are possible. The following JSON �les exist:

• users.json: stores all the information about the di�erent users that
are using the system.

• groups.json: a collection of all the available groups.

• applications.json: all the applications o�ered by the system. It
contains info about the live users, which users are allowed to use the
application, details about the mashup that creates the app, ...

• elements.json: contains all the elements that can be used when draw-
ing on the canvas. Stores the color of elements, the icon, and all their
options.

These will all be stored in the folder called `data'. For each of these �les a
separate resource model is made. This resource model will import the JSON

5https://www.mongodb.com/
6http://couchdb.apache.org/

63 CHAPTER 4. Implementation

�le and export it as a node module that can be used in the application.
Before diving in on how to access this data, an example of such a JSON �le
is given. Below, a part of the users �le is depicted.

Listing 4.2 shows two users that are already connected to the system.
They both have a unique id that is generated on creation time. Further,
each user has a name, a device type and the ip address of this device. The
type property will play an important role when the user enters an applica-
tion. Based on the type, the UI elements can be aligned in di�erent way,
depending on how the administrator speci�ed it in the mashup tool. Also
some information about the groups the user is connected to is stored (id
and name), together with some real time information thanks to di�erent sta-
tus variables (blocked or not, online or not, which app is the user currently
using).

Receiving and Sending Data

By setting up a REST web service, data can be retrieved by entering the right
url and sending the right HTTP method (GET). To alter data, http methods
POST, PUT and DELETE can be used in combination with a url. Using
Express.js, it is not that di�cult to create a complete API that responds to
client requests. One could easily program all the possible endpoints in the
server.js �le, which is a popular method for doing so. But when creating
a bigger application, things would become a bit unclear due to the large
amount of code. To solve this, Express.js o�ers Routing7. The goal is to cre-
ate a couple of routing �les that handle client requests. In this project, one
routing �le per JSON �le is used. This means there are 4 routing �les avail-
able: applications_routes.js, elements_routes.js, groups_routes.js
and users_routes.js. In Listing 4.3 a piece of code is given where a new
router gets de�ned with a GET method.

var expre s s = r equ i r e (' expre s s ') ;
var route r = expre s s . Router () ;
var data = r equ i r e (' . / . . / data/users_model ') ; // import user data model
app . get (' / : id ' , f unc t i on (req , r e s) {
var id = req . params . id ; // ge t the id parameter out o f the u r l
r e s . send (data . u s e r s [id]) ; // send back a l l in format ion about the user

}

Listing 4.3: Routes: GET method with a parameter

In each �le di�erent methods can be de�ned. Each method is derived
from a HTTP method and attached to an instance of the express class. The
following listing shows how a GET request for a user with a speci�c id is

7https://expressjs.com/en/guide/routing.html

Choosing for the Web 64

done. In this method, the developer can extract the parameters from the url
and perform actions with it. To give the client access to this url, the route
has to be imported in the server.js �le, as shown in Listing 4.4. Once this
is done, a client can easily send a request to localhost:3000/users/abc and
receive all information about user abc in JSON format.
// Importing expres s and h t t p
. . .
var users_routes = r equ i r e (' . / route s / users_routes ') ; // import user rou te s

// invoke express , s e t up the se rve r
. .
app . use (' / u s e r s ' , users_routes) ; // de f ine route
}

Listing 4.4: Server.js: importing routes

Setting up routes for POST, PUT or DELETE is very similar. One just
has to replace the get method by the desired method. To be able to work
with POST parameters, one should �rst import the body-parser package in
node.js. This package can then be used to extract POST parameters by the
command var name = req.body.name.

4.1.3 Calling the API

Now that a web service is up and running, the clients can send requests
to it. An example can be to send a request for getting all the users, and
show these users afterwards in a HTML table. To do so, jQuery8 is used.
jQuery is a JavaScript library that makes it easier to code with JavaScript
due to its easy-to-use API. Ajax, a part of the jQuery library, can be used
to send requests to a server and receive data. This data can then be used to
�ll a table for example. Next, a small piece of code is given in Listing 4.5
where when the document is loaded, the function get_groups() is called.
Inside this function, a call to /groups is made. The web service will handle
this request and send back a list of all the groups in JSON format. The
success() function of Ajax is triggered and will append all the users to the
desired table. In this case, there is a table with a table body with the id
groups somewhere on the HTML page. It is this table body that will be
�lled with all the groups.
$ (document) . ready (func t i on () {
get_groups () ;

}) ;

f unc t i on get_groups () {
$. a jax ({

8https://jquery.com/

65 CHAPTER 4. Implementation

u r l : ' / groups ' ,
method : "GET" ,
crossDomain : true ,
dataType : ' j s on ' ,
s u c c e s s : f unc t i on (data) {
$. each (data . groups , f unc t i on (index , item) {
var group = '<t r id=" '+index+'"> '

+ '<td>' + item . name + '</td>'
//
// t a b l e c e l l s wi th bu t tons to ed i t , remove groups .
//

+ '</tr>' ;
$ ('#groups ') . append (group) ;
}) ;

}
}) ;

}
}

Listing 4.5: Ajax request in jQuery to �ll a table with all available groups

4.1.4 Real-time Updates

The developed system will be a real-time web application, meaning that when
an important action occurs, the right clients should be informed as soon as
possible. An example can be a user that gets blocked by the administrator:
when this happens, the user should immediately be kicked out of the system.
Another example is the communication between di�erent devices. In a dis-
tributed user interface it is important that all devices are in the same state
at each moment.

One option to cope with problem can be polling for new data each x
seconds in JavaScript. In the case of the blocked user, the client can send each
�ve seconds a request to the server by �ring the function am_i_blocked().
This methods has it drawbacks: one problem is that an update will not take
place immediately. If the JavaScript function just started his new round of,
let us say �ve seconds, the user has to wait �ve seconds before the update �nds
place. In a distributed interface environment, this will make the program look
slow and therefor have a negative impact on the user experience. Another
problem is that useless requests will be made each �ve seconds when no
updates are made.

Luckily there is a solution to overcome this problem: WebSockets9. WebSockets
are part of the HTML5 speci�cation. With sockets, a permanent connection
between clients and the server is made. This connection will always be open
and the server can easily send messages to the client and vice versa. This
means that when an administrator blocks a user, this user will immediately

9http://www.websocket.org

Choosing for the Web 66

be kicked out of a session. When using a distributed user interface, an ac-
tion on device A will send a message to the server, who will distribute the
message to all or some devices in the system. Within a second all devices are
up to date and in the correct state. In the pictures (Figure 4.2) below, the
di�erence between polling with JavaScript and using WebSockets is given.

(a) Polling (b) WebSockets

Figure 4.2: With polling (a) the users checks each interval for updates. When
the admin sends an update, the user will see it in the next interval. With
WebSockets (b), both the admin and user make a socket connection to the
server. When the admin sends a message to the server, the server broadcasts
it to the connected users

Introducing sockets in this project is easy when working with Node.js.
On the Express.js server, the socket.io10 library needs to be required in
the server.js. Further on the possible messages need to be de�ned. On
the client side, the socket.io JavaScript library11 needs to be imported.
This can simply be done by passing the link to the src attribute of a html
<script> tag. In other JavaScript �les, a connection to a socket server can
be set up and multiple methods to send and receive socket messages can be
de�ned. In the following example the administrator sends a message to a
socket server to stop a user. The user should be able to receive this socket
message and thus automatically close the current application. But before the
application is able to do so, the message should be de�ned on the server.

10https://socket.io/
11https://cdnjs.cloudflare.com/ajax/libs/socket.io/1.7.4/socket.io.js

67 CHAPTER 4. Implementation

Sockets on the Server

After requiring the socket.io library, the http server needs to be trans-
formed to a websocket server. Once this is done, multiple functions can be
de�ned that can be called when a socket message is sent by a client to the
server. A small example is given in Listing 4.6. In this case, the server can
receive a message with title �stop_app_user�. This will be a message been
sent by the administrator. The server on its turn will send a message with
the same name to all connected sockets in the system. When users are re-
ceiving the message, they will check if the userId variable inside the data

object matches their userId.
// Import a l l the l i b r a r i e s needed
. . .
var socket = r equ i r e (' socke t . i o ') ;
. . .
// transform h t t p se rve r in to a socke t s e r ve r
var s e r v e r = http . c r e a t eS e rv e r (app) ;
var i o = r equ i r e (' socke t . i o ') . l i s t e n (s e r v e r) ;
s e r v e r . l i s t e n (3000 , f unc t i on () {
conso l e . l og (' Server s t a r t ed on port 3000 ') ;

}) ;
. . .
// on socke t connection , the messages become a v a i l b l e
i o . on (" connect ion " , func t i on (socke t) {
socke t . on ("stop_app_user" , f unc t i on (data) {
i o . emit (' stop_app_user ' , data) ;

}) ;
}) ;

Listing 4.6: WebSocket server with method to stop an application for a
certain user

Sockets on the Client

There is not much needed to let sockets work on the di�erent clients. Once
the socket.io library is imported, the functions can be used in JavaScript
�les. In this particular example of blocking a certain user, the administrator
and user should connect to the socket server. When the user selects an app,
the administrator sees this in the admin tool. Then, the admin can select
to kick the user out of the current application. In the JavaScript �le, this is
done as shown in Listing 4.7.
// g l o b a l j s f i l e : connect ion to socke t s e r ve r
var socket = i o . connect (' ') ;

// users . j s f i l e : s top user from using app l i c a t i on
f unc t i on confirm_stopping_app (user_id) {
$. a jax ({
u r l : ' / u s e r s / '+user_id+' / stop ' ,
method : 'PUT' ,

Creating Mashups 68

crossDomain : true ,
dataType : ' j s on ' ,
s u c c e s s : f unc t i on (data) {
. . .
// F i r s t send ajax reque s t to update JSON f i l e s . Once t h i s i s done , send

socke t message to se rve r .
socke t . emit (' stop_app_user ' , { use r Id : user_id }) ;

}
}) ;

}

Listing 4.7: Admin stop application for certain user

The socket message is now being sent to the server. As mentioned be-
fore, the server will pass the exact same message (`stop_app_users' with a
data object containing the userId) to all clients. When a user is using an
application, he will receive this message. The user will check if the userId in
the message is equal to its userId, which is stored in a session variable upon
login time. If this is the case, the user will be redirected to another page and
the session variable containing the current application will be set to false.
socke t . on (' stop_app_user ' , f unc t i on (data) {
i f (data . use r Id == se s s i onS t o r ag e . getItem (' user_id ')) {
s e s s i onS t o r ag e . set I tem (' active_app ' , f a l s e) ;
window . l o c a t i o n . r ep l a c e ("/ hasys ") ; // r e d i r e c t to homepage

}
}) ;

Listing 4.8: User can receive a message to stop the current application

With this simple example shown in Listing 4.8, the use of WebSockets and
its power is easy to understand. The working for DUIs is very similar: the
data object will contain a unique application id, together with some changes
that have been made to the system. Users that are using this application
will open the socket message and also perform the changes on their device.

4.2 Creating Mashups

The biggest and most important part of this thesis is the creation of mashups
in the administrator tool. As mentioned in the `Solution' section, �owcharts
will play an important role. The �rst goal was to use Node-RED and to ex-
tend it so applications could be distributed. But after testing Node-RED by
some unexperienced test users, they found it too di�cult to use. One reason
was the need to program a bit in JavaScript, something most of them did not
have experience with. Next thing was to look around for some �owvchart li-
braries which were easy editable and easy to use for the end users. jsPlumb12

12https://jsplumbtoolkit.com/

69 CHAPTER 4. Implementation

and gojs13 were tested, but the community editions worked a bit slow or did
not o�er exactly what was needed for this system. Therefore, a whole new
�owchart program was created with techniques like svg to draw elements,
and jQuery to connect them correctly and save them to the server.

4.2.1 Dragging Elements to the Canvas

Figure 4.3: Constructing a mashup. Di�erent UI elements are connected to
a phone and a desktop. A function will show information about the weather
in a city that is passed on the phone on the desktop

On the left side of the page a list of elements is given. All these elements are
saved in the elements.json �le and can be received by calling the REST
API. Each element has the following properties:

• a category, for example `display' or `ui'. In this way it gets listed
underneath the correct accordion group.

• an icon and color to markup the node. Each category has its own color.

13https://gojs.net

Creating Mashups 70

• portIn: has the attribute available to specify that there is an inPort
available for the node (this will be drawn on the left side of the node),
and an attribute connectable, which is an array of other elements
which can be connected to the inPort of this element. Some nodes,
like a WoT device or UI element, will also stores setters. These will
play an important role when constructing functions. If the portOut of
a function node is connected to the portIn of a WoT device or UI ele-
ment, it is possible to assign a new values to these elements using their
setters. More information can be found in the subsection `Constructing
Functions' later in this chapter.

• portOut: similar to portIn, but this time for port that is situated
on the right side of the node. The outPorts of UI elements, WoT
devices or sensors can share their getters and events when connected to
a function node. More information can again be found in the subsection
`Constructing Functions'.

• max: the maximum number of nodes of this type that can be drawn
on the canvas. This is important for the display types, for example,
only one desktop element should be allowed to be drawn on the canvas.
Afterwards, the maximum number of desktop devices that can use the
application at the same time can be speci�ed when passing the details.
At this time, it is not possible to de�ne two di�erent interfaces for two
di�erent desktops. Meaning each desktop will have the same interface
and the same possibilities.

Once all elements are listed in the accordion on de left, they have to be
draggable towards the central canvas. To drag an element, the library jQuery
UI14 is used, which makes it is easy to specify that some elements are drag-
gable and to which area they can be dropped. If an element gets dropped
onto the canvas, it gets transformed from an HTML element to an svg ele-
ment. This is achieved in the following way: when an element gets dropped
on the canvas, the program extracts its id and the x and y position where it
is dropped. Before showing on the canvas, a modal will pop up asking the
administrator for some extra information. In case of a textbox, the admin-
istrator has to pass a unique id, a text for the placeholder, and a value text.
For each UI element in particular some widths have to be de�ned. For each
type of device, a score going from 1 to 12 has to be entered. With this feature,
it becomes possible to align UI elements di�erently on di�erent devices. E.g.:
when dragging a button to the canvas and giving a score of 6 desktop width

14https://jqueryui.com/

71 CHAPTER 4. Implementation

and 12 smartphone width, the button will show over the whole width of the
page on a smartphone, and taking only the half of the screen when using the
app on a desktop. If all validation checks succeed (in case of the textbox
only a unique id is required), a function send_elements_to_canvas() will
be called. This function expects the unique id and information about the
element. In this way, it becomes possible to pass the correct information to
the svg function and draw the desired elements on the canvas. The library
jQuery SVG 15 is used to draw a svg element on the canvas using jQuery.

4.2.2 Connecting Elements

Placing elements on the canvas is one thing, but if they cannot be connected
to each other they have no use at all. To connect elements, an inPort or
outPort has to be selected. Once a port is selected, all the other ports on the
canvas turn red or green. A green port means the current selected port can
be connected to this port. This situation is depicted in Figure 4.4. A red
port means that the selected port cannot connect to the selected port. In
this way, it becomes impossible to create `meaningless' applications. When
a port gets selected, an array containing all the elements on the canvas is
traversed. Their inPort or outPort properties will be checked to see if the
selected port can connect. When the administrator clicks somewhere on the
canvas else than a port, all the ports will be deselected and again be marked
in their default color.

Figure 4.4: The outPort of a smartwatch element gets selected (orange). It
is only possible to connect it to an inPort of a button (green). A map cannot
be shown on a smartwatch (red). The outPorts of elements other than the
selected one will always be disabled (red)

15http://keith-wood.name/svg.html

Creating Mashups 72

(a) Mashup tool (b) Generated app

Figure 4.5: The h1 element is placed above the map element (a). Thereforee
the title will also show above the map in the generated app (b)

In case of connecting UI elements to display elements, there is one impor-
tant thing to notice. The order (top to bottom) UI elements are placed on
the canvas, plays a big role in the layout of the �nal application. Placing a
h1 element above a map element will result in another layout than the other
way around, as shown in Figure 4.5.

4.2.3 Constructing Functions

So far, it is only possible to show di�erent elements. To interact with those
elements, functions can be dragged to the canvas. When a function gets
added, the administrator can only pass a unique function name. Constructing
the function becomes possible when elements get connected to the inPort and
outPort of the function element. Elements that get connected to the inPort
of the function allow the function to get data and select an event. Elements
that get connected to the outPort give the function the ability to perform
actions on those elements.

Figure 4.6: Mashup where a button and a weather sensor get connected to
the inPort of a function, while a card gets connected to the outPort

73 CHAPTER 4. Implementation

In Figure 4.6, a button and a weather sensor get connected to the inPort,
while a card (a Bootstrap element with a header, body and footer) gets
connected to the outPort. This means the function can use the getters and
events of the button and sensor, and the setter of the card. This way, it
becomes possible to create a function where, when the users clicks on the
button, the system will get the current weather and show the temperature in
the card. Note that the event page.onload will always be available. Other
events will be appended to the list when elements get connected to the inPort.
While creating a function, the admin can develop actions and conditions that
make part of this function. It is in these actions and conditions that getters
and setters can be used. Figure 4.7 gives an overview of a particular function.

Figure 4.7: Info about a function: a name, the event on which this function
will get �red, and a list of actions and conditions that are performed when
the function gets called

Actions

An action is in fact only a set of setters which expect zero or more parameters.
In Figure 4.8 an action is de�ned where the body of the card is �lled with
the current temperature passed by the weather station. It is also possible to
just pass a text value instead of the value of some getter.

Creating Mashups 74

Figure 4.8: Actions: setting the body of a card to the current temperature

Figure 4.9: Condition: checking if the current temperature is above 20 de-
grees or not. Perform di�erent actions based on the outcome of the condition

Conditions

Next to actions, it is also possible to create conditions. In these conditions,
the getters can be used to perform checks on. Afterwards, di�erent actions
can be assigned to the case when the check holds, or when a false result is
met. In Figure 4.9, a check is done if the current temperature is above 20
degrees. When this condition is met, the footer of the card will show the text
`warm'. If the current temperature is below 20 degrees, the footer will show
the text `cold'.

75 CHAPTER 4. Implementation

4.3 User App

4.3.1 Homescreen

Once a user is accepted by the system administrator, a list of all available
applications for this speci�c user will be shown. An application is shown in
this list if the user is connected to it by the system administrator AND if the
device type of this user is present in the mashup. For example, if user1 is a
tablet and allowed by the administrator to use a speci�c application, but in
the mashup of this application no tablet element is present, the application
will not be shown in the list. If in a mashup a speci�cation is made were
only a maximum number of users of a speci�c type can connect (e.g. only
one smartphone user at a time can use application A), then this list item will
be disabled and thus not allowing the user to select it.

Once a user selects an application, the program.html �le will be loaded.
Inside this HTML �le, four important JavaScript �les will be called: engine.js,
interpreter.js, condition_eval.js and setter_parameters.js. In the
next sections their functions will be explained in detail.

4.3.2 Engine.js: Drawing and Managing the Applica-

tion

An application can be opened in two ways: or the user selects it from the
list, or another device distributed its state to this device. In the �rst case,
the application ID is passed in the url, together with the distribution status
(which will be false in this case). In the second case, the same parameters
are passed, only this time with the distribution status `true'. Additional
parameters from and to are passed to inform the system which user wanted
to distribute its state, and to which user it was intended to distribute.

If the user opened the application by selecting it from the list, the ap-
plication will just be drawn and values will be assigned as speci�ed in the
mashup. If the application got distributed by another user, the current values
of elements on the page of the distributor will be asked for and sent back the
user. The application will be drawn, but the values will now be the ones that
were received from the distributor. The drawing process is the same in both
cases. Wires of the mashup are investigated as shown in Listing 4.9. If the
device type of the user is connected to UI elements, these UI elements will be
stored in an array. Once the array is complete, it gets sorted by the y posi-
tion of the UI element in the mashup, going for small to big. Afterwards, the
elements are drawn on the page in this order: elements that appear higher
in the mashup, will also be drawn at the top of the generated HTML page.

User App 76

f unc t i on draw_app () {
// run through a l l wires
$. each (app . mashup . wires , f unc t i on (index , wire) {
// d i s p l a y (dev i ce) element w i l l a lways be the s t a r t o f a wire .
// and always be connected to a UI~element (no other p o s s i b i l i t i e s)
i f (wire . s t a r t == d i sp l ay) {
// s t o r e UI~element in array
ui_elements . push (wire . end) ;

}
}) ;
// so r t array based on y po s i t i on
ui_elements = sort_elements_by_y (ui_elements) ;
f o r (u i in ui_elements) {
// draw UI~elements based on y po s i t i on
draw_ui_element (ui_elements [u i]) ;

}
// i f a l l e lements are on the page , a s s i gn func t i ons to them (i f a p p l i c a b l e

)
as s i gn_funct i ons () ;

}

Listing 4.9: Drawing an application. Go through all the wires to get
UI elements, afterwards sort them correctly on y position and draw them
on the page.

Next to drawing the application, functions are assigned. All function
elements of the mashup are investigated: the engine will check on which event
of which element the function will be triggered. In this way, for example, a
onclick function can be assigned to a previously drawn button UI element.
Functions that are appended to a page load will be �red immediately. A
concrete example and how functions will be interpreted is given in the next
section.

Finally, the engine also listens to the socket server and handles incoming
socket messages.

4.3.3 Interpreter.js: Handling Functions

Functions are assigned to elements in the following way: the JSON �le stores
the unique function name, the element where the function will be connected
to, and an event of this element on which the function will be triggered. Next
to this, an array with multiple actions and conditions is stored which will
be performed once the function is triggered. An example can be a function
send_values, with as element a button with id send and event onclick. The
button will already been drawn by the engine. After putting all the elements
on the screen, the engine will assign all functions. For this particular function,
an attribute onclick having the value do_function(send_values) will be
appended to an element with ID send.

77 CHAPTER 4. Implementation

Once this button is clicked, the function do_function with parameter
send_value will be called in the interpreter.js �le. Based on the function
name (the parameter), all information of the function will be requested. All
subfunctions of this function (actions and conditions) are performed in the
order they are stored in the JSON �le (and thus were de�ned in the mashup
tool).

Performing Actions

Each action stores an element to perform the action to, a setter to alter an
attribute of this element, and some parameters for this setter. If a setter
has no parameters, to function perform_setter will be called immediately.
If parameters have to passed, the function do_setter_with_parameters is
performed in advance. Inside this function, checks are being made if a pa-
rameter is just text, or a getter. In case of a getter, the value of a speci�c
UI element �rst has to asked for, or a AJAX request has to be made to a
third party or WoT device to receive values. It is important that all AJAX
requests are �nished before actually calling the perform_setter function
and assign all the values to the element.

Before calling the perform_setter function, a check will be made if the
element is present on the current page. If this is the case, the function will be
called. Inside this function, a switch with multiple possible cases is de�ned.
The element, setter and optional parameters will be passed to this function.
Based on the setter, the correct case is chosen. Inside this case, the correct
values from the parameters array will be assigned to the correct attributes of
the elements. E.g.: for a map element the setter setPosition can be passed
with parameters city and country, resulting in a new position on the map
that is drawn on the page. A global array containing all the current values
is also updated to these new values.

After the check if the element is present on the current page or not, a
message will be sent to the socket server, which on its turn will send the
message to all devices that are currently using the application. Inside this
socket message, the element, setter and parameters are passed. The devices
will then call the function to perform the setter on the correct element and
assign the right values to it. In this way, it becomes possible that a tablet
can enter a city and a country on its screen, presses a button, parameters
will be �lled in and will be sent to a desktop device using a socket. This
desktop device will perform the setter (e.g. changing the position of a map
that is depicted on its screen) based on the parameters that were passed by
the socket.

User App 78

Performing Conditions

To interpret a condition, all available information provided by the JSON �le is
traversed. Each condition has a condition to check, a set of actions to perform
when the conditions holds, and a set of actions when the condition fails (see
Listing 4.10). The actions are performed in the same way as described above.

A simpli�cation is made in the mashup tool: only AND, OR and subcon-
ditions are allowed. There is no possibility to add brackets. In this way, it is
simple to divide the whole condition in multiple parts. Each subcondition is
stored in the JSON �le as depicted in listing below.
" cond i t i on s " : [
{
" element " : " phi l ips_hue " ,
" g e t t e r " : " getIsOnLight1 " ,
" operator " : "==" ,
"valueType" : " t ext " ,
" valueText " : " t rue "

} ,
{
" combinator " : "AND" ,
" element " : " phi l ips_hue " ,
" g e t t e r " : " getIsOnLight2 " ,
" operator " : "==" ,
"valueType" : " s e l e c t " ,
" valueElement " : " txtL ight " ,
" va lueGetter " : " getValue "

} ,
] ,

Listing 4.10: Condition having two subconditions: �rst one checks if the �rst
light is on (standard value "true"), the other one checks if the second light
has the same status as passed in a textbox. The AND combinator is used to
combine both.

Subconditions will be stored in di�erent array entries, depending on their
combinator. The �rst subcondition does not have the combinator �eld and
will automatically be stored in the �rst entry. In the listing, the �rst con-
dition will check if the �rst light of the philips_hue element is true. The
valueType �eld can have the value `text' (a constant value) or `select' (a
variable value, depending on the element and getter that is given next). For
the next conditions, the combinator will decided if the subcondition is placed
in the same array entry, or if a new entry is created. If the combinator has
the value AND, the subcondition will be placed in the same array entry. If
the value of the combinator is OR, a new entry will be created and the sub-
condition will be assigned to this entry. The current entry is set to this new
entry afterwards.

In the end, an array will exists with multiple entries. It now becomes pos-
sible to interpret the whole condition. For each entry, the following is done:

79 CHAPTER 4. Implementation

the �rst subcondition in this entry will be checked. The condition_eval.js
�le will be called to interpret this subcondition correctly. The outcome of
this subcondition will be true or false. In case the outcome is false, the re-
sult of the whole current array entry will be false (logical AND). In case the
outcome is true, the next subcondition of the current array entry will be in-
vestigated and the same procedure is done: a false result means going to the
next array entry immediately, a true result will check the next subcondition
of the same array entry.

If all array entries are checked, we have a new array with the same amount
of entries, but now containing the values true or false. If all values are false,
the whole end result will be false. If one value is true, the whole end result
will be true (logical OR). Depending on this result, the right actions (stored
in actionsTrue and actionsFalse in the JSON �le) will be evaluated.

User App 80

5
User Study

To test the usability of the system, a user study was performed. After a
small explanation what the Web of Things and Distributed User Interfaces
are, the participants got a small training of 10 minutes on how to construct
a mashup. The basic features were explained (e.g. connecting UI elements to
di�erent kind of devices, constructing functions). There was no time limit set.
When their application was ready, the users got to �ll in a questionnaire and
give at most three positive and negative comments about the system. The
Computer System Usability Questionnaire [39] was used in order to answer
the questions.

5.1 Setting up the Experiment

5.1.1 Participants

Before actually doing the experiment, several participants who would like to
test the system needed to be found. Once this was done, they were all invited
to come perform the experiment. Due to the availability of the participants,
multiple sessions were held on di�erent days. Each of them got a small train-
ing on how to use the mashup tool and constructed the de�ned application
afterwards.

In total 14 di�erent people did the experiment. Participants of this study

Creating the Mashup 82

had no or limited programming experience. However, they all had some
knowledge about �owchart diagrams and how they work. The age range of
the participants goes from 20 to 50 years old. Ten men and four women
participated. All of them are interested in new technologies, but a small
explanation on what Distributed User Interfaces are and how physical things
can be controlled over the Internet using a REST API was given.

5.1.2 Setup

The setup of this experiment consisted of one laptop that could be used to
create the desired mashup. A Philips Hue was present as well to be able to
control a smart physical device. The environment of this test was a simple
living room. The participants used their own smartphone and the available
laptop and tablet to test the generated application. To make things easier, a
small documentation for the Philips Hue with the most important urls and
functions was given in order to speed things up and do not let the users get
lost in the Philips Hue API documentation.

5.1.3 Training

Before actually creating the app, each participant got a small training from
about 10 minutes. This training consisted of a PowerPoint presentation
with screenshots of the mashup tool. First, users got to see how to add
a WoT device and connect some functions to it. Afterwards, the creation
of an application where a smartphone user could control the city of which
the weather data was shown on a desktop was explained. In this way, the
participants got to see how to connect di�erent UI elements to di�erent
devices, how to create functions and how to use third party data over a REST
API. Given this training, the users should be able to create an application
on their own.

5.2 Creating the Mashup

After the training, the participants got an assignment to create a mashup
involving a WoT device and di�erent display devices. Once the creation of
this mashup was done, the participants had to connect their own smartphone
to the system and accept it as an administrator. The assignment was speci�ed
as follows: �The participant should be able to create a mashup that involves
all following aspects. A mobile phone and tablet will be used to control a light
from the Philips Hue. A button having the text `Light on' or `Light o�' will

83 CHAPTER 5. User Study

be shown. Depending on the device type, the button will be shown over the
full width of the page (in case of a mobile phone), or on only half the page (in
case of the tablet). On a desktop a <h1> element will be presented having the
text `The light is on' or `The light is out', depending on the current status of
the lightbulb. The user should �rst connect the Philips Hue to the system and
add some getters and setters to it to be able to ask for the current status of
the light, and to change this status afterwards. Once this is done, the mashup
can be created. The user should create two functions: light_on_load and
switch_light. The �rst function should be triggered when the page is loaded,
the second one is �red after a speci�c button is clicked. Both functions will
have the ability to show the correct values (text on the button and text of the
<h1> tag), depending on the current status of the light.�.

No time limit was set to create this mashup. Participants could play
around and test as much as needed. After the desired application was �n-
ished, the questionnaire had to be �lled in.

5.3 Questionnaire Results

As mentioned before, the Computer System Usability Questionnaire (CSUQ) [39]
was used to record the usability of the system. The participants had to �ll
in the questionnaire that could be found on the Internet1. It is worth notic-
ing that this questionnaire is slightly di�erent than the one described in the
paper. Where in the paper the Likert scale goes from 1 to 7 with 1 being
`Strongly agree' and 7 `Strongly disagree', the webpage works the other way
around. Meaning that a higher number means a better result, and not a
worse one like in the paper. At the bottom of the page, the participants had
the possibility to �ll in at most three positive and negative comments about
the system if they like.

Results from the CSUQ can be divided into four separate groups: the
overall satisfaction score (OVERALL), the system usefulness (SYSUSE), the
information quality (INFOQUAL) and the interface quality (INTERQUAL).
In Table 5.1 an overview of which questions belong to which subsets is given.
As the Likert scale goes from 1 to 7, with 7 being the best score, it can be
said that a mean score above 3.5 can be considered as good. Next the mean
and standard deviation of each subset are calculated. The standard deviation
will tell how widely the scores of di�erent participants are spread. A high
standard deviation (here set to any value above 2) will mean that the data
is not consistent. Afterwards, some positive and negative remarks from the
participants are listed that can be used to improve the system in the future.

1http://garyperlman.com/quest/quest.cgi

Questionnaire Results 84

Subset Questions
OVERALL 1 to 19
SYSUSE 1 to 8
INFOQUAL 9 to 15
INTERQUAL 16 to 18

Table 5.1: Overview of subsets of the Computer System Usability Question-
naire

5.3.1 Quantitative Data Analysis

The results of the CSUQ can be divided in quantitative data (the 19 questions
that had to be answered by assigning a score from 1 to 7 to it) and qualitative
data (giving some positive and negative remarks afterwards). In this section,
the quantitative data will be analyzed. Table 5.1 shows us the data can be
divided into four subparts. Passing the data to a spreadsheet and perform
calculations on it, gives us the results that are depicted in Figure 5.1.

Figure 5.1: Bar chart depicting the means of each subset, together with the
standard deviation, shown as error bars. The orange horizontal line shows
the benchmark line of 3.5

Overall, the system has a positive evaluation with a mean of 5.28 and
a standard deviation of 0.89, meaning that the data is not widely spread
and the participants more or less had the same opinion about the system.
Averaging the scores for the usage of the system resulted in the exact same
mean as the overall mean. High scores within this subset were given to

85 CHAPTER 5. User Study

questions 3 and 8 (e�ectively completing the work and becoming quickly
productive), a lower average score was given to question 4 (able to complete
the work quickly). In a small interview afterwards, participants said they
found it a bit hard at �rst, but once they knew the system things seemed
to be more easy and they had a happy feeling when they saw the working
`advanced' application they created. Learning a programming language and
di�erent technologies would have cost them more time than it did now, but
�rst playing around with the tool and discovering it before actually creating
the mashup successfully gave some of them the feeling it took too long.

The information provided by the system (INFOQUAL) received an aver-
age score of 4.97, which is the lowest of all subsets. The standard deviation
of 0.99 shows most participants agreed with each other. Question 9 (clear
error messages) scores high with a mean of 6, but lower scores were given to
the other questions. People expected more on-screen information and said it
maybe would be more di�cult to create the mashup if no 10 minute training
was given before the start. Providing a tutorial could solve this problem in
the future.

The last subset, the interface quality, received the highest average score of
5.95, with the lowest standard deviation (0.69). No real di�erence between
the di�erent means within this subset exists, all of them score very well.
Users like the interface of the system and it gives them the opportunity to
do the things they expect it to do, namely adding di�erent kind of devices to
the system and make applications to let them communicate with each other.

To conclude this section, it is worth mentioning that on average the users
created the whole application in 15 to 20 minutes. Adding a WoT device
to the system (given the simpli�ed API documentation about the Philips
Hue) was done very quickly (around 5 minutes), together with creating the
di�erent UIs for the di�erent devices (also around 5 minutes). The time that
was left was spent on creating the two functions.

5.3.2 Qualitative Data Analysis

After �lling in the questions, the users could also pass some positive and
negative comments about the system. Many of them liked the interface and
found it very easy to �nd what they were looking for. The mashup tool itself
was very clear (elements that can be draggged to the canvas on the left, a big
canvas, a deploy button) and they liked using it. The error messages that
were given (passing a unique ID, a required value, ...) gave them hints on
what they were doing wrong. Assigning a red or green color to ports when
one port is selected let them quickly see which elements were connectable to
each other. Some of them say it maybe would be better that people actually

Questionnaire Results 86

could drag a line between ports (holding the left mouse button), instead of
just selecting two ports, because they were used to this feeling when creating
a �owchart. Also the generated wires between two ports could maybe be
drawn in a di�erent way, so it is always clear which wire belongs to which
inPort and outPort. At this moment, when many wires exist in a mashup, it
is not that clear because they get `intertwined'. Using a professional �owchart
or graph library in the future may overcome this problem.

As already brie�y mentioned in the previous subsection, some participants
said it might be hard (or at least harder) to construct the mashup when no
training was given. They do not really like the trial and error approach a
lot when creating something. Especially because they are new in controlling
these technologies and are worried to `break' something. The suggestion was
made to provide an info button on the mashup screen where people could �nd
a tutorial. This is a very good remark and can be considered when extending
this mashup tool.

To end with, the most positive remark is the one that most partici-
pants were happy that they could create an advanced application without
the knowledge of too much technological details. With a good documenta-
tion provided by the mashup tool and by WoT device developers, they would
love to discover and create new things.

6
Future Work

Limited research to the combination of mashup tools, Distributed User In-
terfaces and the Web of Things existed when starting this thesis. Therefore,
the developed tool can be used as a starting point and many extensions are
possible.

The User Study revealed that the users were overall happy with the sys-
tem, but improvements could be made. One thing that was mentioned, was
a clear tutorial that should be available for the unexperienced administra-
tors and creators of the mashup. A small information icon can be added on
top of the page with all the important information given, for example, how
to connect UI elements to a display device and how to create functions. A
further improvement could be the integration of a real step-by-step tutorial
where users learn to perform all the important actions.

As the mashup tool itself was built from scratch improvements can be
made. The user study showed when multiple wires are present on the canvas,
it sometimes looked like they were intertwined and it was not really clear
which wire was connected to which elements. One option is to use a third
party API to overcome this problem.

Until now, there is no real possibility to debug the program, other than
deploy it and use di�erent devices to see what happens. In the future, a
debug tool could be added where the application gets simulated on some
virtual devices. This way the administrator should not always deploy the

88

application and thus make an incomplete application available for the end
users. In addition to this, a visualisation of how UI elements align on the
di�erent devices can be given. Maybe even with the possibility to edit the UI
elements directly in this visualisation and extend the usability of the mashup
tool. Further improvements could be to apply CSS styles to the di�erent
elements. At this moment, a button will always have the blue colour, and
a label will always have the same font size and style. Adding the option to
style these elements gives the system much more possibilities.

Built-in third party APIs are limited to the OpenWeatherMap API1 and
the Wikipedia API2. Multiple other options exist and can in the future be
o�ered to the mashup creators. Likewise, not all possible HTML UI elements
are integrated in the current mashup tool. E.g. it is currently not possible
to show images, but this can easily be integrated in future versions of this
system.

Physical things that follow the Web of Things approach can easily be
integrated into the system by just adding them on the correct page. Meaning
that more Web of Things devices will develop automatically new options for
this mashup tool. However, at this time it is not possible to handle arrays.
For example: it is not possible to print all the available lights of the Philips
Hue on one page. Editing the mashup tool, as well as the interpreter on the
user side will overcome this shortcoming.

On the user side, an optimization can be made where the results of REST
API calls are stored in the local storage. At this time, if a function is con-
structed where the temperature and a description of the weather in a certain
city is asked, the system will make two requests to the same API: one time
to get the temperature, and one time for the description. Storing the JSON
result after the �rst call will speed up the program (not needing to wait for
a second AJAX call to be completed).

To end with, the function element of the mashup tool can be extended.
For now, it is only possible to perform some actions (setting values of di�er-
ent elements) and conditions (getting values of certain elements and check
if they ful�l a condition). Giving the administrators possibilities to insert a
switch operator, or make a loop are some examples that can be integrated
in the system. However, one should always keep in mind to keep it as sim-
ple as possible and make the mashup tool available for all kind of users:
programmers and non-programmers.

1https://openweathermap.org/
2https://www.mediawiki.org/wiki/REST_API/

7
Conclusion

The goal of this thesis was to create a mashup tool to easily develop Dis-
tributed Physical-Digital User Interfaces. Before the development of the sys-
tem started, related work was investigated. The related work showed that
mashup tools for both Distributed User Interfaces and the Internet of Things
exist, but none of them integrates both. Most existing mashup tools used
a �owchart interface to create new applications. Therefore, this approach is
also used in this thesis. Given the related work, important guidelines about
Distributed User Interfaces and the Internet of Things were discovered and
paid attention to while creating the system.

A general solution for the problem was de�ned after the literature study,
keeping in mind the positive and negative aspects from previously created
systems. The ultimate goal was to solve the problem of existing mashup tools.
They exist for Distributed User Interfaces and for the Internet of Things, but
not for a combination between them. Di�erent user classes were de�ned: an
administrator who creates the di�erent mashups and controls other users
of the system, which will use the created applications. Blocking users and
applications, kicking users out of sessions, allowing a limited number of users
to the system: a complete management of as well users as applications should
be provided. A scenario with personas was de�ned in order to have a feeling
what kind of users would use the system and what they would do in several
cases. The design process de�ned by Moore [47] was followed to create the

90

User Interface. Usability requirements were set, user object models and tasks
models de�ned, and a style guide speci�ed. Afterwards, the iterative design
process was started, using di�erent kinds of mockups to show to the potential
users. Finally, the system was developed.

Web technologies were used to create two applications: the mashup tool
where an administrator creates di�erent kinds of mashups and can control
users, devices and applications, and an application for the users where they
could select a generated application to use. HTML5, CSS3, jQuery, Ex-
press.js and WebSockets are the main technologies that were used to con-
struct the system.

The �nal system o�ers the possibility to create mashups where an appli-
cation can be distributed over multiple device types, can control and ask data
from physical things, as well can ask third parties like weather stations or
Wikipedia for data. The administrator has full control and can block appli-
cations, stop users from using a speci�c application, allow users to connect to
the system, or block them for a period of time. Users can choose to select a
certain application that is made available for use by the administrator. Each
application can also be distributed to other devices by the user.

The user study showed that overall, the users were happy with the sys-
tem. A small training of 10 minutes was enough to complete a prede�ned
task successfully in 15 to 20 minutes. Of course, not all was perfect and
some remarks were given. In the Future Work chapter, a solution for these
remarks is proposed, together with possible extensions that can be made
to the system in the future. As no speci�c mashup tool existed to create
Distributed Physical-Digital User Interfaces, this tool can be seen as a good
prototype that can be heavily extended to o�er even more possibilities to the
end users.

A
Appendix

CTTs 92

A.1 CTTs

A.1.1 Manage User Request

Figure A.1: New user tries to connect to the system

93 APPENDIX A. Appendix

A.1.2 Using the system

Figure A.2: Admin has several choices he can make, or he can perform some
pro�le actions

CTTs 94

Homescreen - User Using a Live App

Figure A.3: Showing an overview of users using a live application. Users can
be kicked out of the session

95 APPENDIX A. Appendix

Homescreen - Live Users

Figure A.4: Overview of all live users. Users can be stopped and blocked if
wanted

CTTs 96

Users - Show Groups

Figure A.5: Showing a list of groups the user is connected to. Connect new
groups or remove existing ones

97 APPENDIX A. Appendix

Apps - Mashup

Figure A.6: Constructing the app with the mashup tool

CTTs 98

Using an Application

Figure A.7: Using a certain application with possibility to distribute state
and close the app

99 APPENDIX A. Appendix

A.2 ORM Diagram

Figure A.8: Complete ORM diagram.

Mockups 100

A.3 Mockups

A.3.1 User

(a) Connect to a system (b) Waiting for approval (c) All accessible apps

Figure A.9: The three mockups above show the screens where a user is not
connected to the system yet and has to pass the right IP address (a). Once
a request is sent to the server, a screen will be shown where the user has
to wait for a response, but can abandon the request if desired (b). If the
user gets accepted, all accessible apps are shown. If the number of users of a
certain device type is reached for an app, the app will be unavailable for the
user.

101 APPENDIX A. Appendix

(a) Accessing an app (b) Distributing current status

Figure A.10: Once an app is selected, it will be generated on the screen (a).
If desired, the current status can be distributed (pressing the button on top),
or stopped (also on top). In case of distributing an app, a box will pop up
to select the device to distribute to.

Mockups 102

A.3.2 Admin

Figure A.11: Homepage administrator. Options to navigate to other pages,
or to control live applications and online users.

Figure A.12: Stopping a live application, a con�rmation is being asked. The
same action can be performed on the Applications page.

103 APPENDIX A. Appendix

Figure A.13: Showing an overview of all users that are currently using a
certain app. Users can be kicked out of the session. The same action can be
performed on the Applications page.

Figure A.14: Kicking a user out of an application. Con�rmation is being
asked to just kick the user this time, or block the user completely from using
the app ever again. A back button is available to cancel the operation.

Mockups 104

Figure A.15: New user tries to connect to the system. On every possible
page, a modal will pop up. Showing all the info and asking for some values.
The admin can accept or deny the request.

Figure A.16: Overview page of all applications. Information if an app is live
or not. Live apps can be stopped or managed (kicking live users out of the
app, or block them from using the app again). Links to delete or update an
app, or to create a new one are provided.

105 APPENDIX A. Appendix

Figure A.17: Creating a new application. Basic information exists of a name,
connected groups and users, and a block status (will the app already be
available for the users or not?).

Figure A.18: After passing the basic app info, a mashup can be created. Ele-
ments on the left can be dragged to the canvas on the right and be connected
to each other.

Mockups 106

Figure A.19: A new element is dropped on the canvas. In this case, a textbox
is dropped. An ID is required, also the value and placeholder of the textbox
can be passed if wanted. This modal box will look di�erent for each type of
element that is dropped on the canvas.

Figure A.20: Overview page of all the users in the system. A list of groups
they are connected to can be asked for. Actions to remove, block or edit a
certain user are provided. A link to add a new user is not provided: users can
only be added to the system when they send a request that can be accepted
or denied by the administrator.

107 APPENDIX A. Appendix

Figure A.21: Showing all the groups a certain user is connected to. Groups
can be added or removed.

Figure A.22: A con�rmation is being asked if the administrator wants to
remove a user from the system.

Mockups 108

Figure A.23: Overview page of all the groups. A list of connected users can
be asked for. Actions to edit or remove a certain group are provided.

Figure A.24: Creating a new group. A name is required, some users can be
connected to it.

109 APPENDIX A. Appendix

Figure A.25: Adding a new WoT device to the system. An ID has to be
passed, together with a name and a base url. After creation, the administra-
tor will automatically be redirected to the page to connect some getters and
setters to the device (see next �gure).

Figure A.26: An overview from all the getters and setters that are already
connected to. A link to edit the basic info is provided, as well links to create,
update and delete getters and setters.

Mockups 110

Figure A.27: Adding a getter (or updating one) requires a unique name, a
part of a url on which data can be get, and the JSON response �eld that is
used to receive the wanted value.

Figure A.28: Adding a getter (or updating one) requires a unique name, a
part and zero to many parameters. These parameters will be JSON �elds
that need to be passed in order to edit some data at the endpoint.

Bibliography

[1] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of
Things: A Survey. Computer Networks: The International Journal of
Computer and Telecommunications Networking, 54(15):2787�2805, Oc-
tober 2010.

[2] Djamal Benslimane, Schahram Dustdar, and Amit Sheth. Services
Mashups: The New Generation of Web Applications. IEEE Internet
Computing, 12(5):13�15, September 2008.

[3] Erik Berglund and Magnus Bang. Requirements for Distributed User
Interface in Ubiquitous Computing Networks. In Proceedings of Confer-
ence on Mobile and Ubiquitous MultiMedia, Oulo, Finland, December
2002.

[4] Xiaojun Bi and Ravin Balakrishnan. Comparing Usage of a Large High-
Resolution Display to Single or Dual Desktop Displays for Daily Work.
In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, pages 1005�1014, Boston, USA, April 2009.

[5] Michael Blackstock and Rodger Lea. IoT Mashups with the WoTKit.
In 2012 3rd International Conference on the Internet of Things, pages
159�166, Wuxi, China, October 2012.

[6] Michael Blackstock and Rodger Lea. Toward a Distributed Data Flow
Platform for the Web of Things (Distributed Node-RED). In Proceed-
ings of the 5th International Workshop on Web of Things, pages 34�39,
Cambridge, USA, October 2014.

[7] Jason Cartwright. Microsoft Shuts Down Pop�y. http://techau.com.
au/microsoft-shuts-down-popfly/, 2009. Retrieved on: 2017-09-17.

[8] Pei-Yu Peggy Chi and Yang Li. Weave: Scripting Cross-Device Wearable
Interaction. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, pages 3923�3932, Seoul, South
Korea, April 2015.

BIBLIOGRAPHY 112

[9] Pei-Yu Peggy Chi, Yang Li, and Bjorn Hartmann. Enhancing Cross-
Device Interaction Scripting with Interactive Illustrations. In Proceed-
ings of the 2016 CHI Conference on Human Factors in Computing Sys-
tems, pages 5482�5493, San Jose, USA, May 2016.

[10] Florian Daniel, Maristella Matera, and Michael Weiss. Next in Mashup
Development: User-created Apps on the Web. IT Professional, 13(5):22�
29, September 2011.

[11] David Dearman and Je�ery S Pierce. It is On My Other Computer!:
Computing with Multiple Devices. In Proceedings of the SIGCHI Con-
ference on Human factors in Computing Systems, pages 767�776, Flo-
rence, Italy, April 2008.

[12] Prasun Dewan and Honghai Shen. Controlling Access in Multiuser Inter-
faces. ACM Transactions on Computer-Human Interaction, 5(1):34�62,
March 1998.

[13] Simon Duquennoy, Gilles Grimaud, and Jean-Jacques Vandewalle. The
Web of Things: Interconnecting Devices with High Usability and Perfor-
mance. In International Conference on Embedded Software and Systems,
pages 323�330, Zhejiang, China, May 2009.

[14] Michael K Edwards. Making the Best of Chromecast: Amazing Tricks
and Tips. CreateSpace Independent Publishing Platform, February
2015.

[15] Robert J Ennals. Intel Mash Maker: Mashups for the
Masses. https://software.intel.com/en-us/articles/intel-

mash-maker-mashups-for-the-masses, 2012. Retrieved on: 2017-09-
17.

[16] Robert J Ennals and Minos N Garofalakis. MashMaker: Mashups for
the Masses. In Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, pages 1116�1118, Beijing, China,
June 2007.

[17] Roy T Fielding and Richard N Taylor. Architectural Styles and the De-
sign of Network-Based Software Architectures. University of California,
January 2000.

[18] Luca Frosini and Fabio Paterno. User Interface Distribution in Multi-
Device and Multi-User Environments with Dynamically Migrating En-
gines. In Proceedings of the 2014 ACM SIGCHI Symposium on Engi-

113 BIBLIOGRAPHY

neering Interactive Computing Systems, pages 55�64, Rome, Italy, June
2014.

[19] Jose A Gallud, Ricardo Tesoriero, Jean Vanderdonckt, María Lozano,
Victor Penichet, and Federico Botella. Distributed User Interfaces: De-
signing Interfaces for the Distributed Ecosystem. Springer-Verlag, Jan-
uary 2011.

[20] Daniel Giusto, Antonio Iera, Giacomo Morabito, and Luigi Atzori. The
Internet of Things: 20th Tyrrhenian Workshop on Digital Communica-
tions. Springer-Verlag, January 2010.

[21] Josh Goldman. Create an API for Any Site with Dap-
per. https://techcrunch.com/2006/08/17/create-an-api-for-

any-site-with-dapper/, 2006. Retrieved on: 2017-10-26.

[22] Donatien Grolaux, Jean Vanderdonckt, and Peter Van Roy. Attach me,
Detach me, Assemble me Like you Work. In roceedings of the 2005
IFIP TC13 International Conference on Human-Computer Interaction,
volume 5, pages 198�212, Rome, Italy, September 2005.

[23] William I Grosky, Aman Kansal, Suman Nath, Jie Liu, and Feng Zhao.
Senseweb: An Infrastructure for Shared Sensing. IEEE multimedia,
14(4):8�13, January 2007.

[24] Dominique Guinard and Vlad Trifa. Towards the Web of Things: Web
Mashups for Embedded Devices. In Workshop on Mashups, Enterprise
Mashups and Lightweight Composition on the Web (MEM 2009), in pro-
ceedings of WWW, Madrid, Spain, April 2009.

[25] Dominique Guinard and Vlad Trifa. Building the Web of Things: With
Examples in Node. js and Raspberry Pi. Manning Publications Co., June
2016.

[26] Dominique Guinard, Vlad Trifa, Thomas Pham, and Olivier Liechti.
Towards Physical Mashups in the Web of Things. In Proceedings of
the 6th International Conference on Networked Sensing Systems, pages
196�199, Pittsburgh, USA, June 2009.

[27] Dominique Guinard, Vlad Trifa, and Erik Wilde. A Resource Oriented
Architecture for the Web of Things. In Internet of Things (IOT), pages
1�8, Tokyo, Japan, November 2010.

BIBLIOGRAPHY 114

[28] Bjorn Hartmann, Leslie Wu, Kevin Collins, and Scott R Klemmer. Pro-
gramming By a Sample: Rapidly Creating Web Applications with D.
Mix. In Proceedings of The 20th Annual ACM Symposium On User
interface Software and Technology, pages 241�250, Newport, USA, Oc-
tober 2007.

[29] Tommi Heikkinen, Jorge Goncalves, Vassilis Kostakos, Ivan Elhart, and
Timo Ojala. Tandem Browsing Toolkit: Distributed Multi-Display In-
terfaces with Web Technologies. In Proceedings of The International
Symposium on Pervasive Displays, pages 142�147, Copenhagen, Den-
mark, June 2014.

[30] Steven Houben and Nicolai Marquardt. Watchconnect: A Toolkit for
Prototyping Smartwatch-Centric Cross-Device Applications. In Proceed-
ings of the 33rd Annual ACM Conference on Human Factors in Com-
puting Systems, pages 1247�1256, Seoul, South Korea, April 2015.

[31] Maria Husmann, Michael Nebeling, and Moira C Norrie. MultiMasher:
a Visual Tool for Multi-Device Mashups. In International Conference
on Web Engineering, pages 27�38, Aalborg, Denmark, July 2013.

[32] Dugald Ralph Hutchings, Greg Smith, Brian Meyers, Mary Czerwinski,
and George Robertson. Display Space Usage and Window Management
Operation Comparisons Between Single Monitor and Multiple Monitor
Users. In Proceedings of the Working Conference on Advanced visual
interfaces, pages 32�39, Gallipoli, Italy, May 2004.

[33] Andreas Kamilaris, Andreas Pitsillides, and Vlad Trifa. The Smart
Home Meets the Web of Things. International Journal of Ad Hoc and
Ubiquitous Computing, 7(3):145�154, May 2011.

[34] Tim Kindberg, John Barton, Je� Morgan, Gene Becker, Debbie Caswell,
Philippe Debaty, Gita Gopal, Marcos Frid, Venky Krishnan, Howard
Morris, et al. People, Places, Things: Web Presence for the Real World.
Mobile Networks and Applications, 7(5):365�376, December 2002.

[35] Robert Kleinfeld, Stephan Steglich, Lukasz Radziwonowicz, and Char-
alampos Doukas. glue. things: a Mashup Platform for Wiring the In-
ternet of Things with the Internet of Services. In Proceedings of the 5th
International Workshop on Web of Things, pages 16�21, Cambridge,
USA, October 2014.

[36] Agnes Koschmider, Victoria Torres, and Vicente Pelechano. Elucidat-
ing The Mashup Hype: De�nition, Challenges, Methodical Guide and

115 BIBLIOGRAPHY

Tools for Mashups. In Proceedings of the 2nd Workshop on Mashups,
Enterprise Mashups and Lightweight Composition on the Web at WWW,
pages 1�9, Madrid, Spain, April 2009.

[37] Thomas Kubitza, Alexandra Voit, Dominik Weber, and Albrecht
Schmidt. An IoT Infrastructure for Ubiquitous Noti�cations in Intel-
ligent Living Environments. In Proceedings of the 2016 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing: Ad-
junct, pages 1536�1541, Heidelberg, Germany, September 2016.

[38] Danh Le Phuoc, Axel Polleres, Giovanni Tummarello, and Christian
Morbidoni. DERI Pipes: Visual Tool for Wiring Web Data Sources.
Book DERI pipes: Visual Tool for Wiring Web Data Sources, January
2008.

[39] James R Lewis. IBM Computer Usability Satisfaction Questionnaires:
Psychometric Evaluation and Instructions for Use. International Journal
of Human-Computer Interaction, 7(1):57�78, January 1995.

[40] Tony Loton. Introduction to Microsoft Pop�y, No Programming Re-
quired. Lotontech Limited, February 2008.

[41] Kris Luyten and Karin Coninx. Distributed User Interface Elements
to Support Smart Interaction Spaces. In Seventh IEEE International
Symposium on Multimedia, pages 277�286, California, USA, December
2005.

[42] Luca Mainetti, Vincenzo Mighali, Luigi Patrono, Piercosimo Rametta,
and Silvio Lucio Oliva. A Novel Architecture Enabling the Visual Im-
plementation of Web of Things Applications. In 2013 21st International
Conference on Software, Telecommunications and Computer Networks,
pages 1�7, Primosten, Croatia, September 2013.

[43] Jose Pascual Molina Masso, Jean Vanderdonckt, Pascual Gonzalez
Lopez, Antonio Fernandez-Caballero, and Maria Dolores Lozano Perez.
Rapid Prototyping of Distributed User Interfaces. In Proceedings of 6th
International Conference on Computer-Aided Design of User Interfaces
CADUI 2006, pages 151�166, Bucharest, Romania, June 2006.

[44] Jeremie Melchior, Donatien Grolaux, Jean Vanderdonckt, and Peter
Van Roy. A Toolkit for Peer-to-Peer Distributed User Interfaces: Con-
cepts, Implementation, and Applications. In Proceedings of the 1st
ACM SIGCHI Symposium on Engineering Interactive Computing Sys-
tems, pages 69�78, Pittsburgh, USA, July 2009.

BIBLIOGRAPHY 116

[45] Jeremie Melchior, Jean Vanderdonckt, and Peter Van Roy. A Model-
Based Approach for Distributed User Interfaces. In Proceedings of the
3rd ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, pages 11�20, Pisa, Italy, June 2011.

[46] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich
Chlamtac. Internet of Things: Vision, Applications and Research Chal-
lenges. Ad Hoc Networks, 10(7):1497�1516, September 2012.

[47] Alan Moore and David Redmond-Pyle. Graphical User Interface Design
and Evaluation: A Practical Process. Prentice Hall, May 1995.

[48] Sudarshan Murthy, David Maier, and Lois Delcambre. Mash-o-Matic.
In Proceedings of the 2006 ACM Symposium on Document Engineering,
pages 205�214, Amsterdam, The Netherlands, October 2006.

[49] Daniel Nations. What Does Web 2.0 Even Mean? https://www.

lifewire.com/what-is-web-2-0-p2-3486624, 2016. Retrieved on:
2017-09-17.

[50] Michael Nebeling. xdbrowser 2.0: Semi-automatic generation of cross-
device interfaces. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, pages 4574�4584, Denver, USA, May
2017.

[51] Michael Nebeling and Anind K Dey. XDBrowser: User-De�ned Cross-
Device Web Page Designs. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, pages 5494�5505, San Jose,
USA, May 2016.

[52] Michael Nebeling, Theano Mintsi, Maria Husmann, and Moira Norrie.
Interactive Development of Cross-Device User Interfaces. In Proceedings
of the 32nd Annual ACM Conference on Human factors in Computing
Systems, pages 2793�2802, Toronto, Canada, April 2014.

[53] Dan O'Sullivan and Tom Igoe. Physical Computing: Sensing and Con-
trolling the Physical World with Computers. Course Technology Press,
May 2004.

[54] Ahmed Patel, Liu Na, Rodziah Latih, Christopher Wills, Zarina Shukur,
and Rabia Mulla. A Study of Mashup as a Software Application De-
velopment Technique with Examples from an End-User Programming
Perspective. Journal of Computer Science, 6(12):1406�1415, November
2010.

117 BIBLIOGRAPHY

[55] Cesare Pautasso and Erik Wilde. Why Is the Web Loosely Coupled:
a Multi-Faceted Metric for Service Design. In Proceedings of the 18th
International Conference on World Wide Web, pages 911�920, Madrid,
Spain, April 2009.

[56] Rajeev Piyare, Sun Park, Se Yeong Maeng, Sang Hyeok Park, Se-
ung Chan Oh, Sang Gil Choi, Ho Su Choi, and Seong Ro Lee. Integrating
Wireless Sensor Network into Cloud Services for Real-Time Data Col-
lection. In 2013 International Conference on ICT Convergence, pages
752�756, Jeju, South Korea, October 2013.

[57] Michael E Porter and James E Heppelmann. How Smart, Connected
Products are Transforming Competition. Harvard Business Review,
92(11):64�88, November 2014.

[58] Mark Pruett. Yahoo! pipes. O'Reilly, May 2007.

[59] Reza Rawassizadeh, Blaine A Price, and Marian Petre. Wearables: Has
the Age of Smartwatches Finally Arrived? Communications of the ACM,
58(1):45�47, January 2015.

[60] Claire Rowland, Elizabeth Goodman, Martin Charlier, Ann Light, and
Alfred Lui. Designing Connected Products: UX for the Consumer In-
ternet of Things. O'Reilly Media, May 2015.

[61] David E Simmen, Mehmet Altinel, Volker Markl, Sriram Padmanabhan,
and Ashutosh Singh. Damia: Data Mashups for Intranet Applications.
In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, pages 1171�1182, Vancouver, Canada, June 2008.

[62] Ryan Singel. Map Hack on Crack. https://www.wired.com/2005/07/
map-hacks-on-crack/, 2005. Retrieved on: 2017-09-17.

[63] Micael Sjolund, Anders Larsson, and Erik Berglund. Smartphone Views:
Building Multi-Device Distributed User Interfaces. Mobile Human-
Computer Interaction MobileHCI 2004. Lecture Notes in Computer Sci-
ence, 3160(1):127�140, September 2004.

[64] Nate Swanner. Yahoo Is Shutting Down Maps, Pipes and a Bunch of
Services You've Probably Never Heard of. https://thenextweb.com/

insider/2015/06/04/yahoo-is-shutting-down-maps-pipes-and-

a-bunch-of-services-youve-probably-never-heard-of/, 2015.
Retrieved on: 2017-09-17.

BIBLIOGRAPHY 118

[65] Desney S Tan, Brian Meyers, and Mary Czerwinski. WinCuts: Ma-
nipulating Arbitrary Window Regions for More E�ective Use of Screen
Space. In CHI 2004 Extended Abstracts on Human Factors in Comput-
ing Systems, pages 1525�1528, Vienna, Austria, April 2004.

[66] Lucia Terrenghi, Aaron Quigley, and Alan Dix. A Taxonomy for and
Analysis of Multi-Person-Display Ecosystems. Personal and Ubiquitous
Computing, 13(8):583�598, November 2009.

[67] Stefan Thomke and Eric Von Hippel. Customers as Innovators: a New
Way to Create Value. Harvard Business Review, 80(4):74�85, April 2002.

[68] Rob Van der Meulen. Gartner Says 8.4 Billion Connected Things Will
Be in Use in 2017, Up 31 Percent From 2016. https://www.gartner.

com/newsroom/id/3598917, 2017. Retrieved on: 2017-09-17.

[69] Peter Van-Roy and Seif Haridi. Concepts, Techniques, and Models of
Computer Programming. MIT press, Cambridge, USA, 2004.

[70] CP Vandana, Suman Thapa, and Pradip Thapa. Web of Things. Inter-
national Journal of Scienti�c Research In Computer Science, Engineer-
ing and Information Technology, 2(3):212�218, May 2017.

[71] Jean Vanderdonckt et al. Distributed User Interfaces: How To Distribute
User Interface Elements Across Users, Platforms, and Environments.
In Proceedings of XIth Congreso Internacional de Interaccion Persona-
Ordenador Interaccion 2010, pages 3�14, Valencia, Spain, September
2010.

[72] Roy Want, Kenneth P Fishkin, Anuj Gujar, and Beverly L Harrison.
Bridging Physical and Virtual Worlds with Electronic Tags. In Pro-
ceedings of the SIGCHI conference on Human Factors in Computing
Systems, pages 370�377, Pittsburgh, USA, May 1999.

[73] Erik Wilde. Putting things to REST. November 2007.

[74] Je�rey Wong and Jason I Hong. Making Mashups with Marmite:
Towards End-User Programming for the Web. In Proceedings of the
SIGCHI conference on Human Factors in computing systems, pages
1435�1444, San Jose, USA, April 2007.

[75] Felix Wortmann and Kristina Fluchter. Internet of Things. Business &
Information Systems Engineering, 57(3):221�224, June 2015.

119 BIBLIOGRAPHY

[76] Jishuo Yang and Daniel Wigdor. Panelrama: Enabling Easy Speci�ca-
tion of Cross-Device Web Applications. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 2783�2792,
Toronto, Canada, April 2014.

[77] Youngjin Yoo, Ola Henfridsson, and Kalle Lyytinen. Research Com-
mentary â�� The New Organizing Logic of Digital Innovation: An
Agenda for Information Systems Research. Information Systems Re-
search, 21(4):724�735, December 2010.

[78] Jin Yu, Boualem Benatallah, Fabio Casati, and Florian Daniel. Un-
derstanding Mashup Development. IEEE Internet computing, 12(5),
September 2008.

[79] Nan Zang, Mary Beth Rosson, and Vincent Nasser. Mashups: Who?
What? Why? In CHI 2008 Extended Abstracts on Human Factors in
Computing Systems, pages 3171�3176, Florence, Italy, April 2008.

