
FACULTY OF SCIENCE AND BIO-ENGINEERING SCIENCES
DEPARTMENT OF COMPUTER SCIENCE

Re-finding Physical Documents:
It is Like a Dream Come True

Graduation thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in de toegepaste informatica

Tim Reynaert

Promoter: Prof. Dr. Beat Signer
Advisor: Sandra Trullemans

Academic year 2014-2015

2

FACULTEIT WETENSCHAPPEN EN BIO-INGENIEURSWETENSCHAPPEN
VAKGROEP COMPUTERWETENSCHAPPEN

Re-finding Physical Documents:
It is Like a Dream Come True

Masterproef ingediend in gedeeltelijke vervulling van de eisen voor het behalen van de graad
Master of Science in de toegepaste informatica

Tim Reynaert

Promotor: Prof. Dr. Beat Signer
Begeleider: Sandra Trullemans

Academiejaar 2014-2015

i

Abstract

On a daily basis, people experience issues with keeping, organising and re-
finding their personal information. Keeping, organising and re-finding are
also known as the KOR activities. Most of these issues are caused by informa-
tion overload, information fragmentation and the burden of classifying digital
and physical documents. In the Personal Information Management (PIM)
research field, these three main issues are investigated and tools are been de-
veloped to support users during the three KOR activities. In this thesis, we
dig deeper into the re-finding activity of physical documents. Most applica-
tions focus only on spatial indications to show where a document is located.
Nevertheless, descriptive PIM research has shown that the spatial cue is not
the only re-finding cue that users apply in their re-finding activities in physi-
cal space. By only indicating where a document is, the overall context of the
document is not given. Such extra information can include in which tasks
the documents is used or when the document was used in a timespan. This
extra contextual and time-related information is as important as the spatial
cue if it comes to re-finding documents. In addition to the missing cues,
users often have to execute a digital search before a spatial augmentation
can be invoked. At the same time, users often do not know exactly which
document they are searching for. Lastly, most of the systems do not have a
structured central repository to keep track of the contextual and time-related
meta-information of the documents. When this data would be available, it
could be used when augmenting the physical world. In order to do an ini-
tial step towards a solution for the described issues and shortcomings, the
KOR framework is developed. The framework’s functionality is to track
and organise digital and physical documents as well as to provide developers
with a mechanism to rapidly prototype re-finding user interfaces in digital
and physical space. Due to the extensiveness and complexity of the KOR
framework, this thesis focuses on the development of the mechanism for re-
finding user interfaces. First, an extension is made to the KOR framework’s
core module called ReViTa. This module is responsible for the data man-
agement of spatial, contextual and time-related information of documents.
The extension also includes a model of the required data of re-finding user
interfaces. Secondly, a mechanism for re-finding user interfaces is developed.
This component of the KOR framework allows developers to easily register
and reuse re-finding user interfaces as well as use meta-information in their
applications. It was our goal that developers do not need any knowledge
of the underlying complexity of tracking documents and how documents are
stored in the ReViTa component. Furthermore, the re-finding module is also
responsible for ensuring the right re-finding cues for the right organisational

ii

structures. For example, descriptive research indicates that users do not use
any time cue for re-finding a document in a pile but rather use a contextual
cue. Therefore, an augmented user interface for a pile has to contain support
for a contextual cue. Finally, we present various augmented re-finding user
interfaces for piles, filing cabinets and paper trays. These developed user in-
terfaces show the potential of the KOR framework in an Office of the Future
setting.

iii

Declaration of Originality
I hereby declare that this thesis was entirely my own work and that any
additional sources of information have been duly cited. I certify that, to the
best of my knowledge, my thesis does not infringe upon anyone’s copyright
nor violate any proprietary rights and that any ideas, techniques, quotations,
or any other material from the work of other people included in my thesis,
published or otherwise, are fully acknowledged in accordance with the stan-
dard referencing practices. Furthermore, to the extent that I have included
copyrighted material, I certify that I have obtained a written permission from
the copyright owner(s) to include such material(s) in my thesis and have in-
cluded copies of such copyright clearances to my appendix.

I declare that this thesis has not been submitted for a higher degree to any
other University or Institution.

iv

Acknowledgements
First of all I want to thank my promoter Prof. Dr. Beat Signer to offer me
the chance to write a thesis at the WISE lab and provide feedback during
the presentations. A second person I want to thank is my supervisor Ph.D.
student Sandra Trullemans. She guided me through this thesis and provided
useful information to be able to finish this thesis. I also want to thank
my parents, my brother, all my friends and my co thesis students, Audrey
Sanctorum, Jasmien De Ridder and Ayrton Vercruysse, to support me during
the writing of this thesis. The atmosphere at the WISE lab helped me a lot
to focus on the thesis but, at the same time, provided some spare time to
support me when it was more difficult to write. Thank you, Alison Govaerts
to inspire me during the writing of the use case examples of the re-finding
user interfaces.

Contents

1 Introduction
1.1 What is Personal Information Management? 1
1.2 A Daily Struggle . 3
1.3 Digital Systems in Overload 4

1.3.1 Visualisation Tools . 4
1.3.2 Augmentation Tools 5
1.3.3 Central Repository Tools 6
1.3.4 Other Tools . 8

1.4 What About Physical Documents? 9
1.5 Problem Statement . 10
1.6 Thesis Contribution . 10
1.7 Thesis Outline . 11

2 Background
2.1 How People Organise Their Documents 13
2.2 Re-finding Documents . 16
2.3 PIM Systems in Physical Space 17

2.3.1 Support for Organising Activities 17
2.3.2 Support for Organisational Structures 20

2.4 Where it Goes Wrong! . 25

3 The KOR Framework
3.1 Requirements for Re-finding 27
3.2 Architecture . 28
3.3 ReViTa Module . 29

3.3.1 Object-Concept-Context Model 30
3.3.2 ReViTa Extension . 32

3.4 Tracking Module . 34
3.5 Re-finding Module . 34

3.5.1 Re-finding Mechanism 34
3.5.2 Re-finding User Interfaces 42

CONTENTS vi

4 Re-finding of File Folders
4.1 Setup One: File Folders in a Filing Cabinet 47

4.1.1 Implicit - File Folders that Show Contexts 50
4.1.2 Implicit - Filter on Contexts 52
4.1.3 Implicit - Timespan Selection 52
4.1.4 Explicit - Label Search 54
4.1.5 Explicit - Spatial Indication 54

4.2 Setup Two: Ring Binders on a Shelf 55
4.2.1 Implicit - Show Contexts 56
4.2.2 Implicit - Context Selection 58
4.2.3 Implicit - Interaction Log 59
4.2.4 Explicit - Spatial Indication 60

4.3 Conclusion . 60

5 Documents Lost in a Pile
5.1 Setup: Piles on a Touch Table 62

5.1.1 Implicit - Show Context Labels 63
5.1.2 Implicit - Related Documents in Contexts 64
5.1.3 Implicit - Digital Augmentation 66
5.1.4 Explicit - Spatial Indication 67

5.2 Conclusion . 67

6 Chaotic Paper Trays
6.1 Setup: Paper trays . 70

6.1.1 Implicit - Show context 74
6.1.2 Implicit - Show content 75
6.1.3 Implicit - Interaction Log 76
6.1.4 Implicit - Timespan selection 78
6.1.5 Explicit - Spatial Indication 79

6.2 Conclusion . 79

7 Conclusion and Future Work
7.1 Conclusion . 81
7.2 Future Work . 83

A Appendix

List of Figures

1.1 Keeping-Organising-Re-finding 2
1.2 Personal Information Dashboard 4
1.3 BumpTop . 5
1.4 The Icon Highlights and the Hover Menu 6
1.5 Search directed navigation . 6
1.6 Stuff I’ve seen . 7
1.7 Haystack . 8
1.8 DocuDesk . 9

2.1 Filing and piling example . 14
2.2 Mixtures examples . 14
2.3 Setup of DigitalDesk . 18
2.4 Menu of DocuDesk . 18
2.5 PaperSpace example . 19
2.6 Smart Filing System . 20
2.7 SOPHYA architecture . 22
2.8 File folders in SOPHYA . 22
2.9 File folders in SOPHYA V2.0 23
2.10 Video-based document tracking 24

3.1 KOR Framework . 29
3.2 OC2 conceptual model . 30
3.3 OC2 Metamodel . 31
3.4 Extended OC2 . 33
3.5 Data flow . 35
3.6 Sequence diagram: invoke re-finding user interface 36
3.7 Sequence diagram: provide additional data 38
3.8 Sequence diagram: support for extra displays 41
3.9 KOR Architecture . 43

4.1 Filing cabinet setup . 47
4.2 File folders hardware schema 49
4.3 Prototype of file folders hardware 50

LIST OF FIGURES viii

4.4 Context info on tablet . 51
4.5 Time span selection using tablet 53
4.6 Augmented ring binder . 56
4.7 Context info on ring binders and tablet 57

5.1 Touch table . 62
5.2 Contexts next to piles . 63
5.3 Related documents of a pile 65
5.4 Digital representation of the pile 66

6.1 Paper tray setup . 71
6.2 Paper trays hardware schema 72
6.3 Prototype of paper tray hardware 73
6.4 Contexts information about paper trays 74
6.5 Content of a paper tray . 76
6.6 Time controls to interact with the paper trays 77

List of Tables

2.1 Malone’s definition of Files and Piles 13
2.2 Re-finding cues [51] . 16
2.3 Overview of PIM systems in physical space 25

3.1 Overview of implemented implicit re-finding user interfaces . . 42
3.2 Overview of implemented explicit re-finding user interfaces . . 42

4.1 Overview of implemented implicit re-finding user interfaces . . 46
4.2 Overview of implemented explicit re-finding user interfaces . . 46

5.1 Overview of implemented implicit re-finding user interfaces . . 62
5.2 Overview of implemented explicit re-finding user interfaces . . 62

6.1 Overview of implemented implicit re-finding user interfaces . . 70
6.2 Overview of implemented explicit re-finding user interfaces . . 70

1
Introduction

1.1 What is Personal Information Management?

On a daily basis, people have issues with organising their own personal infor-
mation. Already in the forties, Bush described the mismatch between how we
organise our information and how the human brain processes this informa-
tion [5]. Information has to be classified before it can be stored somewhere.
In digital space, users use the file system whereas in physical space filing
cabinets are commonly used. This is different from how the human brain
processes information. The human brain keeps associations between infor-
mation. Bush can be seen as one of the pioneers in PIM research. Jones
described the PIM research area as the study of PIM activities in order to
understand how people keep, organise and re-find personal information:

“ Personal Information Management (PIM) refers to both the practice and
the study of the activities a person performs in order to locate or create, store,
organize, maintain, modify, retrieve, use and distribute information in each
of its many forms (in various paper forms, in electronic documents, in email
messages, in conventional Web pages, in blogs, in wikis, etc.) as needed to
meet life’s many goals (everyday and long-term, work-related and not) and
to fulfill life’s many roles and responsibilities (as parent, spouse, friend, em-
ployee, member of community, etc.) ” William Jones, 2010 [26]

What is Personal Information Management? 2

This definition shows that PIM focuses on the research of what a person
does in order to, for instance, store, organise and re-find information. Apart
from this research, there is also a technical part that focuses on system design.

Figure 1.1: Keeping-Organising-Re-finding

The definition of PIM led to the Keeping-Organising-Re-finding (KOR)
conceptual framework. Figure 1.1 illustrates the KOR framework. Keeping,
organising and re-finding are the three general activities of PIM [26]. For
example, documents, papers, emails, photos or videos, etc. are stored by
the user in the digital as well as the physical world. Keeping focuses on the
decision of integrating the information gathered, encountered or received in
the user’s own personal information space. For example, the user will receive
a lot of emails but has to decide whether every mail is important and needs to
be kept. Re-finding activities focus on the activities a user executes to re-find
stored information in their personal information space. The user can re-find
documents by, for example, using a search engine or navigating through the
digital file system. In order to re-find information, the information has to
be stored beforehand in the personal information space. In order to connect
the keeping and re-finding activities, some meta-level activities are needed.
The main meta-level activity consists of organising and maintaining stored
information in the personal information space.

In digital as well as physical space, there are some organisational struc-
tures that the user will use to store information. Malone defined the filing and
piling organisational structures [39]. This was later extended with mixing by
Trullemans [51]. Every organisational structure has different properties de-
pending on labelling and ordering. Files are used to archive documents and
have strict rules concerning ordering and labelling of the individual elements.
Elements have to be labelled and ordered according to a structure. Piles can-
not have an internal order and are not labelled. Mixtures are everything that
falls in between filing and piling. There are no specific rules about labelling

3 CHAPTER 1. Introduction

and ordering. A typical mixture structure can often be found in ring binders
and paper trays where the structure itself is labelled but the elements in the
structure are not. When people are re-finding documents, files, piles and
mixtures provide specific cues. Depending on the organisational structure, a
context, spatial or time cue is provided. These cues will help to re-find the
document the person is looking for.

1.2 A Daily Struggle

The first problem is that there is too much information. The human brain
can only process a limited amount of information [47]. Because of this, the
retrieval of information depending on a user’s needs is sometimes difficult.
Important information is overlooked or will not always be remembered or
recalled. As described before, Bush already mentioned that there is a prob-
lem how we process information that leads to re-finding problems. At that
time, only physical information was available. There was no digital space
and thus there was "less" information available. Nowadays, the problem of
information overload is even worse since the revolution of the digital age
makes information very easily accessible. For example, pictures are shared
via social media or the World Wide Web allows people to keep relevant and
most of all irrelevant information.

Another problem in PIM is the classification problem. Ordering files in
a systematic order will take more time and thus the user will tend to skip
the classification of documents. Users do not want to spend time to classify
documents if there is no benefit [6]. The classification problem can be divided
into two separate problems [10]. The first problem is that people find it
difficult to label documents. The second problem is that a document can
only be placed in one category in the physical space and this often also holds
in digital space. Those problems make it difficult to classify the document if
it has to be stored in multiple categories.

The last problem concerns information fragmentation. Nowadays most
people have a laptop, a smartphone, a tablet, USB drives and cloud storage
space. The laptop will give the user access to information stored on the
laptop as well as the USB drives and the cloud services. The smartphone
can store data like messages and emails. With the tablet, the user can access
the cloud space and create documents using some of the applications. The
biggest problem is that the user has to remember where which document is
stored and information is fragmented over multiple devices and places.

Digital Systems in Overload 4

1.3 Digital Systems in Overload
To solve the issues of PIM described in the previous section, various digital
systems have been built. The goal is to try to solve the three PIM issues
namely information fragmentation, information overload and lack of organi-
sation. In digital space, we can derive three categories of tools: visualisation,
augmentation and central repository tools.

1.3.1 Visualisation Tools

In the visualisation category, we can see tools that apply visualisation tech-
niques on personal information data and tools that try to mimic the physical
space by showing a 3D representation of the workspace.

Figure 1.2: Personal Information Dashboard

The first system that provides a visualisation of the user’s data and tries to
solve the information overload problem in PIM is called Personal Information
Dashboard [2]. The Personal Information Dashboard focuses on combining all
kinds of data sources. Figure 1.2 shows an example of a configured Personal
Information Dashboard. The goal of the Personal Information Dashboard is
to combine different sources of personal data, find interesting patterns of the
user’s life and show the user what is important at that moment. Implicit re-
finding is used when the user is looking for data. For example, in the keyword
cloud, the user can see the most important words that were received on a
given day. The Personal Information Dashboard is a plug-in based system.
In total 10 plug-ins were implemented, ranging from a keyword cloud, which
shows the most important keywords in mail posts and status updates of
social media, to Who&How which keeps track of activities with each of your

5 CHAPTER 1. Introduction

contacts and Spark Stats which gives an overview of all communication done
via mail and social media. Other systems like Themail [55] proposed a way
of visualizing personal information using piles of important words.

Figure 1.3: BumpTop

In a second visualisation approach, researchers try to copy the physical
space. People have to categorise information when they are storing data in a
digital file system. This takes more effort than just piling the documents like
they can do in real life. Therefore, BumpTop [1] provides a virtual organi-
sation tool that consists of a virtual desktop. Figure 1.3 shows an overview
of the BumpTop interface. The goal is to support the pile organisational
structure in digital space. Files are represented as 3D objects that can be
tossed around. If the user wants to build a pile that has a meaning they
can do this. Physics of the real world are added to give the virtual desktop
a more natural feeling. For instance, when the user starts to toss files in a
corner, a heap starts to form.

1.3.2 Augmentation Tools

As described before, users are forced to file documents in digital space. Fitch-
ett studied ways on how to improve navigational file retrieval [14]. The focus
is more on retrieval and re-finding than on how to store and organise the
documents. Successful retrieval mainly depends on the user. The user will
have to remember the location of the file. Nardi describes three types of
information which are organised in different ways [41]. Those three types are
temporal information, working information and archived information. Hier-
archical structures have a direct influence on navigational time [38] [40]. In
Fitchett’s work, three goals are defined. The first goal is to minimise the time

Digital Systems in Overload 6

Figure 1.4: The Icon Highlights and the Hover Menu

Figure 1.5: Search directed navigation

spent on each level while the user is looking for the file. The second goal is
to reduce the number of levels traversed to the target file by providing short-
cuts. The last goal is to promote rehearsal of the retrieval mechanics and
facilitate expertise. To accomplish this, three new user interfaces which are
illustrated in Figure 1.4 and Figure 1.5 were built. Icon Highlights predicts
which items are most likely to be accessed using the AccessRank algorithm
[13]. Hover Menus provides access to commonly accessed items. Search
Directed Navigation allow the user to search for a file based on a query. Fig-
ure 1.4 and 1.5 show examples of Icon Highlights, Hover Menus and Search
Directed Navigation [15].

1.3.3 Central Repository Tools

In order to overcome information fragmentation, the vision of a central repos-
itory for personal information was raised in the forties. Bush envisioned the
Memex as a central system which would contain all documents a user kept.
The novelty of this vision lies in the fact that the organisation of all these
documents would no longer be hierarchical. Instead, Bush aimed for linking
documents in order to allow users to organise their documents as they natu-

7 CHAPTER 1. Introduction

rally do in their brain. Bush described the Memex as follows:

“A memex is a device in which an individual stores all his books, records
and communications, and which is mechanized so that it may be consulted
with exceeding speed and flexibility. It is an enlarged intimate supplement to
his memory.” Vannevar Bush, 1945 [5]

Most of the content is purchased on microfilm but the user can also add
their own content by photographing it to an empty space on the microfilm.
The user can recall information by typing the code linked to that piece of in-
formation. Everything is structured in a scheme. When viewing a document,
simple notes and comments can be added. The Memex can be seen as the
first central repository that stores information the user wants to keep and
provide easy access by indexing the information. Nevertheless, the Memex
was never built.

Figure 1.6: Stuff I’ve seen

A system that is based on the idea of the Memex is called Stuff I’ve Seen
[9]. The goal is the same as with the Memex, which is to build a unified index
of information seen by the user. The system is an extension of Microsoft’s
Search Indexing architecture and uses a rich user interface that allows the
user to search through their information. Figure 1.6 shows the user-interface
of SIS that consists of a search field. This search field is used to query the
index. One of the biggest disadvantages of SIS is that the user explicitly has
to search for something. This is not natural and sometimes the user will not
find what they were looking for [50].

Digital Systems in Overload 8

Figure 1.7: Haystack

Other systems that provide some sort of information management are
Lifestreams [16], Presto [8] and MediaFinder [28]. They all use a data model
to push the systems beyond a single domain and allow cross-domain informa-
tion extraction. The most promising system is Haystack developed at MIT
[30] [29]. Haystack is a general-purpose information management system
[30] [29]. The data, as well as metadata, of Haystack, is stored in a directed
graph. The user can add links to this data and recall important information.
The interface of Haystack is shown in Figure 1.7.

1.3.4 Other Tools

The biggest disadvantage of digital documents is that the spatial informa-
tion is lost. A system that tries to bridge between digital documents and the
physical world is called BubbleFish [12]. BubbleFish is an augmented real-
ity application that shows digital documents in the physical world. Digital
documents are represented as a bubble in the physical world. The user can
interact and organise the digital documents as if they were physical docu-
ments and place them somewhere in the physical world. BubbleFish consists
of a Sony Glasstron1 along with a head-mounted camera.

1http://www.sony.net/Fun/design/history/product/1990/plm-s700.html

9 CHAPTER 1. Introduction

1.4 What About Physical Documents?

Digital and physical documents each have different properties, advantages
and disadvantages. Digital documents lack the tangibility and universal ac-
ceptance of physical paper. Features that are missed when working with
physical paper are, for example, direct access to a wide variety of interac-
tive functions that are available in digital documents. A solution to these
problems is to provide a digital alternative of the physical document. Never-
theless, this is not always the best option. For example, research has shown
that reading from a screen is, in general, slower than from paper [18]. It is
also widely accepted that the Paperless Offices is more a myth than reality
[47]. An alternative solution is to augment real-world objects [56] [57]. The
goal of augmenting documents in the real world is to reduce incompatibili-
ties between digital documents and physical documents by augmenting the
physical documents with digital information. To allow the digital system to
track the physical documents, a vision system is used [33]. This system will
capture the documents and digitise, identify and locate them depending on
the application. In order to enhance the office working experience, interactive
horizontal displays can provide a big benefit.

Figure 1.8: DocuDesk

A system that uses a vision system and an interactive display is the
DigitalDesk [58]. The DigitalDesk is the first approach to augment digital
documents, EnhanceDesk [36] is an enhancement of DigitalDesk. Marcel
[42], DocuDesk [11] and PaperSpace [49] are other systems that use a vision
system to track and detect documents. DocuDesk is shown in Figure 1.8.

Problem Statement 10

1.5 Problem Statement

There are various shortcomings with current augmented reality applications
aiming to support users in re-finding activities. First, they are mostly stan-
dalone applications which only support spatial indications of where a physical
document is. Descriptive PIM research indicates that the spatial cue is not
the main re-finding cue but falls next to contextual and time cues. Sec-
ondly, as discussed earlier, re-finding activities are much more complex. In
existing augmented reality PIM systems, users have to use digital search or
navigate through a digital pile to first find the digital version and only then
the spatial augmentation can be invoked. Nevertheless, users often do not
exactly know which document they search for and have to do the search
activity digitally. Although, this way of interaction is already an improve-
ment, there is still a switch between the digital and physical space. Finally,
unified PIM systems are known for their central repository approach where
every personal document can be linked to each other. These systems try to
overcome information fragmentation and help users in better organising their
information space. However, current augmented reality PIM systems do not
make use of these systems to integrate additional meta information in their
augmentations.

1.6 Thesis Contribution

In this thesis, we present the KOR framework. The KOR framework is
based on various requirements. By fulfilling these requirements, the KOR
framework tries to solve the previously mentioned problems. First, it pro-
vides implicit re-finding support for physical documents. This is done by
augmenting existing organisational structures. For example, paper trays will
show the context of available documents by lighting LEDs in a specific colour.
Secondly, re-finding user interfaces have to integrate the right re-finding cues
when augmenting existing organisational structures. As introduced before,
a pile invokes the context and spatial cue when users want to re-find a docu-
ment in it. Therefore, the augmented user interface should provide support
that can be used by these two cues. Third, because the KOR framework
should support rapid prototyping, it has to be extensible. This allows, for
example, to easily add a new re-finding user interface that augments a newly
purchased filing cabinet.

The KOR framework’s architecture is a client-server architecture where
the server is responsible for providing access to the OC2 PIM system. The
clients include re-finding user interfaces, tracking devices, or visualisation

11 CHAPTER 1. Introduction

applications. The server side contains three components namely the tracking
module, the ReViTa module and the re-finding module. The tracking mod-
ule is responsible for tracking documents in physical space, identifying the
documents and storing the locations in the PIM system. ReViTa is respon-
sible for communicating with OC2 and also contains an extension of OC2
to provide support for organisational structures and re-finding cues. ReViTa
provides a mapping to OC2 to keep track of the re-finding user interfaces.
The re-finding module provides support for management and registration of
re-finding user interfaces to an organisational structure and taking into con-
sideration if the organisational structure supports the re-finding cue triggered
by the re-finding user interface. The re-finding module also provides an in-
terface to the re-finding user interfaces if specific information fromReViTa is
needed. My contribution to this large framework is the re-finding compo-
nent and some extensions made to the ReViTa component. In addition, we
present various augmented re-finding user interfaces for piles, filing cabinets
and paper trays. These developed user interfaces show the potential of the
KOR framework in an Office of the Future setting.

1.7 Thesis Outline
This thesis will start with giving an overview on how people organise and
re-find their documents. Organisational strategies filing, piling and mix-
ing as well as the re-finding cues, context cue, spatial cue and time cue, are
introduced. Next an overview of existing systems that augment physical doc-
uments are presented with an overview of their problems. Now that we know
what the problems are with existing systems, requirements of our system
are presented. The focus is to build a framework that supports the KOR
principles and supports implicit physical search, integrate re-finding cues
in re-finding user interfaces, unified repository integration and extensibility.
The KOR framework is further elaborated as well as the architecture and
the three modules of the framework. Every module, tracking, ReViTa and
re-finding are discussed. The extension of ReViTa and the re-finding module
are elaborated in detail and an overview of the implemented re-finding cues
is given. Next, every implemented re-finding module is elaborated in detail.
To finish, a conclusion is presented as well as some future work.

Thesis Outline 12

2
Background

2.1 How People Organise Their Documents
Malone did research to find out how people organise their information [39].
His research shows that there are two categories of offices namely messy offices
and neat offices. Messy offices are offices that in general contain a lot of piles.
Most of those piles are stacks of things to do. The piles are not necessarily
ordered in any particular of way. Because of the amount of information that
is not ordered in any particular of way, less important information sometimes
tends to get lost in all the piles and will never be processed. On the other
hand, neat offices mostly rely on filing documents and thus limit the number
of piles. If there are piles, they are organised in a particular way on the desk.

Elements
labelled

Elements
ordered

Groups
labelled

Groups
ordered

Files Yes Yes ? ?
Piles ? No No ?

Table 2.1: Malone’s definition of Files and Piles

Malones observations led to the definition of the two most common organ-
isational structures namely filing and piling. These definitions are illustrated
in Table 2.1. The individual elements of a file are explicitly arranged in some

How People Organise Their Documents 14

kind of order. For example, this order can be alphabetical or chronological.
The individual elements of a file also have to be explicitly labelled. A group
of files, for instance, a filing cabinet, can be labelled but does not necessar-
ily have to. The group can be arranged in a specific order but this is not
required. Individual elements of a pile are not necessarily labelled. They are
also not ordered in any kind of way. Piles themselves are not titled and do
not necessarily have any kind of order when placed on the desk. Piles do not
have a specific order but their spatial location is important to re-find them.
The file structure defined by Tsichritzis matches the file structure of Malone
[53]. He also defined a heap which matches the pile definition of Malone.

Figure 2.1: Filing and piling example

The definition of files and piles is not limited to the organisational struc-
tures on their own. For example, a filing cabinet is called a file organisa-
tional structure because the file folders in the filing cabinet (i.e. elements) are
ordered and labelled. The elements are placed in an order and each element
has a label. Thus, the internal structure of that filing cabinet is called a
file. A shelf of ring binders that is not ordered and is not labelled is called
a pile. Inside the ring binder, the structure is called a file if every element
is labelled and follows a specific order.

Figure 2.2: Mixtures examples

15 CHAPTER 2. Background

Let us have a look at a file folder in a filing cabinet. When the ele-
ments of the file folder are not ordered and explicitly labelled, the definition
of file or pile is not satisfied. Thus, there has to be a third organisational
strategy. Every organisational strategy that does not follow the definition of
filing or piling will follow the definition of this third organisational strategy.
Organisational strategies, where the elements are optionally labelled and do
not have an explicit order, are not following the definition of files or piles.
A group of an organisational structure that is sometimes labelled but not
always and also has no explicit order is neither a file nor a pile. This organ-
isational structure is called a mixture. The mixing organisational strategy
was first defined by Trullemans as:

“Mixing is an organisational strategy which is neither filing nor piling. Mix-
tures as an organisational unit do not match the definition for files and piles
by Malone. They may contain titled as well as untitled elements and elements
might be explicitly ordered. A group might be titled and groups can also be
explicitly ordered whereby the titles and ordering of elements do not have to
be consistent.” Sandra Trullemans, 2014 [51]

Let us recall the example of the file folder in a filing cabinet, if the ele-
ments of that file folder are explicitly labelled but do not follow any order,
the definition of files or piles was not satisfied. With the previously defined
mixture organisational structure, the content of that file folder can be called
a mixture. Another example is paper trays. The trays have no specific order
and some of the trays can be labelled.

Because of the organised filing structure people tend to re-find the infor-
mation they need without overlooking less important information. We can
say that people with messy offices have more problems to re-find information
than people with a neat office. Nevertheless, this is not totally true for every
office. Spending a lot of time to organise a filing cabinet does not always
have the expected result. Sometimes too much time is used to find a system
that works in relation to the result it gives. One of the reasons that people
tend to end up with more piles and thus a messy desk has to do with the
cognitive effort needed to file a document in comparison to starting or con-
tinuing a pile. Some people have difficulties to classify a document and file in
the correct file folder [6]. The difficulty of classifying the document will lead
to the creation of many vaguely classified piles [10]. Another problem is that
a specific order has to be followed when filing a document. This takes time
to complete. Sometimes it is just easier to start a pile rather than taking the
time to find out where to file the document [6]. The time gained by creating

Re-finding Documents 16

a pile is lost when looking for a document in the pile. On the other hand, a
pile provides a reminding function [47]. People tend to be reminded of the
things they have to do instead of looking for what has to be done. Retriev-
ing a document from a file folder is less difficult because the file folders are
ordered and labelled. In general people tend to pile more often [6].

2.2 Re-finding Documents
In this section, the re-finding cues that help re-finding documents are dis-
cussed. Every organisational strategy provides support for specific re-finding
cues. Trullemans studied these re-finding cues in detail [51]. Table 2.2 gives
an overview of the available cues in relation to the organisational strategies
discussed before.

Context Cue Spatial Cue Time Cue
Filing x x x
Piling x x
Mixing x x

Table 2.2: Re-finding cues [51]

The use of a classification system will enhance the re-finding effective-
ness [25]. Filing is best suited for cold information because of structuring.
Piles provide more contextual and spatial information for hot and warm in-
formation. Despite the difficulties of re-finding documents in piles, piles also
provide a reminder function based on the spatial location [47]. Piles do also
preserve context. Apart from spatial information, this context information is
also used when retrieving a document from a pile [39]. Research has proven
that the context cue is one of the main advantages of the human memory to
recall information [39] [32] [4]. The spatial position of piles is also important
to improve the re-finding process [27]. The user can, for example, remember
where on the desk the upcoming tasks are placed. Every time a document is
placed on the pile, the time information and thus time cue is lost compared
to the other organisational strategies.

The filing of documents will take a lot of cognitive effort because the
internal organisation of the file has to be followed. This only will benefit
in the ease of re-finding a document that is located in a file. When filing a
document, the context information is gone. A label is responsible for adding
context information to the file again. The label in combination with the
structure of a file provide an overall context for the user [34]. Users also
tend to annotate the files with reminders and add timestamps to files. When

17 CHAPTER 2. Background

the user starts to look for a document the last known location where the
document is last classified is important to know where to start looking [39].
Files also provide a spatial cue [6]. A filing cabinet is placed somewhere in
the office that the user will remember and locate easily. This will help to
know where the document is located. The exact location of the file folder
can be found if the user knows, for instance, the context of the document.

In mixtures, contexts are less used to re-find documents. The uses tends
to annotate the mixture with a timestamp to help re-finding documents based
on a time cue. Because the mixing organisational structure was only pre-
sented in 2014, more research is needed to find out more about the re-finding
cues supported by the mixing organisational structure.

2.3 PIM Systems in Physical Space

The systems that provide support for PIM in physical space can be divided
into two large categories, namely systems that support organising activities
and systems that support organisational structures. Every system has its
advantages and disadvantages and supports some kind of re-finding. Re-
finding can be implicit by triggering a re-finding cue or explicit which is
often based on searching in digital space.

2.3.1 Support for Organising Activities

In this section, systems that provide support for organising activities are
presented. Every system will use a vision system to track and locate physical
documents.

A system called DigitalDesk provides computer-based interaction with
paper documents [42]. The setup of DigitalDesk is shown in Figure 2.3. A
projector mounted above the desk is used to augment objects and documents
placed on the physical desk. Also, a camera is mounted above the desk to
track what documents are placed on the desk [37]. DigitalDesk allows the user
to interact with a digital calculator where the input is done by pointing to
the numbers on a physical paper. Another use case is that sentences pointed
by the user on a physical document are translated and projected next to the
physical document. DigitalDesk provides a basic interplay between physical
documents and a digital connection, without making a complete digital copy
of the document. There is only a one-to-one mapping between the physical
and digital world.

Other systems that only provide a one-to-one relationship between dig-
ital and physical documents are PADD [17], The Designers’ Outpost [35],

PIM Systems in Physical Space 18

Figure 2.3: Setup of DigitalDesk

Figure 2.4: Menu of DocuDesk

PaperSpace [49], ButterflyNet [59] and Print-n-Link [43]. PADD transfers
notes captured by an Anoto digital pen to the digital representation of the
document [17]. The Designers’ Outpost captures sticky notes on a digital
whiteboard. When the physical sticky notes are removed, digital copies are
shown [35]. ButterflyNet uses the Anoto pen to annotate time-stamped dig-
ital photos [59]. Print-n-Link uses the Anoto pen to create a link between
physical paper and digital information and/or searches for cited documents

19 CHAPTER 2. Background

[43]. An interesting system that provides many-to-many links between digi-
tal and physical documents is called DocuDesk [11]. DocuDesk consists of a
display laying on top of the desk. Above the display, a camera with IR-filer
is responsible for tracking and detecting a document placed on top of the
display. Also, a stylus is tracked and used for user input. To find out which
document the user placed on the display, the system will look for a barcode
printed on the document. If there is no barcode, an image of the document is
captured. This barcode or image is used to look for the digital representation
of the document. When the document is identified and located above the
display, a menu is displayed next to it. An example of this menu in combina-
tion with a document can be seen in Figure 2.4. The menu allows interaction
with that document. The menu provides support to, for instance, email the
document, open the digital version of the document or store a new digital
copy of the document. An option to pin the document will open the digital
version and align it with the physical location of the document. Now that
the digital document is recalled, the physical document can be removed. The
most important feature of DocuDesk is linking. This feature allows to create
links between the document and digital as well as physical documents. Useful
documents can now be linked to each other and easily recalled when needed.
When the user, for instance, is writing a report about a paper, the paper
can be digitalised in DocuDesk. Related documents in both the physical as
digital world can be linked to that paper. Using this feature, the user can
built a network of information between the original paper and all the related
content.

Figure 2.5: PaperSpace example

PIM Systems in Physical Space 20

Another system that reuses the idea of interacting with a document on
the desk is PaperSpace. An example of a document printed with PaperSpace
is shown in Figure 2.5. PaperSpace allows the combination of digital and
physical documents on a desk [49]. The goal of PaperSpace is to manage
academic papers. PaperSpace wants to reduce printed documents by inform-
ing the user if the document is already printed when the user wants to print
a document. When the document was already printed and misplaced, Pa-
perSpace will show where it is. Apart from the database, the system consists
of a tracking code generator, a camera system, a tracker and a user interface.
The tracking code generator is used to generate DOI (Document Object Iden-
tifier) tags and store location information. When the document is printed
using PaperSpace, an encoded tag containing the DOI, user ID, page corner
identifier, print date, version and page number is added to the document.
Also, a command bar is added. This command bar allows interactions with
the document by providing a tangible interface. The physical document, as
well as the command bar, are part of this interface. Interactions with the
command bar are more or less the same as with DocuDesk, the only differ-
ence here is that there is no augmentation of the document using projectors
of displays. The user will use two fingers to interact with the document and
can annotate, link and email the document. These interactions by tracked
with the camera.

2.3.2 Support for Organisational Structures

This section presents systems that provide support for organisational struc-
tures. These systems focus on the filing and piling organisational structure.

Figure 2.6: Smart Filing System

Jervis built various systems that are focussing on the filing organisational
structure. Every system has some advantages and disadvantages. The dis-

21 CHAPTER 2. Background

advantages are most of the time solved in a new revision of the system. The
first system built by Jervis is called "Smart Filing System" [46]. The goal of
this system is to combine the benefits of digital documents as well as a phys-
ical counterpart of that same document or vice versa. In this system, the file
folders in a filing cabinet are augmented and made intelligent so that they can
be linked to a digital representation stored in Microsoft OneNote. Figure 2.6
shows an example of the file folders in the real world as well as the mapping
with OneNote. The filing cabinet or vertical filing cabinet, invented by Seibls
in 1898 [44], already exists for a long time. It is a good system for archiving
documents but the retrieval of documents is still a problem. Because people
still prefer to print out their documents [47], a system that maps the dig-
ital version with the physical one is very useful. This is where the Smart
Filing System comes in handy and supports the connection between digital
and physical documents organised in a filing organisational structure. Every
file folder is extended with a small LED and push button. The hardware in
the file folder also provides a unique ID to the file folder. Communication
with the file folders is done using a bus system called 1-Wire. In this system
only, one wire is needed and a ground wire. Thus, the two hooks to hold the
file folder in the filing cabinet are used to communicate with the file folder.
Apart from the button and LED, the front side of the file folder consists of
an Anoto paper. This allows the user to write annotations on the file folder.
The annotations are tracked by an Anoto pen and directly sent to OneNote.
The button on the file folder allows to navigate between the virtual folders in
OneNote. When performing a search in OneNote, the LEDs of the file folders
are used to show where the search results are located in the physical world.
The LED can also be used to show which file folder the user is interacting
with. One of the disadvantages of the system is that the user has to start
a digital search if they want to re-find a file folder thus this is not natural.
Another disadvantage is that the location of a document is not known in a
very detailed way. The system can only know if the document is in a file
folder in the filing cabinet or not. A LED can show the exact location but
the system does not know how the file folders are ordered or where exactly
the file folder is located. Therefore, the system does not know the exact
location of a file folder in the filing cabinet. Another disadvantage is that
the hooks are used to communicate with the file folders. This results in a
bad connection between the file folders and the filing cabinet. Because of the
way the hardware is built, lots of file folders will slow down the hardware.

One of the problems with the Smart Filing System is that the hardware
will start to react slow when a lot of file folders are added to the filing cab-
inet. A solution is to decouple the tangible hardware from the software.

PIM Systems in Physical Space 22

Figure 2.7: SOPHYA architecture

Figure 2.8: File folders in SOPHYA

SOPHYA or "Smart Organisation of PHYsical Artefacts" fixes the slowness
of the hardware by placing a middleware between the tangible interfaces and
the clients [22]. As can be seen in Figure 2.7, there is no more direct com-
munication between the hardware and clients. A more distributed approach
of the architecture is used to split the load of scanning for changes in the
tangible part of the architecture. Because the number of devices on the bus
are smaller, this results in a faster response of the tangible part of the system.
The only advantage is that the file folders are represented as containers that
can contain documents. These containers contain all the hardware and aug-
mentations. Another hardware improvement compared to the Smart Filing
System is the change to lateral file folders instead of conventional vertical
file folders. The advantage of using lateral file folders is that the file folders
are not hanging on hooks anymore. Now, it is possible to use any amount
of wires needed to communicate with the hardware mounted on a file folder.
A proprietary protocol was designed that gives more freedom in communi-
cating with the file folders. Figure 2.8 shows an example of the lateral file

23 CHAPTER 2. Background

folders. Nevertheless, even now there still are some problems with SOPHYA
such as containers are used instead of documents. Because of this it is still
not possible for the system to link a document to a specific location. The
exact location of a document or container is also difficult to find because
the system cannot remember the order of the containers, the containers are
connected to a bus system that does not allow exact location detection.

Figure 2.9: File folders in SOPHYA V2.0

To fix some of the problems existing in SOPHYA, SOPHYA V2.0 has been
built [23] [24]. One of the biggest problems is that the location of a document
is not very specific. Others have built systems that use RFID tags to track
the location of a document [3]. Hark described a system where the RFID
tag is printed onto the paper using e-ink technology [19]. The Smart Shelf
system designed by Decker can locate documents depending on the position
of the document above an array of RFID antennas [7]. The system developed
by Hinske extends this idea and allows location of a document on a touch
table [20]. Hinske also built a system with a moving arm under the table that
changes the location of the RFID reader [21]. These systems provide a valid
solution to locate a document on a desk. The only problem is that location
of individual items in a dense area is difficult. It is, for instance, impossible
for those systems to locate a document in a filing cabinet and provide an
exact location. This is where the redesigned hardware of SOPHYA comes in
handy. This time the containers of SOPHYA are placed on a contact array.
Every contact of the array matches an ID that is linked to a known position
by the system. This allows SOPHYA to find out where exactly the container
is located. To allow this to work, conductive pads have to be mounted in the

PIM Systems in Physical Space 24

filing cabinet. Figure 2.9 shows a schematic overview how this will work. At
the same time, the display function of the file folders is separated from the
file folders. The file folders still have to be intelligent but only have to contain
some hardware to store the unique ID of a file folder. As Jervis already made
a good attempt at building a re-finding system that can help the user, there
are still some problems left to solve. The focus is only on filing structures
without any knowledge of cues. A link between organisational strategies and
re-finding cues can be the cue to build an augmented PIM system that can
help the users re-finding documents.

Figure 2.10: Video-based document tracking

Kim built a system to track documents placed on a pile [33]. Using a
vision system, the system can keep track of when a document is added to the
pile and where it is located. The user can re-find a document by querying
the system and asking when a document was last accessed, last appeared
or by initiating a digital search based on keywords. The user interface is
shown in Figure 2.10. The system can also be used to sort photos. The
user starts by printing out the photos. Next they start to form piles of the
physical photos of photos they want to keep together. To finish every pile is
assigned to a folder and the photos corresponding to that pile are placed in
the corresponding folder. Apart from the support of the pile organisational
structure, sort the digital representation of the documents based on last
accessed and last appeared. Nevertheless, piles do not support a time cue
making it difficult to re-find a document based on time. Digital search is
also used to re-find a document based on keywords, this acts as an explicit
digital search and supports a spatial cue.

25 CHAPTER 2. Background

2.4 Where it Goes Wrong!
There are still some issues with augmented systems that want to provide
re-finding support to the user. Based on the organisational strategies and
previous research, re-finding is not as simple as just showing where the doc-
ument is located using a spatial cue. Context and time cues are also an
important factor when re-finding documents. Another problem that is very
clearly available is that the user has to start a digital search before the re-
finding of a document will start. This makes it difficult for the user because
they have to switch between a digital and physical space. None of the existing
systems take this into account. A last problem that arises is that none of the
discussed systems is using any kind of system to integrate the augmentations
into a unified PIM system.

Implicit re-finding
Context
Cue

Spatial
Cue

Time
Cue

Explicit
re-finding

Search in
digital space

DigitalDesk x - - - -
DocuDesk x - - - +/-
PaperSpace x - - - +/-
Smart Filing - x - x x
SOPHYA - x - x x

SOPHYA V2.0 - x - x x
Pile tracking - x x x x

Goal x x x x -

Table 2.3: Overview of PIM systems in physical space

The discussed systems can solve part of the re-finding problem but still
not fix other problems with PIM. Integrating the concepts of organisational
strategies and re-finding cues in a PIM system and augments the physical
world can be a valid solution to provide support and make re-finding of
documents easier and more natural. As shown in Table 2.3, none of the
previously presented systems provides correct support for re-finding docu-
ments. The goal is that the system supports implicit re-finding based on the
re-finding cues, context, spatial and time. At the same time, the system has
to support explicit re-finding in a way that the user does not have to start a
digital search.

Where it Goes Wrong! 26

3
The KOR Framework

In this thesis, we present the KOR framework. The KOR framework is
a rapid prototyping framework for applications that provide support for
keeping-organising-re-finding activities. In order to support such a rapid
prototyping framework, the functionality of tracking documents, organising
the documents by means of associations and managing re-finding user inter-
faces for explicit and implicit search integrations has to be provided. Due to
the magnitude of the KOR framework, this thesis focuses on the re-finding
component. First, the re-finding component requirements are discussed fol-
lowed by the frameworks general architecture and its individual components.
Finally, the re-finding component and implementation is elaborated.

3.1 Requirements for Re-finding

This section will discuss the requirements that the framework and re-finding
module will have to support. As described before in the problem statement,
implicit physical search, as well as re-finding cues and unified repository in-
tegration, are important requirements. On top of this, the re-finding module
also needs to be extensible.

Architecture 28

Implicit physical search Most of existing systems created let the user do
a digital search to re-find a physical document [46]. The problem is
that this creates a less natural user interface. At the same time, the
user has to focus on keywords to search for a document. This will not
always give the correct document because it is not always known in
advance what document has to be found [50]. To support non-digital
search, the augmented user interface has to detect if the user is, for
instance, near the filing cabinet. If this is the case, the filing cabinet
can be augmented to trigger the human brain.

Integrate re-finding cues in re-finding user interface Because search
is not natural, re-finding has to be done another way. As discussed be-
fore, every organisational strategy has different re-finding cues. Those
re-finding cues help the user to find the document based on context,
spatial or time cues [51]. Each re-finding user interface will trigger one
of those cues. For example, a filing cabinet is alphabetically ordered.
This will result in context that gets lost [34]. The re-finding user in-
terface will have to provide the context in the user interface. Another
function that also should be available concerning the re-finding cues is
management of the re-finding user interfaces. A mechanism that checks
if it is possible to add a re-finding user interface to an organisational
structure. For example, a pile cannot provide support for a time cue.

Unified repository integration A system is needed to keep track of linked
documents and metadata such as time, location and context. The uni-
fied repository has to support context-awareness as well as extensibility
for organisational structures and re-finding cues.

Extensibility Since we provide a rapid prototyping framework, it is neces-
sary to not limit the functionality of tracking, organising and re-finding.
In the re-finding component, this means that the application should be
able to re-use existing user interfaces. It should also be possible to eas-
ily import new re-finding user interfaces in the re-finding component.

3.2 Architecture

As described before, the architecture of the rapid prototyping framework is
based on the theoretical KOR framework [26]. For every KOR activity, the
framework provides an individual module. Therefore, the KOR framework
consists of a tracking module, the ReViTa module and a re-finding module.
In Figure 3.1 a schematic overview of the framework is seen.

29 CHAPTER 3. The KOR Framework

Re-finding

OC2

ReViTaTracking

Figure 3.1: KOR Framework

The tracking component is responsible for tracking the documents and
reporting back where they are placed in the physical world. ReViTa is re-
sponsible for the communication with the OC2 PIM system. ReViTa is also
responsible for providing support for organisational strategies and re-finding
cues on top of OC2. The third module focuses on re-finding. Re-finding can-
not be done without knowing where the documents are located in the real
world or knowing what re-finding user interfaces are available. Therefore, it
is important to have the tracking and ReViTa modules. Every module is im-
plemented in Java and provides a RESTful interface to allow communication
from external applications. The KOR framework is implemented as a server
to serve as a rapid prototyping framework.

In the next sections, every module is elaborated. As this thesis focuses
more on re-finding, the re-finding module, as well as the re-finding user in-
terfaces, are discussed in more detail.

3.3 ReViTa Module

One of the modules in the KOR framework is ReViTa. ReViTa is responsible
for providing a connection to the OC2 PIM system. The OC2 metamodel is
defined by Trullemans and Signer [52]. The OC2 framework was used because
it provides context-awareness and support for physical documents compared
to other PIM systems such as OntoPim [31], Haystack, Semantic Desktop
[45]. At the same, time ReViTa provides support for organisational structures
and re-finding cues by mapping data to OC2. The following subsections will
provide a detailed explanation of OC2 as well as the extensions made in
ReViTa.

ReViTa Module 30

3.3.1 Object-Concept-Context Model

The Object-Concept-Context model or OC2 is a conceptual framework for
context-aware personal cross-media information management systems [52].
Besides the integration of context-awareness and physical documents, the
OC2 was also designed to support both episodic as well as semantic memory
[31]. Episodic memory focuses on creating links between information and
perceptible properties like events. Semantic memory focuses more on the
links between concepts.

Figure 3.2: OC2 conceptual model

The OC2 conceptual framework illustrates the low-level metamodel in a
more abstract form and is given in Figure 3.2. The conceptual framework is
designed in three layers namely the object, concept and context layer.

Objects located in the object layer are the physical and digital pieces of
information. This can, for example, be a physical document or email. Every
object is uniquely identified and can contain other objects. Objects can be
linked by using navigational and structural links. Navigational links are links
that represent a navigational relationship between objects. Structural links
are links between objects in order to express a structure. A common use
case would be a tree structure of documents such as the digital file system.
On top of the object layer, there is the concept layer. Concepts abstract the
complexity of the real world. For example, concepts can be seen as the labels
of a paper tray. Associative links allow two concepts to be associated with
each other. A relation between a concept and an object is represented by
an extent link. Typically this can be seen as a categorisation of objects to a

31 CHAPTER 3. The KOR Framework

concept. For example, in terms of a file system, this is the categorisation of
documents in a folder where the folder represents the concept. The top layer
of the OC2 metamodel is the context layer. A context can be seen as a user’s
activity. Objects and concepts can have a certain relevance to a context as
well as the links between them.

Figure 3.3: OC2 Metamodel

The OC2 conceptual framework has been translated to the OC2 meta-
model. The OC2 metamodel is an extension of the Resource-Selector-Link
(RSL) metamodel. The RSL model is a metamodel for cross-media infor-
mation spaces [48]. Entities are the centre element of the RSL model as
can be seen in Figure 3.3. An entity can be a resource, link or selector.
Links represent the relationship between entities. Resources represent files
or other information. Selectors are introduced to define areas in a resource.
By subclassifying them from Entities, individual pieces of a resource can
be linked. Entities can also have different properties. To support the OC2
metamodel, the basic RSL model had to be extended to support the different
types of links. Associative Links allow two concepts to be associated with
each other. Extent Links allow a concept and object to be linked. Objects
can represent Digital Objects and Physical Objects.

ReViTa Module 32

3.3.2 ReViTa Extension

First of all, an extension of OC2 is needed to have support for re-finding user
interfaces, organisational strategies and re-finding cues. This is provided by
the ReViTa module of the framework. The extensions to the OC2 metamodel
are not implemented as defined in the OM model. This model is shown in
Figure 3.4. In contrast, we have used the OC2 as a metamodel. Every exten-
sion made is translated into collections, structural links, links and resources.
Note that, therefore, the extended model could also easily be modelled in
other languages such as ER or ORM. Nevertheless, to keep consistency with
the OC2 model we used OM.

Since objects and concepts share a lot of the same associations, we first
defined a supercollection O&C which contains both. LocationProperties
uses property objects to store the location of an object. This property will
contain the physical or digital location of the object. LifeLines will keep the
history of an object by not only logging location changes but also interactions.
The history will contain timestamps when there was an interaction with the
object and is built out of Line objects. LifeLines are useful to check when,
for instance, a document is last accessed.

Support for organisational functions and thus organisational structures
is added using the OrganisationalStructure subcollection of Structures.
Because Filing, Piling and Mixing collections have different properties,
these structures are subpartitions of the OrganisationalStucture collec-
tion. Filing and Mixing have extra associations namely HasFilingLabel or
HasMixingLabel. A label is an OC2 concept. The associations are different
because the definition of a file and a mixture are different. Files always need
a label whereas with a mixture this is not required. Finally, the collection
OrganisationalLinks is added. OrganisationalLinks is a subcollection
of StructuralLinks. An organisational link can only have one source of
Objects and can only have child objects. For example, a pile needs one
organisational link. The source of this link represents the root. This root
is the object that represents the pile. This way, links can easily be added
to structures. To add a physical pile to the system that contains two docu-
ments, three physical objects are created. Two for the documents and one
for the pile. The pile object is the source of a new organisational link. The
two physical documents are added as targets. A new organisational structure
is created and named "desk pile". The organisational link is added to this
structure. To finish, the structure "desk pile" is added to the Piling collec-
tion. OC2 also needs to be extended to support a re-finding functionality.
The organisational functionality already provides a lot of information to re-
find documents but there are still missing some things. First of all, a generic

33 CHAPTER 3. The KOR Framework

Figure 3.4: Extended OC2

collection UserInterfaces is added to support user interfaces. Without the
UserInterfaceLinks, no object can be linked to a user interface thus this
is also added. The target of the UserInterfaceLinks is an instance of the
collection UserInterfaces rather than an Entity. HasTarget is subtyped
to support UserInterfaces with HasUITarget. Properties of user inter-
faces are linked using the UserInterfaceProperties collection. Examples
of properties are the required devices, available modalities, etc. To com-

Tracking Module 34

plete the support of the re-finding functionality in OC2 subcollections of
UserInterfaces, Re-finding UI is added. Re-finding user interfaces have
the subcollections ContextCue, SpatialCue and TimeCue to keep track on
which user interface supports which cue.

To allow easy access to ReViTa, a RESTful interface provides endpoints to
communicate with the specific functions. This allows third-party applications
to easily communicate with every feature of ReViTa.

3.4 Tracking Module

The tracking module of the framework is responsible for tracking the docu-
ments in the physical world and store the actual location of a document in
OC2. This information will later be used by the re-finding module to locate
a document when, for instance, explicit re-finding is asked by a re-finding
user interface or external application. As this is not the focus of the thesis,
we assume that this information is already available and can be accessed
with ReViTa. It is important to know that documents are located in or at
a specific resource ID. This resource ID can represent a file folder in a filing
cabinet, a paper tray in a stack of paper trays or even a pile on the desk.
For further information, we refer the reader to the Master Thesis of Ayrton
Vercruysse [54].

3.5 Re-finding Module

In this section, the re-finding module is elaborated in detail. An overview
of the implemented re-finding user interfaces is also provided. The following
sections contain a detailed discussion of the re-finding user interfaces.

3.5.1 Re-finding Mechanism

The re-finding module consists of four main functions. The first one is to
provide a possibility to register and manage new re-finding user interfaces in
the system. A second function is to invoke a re-finding user interface when a
request from a trigger is received. The third function of the re-finding module
is to provide additional data to the re-finding user interface if needed. A last
function provided by the re-finding module is a system to easily communicate
with extra displays used by the re-finding user interfaces.

In the next sections, the four functionalities are elaborated. To explain
every function in detail, a scheme of the data flow is drawn in Figure 3.5.

35 CHAPTER 3. The KOR Framework

ReViTa Re-finding

Config RUI Trigger RUI

RUI

(1)

(2)

(3)

(4)

Display

(5)

Figure 3.5: Data flow

Parts that run on the server are coloured grey. Every function is accessible
using a RESTful interface.

Management of Re-finding User Interfaces

An important function of the re-finding module is to provide some kind of
management of the re-finding user interfaces. This function results in a sys-
tem that is extensible. At the same time, the system has to be intelligent
enough to check whether or not a re-finding user interface can be connected
to an organisational structure. This is based on the re-finding cues the or-
ganisational structure supports. For example, a pile does not support the
time cue thus no re-finding user interface of the type time cue can be added
to a pile.

As can be seen in Figure 3.5(1), the new user interface is registered by
sending a data object directly to the re-finding module. This data object
is sent from a configuration user interface and consists of the name of the
user interface as well as the supported cue and organisational structure that
is augmented. The re-finding module provides an endpoint /register that
accepts this data object using the POST method. The data object itself is
JSON encoded. When the re-finding module receives an object on this end-
point, the module will first check whether this re-finding user interface can
be added to the asked organisational structure. A request from the re-finding
module will ask the ReViTa module to get the details of the organisational
structure. The request to ReViTa can be seen in Figure 3.5(2). When the
re-finding module receives the object from ReViTa containing all the data of
the requested organisational structure, the module will check if the requested
re-finding cue is available on that organisational structure. The re-finding

Re-finding Module 36

module is aware of the different cues supported by the organisational struc-
tures. If everything is fine, a request is made to ReViTa to register the
re-finding user interface. The response from the initial request will either be
successful or failed depending on this check.

Invoking a Re-finding User Interface

Trigger Re-finding Module ReViTa Module RUI

invoke RUI

getUI

Start RUI

Figure 3.6: Sequence diagram: invoke re-finding user interface

After registering a re-finding user interface, there has to be a mechanism
to invoke a re-finding user interface. A re-finding user interface can be trig-
gered using a physical trigger. When the user, for instance, opens the filing
cabinet, the filing cabinet will trigger a re-finding user interface to show all
the contexts of the file folders in the filing cabinet. Other examples of triggers
are waving a hand in front of some paper trays or detecting if a person is
standing in front of a filing cabinet. In Figure 3.5(3) the interaction between
the trigger and re-finding module is shown. Figure 3.6 shows a sequence
diagram of the interactions. The trigger communicates directly with the re-
finding module using the endpoint /invokeRUI/{ruiName}/{recourceID}.
Variable {ruiName} represents the re-finding user interface’s name, variable
{recourceID} matches the organisational structure’s unique ID that triggers
the re-finding user interface. This endpoint understands GET requests to trig-
ger the re-finding user interfaces. When extra data is needed to process the
re-finding user interface, the endpoint supports POST requests. An example
of extra data is a time span selected by the user. When a trigger sends a
request to this endpoint a lot of things happen before the actual re-finding
user interface is invoked. First of all, the re-finding module will check if the
organisational structure {recourceID} is registered with the re-finding user
interface {ruiName}. Thus, the re-finding module will start with querying

37 CHAPTER 3. The KOR Framework

ReViTa and ask the re-finding user interfaces of that organisational structure.
Next the re-finding user interface is searched in the list returned from ReViTa.
The interaction between the re-finding module and ReViTa is shown in Fig-
ure 3.5(2). If the re-finding user interface is found and thus supported by the
organisational structure, a request to /{ruiName}/start/{recourceID} is
executed to invoke the existing re-finding user interface. Every re-finding user
interface is required for at least offer this endpoint. This interaction is shown
in Figure 3.5(4). What happens now depends on the invoked re-finding user
interface. Every implemented re-finding user interface is discussed in detail
in the next chapters.

Providing Additional Data to the Re-finding User Interface

Another function the re-finding module will support is providing some end-
points to allow the re-finding user interfaces to get data from ReViTa. This
data is needed to execute the re-finding user interface. A re-finding user
interface, for example, needs to know all the contexts of the file folders in a
filing cabinet. To support this, the re-finding module will provide a number
of endpoints that give access to this data. In general context, content, time
and location objects can be requested. The data flow for these actions starts
in the re-finding user interface, travels to the re-finding module as shown
in Figure 3.5(4) and is processed in the re-finding module. The re-finding
module can get data from ReViTa as shown in Figure 3.5(2). To finish, the
data is sent back to the re-finding user interface. Figure 3.7 gives a sequential
overview of the requests.

First of all, some re-finding user interfaces need to know which contexts
are stored in an organisational structure. The sequence diagram is provided
in Figure 3.7, case 1. The re-finding user interface can access this data by
sending a GET request to the endpoint /context/{resourceID}. Variable
{resourceID} represents the unique identifier of the organisational structure
that is augmented. A request to ReViTa will get all the contexts of this
organisational structure. In response to the initial request, a JSON encoded
object is returned. This object consists of an array of the child objects of the
initial requested organisational structure. A child is stored in a JSON object
and contains the context of the child as well as the colour matching to this
context. The unique identifier of this child is also added to the object. With
this JSON object the re-finding user interface can, for instance, augment the
file folders in a filing cabinet. An endpoint that looks like the previous one
is /contexts/{resourceID}. The difference is that this time a GET request
will generate an array of objects of the children of {resourceID}. For every
child, an array is added that stores the five most available contexts of the

Re-finding Module 38

RUI Re-finding Module ReViTa Module

context
getContext

Case 1Case 1

content
getContent

Case 2Case 2

time
getLifeLine

Case 3Case 3

refind
getLocation

Case 4Case 4

Figure 3.7: Sequence diagram: provide additional data

39 CHAPTER 3. The KOR Framework

children of this child.

A third endpoint concerning contexts is provided as /context/{hwID}/
{resourceID}. This endpoint only supports GET requests. The main differ-
ence between this endpoint and the previous one is that the return object
is filtered on a context. The filter is based on the most relevant context of
an organisational structure’s element or the context that is available in the
re-finding user interface. This time the variable {hwID} represents the or-
ganisational structure’s unique id. The variable {resourceID} matches the
unique ID of a child element of the organisational structure or a context id.
As before, the contexts of the organisational structure are requested from
ReViTa. Next, if {resourceID} is an ID of a structure element, the context
of that element is requested in ReViTa, otherwise the provided context ID is
used. To find out if {resourceID} is an organisational structure’s element
or a context, ReViTa is called. The context received from the structure or
directly from the variable in the URL is used as a filter. As described in the
previous endpoint, the return object will contain an array of child objects.
This time only objects where the context matches the previously gathered
context is returned. This endpoint is, for instance, used if the user only wants
to augment a filing cabinet with a specific context.

At least one re-finding user interface wants to request the contents of,
for example, a paper tray. Figure 3.7, case 2, provides a sequential diagram.
To support this feature, an endpoint /content/{hwID}/{resourceID} is
provided that understands GET requests. Like the endpoint that filters on
context, the variable {hwID} represents the organisational structure’s unique
id, the variable {resourceID} matches the unique ID of a child element of
the organisational structure. These two ids are used to ask ReViTa what
documents are stored in that specific child element. The return of the initial
request will contain an array of document objects. Document objects consist
of a name, context, etc. A re-finding user interface that will use this endpoint
wants to show the user what can be found in, for instance, a paper tray.
ReViTa is queried to find out if {resourceID} is an organisational structure’s
element or a context. The returned context is used to filter. The array
of document objects will now contain the document objects related to the
{hwID} and the context. This time {hwID}, for instance, matches a unique
ID of a pile.

Some of the re-finding user interfaces want to support a time cue. They
need data about when documents are accessed, how frequent they are ac-
cessed and so one. A sequential representation is given in Figure 3.7, case 3.
In general four distinctions are made. Thus, four endpoints provide support
to get time data. The first endpoint is responsible for providing data based

Re-finding Module 40

on a time span the user selected. POST requests are processed by the end-
point /time/{resourceID}. The body of the request must contain a JSON
object that specifies the start and end date of the timespan. The variable
{resourceID} matches the unique ID of the organisational structure that is
augmented. The unique ID is used to query for the lifeline in ReViTa. Us-
ing the selected timespan and lifeline information, the re-finding module will
generate an array of child objects and add an intensity parameter depending
on how long ago a child was accessed. The most recent accessed file folder, for
example, will get a high intensity value whereas older accessed children get
a smaller value. This array is then returned to the re-finding user interface.
The second endpoint will provide support for requesting when objects are
last used. The endpoint /time/{resourceID}/last accepts GET requests
and provides support for this function. As before, {resourceID} matches
the unique ID of an organisational structure. ReViTa is queried to retrieve
the lifeline of the structure elements of this organisational structure. The re-
finding module will filter every lifeline information to the last month. Using
this data, an array is built. Every object in the array matches a structure
element. To every object, an array of access dates is added. This array is sent
back to the re-finding user interface. A third endpoint will generate an array
that shows how frequent children of an organisational structure are accessed.
This function is provided by the endpoint /time/{resourceID}/frequent
and accepts GET requests. {resourceID} again matches the unique ID of the
organisational structure. A request to ReViTa will get the lifeline for every
child. The re-finding module will count in every lifeline when the structure
element was accessed on the past month. This information is converted to
an array. This array is built out of child objects that contain their unique ID
and the access count gathered from ReViTa. When the array is ready, it is
sent back to the re-finding user interface. The last endpoint concerning time
is /time/{resourceID}/recent. This endpoint only accepts GET requests
and returns an array of objects. The objects are the children of the organ-
isational structure {resourceID} and contain an extra parameter intensity
that matches when this child is accessed in the last month. More recently
accessed objects will get a higher value than older accessed objects. The dif-
ference between this endpoint and the first endpoint about time is that this
endpoint will always have a fixed time span from today to one month back.
Depending on how the re-finding user interface wants to provide a time cue
a different endpoint is used.

41 CHAPTER 3. The KOR Framework

The last part of information that is required by some re-finding user in-
terfaces is about where a document is located. This is only used in explicit
re-finding user interfaces. Figure 3.7, case 4, shows a sequential representa-
tion of the requests. Two endpoints provide location information. The first
endpoint accepts GET requests and is available at /refind/{resourceID}.
The goal of this endpoint is to return the location of the document speci-
fied with {resourceID}. ReViTa is queried to get information of the root
of {resourceID}. This is sent back to the re-finding user interface. The
second endpoint will look for the location of, for instance, a file folder based
on a specified label. Endpoint /refind/label/ only accepts POST requests.
ReViTa is queried to get the location of a file folder matching the label sent
in the body of the request. This location is sent back to the re-finding user
interface.

Provide Support for Extra Displays

RUI Re-finding Module Display

Publish
Subscribe

Figure 3.8: Sequence diagram: support for extra displays

A last function that the re-finding module supports is a system to com-
municate with displays. Some re-finding user interfaces need an extra display
to make it easier for the user to show what is going on. The user wants to
know, for example, what all the colours in the filing cabinet mean. The
re-finding module provides a mechanism to allow easy communication with
these displays. Everything is built on the publish-subscribe pattern. Devices
subscribe to a topic and get updates if new data is published. This same
principle is used for the displays. Displays subscribe to an endpoint on the
re-finding module and new data is pushed from the re-finding user interface to
the displays using the same endpoint on the re-finding module. Figure 3.5(4)
and (5) show the schematic representation of this system. In Figure 3.8 a
sequence diagram of the interactions is shown. The publish-subscribe system
is available on endpoint /pubsub/displays. The displays subscribe by send-
ing a GET request to this endpoint. New data is pushed to the displays by

Re-finding Module 42

sending a POST request. The body of this request will contain the data that
is displayed as well as an ID of the display that is used. Every display has
a unique ID. On the server, a library called Atmosphere1 is used to provide
this publish-subscribe system. On the client side, the displays show a web
application built with CSS, JQuery and JavaScript. The JavaScript client of
Atmosphere2 is used to connect the web application to the re-finding module
on the server. Depending on the data received from the publish-subscribe
endpoint, different data is shown on the display.

3.5.2 Re-finding User Interfaces

In the next three chapters, the implemented re-finding user interfaces are dis-
cussed in detail. The re-finding user interfaces are divided into two categories,
implicit re-finding and explicit re-finding. Every implicit re-finding user in-
terface provides one or more re-finding cues. This simulates a more natural
interaction compared to explicit re-finding user interfaces and digital search.
The explicit user interfaces are provided to allow third-party applications to
re-find documents. Table 3.1 gives an overview of the implemented implicit
re-finding user interfaces. In total 13 re-finding user interfaces have been
implemented. The explicit re-finding user interfaces are shown in Table 3.2.
In total five explicit explicit re-finding user interfaces have implemented.

Context
Cue

Spatial
Cue

Time
Cue

File folders in a filing cabinet 2 1Filing Ring binders on a shelf 2 1
Piling Piles on a desk 2 1
Mixing Paper trays 2 2

Table 3.1: Overview of implemented implicit re-finding user interfaces

Filing cabinet Label search and highlight file folderFiling Ring binders Highlight ring binder
Piling Piles Show pile and space in pile
Mixing Paper Trays Highlight tray

Table 3.2: Overview of implemented explicit re-finding user interfaces

1http://async-io.org/
2https://github.com/Atmosphere/atmosphere-javascript

43 CHAPTER 3. The KOR Framework

Re-finding

RUI 2RUI 1

DisplayAugmentation Augmentation

OC2

ReViTaTracking

RUI n...

Augmentation

Figure 3.9: KOR Architecture

The architecture for these re-finding user interfaces will contain the server
as well as potential clients. In Figure 3.9, a schematic representation of the
global architecture is shown. The previously described server is shown as
well as some clients. The server is accessible through a RESTful interface
described before. Apart from the server some clients are shown. Three re-
finding user interfaces are drawn that communicate with the server. They
each communicate with hardware that augments the physical world. Also, a
display is shown. Because of the way the server is built, new re-finding user
interfaces and displays can be added.

Re-finding Module 44

4
Re-finding of File Folders

The first organisational strategy that is augmented with re-finding user in-
terfaces will focus on the filing organisational strategy. As a reminder, the
definition of filing is repeated. Every element of a file structure is labelled
and ordered in a specific way. Groups of files are not necessary labelled or
ordered in a specific way. The filing organisational structure can trigger a
context, a spatial as well as a time cue. In total two setups are built. One
setup is augmenting a filing cabinet using some LEDs and buttons. The
other setup augments ring binders placed on a shelf. In every ring binder, a
smartphone is mounted.

Six implicit re-finding user interfaces are implemented as well as two
explicit re-finding user interfaces. As shown in Table 4.1, two re-finding
user interfaces that augment the filing cabinet will provide a context cue.
When the user opens the filing cabinet, all the file folders will show a colour
matching the file folder’s most used context. The user is also able to push
a button of a file folder to filter on the context of the selected file folder. A
third re-finding user interface will provide a time cue on the filing cabinet.
The user can select a timespan and the file folders are coloured from bright
to dark. The brighter the colour, the more the file folder has been accessed in
the selected time span. To augment ring binders on a shelf, three re-finding
user interfaces are implemented, two of them providing a context cue. The
first re-finding user interface will show on every ring binder a stacked column

46

chart of the five most available contexts in the ring binder. The re-finding
user interface will allow the user to select one of those contexts and filter the
ring binders containing that same context. To provide a time cue, a third
re-finding user interface for the ring-binders is built. The user can push a
button to show on every ring binder a calendar when the ring binder was
accessed.

On top of the implicit re-finding user interfaces, two explicit re-finding
user interfaces are implemented. Table 4.2 gives an overview of the explicit
re-finding user interfaces. The first explicit re-finding user interface will allow
the user to do a label search on the file folders. The second explicit re-finding
user interface will provide support for third-party applications to re-find a
file folder. An example of a third-party application is a visualisation of the
links between physical file folders.

Context
Cue

Spatial
Cue

Time
Cue

File folders in a filing cabinet 2 1Filing Ring binders on a shelf 2 1
Piling Piles on a desk 2 1
Mixing Paper trays 2 2

Table 4.1: Overview of implemented implicit re-finding user interfaces

Filing cabinet Label search and highlight file folderFiling Ring binders Highlight ring binder
Piling Piles Show pile and space in pile
Mixing Paper Trays Highlight tray

Table 4.2: Overview of implemented explicit re-finding user interfaces

In the next sections, the setups, as well as the re-finding user interfaces,
are discussed in detail. Before we continue, we first would like to introduce
you to someone. Alison is a biologist and during her excursions she gath-
ers a lot of data from experiments and measurements. This data needs to
be processed and analysed later on. Because of the amount of data that is
generated, it is important that Alison organises the data well during mea-
surement and when she is back from an excursion. At the same time, Alison
is also planning new excursions depending on results of previous research and
different locations.

47 CHAPTER 4. Re-finding of File Folders

4.1 Setup One: File Folders in a Filing Cabinet
This setup uses a filing cabinet with file folders. Every file folder in the
filing cabinet is extended with an RGB LED and a button. In total 30 file
folders are augmented. To allow more interactions with the file folders, a
tablet is added to the setup. On this tablet, the system can show additional
information such as the link of a colour emitted by the LEDs in relation to
the context or the contents of a file folder. Also, a micro switch is mounted
on the filing cabinet to detect when the user opens or closes the filing cabinet.
The setup is shown in Figure 4.1.

Figure 4.1: Filing cabinet setup

Referring back to the system presented by Jervis, SOPHYA, [22]. Jervis
replaced the conventional vertical file folders with lateral file folders to solve
slow hardware problems. In SPOHYA V2.0, he was able to change the
hardware even more to allow detailed location detection of a container [23].
Changing from conventional vertical file folders with lateral file folders is a
drastic change because lots of offices still have these vertical file folders with
hooks. In the setup presented here, vertical file folders are used and provide
support for detailed location of a file folder. Nevertheless, there are still some
problems. First of all because of hardware and space limitations, only 10 file
folders per row are augmented. Second of all, the LEDs and buttons have to
be placed in a fixed position, this converts the filing system to a fixed system.
As a result, the file folders have to stay in the order they are placed in at
the beginning. Advantages are the re-use of conventional vertical file folders
with the option to locate a file folder and provide fast hardware response.

Setup One: File Folders in a Filing Cabinet 48

As described before, the file folders are extended with an RGB LED and
a button. Also, a micro switch is mounted to the filing cabinet. To control
the LEDs and react on a pressed button, some extra hardware is needed. A
Raspberry Pi is used to translate all the requests from a RESTful interface to
the correct protocol to talk to the LEDs. The Raspberry Pi is also responsible
to react on the events from the buttons and micro switch. The LEDs are daisy
chained to each other to form one bus system. This bus system is connected
to the Raspberry Pi with SPI (Serial Peripheral Interface) as can be seen in
Figure 4.2(1). Because the Raspberry Pi does not have enough I/O pins, the
buttons are connected to two I/O bus extenders. Figure 4.2 (2) and (3) show
the bus extenders in the schematic. Every button is added to one of those
bus extenders. To keep the schematic clear, only one button is drawn. This
button is shown in Figure 4.2(4). The same principle is used for the other
29 buttons. The bus extenders are connected to the Raspberry Pi via I 2C.
The I 2C-bus of the Raspberry Pi works with 3.3V and the bus extender with
5V thus a logic level converter is used to convert the bus levels as shown in
Figure 4.2(5). The micro switch, that is responsible to detect if a user opens
the filing cabinet, is connected to one of the I/O’s of the Raspberry Pi.
The micro switch is drawn in Figure 4.2(6). Figure 4.3 gives an overview
of the built prototype, LEDs, buttons and micoswitch. Furthermore, the
Raspberry Pi runs two python applications. One is responsible to react on
the events of the buttons placed on the file folders and the switch to detect
the filing cabinet. Another application runs a web server. This web server
will provide a RESTful interface to communicate with the LEDs. This same
web server is also used for the ring-binders in the next section.

To detect if a button on one of the file folders is pressed, the bus extenders
are monitored with a while loop. A library is provided by ABElectronics1 to
query the bus extenders. Every button on its own can send a trigger to the
re-finding module on the server. In this same while loop, one of the GPIO
pins of the Raspberry Pi is monitored to check if the filing cabinet is opened
or closed. Depending on the state of the GPIO pin, a trigger is sent to the
re-finding module on the server or the LEDs are turned off.

To provide a web server to the Raspberry Pi the python library Bottle2

is used. This library allows easy definition of endpoints. An endpoint /leds
will accept PUT requests with a JSON object to control the LEDs. This
object must contain an ID and colour for every LED that has to change
colour. Internally, the LEDs are controlled with an example code provided

1https://github.com/abelectronicsuk/ABElectronics_Python_Libraries/
tree/master/IOPi

2http://bottlepy.org/docs/dev/index.html

49 CHAPTER 4. Re-finding of File Folders

Figure 4.2: File folders hardware schema

Setup One: File Folders in a Filing Cabinet 50

Figure 4.3: Prototype of file folders hardware

by Adafruit3. For every LED a colour has to be specified in an array. That
array is sent over SPI to the LEDs.

Some re-finding user interfaces need an extra display to show detailed in-
formation. To provide this function, a tablet is placed near the filing cabinet.
How this tablet will connect to the system was explained in section 3.5.1.

4.1.1 Implicit - File Folders that Show Contexts

Type: Context Cue

Alison wants to analyse data from one of the previous excursions. She knows
that the excursion is called "South-Africa Summer 2014". She uses the filing
cabinet in her office to archive all measured data and other related documents
of the past excursions. When Alison wants to re-find the measurements, she
opens the filing cabinet. Colours next to the file folders will show to what
context most of the documents stored in the file folder belong. Because

3https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code/blob/
master/Adafruit_LEDpixels/Adafruit_LEDpixels.py

51 CHAPTER 4. Re-finding of File Folders

this filing cabinet contains only file folders related to previous excursions,
the tablet gives an overview of the excursions linked to the colour that are
available in the filing cabinet. Alison knows that she is looking for the mea-
surement data of "South-Africa Summer 2014". The tablet links this context
to the colour green. Alison now knows which file folders contain documents
of the excursion from last summer. In Figure 4.4 a prototype of the context
view on the tablet is shown.

Figure 4.4: Context info on tablet

Implementation

When Alison approaches the filing cabinet and opens the filing cabinet, the
Raspberry Pi will detect this because of the micro switch mounted in the
filing cabinet. The Raspberry Pi will send a GET request to the /invokeRUI/
filesshowcontext/{resourceID} endpoint on the re-finding module on the
server. {resourceID} represents the unique ID of the filing cabinet. The
re-finding module will check with ReViTa if this {resourceID} is allowed to
execute the re-finding user interface filesshowcontext. If everything is fine
after this check, the re-finding user interface filesshowcontext is started
by a request from the re-finding module on the server to the re-finding user
interface located at /filesshowcontext/start/{resourceID}.

The re-finding user interface must know what the contexts of {resou-
rceID} are. This is done with GET request to /context/{resourceID} on
the re-finding module of the server. When the re-finding user interface knows
all the contexts of {resourceID}, a JSON object containing the contexts is

Setup One: File Folders in a Filing Cabinet 52

sent to the Raspberry Pi in the filing cabinet. A PUT request to /leds/ is
used for this. At the same time, that JSON object is sent to the endpoint
/pubsub/displays on the re-finding module on the server to allow the tablet
to show a list of contexts.

4.1.2 Implicit - Filter on Contexts

Type: Context Cue

Because it is sometimes easier to filter a specific context in the filing cabinet,
Alison can push the button of a file folder that matches the context "South-
Africa Summer 2014". As long as she presses and holds the button, only
file folders belonging to "South-Africa Summer 2014" will show their green
colour. This makes it easier to locate file folders of a specific context, in this
case "South-Africa Summer 2014". When Alison releases the button, all the
file folders are augmented again with the context colour of the corresponding
file folder.

Implementation

When Alison presses and holds one of the buttons on the file folders, the
Raspberry Pi sends a GET request to /invokeRUI/filesshowfilteredcont-
ext/{hwID}/{resourceID} provided by the re-finding module on the server.
This time {resourceID} is the ID corresponding with the file folder. {hwID}
matches the organisational structure. As before ReViTa is checked to be sure
that the user interface filesshowfilteredcontext may be invoked on this
type of structure. The actual re-finding user interface is started with a GET
request to /filesshowfilteredcontext/start/{hwID}/{resourceID}.

The re-finding user interface needs a list of child elements of the parent
object of {resourceID} provided by {hwID}. This list can only contain
objects of the same context matching the context of {resourceID}. The
required list can be requested from the re-finding module on the server using
endpoint /context/{hwID}/{resourceID}. The returned object is sent to
the Raspberry Pi in the filing cabinet using a PUT request on endpoint /leds/
on the Raspberry Pi. This will light up the LEDs of only one context.

When Alison releases the button, a GET request is sent to /invokeRUI/
filesshowcontext/{resourceID} and the user interface filesshowcont-
exts is started as described in section 4.1.1.

4.1.3 Implicit - Timespan Selection

Type: Time Cue

53 CHAPTER 4. Re-finding of File Folders

Figure 4.5: Time span selection using tablet

Alison wants to compare the data from the excursion of last summer with
data of older excursions but she does not exactly remember the name of those
excursions. The only thing she remembers is that she worked with the data
in the spring of 2012. A calendar on the tablet near the filing cabinet allows
her to select a time span, in this case from the 20th of March to the 21st
of June 2012. File folders in the filing cabinet will show a colour linked to
how long ago they were accessed in that time span. File folders that are
not accessed will not show any colour. File folders that are accessed more
recently will have a very bright colour. Older accessed file folders will have
a darker colour. The interface shown on the tablet is pictured in Figure 4.5.

Implementation

As described before in section 3.5.1 the displays that are placed near an or-
ganisational structure are implemented using CSS, JQuery and JavaScript.
The tablet placed close to the filing cabinet will permanently show a but-
ton to access a calendar. The calendar is constructed using the Kalendae
library4. When Alison selects a time span, she has to push on the ShowFiles
button to start the augmentation. The ShowFiles button will send a POST re-
quest to /invokeRUI/filestimeselection/{resourceID} available on the
re-finding module of the server. {resourceID} will match the ID of the
filing cabinet. A JSON object containing the selected time span will we
send as body of this request. After a check in with ReViTa, the re-finding

4https://github.com/ChiperSoft/Kalendae

Setup One: File Folders in a Filing Cabinet 54

module will start the re-finding user interface by sending a POST request to
/filestimeselection/start/{resourceID}, the body contains the previ-
ous received JSON object.

The re-finding user interface will start with a POST request to the re-
finding module on the server at endpoint /time/{resourceID}. The re-
sponse to this request will contain an array of objects containing an intensity
parameter. This parameter will have an influence on the brightness of the
colour emitted by the LED later on. A PUT request to endpoint /leds/ on
the Raspberry Pi with this array in the body will light up the LEDs.

4.1.4 Explicit - Label Search

There is one specific file folder Alison wants to incorporate into her research.
She knows that the label of that file folder is called "Explored sites in South-
Africa". The only problem is that she forgot where the file folder is located
in the filing cabinet. Thus, she enters "Explored sites in South-Africa" in
the label search field on the tablet. The LED corresponding to the file folder
will light up and Alison can easily access the documents in this file folder.

Implementation

To provide support for re-finding a file folder using a label search, the tablet
provides a search field. After pushing the search button, a POST request is sent
to the re-finding module on the re-finding module on the server at endpoint
/invokeRUI/explicitlabelsearch/{resourceID}. The re-finding user in-
terface is started by sending a request to /explicitlabelsearch/start/
{resourceID}.

The re-finding user interface will start by getting the ID of the file folder
that matches the requested label by sending a POST request /refind/label/
on the re-finding module. The body of the request will contain the label. The
re-finding module will send a request to ReViTa. ReViTa will reply with a
list of file folders that contain this label. This list is sent back to the re-
finding user interface. The re-finding user interface will send this object to
the Raspberry Pi in the filing cabinet on endpoint /leds/. This will light
up the specific LED matching the specific file folder.

4.1.5 Explicit - Spatial Indication

When Alison is working at her computer, she can use a third-party appli-
cation to visualise all the physical documents stored in the filing cabinet.

55 CHAPTER 4. Re-finding of File Folders

A function that can be useful in this third party application is to locate a
document in physical space.

Implementation

To allow a third party application to locate a document, the application will
have to send a GET request to /invokeRUI/explicitrefind/{resourceID}
on the re-finding module of the server. {resourceID} corresponds with
the document ID that the third party application wants to locate. The ac-
tual re-finding user interface is started with a request to /explicitrefind/
start/{resourceID}. The re-finding user interface starts with a GET re-
quest /refind/{resourceID} to the re-finding module on the server. The
re-finding module will query ReViTa and return the location of the {resour-
ceID} to the re-finding user interface. This object is sent to the Raspberry Pi
in the filing cabinet on endpoint /leds/ and lights up the correct LED match-
ing the file folder.

4.2 Setup Two: Ring Binders on a Shelf

The next setup will use a shelf in the bookcase. On this shelf, ring binders are
placed. The organisational structure of the shelf represents a filing structure.
In total 10 ring binders are augmented. To be able to show more information
about a ring binder or a group of ring binders the same tablet as in the
previous setup is used. Figure 4.6 shows the ring binders on the shelf.

Part of the label of every ring binder is replaced with a smartphone.
On this smartphone, different user interfaces are shown depending on the
re-finding user interface. The user can also directly interact with the ring
binders. To allow the smartphones to communicate with the re-finding
user interfaces, the same Raspberry Pi of the previous setup is used. This
time, the Raspberry Pi will orchestrate the communication between the ring
binders and the re-finding user interfaces.

To provide easy communication with the smartphones, the Raspberry Pi
provides endpoints to allow a publish-subscribe pattern style of communi-
cation between the smartphones and re-finding user interfaces. The first
endpoint is /api/listen. This endpoint is used by the smartphones to sub-
scribe to the data feed. When a GET request is sent to this endpoint, no
response is sent until there is new data available. The principle used here
is called long polling. The second endpoint supports PUT requests and is
available at /gsms/. When a re-finding user interface sends data to this end-
point, the body is sent to all the connected smartphones on the /api/listen

Setup Two: Ring Binders on a Shelf 56

Figure 4.6: Augmented ring binder

endpoint. This happens because the endpoints /gsms/ and /api/listen are
internally connected using a socket. As a result, the body is sent to all the
smartphones. Socket functionality is provided by the pyZMQ library5. The
implementation of the publish-subscribe system is implemented without any
other library. On the smartphones, a web page is shown that is provided by
the Raspberry Pi. This web page is built with CSS, JQuery and JavaScript.
Because the ring binder has to be uniquely identified, a query string in the
URL is used to pass this ID to the web page.

The tablet is implemented the same way as described in section 3.5.1.
Depending on the re-finding user interface, specific information is shown to
the user.

4.2.1 Implicit - Show Contexts

Type: Context Cue

5http://zeromq.org/

57 CHAPTER 4. Re-finding of File Folders

Figure 4.7: Context info on ring binders and tablet

Alison uses the ring binders to keep track of the animals she encountered in
the past. Every ring binder represents one animal family. Inside the ring
binder, details of the different animals are stored. To find out which animals
she encountered the most during an excursion, Alison could access every
ring binder and count the animals. Nevertheless, this will take a long time.
Instead of doing this, she can walk up to the filing cabinet and just have
a look a the information shown on the ring binders. The ring binders will
show the five most common contexts available in the ring binders in a stacked
column chart. The height of a context depends on the amount of documents
available in the ring binder that have this context. The more a colour is
represented on a ring binder, the more animals of this animal family Alison
encountered during the matching excursion. In this example, the previous
excursions are the contexts. Figure 4.7 shows the user interface on the ring
binders in action.

Setup Two: Ring Binders on a Shelf 58

Implementation

When Alison walks up to the filing cabinet, a GET request is sent to the end-
point /ringbindersshowcontexts/start/{resourceID} on the re-finding
module on the server. The variable {resourceID} represents the unique ID
of the ring binders organisational structure. The re-finding module will check
if {resourceID} can execute the re-finding user interface ringbindersshow-
contexts. If {resourceID} is allowed to execute this re-finding user inter-
face, a GET request is sent to /ringbindersshowcontexts/start/{resou-
rceID}. This will start the user interface.

To allow the re-finding user interface to work, contexts of the ring binders
of the shelf are needed. The re-finding user interface will get this informa-
tion by sending a GET request to the /contexts/{resourceID} endpoint
on the re-finding module on the server. It is important to note that this
time the /contexts/{resourceID} endpoint is used rather than /context/
{resourceID}. The difference is that /contexts/{resourceID} will return
an array of objects. Every object represents a ring binder and contains an
array. In this array, the five most available contexts are stored. The response
object is sent to /gsms/ on the Raspberry Pi in the filing cabinet using a PUT
request. This will show the contexts on the ring binders in a stacked column
chart.

4.2.2 Implicit - Context Selection

Type: Context Cue

Alison wants to research in detail the animals she encountered during her last
excursion to South-Africa. At least one of the ring-binders is showing a yel-
low colour in the stacked column chart matching the "South-Africa Summer
2014" context. When Alison touches this context on one of the ring binders,
the other ring binders containing this context will show a yellow background
colour if they contain documents related to this context.

Implementation

When a specific context is selected on the ring binder, a GET request is sent to
the re-finding module on the server at endpoint /invokeRUI/ringbinders-
showselectedcontext/{hwID}/{resourceID}. The variable {resourceID}
represents the context of the ring binder. {hwID} represents the ID of the
organisational structure of ring binders. The re-finding module will check in
ReViTa if {resourceID} is allowed to execute the re-finding user interface
ringbindersshowselectedcontext. When everything is fine, a GET request

59 CHAPTER 4. Re-finding of File Folders

to /ringbindersshowselectedcontext/start/{hwID}/{resourceID} at
the re-finding module on the server will start the re-finding user interface.

The re-finding user interface will start with sending a request to /conte-
xt/{hwID}/{resourceID} on the re-finding module to get all the contexts
of the children of the organisational strategy {hwID}. The context of the
ring binder is passed with the variable {resourceID}. This is done to make
a difference between an actual resource ID and a context ID. This object
returned from the request is sent to the endpoint /gsms/ on the Raspberry Pi
in the filing cabinet to augment the ring binders. The background colour of
the smartphones in the ring binders will mirror the selected context colour.

4.2.3 Implicit - Interaction Log

Type: Time Cue

The past month, Alison already started her research about the animals she
encountered during her past excursions. To continue where she left off she
wants to know when every ring binder was last accessed. A button on the
tablet will allow Alison to show a calendar on every ring binder. In this
calendar, the days the ring binder was accessed in the last month are marked.
Alison can conclude that a ring binder with a lot of marked days was already
researched in detail.

Implementation

To start the re-finding user interface, Alison has to push the ShowLastUsed
button on the tablet. This button will send a GET request to /invokeRUI/
ringbinderstimeselection/{resourceID} on the re-finding module on the
server. The variable {resourceID} corresponds with the ID of the ring
binders organisational structure. When ReViTa has decided that ringbinde-
rstimeselection can be executed {resourceID}, the re-finding module will
send a GET request to /ringbinderstimeselection/start/{resourceID}.
This will start the re-finding user interface.

The re-finding user interface will start by asking the re-finding module
in the server when the ring binders were accessed in the last month. This
is done by sending a GET request to /time/{resourceID}/type. The JSON
object received from the request contains an array of objects that represents
when this object is last accessed, the actual date is stored. This object is
sent to /gsms/ on the Raspberry Pi in the filing cabinet to augment the
ring binders. Every smartphone will show a calendar. In this calendar, the
marked days represent when the ring binder was used.

Conclusion 60

4.2.4 Explicit - Spatial Indication

As before, Alison can ask a third-party application to locate a ring binder
based on the unique ID of that ring binder. When she finds a ring binder in
an application that represents the ring binders in a virtual way, she can ask
to locate the ring binder in the physical world.

Implementation

The implementation is identical to section 4.1.5.

4.3 Conclusion
We presented various re-finding user interfaces which help the user in re-
finding activities in filing structures. Using two setups, one containing a filing
cabinet and one containing ring binders, six implicit re-finding user interfaces
were implemented. The re-finding user interfaces support the context cue or
time cue. Also, three explicit re-finding user interfaces were implemented.

5
Documents Lost in a Pile

The next organisational strategy that is augmented using re-finding user
interfaces is the piling organisational strategy. Piles are defined as follows,
every element in a pile can have a label but this is not required. None of
the elements are structured. A pile on its own is never labelled. Sometimes
groups of piles can be placed is a specific order but this is not required. Piles
can support context and spatial cues. One setup was built to implement three
re-finding user interface. The setup consists of a touch table that replaces the
desk of the user. As shown in Table 5.1, two implicit re-finding user interfaces
support the context cue, the other implicit re-finding user interface supports
a context cue as well as a spatial cue. The first implicit re-finding user
interface will show the context label next to the pile. The second implicit
re-finding user interface will allow the user to interact with the pile and show
linked documents. One re-finding user interface that supports both a context
and spatial cue will show the user an overview of the documents in the pile.
Also, one explicit re-finding user interface was implemented. This re-finding
user interface allows third-party applications to locate a document in a pile.
An overview of this explicit re-finding user interface is shown in Table 5.2.

Setup: Piles on a Touch Table 62

Context
Cue

Spatial
Cue

Time
Cue

File folders in a filing cabinet 2 1Filing Ring binders on a shelf 2 1
Piling Piles on a desk 2 1
Mixing Paper trays 2 2

Table 5.1: Overview of implemented implicit re-finding user interfaces

Filing cabinet Label search and highlight file folderFiling Ring binders Highlight ring binder
Piling Piles Show pile and space in pile
Mixing Paper Trays Highlight tray

Table 5.2: Overview of implemented explicit re-finding user interfaces

5.1 Setup: Piles on a Touch Table

The main component used in this setup is a touch table. The touch table
will replace the user’s desk. Piles are placed on the touch table and are
tracked by using a camera. The touch table consists of a touch panel that
allows to detect 32-touch points. An LCD display is mounted underneath
the touch panel to show content on the table. The touch table setup is shown
in Figure 5.1.

Figure 5.1: Touch table

63 CHAPTER 5. Documents Lost in a Pile

When the user wants to interact with the piles placed on the touch table,
a user interface is displayed on the table. The touch panel is responsible for
detecting where the user touches the table.

The touch table on its own is used as a second screen. A driver is respon-
sible to convert the touch points to mouse events. A web application shows
the user interface and is connected to the re-finding module of the server as
described in section 3.5.1. CSS, JQuery and JavaScript are used to build
the interface. The touch table also has a unique ID. This ID is used to only
process the object that the touch table needs to show. Depending on the
objects received from the re-finding module on the server, different interfaces
are shown. These interfaces mostly depend on the re-finding user interface.

5.1.1 Implicit - Show Context Labels

Type: Context Cue

Yesterday night, Alison arrived back from her last excursion to Germany.
Before heading home, Alison puts the experiment results and measurement
data gathered in Germany on her desk. Two piles are formed next to the
three other piles that are already there. Today, she wants to start processing
the results of the experiments. Because it was late last night, Alison cannot
remember which pile contains the experiment results. A touch on the touch
table helps Alison to remember what documents are placed on her desk. The
piles show the context labels of the documents that are present in the pile.
Figure 5.2 gives an overview of what Alison will see.

Figure 5.2: Contexts next to piles

Setup: Piles on a Touch Table 64

Implementation

When Alison touches the touch table, a GET request is sent to /invokeRUI/
pilesshowcontextlabel/{resourceID} offered by the re-finding module at
the server. Variable {resourceID} represents the unique ID of the organ-
isational structure of piles. The re-finding module will check with ReViTa
if {resourceID} is allowed to execute this re-finding user interface. When
everything is fine, the re-finding user interface is started by sending a GET
request to /pilesshowcontextlabel/start/{resourceID}.

The re-finding user interface needs the context labels to augment the
piles. This information is gathered by sending a GET request to /contexts/
{resourceID} on the re-finding module. The object returned from the re-
finding module is tagged with the ID of the touch table and sent to the
/pubsub/displays endpoint on the re-finding module.

When the touch table receives an object from the re-finding module, first
of all, the ID is checked. If the ID matches, the object is further processed.
In this case, the location information inside the object is used to display the
context labels next to the corresponding pile. Apart from the context labels,
a command bar is also showed next to every pile. This command bar is used
in the re-finding user interfaces described below.

5.1.2 Implicit - Related Documents in Contexts

Type: Context Cue

All the documents of the experiment results and measurement data gath-
ered in Germany are either linked to "Experiment results" or "Measurement
data". Every document of the two piles is linked with "Germany". Before
Alison starts to process the results of the experiments, Alison wants to find
out if she already has documents related to the context "Germany". She can
touch the context "Germany" which is shown in the context list next to the
pile containing experiment results. A list of documents linked to the context
"Germany" is shown. Some of the documents are highlighted to show that
they are present in the pile. Other documents are probably archived in the
filing cabinet. Figure 5.3 pictures the user interface.

Implementation

When the list of contexts is shown next to a pile using the previous re-
finding user interface, Alison is able to touch one of the contexts. This
will result in a GET request to /invokeRUI/pilesshowrelateddocs/{hwID}/
{resourceID} on the re-finding module. The variable {hwID} represents

65 CHAPTER 5. Documents Lost in a Pile

Figure 5.3: Related documents of a pile

the unique ID of the pile. {resourceID} represents the unique ID of the
selected context. The re-finding module will check ReViTa to know if {hwID}
is allowed to execute this re-finding user interface. When no problems are
detected, the actual re-finding user interface is executed by sending a GET
request to /pilesshowrelateddocs/start/{hwID}/{resourceID}.

The re-finding user interface will start with asking the re-finding module
what the related documents of {hwID} are depending on the context provided
by {resourceID}. The endpoint /content/{hwID}/{resourceID} that ac-
cepts GET requests on the re-finding module provides this data. This request
will respond with an array of document objects related to the context se-
lected before. When the re-finding interface received this data, the object is
tagged with the ID of the touch table. A POST request will send the object
to the /pubsub/displays endpoint on the re-finding module.

When the touch table receives an object, the object is processed if the ID
matches. The touch table will show a list of related documents next to the
pile that sent the request. Documents stored in the pile are highlighted.

Setup: Piles on a Touch Table 66

5.1.3 Implicit - Digital Augmentation

Type: Context Cue + Spatial Cue

In the first implicit re-finding user interface, apart from the context labels,
a command button is displayed next to the piles. This command button
will become useful in the next re-finding user interface. Alison knows that
she had a document containing results of a specific experiment she wants to
process first. She knows that the document is located in the pile containing
the experiment results but she does not know where exactly. To help Alison
re-find the document, she can push a button on the command bar to show a
digital representation of the pile. The representation will show the order of
the documents in the pile. Alison can look in the list for the document she
needs and find out more or less where the document is located in the pile.
An example of the digital representation of a pile can be found in Figure 5.4.

Figure 5.4: Digital representation of the pile

Implementation

When Alison pushes the button on the command bar, a GET request is sent to
the re-finding module on the server at endpoint /invokeRUI/pilesshowdi-
gipile/{hwID}/{resourceID}. ReViTa is checked by the re-finding module
to find out if the pile represented by ID {resourceID} is allowed to be
augmented with this re-finding user interface. Assuming that everything
is fine, the re-finding user interface is started by sending a GET request to
/pilesshowdigipile/start/{hwID}/{resourceID}.

67 CHAPTER 5. Documents Lost in a Pile

As this re-finding user interface needs to know which documents are avail-
able in {resourceID}, the re-finding module is asked to provide this data.
Endpoint /content/{hwID}/{resourceID} that accepts GET request will re-
turn an array of document objects tagged with an order integer. This integer
is needed to know in what order the documents are placed on the pile. If
this array is received by the re-finding user interface, it is tagged with the
ID of the touch table and send to the /pubsub/displays endpoint on the
re-finding module to finally arrive at the touch table.

The touch table will process this object if the ID matches. A virtual
representation in the form of a stacked column chart is displayed next to the
pile that triggered the request.

5.1.4 Explicit - Spatial Indication

As before, Alison can ask a third-party application to locate a pile based on
the unique ID. The piles can be presented in a virtual way in the third party
application. Asking to locate the pile, will highlight the pile.

Implementation

The implementation is identical to section 4.1.5.

5.2 Conclusion
In this chapter re-finding user interfaces were presented that help the user in
re-finding activities in piling structures. One setup, containing a touch table,
was build to built three implicit re-finding user interfaces. These implicit re-
finding user interfaces provide support for the spatial cue and context cue.
Also, one explicit re-finding user interface was implemented.

Conclusion 68

6
Chaotic Paper Trays

The last organisational strategy that is augmented using re-finding user inter-
faces is the mixing organisational strategy. Mixing represents every structure
that is not filing nor piling. The elements can have a label but this is not
required. At the same time, there can be an order between the elements but
this is also not required. Groups of mixtures do not require any labelling
or order but they can be labelled or ordered. Mixtures provide a context
cue as well as a time cue. To implement some re-finding user interfaces one
setup was built. The setup consists of a stack of paper trays. Four implicit
re-finding user interfaces are implemented. As shown in Table 6.1, two re-
finding user interfaces implement the context cue, the other two support the
time cue. The first implicit re-finding user interface will allow the user to
easily see the contexts of the paper trays by waving a hand in front of the
paper trays. The second implicit re-finding user interface will allow the user
to request the contents of a paper tray by pushing a button on the corre-
sponding paper tray. Another implicit re-finding user interface will allow
the user to show the paper trays that are most recently accessed and most
frequently. The last implicit re-finding user interface allows the user to find
out if a paper tray was assessed in a selected time span. Also, one explicit
re-finding user interface was implemented as shown in Table 6.2. This ex-
plicit re-finding user interface provides support for third party applications
to locate and highlight a paper tray containing the requested document.

Setup: Paper trays 70

Context
Cue

Spatial
Cue

Time
Cue

File folders in a filing cabinet 2 1Filing Ring binders on a shelf 2 1
Piling Piles on a desk 2 1
Mixing Paper trays 2 2

Table 6.1: Overview of implemented implicit re-finding user interfaces

Filing cabinet Label search and highlight file folderFiling Ring binders Highlight ring binder
Piling Piles Show pile and space in pile
Mixing Paper Trays Highlight tray

Table 6.2: Overview of implemented explicit re-finding user interfaces

6.1 Setup: Paper trays

In this setup, a stack of paper trays is used. In total five trays are augmented.
Every tray is extended with a LED strip and a button. To detect if the user
waves a hand in front of the paper trays, an ultrasonic range finder is placed
in front of the paper trays. This ultrasonic sensor is also used to track
documents but requires a camera to identify the document. To give the user
some more information about what is shown in most of the re-finding user
interfaces, more information is shown on the touch table located near the
paper trays. The touch table can show a list of contexts linked to a colour.
These colours are emitted by the LEDs in the paper trays. Figure 6.1 shows
the setup.

The hardware for this setup consists of a LED strip and button per tray,
an ultrasonic range finder in front of the paper trays and a Raspberry Pi. Fig-
ure 6.2 gives a schematic representation of the hardware. The Raspberry Pi
is responsible for translating the requests of the RESTful interface to the
correct protocol to talk to the LEDs. The Raspberry Pi is also responsible
to react on the events generated by the buttons mounted on the paper trays.
Because the Raspberry Pi does not provide enough GPIO pins that support
PWM, extra hardware is added to solve this problem. In total 15 GPIO pins
supporting PWM are needed because every LED strip needs data of the red,
green and blue colour. This amount of pins is provided using a 16-channel
LED controller that is connected to the Raspberry Pi using the I 2C protocol.
The LED controller is shown in Figure 6.2(1). LED strips tend to use a lot
of energy, more energy than any microcontroller can provide. To solve this

71 CHAPTER 6. Chaotic Paper Trays

Figure 6.1: Paper tray setup

problem, MOSFETs are used to power the LED strip from a high current
power supply. The MOSFETs are shown in Figure 6.2(2). The construction
with three MOSFETs and the LED strip as shown in Figure 6.2(2) is repeated
four more times. The five buttons mounted on the paper trays are connected
to available I/O pins the Raspberry Pi. In Figure 6.2(3) the schematic rep-
resentation of the buttons is shown. Two I/O pins are needed to connect the
ultrasonic range finder to the Raspberry Pi as shown in Figure 6.2(4). The
Raspberry Pi (1), LED controller (2), MOSFETs (3), ultrasonic sensor (4)
and paper trays with buttons and LED strips of the prototype are shown in
Figure 6.3.

The Raspberry Pi is running three python applications, the first one is
responsible for providing a web server, the second one will monitor the but-
tons mounted on the trays. A third application is responsible for querying
the ultrasonic sensor. Like the setup described in section 4.1, the web server
is responsible for providing a RESTful interface to control the LEDs.

The state of the buttons is read in a while loop. Every time the state of
a button is True, a request is sent to the re-finding module of the server.

To measure the distance between the ultrasonic sensor and a possible
object, the application will time how long it takes to get a response on one of
the two pins, called the ECHO pin, of the ultrasonic sensor when the other
pin, called the TRIG pin, is set to high state. With some calculations the
distance between the ultrasonic range finder and an object can be calculated
based on the time it takes to receive response on the ECHO pin. Exactly
knowing the distance between the ultrasonic sensor and the user’s hand is

Setup: Paper trays 72

Figure 6.2: Paper trays hardware schema

73 CHAPTER 6. Chaotic Paper Trays

Figure 6.3: Prototype of paper tray hardware

not important to detect if the user is waving a hand in front of the paper
trays. Knowing that the distance is smaller than the top of the stack of
paper trays is enough to detect that the user is waving a hand in front of the
paper trays. This behaviour will result in sending a request to the re-finding
module to trigger a re-finding user interface. When tracking in which paper
tray a document is placed, the exact distance between the ultrasonic sensor
is needed to find out in which tray the document is placed. In combination
with a camera, the document can be tracked and linked to a paper tray.

The Bottle framework1 is used to provide an endpoint to communicate
with the LEDs in the paper trays. The endpoint is called /leds/ and only
supports PUT requests. When an object is received on this endpoint, the
contents of the object are processed to receive the RGB colour information.
This information is then sent to the LED controller using a library provided
by Adafruit2. For every colour, red, green and blue, a different channel of
the LED controller is updated. By mixing those three channels, the correct

1http://bottlepy.org/docs/dev/index.html
2https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code/tree/

master/Adafruit_PWM_Servo_Driver

Setup: Paper trays 74

colour is represented by the LED strip.
The touch table placed near the stack of paper trays is implemented as

described in section 3.5.1.

6.1.1 Implicit - Show context

Type: Context Cue

Alison is planning a new excursion to Australia. The excursion will take
place in the spring of 2016. As she travels a lot to different destinations,
she has to organise a lot. At least two paper trays will contain information
about places to stay and tickets that are already booked. The other three
trays contain documents of experiments that she will execute during the
next excursions. Some of the experiments need more preparation, other
experiments are already finished and grouped together in one paper tray.
Alison can easily find out which contexts are available in every paper tray
by waving her hand in front of the paper trays. Every paper tray shows a
context colour. The touch table provides a list of contexts that are linked to
a specific context. Alison will see a list containing the contexts "Australia
spring 2016", "Peru summer 2016" and "Greece autumn 2016". Figure 6.4
gives an example of the user interface.

Figure 6.4: Contexts information about paper trays

75 CHAPTER 6. Chaotic Paper Trays

Implementation

When Alison waves her hand in front of the paper trays, a GET request is sent
to /invokeRUI/traysshowcontext/{resourceID} on the re-finding module
of the server. Variable {resourceID} represents the ID of the stack of pa-
per trays. The re-finding module will check with ReViTa if {resourceID} is
allowed to execute the traysshowcontext re-finding user interface. If every-
thing is fine, a GET request to /traysshowcontext/start/{resourceID} is
initiated to start execution of the re-finding user interface.

The re-finding user interface needs the context of every paper tray. A
GET request to /context/{resourceID} on the re-finding module provides
this information. When the re-finding user interface has received the object,
the LEDs of the paper trays are lighted by sending a PUT request to /leds/
on the Raspberry Pi. The body of this request contains the object received
from the re-finding module. The same object is also sent to the touch table
using endpoint /pubsub/displays after it was tagged with the ID of the
touch table. The touch table will display a list of contexts linked to a colour.
After some time, the LEDs in the paper trays will turn off.

6.1.2 Implicit - Show content

Type: Context Cue

Alison wants to be sure that she already booked her flight tickets to Australia.
She can start to look for them in the paper tray containing all the tickets. Or
she can push the button mounted on the paper tray. Doing this, the touch
table will show a list of documents that Alison put in this paper tray. Two
documents named "Reservation BRU - MEL" and "Reservation MEL - BRU"
show up in the list confirming that the flight tickets to Melbourne Airport
are booked. A demonstration of this user interface is shown in Figure 6.5.

Implementation

When Alison pushes the button on one of the paper trays, the Raspberry Pi
will detect this and sends a GET request to /invokeRUI/traysshowmore-
details/{hwID}/{resourceID} provided by the re-finding module on the
server. The re-finding module will check with ReViTa to find out if this
{resourceID} can invoke the re-finding user interface. The re-finding module
will send a GET request to /traysshowmoredetails/start/{hwID}/{resou-
rceID} if everything is fine. This will start the re-finding user interface.

The re-finding user interface will start by getting the content of the paper
tray by invoking a GET request to /content/{hwID}/{resourceID} on the

Setup: Paper trays 76

Figure 6.5: Content of a paper tray

re-finding module. The response of this request is an array of document
objects physically available in the corresponding paper tray. The response
object is tagged with the ID of the touch table and sent to the touch table
using a PUT request to /pubsub/displays on the re-finding module. The
touch table will show a list of documents available in the paper tray.

6.1.3 Implicit - Interaction Log

Type: Time Cue

Alison knows that the top two paper trays contain "Unfinished prepared
experiments". To find out if these two paper trays are actively accessed,
the frequency Alison accessed the paper trays can be requested by pushing
a button on the touch table named "Frequently accessed". This will colour
the paper trays. A lighter colour means the paper tray is not used a lot,
a brighter colour means that the tray is used a lot. When Alison sees that
the top two trays are lighted up in very bright colours, she is sure that she
is doing whatever it takes to finish all the preparations for the experiments
in time. Alison also wants to know which paper tray is last accessed to
find out what paper tray is used to process the last "Unfinished prepared
experiments". To provide this information Alison pushes on the "Recent
accessed" button shown on the touch table. The paper trays will show a

77 CHAPTER 6. Chaotic Paper Trays

colour. The brightness of every colour is linked to how long ago a paper tray
was accessed. A lighter colour means accessed very recently, darker colour
means accessed a longer time ago. Figure 6.6 shows the options presented
on the touch table.

Figure 6.6: Time controls to interact with the paper trays

Implementation

When Alison pushes the "Frequently accessed" button, a POST request is sent
to /invokeRUI/mixturestimefrequentlyaccessed/{resourceID}.
The "Recent accessed" button will do the same but will send POST re-
quest to /invokeRUI/mixturestimerecentaccessed/{resourceID}. Both
endpoints are provided by the re-finding module on the server. As be-
fore {resourceID} represents the ID of the paper trays. The re-finding
module will start to check with ReViTa if {resourceID} can execute this
specific re-finding user interface. When everything is fine a GET request to
/mixturestimefrequentlyaccessed/start/{resourceID} or /mixtures-
timerecentaccessed/start/{resourceID} is initiated to start the corre-
sponding re-finding user interface. Both re-finding user interfaces act the
same, they will send the same request to the re-finding module. The only
difference is the type used to get the information. The object that contains
time data is requested with a GET request to /time/{resourceID}/{type}.
{type} is replaced with frequent or recent depending on the re-finding user

Setup: Paper trays 78

interface. When the re-finding user interface received the requested object
containing object information with an extra intensity parameter controlling
the brightness of the colour, this object is sent to the Raspberry Pi using the
endpoint /leds/. This endpoint only understands PUT requests. The paper
trays will show a colour that is brighter or darker depending on the initially
pushed button.

6.1.4 Implicit - Timespan selection

Type: Time Cue

To allow Alison the ability to find out which paper tray was used most
recently last week, she can select a time span on the touch table. The paper
trays that are accessed most recently in that time span are showing a very
bright colour compared to the paper trays that are used the longest time ago.
In Figure 6.6 time span selection is shown.

Implementation

Alison is able to select the time span in a calendar shown on the touch
table. Pressing the button near the calendar will trigger the re-finding
user interface. The calendar is shown using the Kalendae library3. When
the button is pressed, a POST request is sent to the endpoint /invokeRUI/
mixturestimeselection/{resourceID} located at the re-finding module on
the server. {resourceID} represents the ID of the paper trays. The body
of the request will contain a JSON object representing the selected time
span. Before executing the actual re-finding user interface, the re-finding
module will check with ReViTa if that {resourceID} is allowed to exe-
cute the re-finding user interface. If everything is fine, a POST request to
/mixturestimeselection/start/{resourceID} is executed to start the re-
finding user interface. The body contains the selected time span. When the
re-finding user interface is started, a POST request to /time/{resourceID}
will request an array object containing the time information of the paper
trays. Every object contains an intensity parameter that will influence the
brightness of the colour shown by the LEDs. This object is sent to the /leds/
endpoint on the Raspberry Pi with a PUT request. The LEDs will light up
with a brightness depending on how long ago the paper trays were accessed
in the selected time span.

3https://github.com/ChiperSoft/Kalendae

79 CHAPTER 6. Chaotic Paper Trays

6.1.5 Explicit - Spatial Indication

As before, Alison can ask a third-party application to locate a document in a
paper tray based on the unique ID the document. A third party application
can ask to highlight the paper tray where the document is located.

Implementation

The implementation is identical to section 4.1.5.

6.2 Conclusion
This chapter elaborated different re-finding user interfaces that provide sup-
port for re-finding documents in mixing structures. One setup was built to
implement four implicit re-finding user interfaces. The context cue, as well as
time cue, are supported by these re-finding user interfaces. Also, one explicit
re-finding user interface was implemented.

Conclusion 80

7
Conclusion and Future Work

7.1 Conclusion

The goal of this thesis was to develop a rapid prototyping framework that
is based on the KOR principles and provides re-finding support on physical
documents using a PIM system. Re-finding is supported using implicit re-
finding user interfaces. The user has to be able to re-find documents in
a natural way. Organisational strategies filing, piling and mixing are used
as well as the re-finding cues context, spatial and time. Providing support
for re-finding activities is accomplished by building re-finding user interfaces
that support specific re-finding cues. In addition, the framework has to be
extensible so that it is easy to add new re-finding user interfaces only by
registering them in the system. Finally, third party applications should be
able to easily communicate with the framework to request the framework to
re-find a document in an explicit way.

The framework is divided into three modules, a tracking module, a module
called ReViTa that communicates with the OC2 PIM system and a re-finding
module. The tracking module will store data in the OC2 by using the Re-
ViTa module. ReViTa is responsible for communicating with OC2. Apart
from this, ReViTa also maps the organisational structures as well as extra
information that has to be kept in OC2 to support the re-finding cues. The
re-finding module reads the data via ReViTa from OC2 and communicates

Conclusion 82

with the re-finding user interfaces. Due to the extensiveness of the frame-
work, this thesis mainly focuses on the re-finding module and extensions in
ReViTa as well as the re-finding user interfaces.

Extensions in the ReViTa module The ReViTa module is extended to
support organisational structures and re-finding cues. ReViTa also al-
lows access to OC2 if the re-finding module needs more data.

Implemented re-finding module The re-finding module provides a
RESTful interface that allows the re-finding user interfaces to get the
required data. This data is used to send to the hardware responsible for
augmenting the physical world. At the same time, the hardware offers
a RESTful interface to allow easy access to functionality from inside
a re-finding user interface. The re-finding module is also responsible
to check if a re-finding user interface can be connected to an organisa-
tional structure. The reason for this is that not every organisational
structure does support every re-finding cue. On the other hand, the
re-finding module is also responsible for checking if a re-finding user
interface can be executed on a resource.

Proof of concept re-finding user interfaces As a proof of concept we
have developed 13 implicit and 4 explicit re-finding user interfaces.
Based on the organisational strategies re-finding user interfaces are im-
plemented that support specific re-finding cues. The implicit re-finding
user interfaces provide a natural interaction.

Systems like DigitalDesk [42], DocuDesk [11] and PaperSpace [49] show
that augmenting physical documents have their use. Because we do not know
what will happen with physical paper [47], systems that combine physical as
well as digital documents are important to allow them to coexist. The sys-
tems built by Jervis [46] [22] [23] [24] focus even more on the combination
of physical and digital documents. Since none of the systems are integrated
with a unified PIM system like Haystack or Semantic Desktop, the three
problems, information overload, classification problem and information frag-
mentation, still exist. In addition, none of the systems implement re-finding
based on re-finding cues. As proven by research, the spatial cue is not the
main re-finding cue [51]. Context and time are also important cues to re-find
documents. The existing PIM systems force the user to start a digital search
to re-find a document, there is some navigation needed to find the document
they want without the help of an augmented user interface in the physical
world. Users also sometimes do not know what they are exactly looking for
[50]. This is not natural [50] and the user has to change between digital and

83 CHAPTER 7. Conclusion and Future Work

physical space. The solutions available at the moment are standalone appli-
cations and only support spatial indications of where a document is located.
To overcome information fragmentation, a PIM system is used.

The system we present uses a central repository PIM system to store all
the metadata of the documents. Using some implicit re-finding user interfaces
that support the re-finding cues, context cue, spatial cue and time cue, re-
finding activities are supported. Explicit re-finding is supported in a way
that the user does not has to start with digital search but rather using an
external third-party application.

The framework and architecture presented in this thesis takes into ac-
count the problems that exist with current augmented user interfaces and
PIM systems. The goal was to create a system that helps the user to re-find
physical documents faster by augmenting organisational strategies that trig-
ger not only the spatial re-finding cue but also the context cue and time cue.
As discussed before, the rapid-prototyping framework presented is based on
a unified PIM system and thus solves some of the problems that are existing
in the PIM domain. Because of implicit re-finding user interfaces, the user
is able to re-find documents in a more natural way rather than first start a
digital search to look for a document. The framework, consisting of three
modules, and the architecture of the re-finding user interfaces is built in such
a way that there is always room for extending the framework as well as the
system in general with new features or re-finding user interfaces.

7.2 Future Work

An evaluation of all the user interfaces is useful to find out which re-finding
user interface is actually useful to use and which re-finding user interface is
not. It looks also useful to study in which ways a file structure, pile struc-
ture and mixing structure can exist. In this thesis only a filing cabinet,
ring binders, paper trays and piles are used but there are other ways possi-
ble. For example, vertical filing spaces or other types of paper trays. These
structures can then be augmented with specific re-finding user interfaces and
re-evaluated. Another point of improvement is the hardware. To augment
the filing cabinet, every file folder is extended with a LED and a button. This
is a good solution but the way it is built at the moment is that it generates
a lot of wires. The same problem exists with the augmentation of the paper
trays. Converting the hardware to SMD packaging can already reduce the
size a lot. The best solution would be to integrate the hardware inside a file
folder or paper tray so that it looks like the hardware was built like this.
Apart from using a tablet near the filing cabinet or a touch table, other ways

Future Work 84

of displays can be researched. Projection on the filing cabinet or ring binders
can also be a solution to augment file folders in the filing cabinet. The imple-
mented re-finding user interfaces can also be finalised more. Because of the
smartphones placed in the ring binders, almost everything can be shown on
the ring binders. This opens possibilities to implement user interfaces specific
for mixing inside a ring binder. Another point of improvement is the way
the system communicates with the hardware. A dedicated hardware layer
can be added to do a mapping between the digital organisational structure
and the physical hardware required to augment the physical organisational
structure. Settings like IP-address and REST endpoints are hard coded at
the moment.

A
Appendix

86

Bibliography

[1] Anand Agarawala and Ravin Balakrishnan. Keepin’ It Real: Pushing
the Desktop Metaphor with Physics, Piles and the Pen. In Proceedings of
CHI 2006, Conference on Human Factors in Computer Systems, pages
1283–1292, Montréal, Canada, April 2006.

[2] Joao Aires and Daniel Gonçalves. Personal Information Dashboard - Me,
At a Glance. In Proceedings of CSCW 2012, Conference on Computer
Supported Cooperative Work, pages 1–8, Seattle, USA, February 2012.

[3] Damián Arregui, Christer Fernstrom, François Pacull, Gilbert Rondeau,
Jutta Willamowski, Elisabeth Crochon, and François Favre-Reguillon.
Paper-based Communicating Objects in the Future Office. In Proceed-
ings of Smart Object conference, Grenoble, France, 2003.

[4] Olha Bondarenko and Ruud Janssen. Documents at Hand: Learning
from Paper to Improve Digital Technologies. In Proceedings of CHI
2005, Conference on Human Factors in Computing Systems, pages 121–
130, Portland, USA, April 2005.

[5] Vannevar Bush and Jingtao Wang. As We May Think. Atlantic Monthly,
176:101–108, 1945.

[6] Irene Cole. Human Aspects of Office Filing: Implications for the Elec-
tronic Office. In Proceedings of HFES 1982, Human Factors and Er-
gonomics Society Annual Meeting, pages 59–63, Seattle, USA, October
1982.

[7] Christian Decker, Uwe Kubach, and Michael Beigl. Revealing the Retail
Black Box by Interaction Sensing. In Proceedings of ICDCS 2003, Con-
ference on Distributed Computing Systems, pages 328–333, Providence,
USA, May 2003.

[8] Paul Dourish, Keith W. Edwards, Anthony LaMarca, John Lamping,
Karin Petersen, Michael Salisbury, Douglas B. Terry, and James Thorn-

BIBLIOGRAPHY 88

ton. Extending Document Management Systems with User-specific Ac-
tive Properties. ACM Transactions on Information Systems, 18(2):140–
170, April 2000.

[9] Susan Dumais, Edward Cutrell, JJ Cadiz, Gavin Jancke, Raman Sarin,
and Daniel C. Robbins. Stuff I’Ve Seen: A System for Personal Informa-
tion Retrieval and Re-use. In Proceedings of SIGIR 2003, Conference
on Research and Development in Informaion Retrieval, pages 72–79,
Toronto, Canada, July 2003.

[10] Susan T. Dumais and Thomas K. Landauer. Using Examples to Describe
Categories. In Proceedings of CHI 1983, Conference on Human Factors
in Computing Systems, pages 112–115, Boston, USA, 1983.

[11] Katherine M. Everitt, Meredith R. Morris, A. J. Bernheim Brush, and
Andrew D. Wilson. DocuDesk: An Interactive Surface for Creating and
Rehydrating Many-to-many Linkages Among Paper and Digital Docu-
ments. In Proceedings of TABLETOP 2008, IEEE International Work-
shop on Horizontal Interactive Human Computer Systems, pages 25–28,
Amsterdam, The Netherlands, October 2008.

[12] Daniel Fällman. The BubbleFish: Digital Documents Available On
Hand. In Proceedings of INTERACT 2001, Conference on Human-
Computer Interaction, pages 9–13, Tokyo, Japan, July 2001.

[13] Stephen Fitchett and Andy Cockburn. AccessRank: Predicting What
Users Will Do Next. In Proceedings of CHI 2012, Conference on Human
Factors in Computing Systems, pages 2239–2242, Austin, USA, May
2012.

[14] Stephen Fitchett, Andy Cockburn, and Carl Gutwin. Improving
Navigation-based File Retrieval. In Proceedings of CHI 2013, Confer-
ence on Human Factors in Computing Systems, pages 2329–2338, Paris,
France, April 2013.

[15] Stephen Fitchett, Andy Cockburn, and Carl Gutwin. Finder Highlights:
Field Evaluation and Design of an Augmented File Browser. In Proceed-
ings of CHI 2014, Conference on Human Factors in Computing Systems,
pages 3685–3694, Toronto, Canada, April 2014.

[16] Eric Freeman and David Gelernter. Lifestreams: A Storage Model for
Personal Data. ACM SIGMOD Record, 25(1):80–86, March 1996.

89 BIBLIOGRAPHY

[17] François Guimbretière. Paper Augmented Digital Documents. In Pro-
ceedings of UIST 2003, Conference on User Interface Software and Tech-
nology, pages 51–60, Vancouver, Canada, November 2003.

[18] Wilfred J. Hansen and Christina Haas. Reading and Writing with Com-
puters: A Framework for Explaining Differences in Performance. Com-
munications of the ACM, 31(9):1080–1089, September 1988.

[19] Bae S. Hark, Jong H. Choi, and Choon S. Leem. A Database Design
of RFID Document Management System with e-Ink Technology. In
Proceedings of NCM 2008, Conference on Networked Computing and
Advanced Information Management, pages 14–17, Gyeongju, Korea,
September 2008.

[20] Steve Hinske. Determining the Position and Orientation of Multi-Tagged
Objects Using RFID Technology. In Proceedings of PerCom 2007, Con-
ference on Pervasive Computing and Communications, pages 377–381,
New York, USA, March 2007.

[21] Steve Hinske and Marc Langheinrich. Using a Movable RFID Antenna
to Automatically Determine the Position and Orientation of Objects
on a Tabletop. In Proceedings of EuroSSC 2008, Conference of Smart
Sensing and Context, pages 14–26, Zurich, Switzerland, October 2008.

[22] Matthew G. Jervis and Masood Masoodian. Digital Management and
Retrieval of Physical Documents. In Proceedings of TEI 2009, Inter-
national Conference on Tangible, Embedded, and Embodied Interaction,
pages 47–54, Cambridge, UK, February 2009.

[23] Matthew G. Jervis and Masood Masoodian. SOPHYA: A System for
Digital Management of Ordered Physical Document Collections. In Pro-
ceedings of TEI 2010, International Conference on Tangible, Embedded,
and Embodied Interaction, pages 33–40, Cambridge, USA, January 2010.

[24] Matthew G. Jervis and Masood Masoodian. Evaluation of an Integrated
Paper and Digital Document Management System. In Proceedings of
INTERACT 2011, International Conference on Human-Computer In-
teraction, pages 100–116, Lisbon, Portugal, September 2011.

[25] William P. Jones. Personal Information Management. Annual Review
of Information Science and Technology, 41(1):453–504, 2007.

[26] William P. Jones. Keeping Found Things Found: The Study and Practice
of Personal Information Management. Elsevier Science, 2010.

BIBLIOGRAPHY 90

[27] William P. Jones and Susan T. Dumais. The Spatial Metaphor for User
Interfaces: Experimental Tests of Reference by Location Versus Name.
ACM Transactions on Information Systems, 4(1):42–63, January 1986.

[28] Hyunmo Kang and Ben Shneiderman. MediaFinder: An Interface for
Dynamic Personal Media Management with Semantic Regions. In Pro-
ceedings of CHI 2003, Conference on Human Factors in Computing Sys-
tems, pages 764–765, Florida, USA, April 2003.

[29] David R. Karger, Karun Bakshi, David Huynh, Dennis Quan, and Vi-
neet Sinha. Haystack: A Customizable General-Purpose Information
Management Tool for End Users of Semistructured Data. In Proceed-
ings of CIDR 2005, Conference on Innovative Data Systems Research,
Asilomar, USA, January 2005.

[30] David R. Karger and Dennis Quan. Haystack: A User Interface for
Creating, Browsing, and Organizing Arbitrary Semistructured Informa-
tion. In Proceedings of CHI 2004, Conference on Human Factors in
Computing Systems, pages 777–778, Vienna, Austria, April 2004.

[31] Akrivi Katifori, Costas Vassilakis, and Alan Dix. Ontologies and the
Brain: Using Spreading Activation Through Ontologies to Support Per-
sonal Interaction. Cognitive Systems Research, 11(1):25–41, March 2010.

[32] Alison Kidd. The Marks Are on the Knowledge Worker. In Proceedings
of CHI 1994, Conference on Human Factors in Computing Systems,
pages 186–191, Boston, USA, April 1994.

[33] Jiwon Kim, Steven M. Seitz, and Maneesh Agrawala. Video-based Doc-
ument Tracking: Unifying Your Physical and Electronic Desktops. In
Proceedings of UIST 2004, Conference on User Interface Software and
Technology, pages 99–107, Santa Fe, USA, October 2004.

[34] David Kirsh. A Few Thoughts on Cognitive Overload. Intellectica,
1(30):19–51, 2000.

[35] Scott R. Klemmer, Mark W. Newman, Ryan Farrell, Mark Bilezikjian,
and James A. Landay. The Designers’ Outpost: A Tangible Interface
for Collaborative Web Site. In Proceedings of UIST 2001, Conference
on User Interface Software and Technology, pages 1–10, Orlando, USA,
November 2001.

[36] Hideki Koike, Yoichi Sato, and Yoshinori Kobayashi. Integrating Pa-
per and Digital Information on EnhancedDesk: a Method for Realtime

91 BIBLIOGRAPHY

Finger Tracking on an Augmented Desk System. ACM Transactions on
Computer-Human Interaction, 8(4):307–322, December 2001.

[37] Michael G. Lamming and William M. Newman. Activity-based Informa-
tion Retrieval Technology in Support of Personal Memory. Rank Xerox,
EuroPARC, 1991.

[38] Thomas K. Landauer and D. W. Nachbar. Selection from Alphabetic
and Numeric Menu Trees Using a Touch Screen: Breadth, Depth, and
Width. ACM SIGCHI Bulletin, 16(4):73–78, April 1985.

[39] Thomas W. Malone. How Do People Organize Their Desks?: Implica-
tions for the Design of Office Information Systems. ACM Transactions
on Information Systems, 1(1):99–112, January 1983.

[40] Dwight P. Miller. The Depth/Breadth Tradeoff in Hierarchical Com-
puter Menus. Proceedings of HFES 1981, Conference Human Factors
Society and Ergonomics Society, 25(1):296–300, October 1981.

[41] Bonnie Nardi, Ken Anderson, and Thomas Erickson. Filing and Finding
Computer Files. Technical Report 118, Apple Computer, Inc, 1994.

[42] William Newman and Pierre Wellner. A Desk Supporting Computer-
based Interaction with Paper Documents. In Proceedings of CHI 1992,
Conference on Human Factors in Computing Systems, pages 587–592,
Monterey, USA, May 1992.

[43] Moira C. Norrie, Beat Signer, and Nadir Weibel. Print-n-link: Weav-
ing the Paper Web. In Proceedings of DocEng 2006, Conference on
Document Engineering, pages 34–43, Amsterdam, Netherlands, Octo-
ber 2006.

[44] G. P. O. Report on the Progress and Condition of the U.S. Nation
Museum for the Year Ending June 30. United States National Museum,
1939.

[45] Leo Sauermann. The Semantic Desktop - a Basis for Personal Knowl-
edge Management. In Proceedings of I-KNOW 2005, Conference on
Knowledge Management, pages 294–301, Graz, Austria, June 2005.

[46] Thomas Seifried, Matthew G. Jervis, Michael Haller, Masood Masood-
ian, and Nicolas Villar. Integration of Virtual and Real Document Or-
ganization. In Proceedings of TEI 2008, Conference on Tangible and
Embedded Interaction, pages 81–88, Bonn, Germany, February 2008.

BIBLIOGRAPHY 92

[47] Abigail J. Sellen and Richard H.R. Harper. The Myth of the Paperless
Office. MIT Press, 2003.

[48] Beat Signer and Moira C. Norrie. A Framework for Cross-Media In-
formation Management. In Proceedings of EuroIMSA 2005, Conference
on Internet and Multimedia Systems and Applications, pages 318–323,
Grindelwald, Switzerland, February 2005.

[49] Jeff Smith, Jeremy Long, Tanya Lung, Mohd M. Anwar, and Sriram
Subramanian. PaperSpace: A System for Managing Digital and Paper
Documents. In Proceedings of CHI 2006, Conference on Human Factors
in Computing Systems, pages 1343–1348, Montréal, Canada, April 2006.

[50] Jaime Teevan, Christine Alvarado, Mark S. Ackerman, and David R.
Karger. The Perfect Search Engine is Not Enough: A Study of Ori-
enteering Behavior in Directed Search. In Proceedings of CHI 2004,
Conference on Human Factors in Computing Systems, pages 415–422,
Vienna, Austria, April 2004.

[51] Sandra Trullemans and Beat Signer. From User Needs to Opportuni-
ties in Personal Information Management: A Case Study on Organisa-
tional Strategies in Cross-media Information Spaces. In Proceedings of
DL 2014, Conference on Digital Libraries, pages 87–96, London, UK,
September 2014.

[52] Sandra Trullemans and Beat Signer. Towards a Conceptual Framework
and Metamodel for Context-Aware Personal Cross-Media Information
Management Systems. In Proceedings of ER 2014, Conference on Con-
ceptual Modeling, pages 313–320, Atlanta, USA, October 2014.

[53] Dennis C. Tsichritzis. Form Management. Communications of the ACM,
25(7):453–478, July 1982.

[54] Ayrton Vercruysse. Big Brother is Watching Your Documents. Master’s
thesis, Vrije Universiteit Brussel, 2015.

[55] Fernanda B. Viégas, Scott Golder, and Judith Donath. Visualizing
Email Content: Portraying Relationships from Conversational Histo-
ries. In Proceedings of CHI 2006, Conference on Human Factors in
Computing Systems, pages 979–988, Montréal, Canada, April 2006.

[56] Mark Weiser. The computer for the 21st century. Scientific American,
265(3):66–75, September 1991.

93 BIBLIOGRAPHY

[57] Pierre Wellner. The DigitalDesk Calculator: Tangible Manipulation on
a Desk Top Display. In Proceedings of UIST 1991, Conference on User
Interface Software and Technology, pages 27–33, Hilton Head, USA,
November 1991.

[58] Pierre Wellner. Interacting with Paper on the DigitalDesk. Communi-
cations of the ACM, 36(7):87–96, July 1993.

[59] Ron Yeh, Chunyuan Liao, Scott Klemmer, François Guimbretière, Brian
Lee, Boyko Kakaradov, Jeannie Stamberger, and Andreas Paepcke. But-
terflyNet: A Mobile Capture and Access System for Field Biology Re-
search. In Proceedings of CHI 2006, Conference on Human Factors in
Computing Systems, pages 571–580, Montréal, Canada, April 2006.

