
FACULTY OF SCIENCE AND BIO-ENGINEERING SCIENCES
DEPARTMENT OF COMPUTER SCIENCE

ADFIS - An Application Development
Framework for Interactive Surfaces

Master thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in de Ingenieurswetenschappen: Computerwetenschappen

Tim Vereecken

Promoter: Prof. Dr. Beat Signer
Advisor: Reinout Roels

Academic year 2014-2015

FACULTEIT WETENSCHAPPEN EN BIO-INGENIEURSWETENSCHAPPEN
VAKGROEP COMPUTERWETENSCHAPPEN

ADFIS - An Application Development
Framework for Interactive Surfaces

Masterproef ingediend in gedeeltelijke vervulling van de eisen voor het behalen van de graad
Master of Science in de Ingenieurswetenschappen: Computerwetenschappen

Tim Vereecken

Promotor: Prof. Dr. Beat Signer
Begeleider: Reinout Roels

Academiejaar 2014-2015

i

Abstract
Ever since the introduction of interactive surfaces in research, the software
components of interactive surface systems have been implemented with min-
imal reuse of existing solutions. Due to the lack of frameworks that provide
the necessary abstractions, developing interactive surface applications has
involved implementing hardware interfaces and software abstractions. The
time spent on implementing interfaces and abstractions could be better spent
focusing on the application itself. Most systems are heterogeneous in nature,
meaning that there are many varieties of hardware platforms and techniques
to achieve an interactive surface. Despite the heterogeneity of interactive
surfaces, many systems still have software components and abstractions that
could be reused in other systems. Due to the popularity of multi-touch as
an interaction method, multi-touch frameworks have been developed which
provide developers with abstractions for multi-touch, but they do not en-
compass the full scope of the application space with regards to interaction
methods.

We have created an overview of the current state of interactive surface re-
search, from which requirements were created. Using those requirements, we
created ADFIS. ADFIS is a cross-platform, hardware independent framework
for the development of applictions for interactive surfaces, meant to alleviate
the absence of a broad framework that provides useful abstractions. It offers
a feature set that can be used to implement many applications using common
interaction methods for interactive surfaces. The abstractions that ADFIS
provides are event driven and generic, making them flexible and extensible.
During development of ADFIS we implemented a paper document detection
algorithm and created a hierarchical taxonomy for interactive surfaces. We
also investigated the integration possibilities of different interaction methods
on interactive surfaces.

ii

Declaration of Originality
I hereby declare that this thesis was entirely my own work and that any addi-
tional sources of information have been duly cited. I certify that, to the best
of my knowledge, my thesis does not infringe upon anyone’s copyright nor
violate any proprietary rights and that any ideas, techniques, quotations, or
any other material from the work of other people included in my thesis, pub-
lished or otherwise, are fully acknowledged in accordance with the standard
referencing practices. Furthermore, to the extent that I have included copy-
righted material, I certify that I have obtained a written permission from the
copyright owner(s) to include such material(s) in my thesis and have included
copies of such copyright clearances to my appendix.
I declare that this thesis has not been submitted for a higher degree to any
other University or Institution.

iii

Acknowledgements
First and foremost I would like to thank my parents for allowing me the
opportunity to attend university, which is something too easily taken for
granted. Thank you for the support over the course of my acadamic pursuits
and for not allowing me to descend down the cascades of secondary education.

Furthermore, I would also like to thank my friends from my graduation year
at SOFT and WISE lab for their company during my studies and my thesis
period. A special mention goes out to my second family at the Vrije Univer-
siteit Brussel, the VUB Players.

Finally, I would like to extend special thanks to my promoter Prof. Dr. Beat
Signer and my advisor Reinout Roels for their their eagerness to explore a
different research topic as well as their extensive guidance and advise over
the past year.

Tim Vereecken
August 2015

Contents

1 Introduction
1.1 Problem Statement . 1
1.2 Objective . 2
1.3 Contribution . 5
1.4 Structure . 7

2 Related Work
2.1 Interactive Surfaces . 9

2.1.1 Pioneering Efforts . 9
2.1.2 Modern Research . 13
2.1.3 Educational Applications 16
2.1.4 Commercial Applications 18

2.2 Paper Documents . 20
2.3 Multi-touch Frameworks . 22

2.3.1 Taxonomical Overview 22
2.3.2 Tactive . 24

2.4 User Identification . 24
2.5 Conclusion . 26

3 Requirements
3.1 Multi-touch Support . 29
3.2 Gesture Support . 30
3.3 Tangibles Support . 31
3.4 Paper Document Support . 31
3.5 Territoriality . 33
3.6 Visualisation Support . 33
3.7 Platform Independence . 34

4 ADFIS Architecture
4.1 Development Platform . 35
4.2 Overview . 39
4.3 Graphical User Interface Structure 40

v CONTENTS

4.3.1 Event System . 41
4.4 Multi-touch . 42
4.5 Interceptor System . 44

4.5.1 Blob Detection . 44
4.5.2 Tangibles Accommodation 46

4.6 Gestures . 46
4.6.1 Motivation . 46

4.7 Tangibles . 48

5 ADFIS Functionality
5.1 Graphical User Interface . 51

5.1.1 Discussion . 52
5.1.2 Sample Code . 53

5.2 Other Visualisation Support 53
5.2.1 Selectable Components 53
5.2.2 Radial Menu . 55

5.3 Multi-touch . 55
5.3.1 Sample Code . 56

5.4 Gestures . 57
5.4.1 Sample Code . 58

5.5 Tangibles . 59
5.5.1 Sample Code . 59

5.6 Paper Documents . 60
5.6.1 Sample Code . 61

5.7 User Areas . 62
5.7.1 Discussion . 62
5.7.2 Sample Code . 63

5.8 Projection . 64
5.9 Summary . 65

6 Demo Application
6.1 Scenario . 67
6.2 Demonstration . 68
6.3 Findings . 73

7 Conclusion
7.1 Contribution . 77

7.1.1 Overview . 78
7.1.2 Hierarchical Classification 78
7.1.3 ADFIS . 78
7.1.4 Interaction Method Integration 79

CONTENTS vi

7.1.5 Paper Document Detection Algorithm 79
7.2 Evaluation of ADFIS . 80

8 Future Work
8.1 Improvements . 81

8.1.1 Gestures . 81
8.1.2 Paper Documents . 82

8.2 Extensions . 84
8.2.1 Near Field Communication 84
8.2.2 Territoriality . 85
8.2.3 Multiple Screen Support 85

8.3 Integration . 85
8.4 Pen-based Interactions . 86

A Sequence Diagrams

1
Introduction

This introductory chapter aims to provide general information about this
thesis. Section 1.1 defines the problem statement in which we argue the
need for a framework for interactive surfaces. The solution that we propose
is presented in Section 1.2, followed by a summary of every contribution in
Section 1.3.

1.1 Problem Statement

Many research projects that involve the development of an interactive surface
consist of a software solution for specific hardware. The software solutions
generally have different requirements but provide a similar set of basic func-
tionalities. Although there is some reuse of software components, it is usually
limited to very specific functionality or those components are not generally
found in other software solutions.

The presence of common features and/or similar components implies that
there is a significant amount of time and resources being wasted on redun-
dant work. Many applications could be built by reusing common compo-
nents, since there is an overlap of the basic functionality that interactive
surface components provide. This is especially true for applications built
on the same hardware platform. Those applications can maximally reuse

Objective 2

development resources. However, even in the case of different hardware plat-
forms there is an overlap. No two interactive hardware platforms are the
same, but two hardware implementations of an interactive surface that use
different technologies for registering user input still share the function of
registering input. As such, there is much to gain from providing interactive
surface developers with a solid basis with generic functionality on which their
applications can be built.

1.2 Objective

The aim of this thesis is to design and implement a solution that addresses
the problem of redundant work in interactive surface application develop-
ment. This solution consists of an application development framework that
provides developers with a set of reusable and extensible components that
will facilitate the development process of their applications. We decided to
broaden the scope of the proposed solution by extending the framework’s
features to also support paper documents. This allows applications to regis-
ter sheets of paper which can be interacted with. This interaction method
allows for paper documents to be used as a bridge between the physical and
digital space.

The targeted application space for a software solution for interactive surfaces
is not easily defined. It could be defined by targeting a number of subsets of a
classification system for interactive surfaces. In Tabletops - Horizontal Inter-
active Displays [44], three classification systems for tabletops are presented:
by interaction, by identification & tracking and by a matrix representation
of combining technical properties. Tabletops are a subset of interactive sur-
faces, but the classification system is still applicable.

The interaction method classification system, illustrated by Figure 1.1, sub-
divides into hand and device based interaction and respectively subdivides
into finger and gesture interaction and mouse, stylus, graspable UI and ph-
icon1 interaction.

1A phicon is a physical object that refers to a digital object. It differs from graspable UI
or tangibles in the sense that phicons tend to have a one-to-one mapping and its purpose
is object reference rather than application of a function.

3 CHAPTER 1. Introduction

Figure 1.1: Classification by interaction method

Tracking and identification classification, illustrated by Figure 1.2, subdivides
into optical, electrical and acoustic technologies. Optical technologies include
visible and non-visible light, pattern recognition and fiducials as well as and
blob and shape detection. Electrical technologies subdivide into resistive,
capacitive, inductive as well as electromagnetic and frequency technologies.

Figure 1.2: Classification by tracking technology

Objective 4

The aforementioned classification system is however very specific and does
not focus on the larger scope of interactive surfaces. The proposed frame-
work aims to be a solution that is independent of the technologies used in
the hardware system. In Figure 1.3 we propose a hierarchical classification
for interactive surfaces. ADFIS, the framework that we propose supports
only flat interactive surfaces, which is a subset of the proposed classification
system.

Figure 1.3: Hierarchical classification of interactive surfaces

Interactive surfaces that have a 2D base (such as systems with a deformable
surface) and 3D interaction are not supported. Examples of such systems
are the FuSa touch [46], an interactive display with a fur-like surface, and
the Augmented Reality Sandbox [53], a system where sand is used on a sur-
face to shape visually projected landscapes. Interactive surfaces that utilise
a 3D hardware system, such as the Sphere [7], an interactive surface that
is projected onto a diffuse ball, are also not supported. In theory, it might
be possible that The Sphere’s system could be implemented using ADFIS,
but this would require mapping the plane of the 2D UI to 3D coordinates,
depending on the hardware used. An example of a 3D system that can be

5 CHAPTER 1. Introduction

partially supported is Dalsgaard & Halskov’s tangible 3D tabletop [12]. The
tangible 3D tabletop can be partially implemented using the framework since
the framework provides support for tangibles. It does however incorporate a
3D projection aspect, which could be implemented as an extension to AD-
FIS, so while ADFIS would not be able to support all the features of the
application, it would still facilitate development.

An example of a curved surface is the BendDesk [72] system. BendDesk is
a research project that aims to investigate the interaction characteristics of
combining horizontal and vertical interaction areas, connected by a curved
area. There is no physical distinction between the horizontal, curved and
vertical area, but from the users’ perspective and conceptually they are dif-
ferent. Internally, two sets of cameras and projectors are used to display
the interface and to track interactions. Although the authors found that the
curved area of the surface is an impediment to interacting with the system,
similar systems might be created that provide a solution for the deficiencies
of BendDesk. The framework could be used to create multiple windows to
cover each of the surface areas, although interaction between windows would
have to be implemented by the developer and use of the curved area would
require translation of the coordinate system.

1.3 Contribution
As presented in Section 1.2, we address the issue of redundant work being
done during development of interactive surfaces. Due to the maturity of the
research field of interactive surfaces it is not possible to implement a software
solution without further examination of related work. Our contribution can
be summarised as follows:

• We reviewed many publications with regards to interactive surfaces, of
which the most significant publications are used to create a historical
overview from the early prototypes to commercial applications.

• Due to the many hardware systems that have been designed and used
over the years, we created a hierarchical classification of interactive
surfaces which is used to determine the scope of the framework which
we created.

• Through observation that flat interactive surfaces are used most com-
monly we engineered requirements for such systems, followed by im-
plementation of a framework that satisfies those requirements. We

Contribution 6

implemented ADFIS, a framework for application development for in-
teractive surfaces.

• During the development of ADFIS, we investigated the integration pos-
sibilities of several interaction methods.

• Because of the nature of the development hardware which was used to
create ADFIS, we implemented a paper document detection algorithm,
achieved with blob detection for IR-based optical imaging technology.

The major contribution of the aforementioned list is that we have developed
the first application development platform for interactive surfaces: ADFIS.
To our knowledge and at the moment of writing, no other comparable frame-
works exist. ADFIS is a cross-platform, hardware independent framework
that supports the most popular multi-touch protocols, basic gestures and
gesture extensibility, tangibles, blob recognition, projection and visualisation
support. The ADFIS framework facilitates interactive surface development
by providing development support on multiple levels. First, ADFIS includes
an abstraction layer that allows application development to be independent
of the hardware used. This is done by providing an abstraction layer that
supports most multi-touch devices, enabled by support of the most used
multi-touch protocols and the appropriate abstractions. Also included in
this abstraction layer is support for gesture interaction, tangibles and paper
document detection.
The abstraction layer is designed to be generic and extensible which allows
for optimal reuse and adaptation of the functionalities that it provides. Most
features in the abstraction layer can be used as preconfigured or customised
depending on the application’s requirements, such as the interceptor system
for touch events (this is explained in more detail in Section 4.5). These fea-
tures are components that are found in many interactive surfaces. Although
specialised frameworks exist for many of the aforementioned components,
combining two or more frameworks can prove to be problematic. ADFIS
organises input events from multiple input sources and ensures that input
events are made available to the UI layer in a unified manner. Another
problem of specialised frameworks is that since they are heterogeneous, they
might not be easily integrable with other technologies.

7 CHAPTER 1. Introduction

1.4 Structure
Chapter 1 is the current chapter which introduces the context and definition
of the problem that ADFIS provides a solution for. After this introduc-
tion, related work with regards to interactive surfaces and interactive surface
application development frameworks is explored in Chapter 2. From related
work and the research area of interactive tabletops requirements were defined
that are discussed in Chapter 3. Based on those requirements ADFIS has
been designed and implemented. Its architecture is detailed in Chapter 4,
and its functionalities is provided in Chapter 5. To demonstrate the capa-
bilities of ADFIS, a demo application was implemented which is discussed in
Chapter 6. A conclusion which summarises this project is given in Chapter 7,
followed by a discussion of some future work in Chapter 8.

Structure 8

2
Related Work

This chapter aims to provide the context of interactive surfaces, focusing
on applications of interactive surfaces and related technologies that either
influenced or relate to interactive surfaces.

2.1 Interactive Surfaces

In this section we discuss the historical background of interactive surfaces,
as well as recent research developments and commercial applications.

2.1.1 Pioneering Efforts

Interactive surfaces have been around since their early prototype versions.
These prototypes were pioneering efforts to create an interactive environ-
ment using either horizontal or vertical spaces, mainly dedicated to a task or
a specific collection of related tasks.

Interactive Surfaces 10

Figure 2.1: Wellner’s DigitalDesk
(source: [73])

Pierre Wellner’s DigitalDesk [73], shown in Figure 2.1, shows the first inter-
active surface, which is later expanded upon [74]. Wellner describes the Dig-
italDesk as a “real physical desk [..] but it is enhanced to provide some char-
acteristics of an electronic workstation”. Wellner explains that DigitalDesk
is an effort to bridge the physical-digital divide, for which he attempts to
solve this problem by making the physical desk more like the digital desk.
It features top-down projection onto the desktop and on paper documents
on the desktop as a display method, document and character recognition as
a registration method, and both pen and finger input as interaction methods.

Fitzmaurice et al. presented the ActiveDesk [20] in 1995 as a demonstration
of the interaction paradigm they coined the Graspable User Interface. In the
graspable user interface, users use physical objects or graspables that they
can interact with, resulting in interactions with the system. The graspables
used in their system are conceptually shaped like bricks, and their interac-
tion methods are similar to how interaction is done in modern multi-touch
applications (e.g. scaling, rotating or dragging). The authors state that the
Graspable UI design philosophy has several advantages:

11 CHAPTER 2. Related Work

• “It encourages two handed interactions;

• shifts to more specialized, context sensitive input devices;

• allows for more parallel input specification by the user, thereby improv-
ing the expressiveness or the communication capacity with the com-
puter;

• leverages off of our well developed, everyday skills of prehensile behav-
iors for physical object manipulations;

• externalises traditionally internal computer representations;

• facilitates interactions by making interface elements more ‘direct’ and
more ‘manipulable’ by using physical artefacts;

• takes advantage of our keen spatial reasoning skills;

• offers a space multiplex design with a one to one mapping between con-
trol and controller; and finally,

• affords multi-person, collaborative use. The capabilities of the system
were demonstrated with a drawing application that used the bricks as
handles for different shapes. The interface itself was displayed using
back-projection while tracking of the graspables was done using an over-
head system.”

The capabilities of the system were demonstrated with a drawing application
that used the bricks as handles for different shapes. The interface itself was
displayed using back projection while tracking of the graspables was realised
using an overhead system.

The BUILD-IT[52] system is an interactive surface that allows for assembly
line and production plant design. They recognise similar advantages of the
interaction method of graspable UI that Fitzmaurice et al. proposed with the
ActiveDesk but stress the natural character of the interaction and propose
the Natural User Interface as a term for this interaction paradigm. In the
BUILD-IT system, interaction is performed exclusively using bricks. The
interactions are done on a table surface that serves as both a projection and
interaction area. A 3D visualisation is projected on a vertical screen. The
brick interactions are registered by projecting and detecting IR light using

Interactive Surfaces 12

an overhead projector and camera.

Because of confusion due to the fact that GUI is also an acronym for Graph-
ical User Interface, the term Graspable User Interface was later renamed to
Tangible User Interface or TUI by Ullmer et al. [70]. They addressed this
problem, and stated that tangibles in ActiveDesk did not sufficiently encour-
age the use of the interaction capabilities of the system. They translated
the metaphors from the graphical user interface to the tangible user inter-
face: windows became lenses, icons became phicons, handles became phan-
dles. . . This translation allowed for a more intuitive interaction. To demon-
strate their design for tangible interaction, they developed an application
named Tangible Geospace which allowed for exploration of a geographical
area. The application was developed on the metaDESK platform, in which
the interface is back projected. The tracking of tangibles is done using back-
projected infrared light which is reflected back to a camera also mounted
underneath the surface.

Another interesting case to consider is SenseTable [48]. It features pucks
as an interaction method, which are actually a step backwards from the
model presented by Ullmer et al. since information about the function of
the puck is projected on top of it. This provides a less intuitive interaction
method. However, the major contribution of this research was not its interac-
tion method, but rather its use of electromagnetic sensing which allows parts
of the system’s technology (namely the tracking component) to be integrated
into the interactive surface itself, as opposed to front or back projection and
detection. Projection is still located above the surface itself.

Like the SenseTable, the DiamondTouch system [15] is also one of the first in-
teractive surfaces that integrates tracking technology into the surface rather
than above or beneath it. The system works electronically, which allows
for multiple users to be tracked through capacitive coupling. When a user
touches the surface, a circuit is closed that is received in the chair of the user.
Objects on the surface do not interfere with the system’s functions, but this
has the downside that only touch interactions are supported.

Similar to DiamondTouch, SmartSkin [54] integrates tracking into the surface
itself and uses front projection to display its user interface. The tracking com-
ponent tracks touch interactions through a mesh of transmitter and receiver
electrodes, which also allows for gesture recognition. The largest contribution
of this paper was that it was one of the first interactive surfaces to combine

13 CHAPTER 2. Related Work

both touch and tangible interactions.

A major breakthrough in multi-touch technology was the introduction of
Frustrated Total Internal Reflection (FTIR) to multi-touch detection [24],
illustrated by Figure 2.2. This technique introduced multi-touch detection
at a low cost. A sheet of acrylic serves as the interaction surface, while IR
light is projected through the side of the sheet, which is totally reflected
between the top and bottom sides of the acrylic. When the sheet is touched,
the IR light is no longer caught between sides of the sheet, it is reflected
outwards. This reflected light is captured by an IR camera, and used to
detect touch points.

Figure 2.2: Schematic representation of FTIR technology
(source: [24])

2.1.2 Modern Research

The research field of interactive surfaces has matured to a point where re-
search is often multidisciplinary. Publications contain elements from many
fields. These include engineering which focuses on hardware systems for in-
teractive surfaces as well as human-computer interaction (HCI) which stud-
ies individual interaction techniques. In the next few sections, we discuss

Interactive Surfaces 14

some interesting topics: hardware, multi-surface environments and interac-
tion methods.

Hardware

Nowadays various hardware platforms and applications of interactive sur-
faces exist. The most popular type of interactive surface is the interactive
tabletop. However, the term interactive surface is a broader term that encom-
passes multiple hardware solutions. Interactive surfaces also include vertical
surfaces such as wall-mounted multi-touch screens. These range from small,
table-size platforms such as the PlayAnywhere [75] to large, wall-sized appli-
cations such as Han’s Multi-Touch Interaction Wall [25]. The PlayAnywhere
is a portable device that projects its user interface next to where the device is
placed and provides an interactive surface that has a surface area comparable
to a large tablet. The Multi-Touch Interaction Wall is a scaled up version
of Han’s Multi Touch technology [24] to wall-size, as previously mentioned
when we discussed FTIR.

One of the problems of the popular multi-touch technologies such as FTIR
is that touch interaction does not provide tactile feedback. Mobile devices
sometimes alleviate this partially with a vibration pulse, but this technique
is not applicable to larger scale interactive surfaces because of it many lim-
itations. Many attempts to provide a solution have been made, although
many approaches have resulted in systems that are in an experimental stage
or have a limited integrability, which makes them difficult to combine with
other components of interactive surface hardware. Very distinct approaches
have been explored as a solution for tactile feedback. Some systems use pin
array systems, which elevate pins or rods using either actuators [29][38] or
user interaction [8]. It is also possible to use a layer of fluid which can be
made rigid locally by using electromagnets [30]. Another approach entirely
is to use servomotors to make the entire surface provide tactile feedback by
using FTIR technology and a 6-axis motion panel [45], althoug this restricts
tactile feedback to two simultaneous touch points.

Multi-Surface Environments

The Environs framework [13] is a framework for development of distributed
interactive applications in multi-display environments. The framework facil-
itates development by allowing a common codebase of an application. Only
the device-specific code needs to be reimplemented. The communication
model is based on Wi-Fi connection between devices, and can even handle

15 CHAPTER 2. Related Work

devices being on different networks. Environs is currently limited by its focus
on video streaming. While achieving good results in its scope (low latency
while streaming), its feature set is limited.

The challenges and limitations of multi-surfaces environments become appar-
ent when creating complex environments. The Cube [56] is a facility which
contains several multi-surface environments. These environments use either
multi-touch LCD displays as well as projected interactive surfaces. It purpose
is to study multi-surface environments and interactions. Among the insights
gained from the applications that are deployed in the Cube are discussed
here:

• Touch events are mostly handled locally, which provides more respon-
siveness but also increases application complexity;

• because of the amount of touch events, one application had to change
its client-server architecture to a peer-to-peer system which improved
latency and performance;

• multiplexing touch events allows for easy multi-monitor interactions;

• existing multi-surface frameworks focus on rendering rather than end-
user interaction.

These insights provide us with important aspects of multi-surface environ-
ments that need to be considered when creating abstraction layers and soft-
ware support for such systems.
In fact, one such framework uses both server-client and peer-to-peer archi-
tectures. Using this mixed architecture, the PolyChrome framework achieves
cross-device collaborative web visualisations for heterogeneous devices [5],
but it is focused on web technologies only.

The Cube focuses on large-scale displays only. Other research has inves-
tigated multi-surface environments on a smaller scale using mobile devices
such as tablets and tabletops. SkyHunter [64] uses a Microsoft Kinect1 to
detect orientation and position to achieve inter-device interaction by flicking
UI elements in the direction of another device. HuddleLamp [49] uses only
tablets and an RGB depth-aware camera to detect position and orientation.
Its use of RGB entails that no IR light is used, which allows other hardware
components to use IR. A commercial application which uses an inter-device
communication technique is discussed in Section 2.1.4.

1https://www.microsoft.com/en-us/kinectforwindows/

Interactive Surfaces 16

Interaction

Recently, a research project named Kickables [60] has created one of the very
few interactive surfaces situated on the floor, rather than using a wall or
elevated horizontal interface. Kickables employs a whole new set of tangibles
that are specifically designed for interaction through the use of feet. The
tangibles are intuitive shapes that are adapted so that interaction results in
detectable state, and the UI is projected around the tangible. The detection
of state is done by bottom projection and detection, although the authors
also indicate that top detection works, although there is an occlusion problem
when using overhead hardware. When using back projection and detection,
a special floor is required.

The physical orientation of an interactive surface can have an impact on its
user interface. For instance, user interaction with a very large wall-mounted
multi-touch screen will most likely be situated near the vertical center of the
screen, since the vertical edges of the screen would be difficult for the user to
reach. Therefore, the content and UI elements are best situated in the mid-
dle of the screen. Conversely, an interactive tabletop should have its content
off-centre and UI elements closer to the side. Research has confirmed that
user interactions on a tabletop are closer to the edge [62].

Due to the maturity of touch technology, the use of specialised UI compo-
nents (widgets) is a very active research field. Menu widgets in specific are
subject to investigation because of the issues with translating the UI de-
sign paradigms from desktop to tabletop [71]. Specialised radial menus have
been created as a potential solution to menus on interactive surfaces, such as
unimanual multi-finger interaction menus [6] and pull-out menus which are
created with bi-manual gestures [76] HandyWidgets.

2.1.3 Educational Applications

By their nature, it is easy to conceive that interactive environments could
be used to stimulate learning and facilitate teaching in educational settings.
Teaching activities such as lectures can be facilitated with smart boards (typ-
ically, these are whiteboards augmented with front projection) or vertical
interactive surfaces, which are meant to replace the traditional blackboards
in the classroom. Smart boards and vertical displays allow for more than
just drawing and writing. They can also be used for projection of media and
annotations on different forms of content, as well as easy changing of teach-
ing environment such as a different subject. Another possibility of using an

17 CHAPTER 2. Related Work

interactive surface is that content can be shared with the students, provided
they also have access to an interactive surface or linked device.

Research concerning the use of vertical surfaces is scarce. Instead, more re-
search is being done that investigates the use of interactive surfaces from the
student’s perspective. The general trend in literature points towards a con-
sensus that educational applications on interactive surfaces (and specifically,
tabletops) is more advantageous in a context of collaborative tasks [39][27],
such as co-located teamwork. What those collaborative tasks entail is one of
the challenges of interactive environment research [63]. Interactive surfaces
can stimulate creativity, indications of increased co-located collaboration.
Tabletops can prove to be beneficial for inter- and intra-group collaboration,
although it it difficult to make general statements about the applicability of
the different technologies on the range of educational tasks [19]. Considering
the amount of text produced by students in learning environments, multi-
touch technologies can be restricting when text entry is required. If speech
recognition technologies ever become accurate enough to replace keyboards,
they could be used to avoid this problem.

As is generally the case when new, exciting technology is introduced, some
trends can be observed. We tend to over-generalise our conclusions from
experimental research, but these generalisations tend to be wrong. Some
educational applications on interactive surfaces fail, but this cannot be gen-
eralised to the assumption that education applications cannot be beneficial.
We also tend to over-expect technology to make tasks easier. Instead, we
should make sure that the teacher using the application and system can ap-
propriate them properly [16]. Interactive educational environments should
have generic applications where content can be added easily by teachers us-
ing standard building blocks. User identification is also very important here,
because applications need to be aware of the user to show progress to teacher
and student for (self-)evaluation purposes [39]. Because of the importance
of the teacher in the pedagogical process, it is necessary that the teacher
can properly use the application and hardware to support the learning pro-
cess [27]. Without proper understanding of an interactive system by the
teacher, the system is at risk of negatively impacting the learning process
and therefore discarded. Considering the investments required for such a
system, this might cause aversion from educational institutions towards in-
teractive environments.

Interactive Surfaces 18

2.1.4 Commercial Applications

Interactive surfaces in the private sector are currently in an early stage.
Many commercial applications are being demonstrated during conventions or
presentations, or seem to be very limited in scope. There is a noticeable trend
in that most applications seem to be developed for the service industry; such
as the catering industry, architecture and real estate. This is unsurprising,
as the activities in those sectors tend to occur while sitting down at a table.
Semi-private institutions such as museums and hospitals also seem to be
environments where interactive surfaces can be found.

Software Solutions

The Interactive Concept Table [10] developed for Pizza Hut by Chaotic Moon
Studios shows a commercially-ready application that combines many aspects
of a visit to a restaurant. General information is displayed to the side of
the surface, while the selection of dish is presented in the middle. This se-
lection consists of flexible customisation of a dish and accommodates user
interactions from all sides, although only one user can interact with the sur-
face at a time. After an order has been completed, the system also provides
entertainment such as games. Another observation can be made: one of the
users places their phone on the surface, which reacts to it and provides visual
feedback by outlining the phone’s shape. This is most likely done by incor-
porating Near Field Communication (NFC) detection in the surface. After
ordering, the user uses an interaction menu next to the phone to pay for the
order.
Another restaurant application was built by TMSolutions [68], which is more
generic than the Interactive Concept Table. It also allows for ordering of
dishes using menu browsing and selection through multi-touch interactions
on the table, but also allows for calling a waiter to the table and calling a
taxi to the user’s location.

The Cleveland Museum of Art2 has a number of interactive surfaces that fa-
cilitate art exploration. Most of the applications are mainly multi-touch, but
some interactions are done through body gestures. The use of tablets allows
users to obtain more information about artworks using proximity sensing.
Tablets can also be plugged into a stand at an interactive wall, where the
user can save interactions with the wall to their tablet.

2http://www.clevelandart.org

19 CHAPTER 2. Related Work

SmartPixel.tv [66] developed a tabletop application for real estate agents,
which allows them to present visualisations of real estate. In their appli-
cation, a visualisation of multivariate data can be adapted on the fly: by
using sliders to change price boundaries and room properties, the visualisa-
tion changes its display of available apartments in a building. It also shows
the building in its neighbourhood and points of interest nearby.

Technology Demonstrations

An interactive environment was presented in 2014 by Samsung [58]. This
environment consists of an interactive table that supports multi-touch in-
teraction and smartphone interaction, using a three-section wall (main view
and two periphery views to the side) which can be interacted with using
hand and arm gestures. The three-section wall is illustrated by Figure 2.3.
Those gestures are detected through the use of bar shaped IR detector and
a camera that registers body position. The detection of the smartphone is
done by attaching small bar codes to the side of the smartphone, which are
recognised by cameras inside an elevated border of the surface. Interactions
with the wall do not seem to cause any response on the table, but elements of
the table can be dragged to the side oriented towards the wall, causing some
communication such as displaying an image. Other interactions include file
sharing between smartphones by dragging them across the surface to another
device.

Figure 2.3: The wall component of Samsung’s interactive environment
(source: [58])

The On the Fly Paper system by Takram design engineering [67] is a concept
interactive surface that uses overhead projection of the interface. Interaction
with the interface is done using a tangible that consists of a sheet of paper

Paper Documents 20

or plastic with holes in a specific pattern. An infrared projector covers the
entire surface with a projection of IR light. The surface reflects IR light,
which is picked up by an overhead mounted camera. The pattern of light
that the tangible lets through is interpreted as a specific command. The
location and orientation of the tangible is also detected, which allows for
the overhead projector to display images onto the tangible. Moreover, the
tangibles pattern can be changed by covering one or more holes. This triggers
specific commands, such as play/pause/stop functionalities in a video player,
or selection of elements in a periodic table.

2.2 Paper Documents
Depending on the requirements of the application, the use of paper docu-
ments on interactive surfaces requires the use of advanced technologies. If an
application only needs to identify that there is a document present, then this
can be achieved using several techniques. The easiest technique is through
the use of fiducials. Generally, fiducials or fiducial markers are objects that
provide either a point of reference or a measure. Fiducials are commonly used
in archaeological photography to provide a sense of scale. In the absence of
standardised instruments, rulers or coins are good references for scale. In
computer science, fiducials tend to be machine readable. Other fiducials in
computer science include the ubiquitous barcodes used in supermarkets and
QR codes , which are bar codes in a matrix format (Figure 2.4). This allows
for the encoding of more information and can generally be recognised by any
smartphone with a camera.

(a) A barcode (b) A QR-code

Figure 2.4: Examples of fiducials (source: 3)

3https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Example_
barcode.svg/2000px-Example_barcode.svg.png
https://upload.wikimedia.org/wikipedia/commons/5/55/Qrcode_wikipedia_fr.
jpg

21 CHAPTER 2. Related Work

In the context of interactive surfaces, fiducials are — usually predetermined
— graphical symbols. The pattern of those symbols is known beforehand to
a recognition component that uses a certain algorithm to recognise those pat-
terns in an image. The nature of fiducials allows the application to quickly
identify and track the position of the fiducial and whatever object it is at-
tached to. Most fiducials also allow for detection of orientation. If the fidu-
cial is always attached in the same location on a document (which could be
achieved by pre-printing them on a paper document), a document can always
be found. Fiducials are also robust, distortion or lighting changes affect them
minimally.

Another method of tracking through the use of paper augmentation is the
use of tags, such as RFID (Radio Frequency Identification) tags. These tags
are small tags that emit a specific radio frequency, which can be used to
identify the object that they are attached to. Smaller tags tend to be pow-
ered by induction; the proximity of the magnetic field in the reader induces
an electrical current in the tag, which then emits its signal. Using multiple
receivers the location can be tracked, for instance through the use of a mesh
or triangulation. Electrical tracking would require a specific hardware setup.
For instance, receivers can be placed beneath the surface. In that case, the
signal would have to be strong enough to penetrate the surface, as well as
not interfere with the surface itself.

When not using fiducials, tracking documents becomes harder. A compro-
mise solution was explored by Kim et al. [35], in which they achieved non-
obtrusive document recognition and tracking through the use of images of
documents. Those images are stored, along with their corresponding SIFT
features (SIFT is an algorithm that generates distinct features for image
recognition). In the system, a video feed is processed frame-by-frame. Each
frame is analysed for SIFT features. When SIFT features have been found,
fuzzy matching retrieves the document that corresponds with the feature set
and results in a match. There are some drawbacks to this approach. The
first is that the system matches documents offline, which is an issue when
real-time interaction is required. Secondly, the recognition rate is not 100%,
because the SIFT algorithm does not always generate enough features for
good recognition and when using fuzzy matching, bad matches can occur.
Finally, any paper document that is used must be known to the system, the
matching needs a set of features that are matched against. It it clear that
this approach also has some very distinct disadvantages.

Multi-touch Frameworks 22

2.3 Multi-touch Frameworks

In this section we discuss some of the available multi-touch frameworks that
exist, commonly used for tabletop applications.

2.3.1 Taxonomical Overview

In 2010, Kammer et al. [33] created a taxonomy and overview of available
multi-touch frameworks. Many aspects of a framework were considered,
which are categorised into feature set, scope and architecture. The feature
set category considers the basic gesture functionality a framework supports,
how gestures can be added and the degree of visualisation support. The scope
category considers whether a framework supports tangibles, if the parame-
ters of a touch event can be accessed and if the parameters of a gesture event
can be accessed. The architecture category considers TUIO supports, Win-
dows 7 support, device adapter support and centralisation of gesture events.
A visual overview of the categories and frameworks can be seen below in
Figure 2.5.

Figure 2.5: Overview of multi-touch frameworks
(source: [33])

The most notable difference between frameworks besides their implementa-
tion language is the centralisation of gesture events. Most gesture events are
not centralised and use the event system of the implementation language.

23 CHAPTER 2. Related Work

Gesture events are dispatched from gesture recognisers and are received by
listeners that are registered to listen to those events. Grafiti [14], Gesture-
Works [28], libTISCH [17] and Sparsh-UI [51] process gestures inside the
framework itself, as opposed to forwarding touch events to application com-
ponents that perform gesture recognition.

libTISCH and Sparsh-UI also have a stricter divide between gesture recogni-
tion and application. In libTISCH, a gesture recognition layer is used which
sends gesture messages over a network protocol. Sparsh-UI uses a gesture
server where input devices send touch events to, and gesture events are sent
to clients from the gesture server. Because of this network communication,
the client can be written in any programming language provided they adhere
to the protocol defined by the server.It is suggested that the centralised ar-
chitecture of gestures be integrated in the operating system itself. Because
of its already widespread support, it might be interesting to investigate the
possibility of integrating this into the TUIO protocol, possibly by moving
gesture recognition into the hardware itself.

Another notable difference is the lack of TUIO support by the Surface SDK,
which can be explained by the fact that the Surface SDK is specifically cre-
ated for the development of applications on the Microsoft PixelSense4 (pre-
viously: Microsoft Surface). This limits the applicability of the framework
considerably, especially since device adapter support is also absent. In that
sense, Miria is the only framework that offers maximal hardware compati-
bility supporting both TUIO and the Windows 7 touch protocol as well as
providing support for device adapters.

Most frameworks provide touch and gesture parameters. In the TUIO proto-
col, which most frameworks support, position, speed, acceleration and angu-
lar distance are given. This allows frameworks to forward this information to
the application. Sparsh-UI lacks those parameters because of its strong focus
on gestures, which any touch events are converted to and has many gesture
parameters instead. The absence of gesture parameters in Breezemultitouch
and PyMT is unclear.

Gestures can be either online or offline. In the case of offline gestures, the
touch events are only processed on the last release of a touch point. The
distinction between online and offline gestures is only made by PyMT, which
has explicit support for offline gestures. Extensibility of gestures is usually

4https://www.microsoft.com/en-us/pixelsense/default.aspx

User Identification 24

done by subclassing a Gesture class, although some frameworks support this
through raw data and recognition support or a wrapper class.

The authors state that most frameworks were — at the time of writing —
still under development and might prove unstable. Some frameworks also
had a very limited flexibility.

2.3.2 Tactive

Tactive [22] is a framework for cross-platform development of tabletop appli-
cations which was developed after Kammer et al. published their taxonomical
overview. Similarly to the problem statement of this thesis, the authors of
Tactive also observed that many tabletop applications implement their own
software solutions, despite the fact that they share common features. Tactive
consists of two layers: a layer that handles operating system and hardware
and an application layer. The lower layer provides support for multi-touch if
it is not present in the operating system and supports the qTUIO [1] library,
a library that integrates the TUIO library with Qt5, a cross-platform appli-
cation development framework. The application layer contains handlers that
organise communication between layers and other application components,
as well as several UI components that facilitate UI development.

In the context of interactive surfaces, Tactive provides a strong basis to de-
velop applications. As its main development feature for new applications, it
allows for abstraction of both software and hardware details and developers
are able to implement their software using only web technologies (mainly
JavaScript). Because of this strong integration of web technologies, it also
supports encapsulation of web applications into widgets using web views,
so already developed applications can be easily integrated in a multi touch
application. Tactive, however, is focused on multi-touch applications only,
and does not make the distinction between the terms tabletop and interac-
tive surface. It supports only multi-touch and does not support other user
interactions such as tangibles and paper documents.

2.4 User Identification
One of the issues in interactive surfaces has been the problem of user iden-
tification, which is a problem that occurs when multiple users interact with
the same device. Some interaction methods of interactive surfaces allow for

5http://www.qt.io/

25 CHAPTER 2. Related Work

identification when they are inherently identifiable, such as tangibles. They
can easily be linked to a specific user, although this restricts the use of a tan-
gible to one user. The same reasoning holds for paper documents. Although
this also has limited applicability, gestures can be used to identify users, such
as when performing complex, bi-manual gestures.

Due to its importance in interactive surfaces, user identification by analysing
user input has been investigated since the DiamondTouch, as previously dis-
cussed in Section 2.1. The DiamondTouch uses capacitive coupling to identify
touch points; a touch press closes a circuit which the user is a part of. Also
previously mentioned is that using capacitive coupling restricts interaction
methods to touch. It does have the advantage that it is not intrusive, the
user does not have to change anything to their interaction method.

Since DiamondTouch other methods have been developed that are intrusive.
This includes the use of visual tags. This involves tagging users’ hands or
gloves with fiducial markers [40][41]. This technique even allows to identify
which finger is causing a touch point. Other body modifications include other
wearables such as IdWristbands [42] and IR-Ring [57]. Both methods use
IR light to identify users. IdWristbands uses Arduino-controlled wristbands
with integrated IR leds that blink at a unique frequency, while IR-Ring func-
tions similarly but uses pseudo-random blink patterns. Another non-intrusive
technique is the use of proximity sensors, as used by Medusa [2]. Medusa
tracks user presence; body position; can distinguish between left and right
arm and maps users to touch points. A disadvantage of Medusa’s approach is
that the mapping can be ambiguous which can result in faulty identification.
The use of proximity sensors has also been investigated in combination with
reactive territoriality [37]. HandsDown [59] is a system that identifies users
by the contour of their hand imprint and requires users to put their hand
flat on the surface to recognise the imprint. This technique is limited to user
identification and cannot track individual touch interactions.

Some systems identify users based on the characteristics of users’ feet and
shoes. The Smart Floor system [47] uses pressure-sensitive floor tiles to reg-
ister footsteps and using user profiles of footsteps, it maps the data to touch
points. Although achieving good footstep recognition results, the mapping
step is inaccurate. The required use of custom floor tiles is also a disadvan-
tage. A similar system is Multitoe [4], which identifies users through recog-
nising sole imprints. This is achieved by using a back-projected floor and
FTIR. Multitoe is focused on interactive floors and does not provide a link

Conclusion 26

to multi-touch interaction using hands. Finally, Bootstrapper [55] explores
user identification through recognition of shoe profiles, which are registered
with depth cameras.

All of the aforementioned systems have significant disadvantages. Some sys-
tems are intrusive, requiring either the wearing of small devices or require
special interaction. Other disadvantages include position dependence, mean-
ing that users are required to have a fixed position at the interactive surface.
Finally, some methods have difficulties linking a user identity to touch inter-
actions. Recognising that these problems are major hindrances, Carpus [50]
is a non-intrusive user identification method that is position independent and
accurately links users to touch interactions. It uses a high-resolution over-
head camera to capture the dorsal region of the hand, from which features are
extracted. Those features are used to match with future hand images. The
algorithm also recognises fingers, which allows for non-ambiguous linking of
identity to touch point.

2.5 Conclusion
The research field of interactive surfaces has known many systems since its
origins in the nineties, most of which are very distinct. Although most in-
teractive surfaces support touch interaction in some form, other interaction
methods have always been an important aspect. Those other interaction
methods are at their most valuable when they contribute to providing easier
interaction, such as when they are used complementary to multi-touch. This
can be observed especially when considering user identification on interactive
surfaces, which has many downsides when implemented using touch interac-
tions. The alternatives, such as tangibles and the Carpus system [50], are
non-intrusive. They do not require any extra effort for the user as would be
the case when requiring a change in interaction method, such as is necessary
when using — for instance — HandsDown [59].

27 CHAPTER 2. Related Work

From reviewing literature on educational applications we learned that in-
teractive surfaces offer significant advantages to team-oriented educational
tasks, on the condition that the teacher uses the system and its applications
correctly. Although literature on the applications which are available to edu-
cational organisations is limited, we observe that tabletops are predominantly
used. The use of tabletops implies a strong reliance on multi-touch as the
main interaction method. Other interaction methods offer opportunities but
they require more research [19]. Commercial applications follow a similar
trend of having multi-touch as the main interaction method although the
complementary use of tangibles [67] and physical objects in the environment
are considered as well [68].

One of the most important findings from reviewing literature is that virtually
no interactive surface makes any mention of having used previously devel-
oped frameworks. Some software components, such as the TUIO, are reused
but offer only support at a lower level, leaving developers to implement most
of the abstractions necessary themselves. Multi-touch frameworks are avail-
able, although they know varying limitations [33] and only provide support
for multi-touch interactions. Individually, libraries and/or frameworks are
available for other interaction methods, but the complementary use of other
interaction methods is not supported by any known framework. In the next
chapter, we propose requirements for such a framework.

Conclusion 28

3
Requirements

In the previous chapter, we reviewed literature on interactive surfaces from
early prototypes to modern research. Based on our findings from related
work, we defined requirements for a framework that would facilitate the de-
velopment of applications for interactive surfaces. Those requirements are
presented in this chapter. In the following sections we describe these require-
ments in detail. Chapter 4 presents the architectural design of how ADFIS
implements those requirements, and Chapter 5 details the extent to which
ADFIS satisfies these requirements.

3.1 Multi-touch Support

Multi-touch capabilities are are a major part of the functionalities found in
interactive surfaces. Other interaction methods are found mainly in research
projects whilst multi-touch has become ubiquitous since the introduction of
multi-touch screens in smartphones. As such, multi-touch interaction is be-
ing regarded as an interaction method that feels natural to users, although
more research is needed to support this hypothesis.

In the context of interactive surfaces, the available multi-touch capabilities
are almost exactly the same as the multi-touch capabilities of the average
smartphone. These capabilities consist of the detection and tracking of touch

Gesture Support 30

points. Detection and tracking of touch points are structured in many frame-
works or SDKs by distinguishing three touch point states: press, move and
release, albeit by different names (e.g. birth, update and death) but they
represent the same state. This state should also include an identifier and the
location of the touch point. Some systems also include a stationary state
in which a touch point has exited the pressed state but is not in a move or
released state.

Using the information stream of touch point states, application elements
can react to these state updates which is generally done using an event sys-
tem, since the asynchronous character of event system means that processing
state updates does not block the entire application. In fact, this system is
also widely used to process mouse and keyboard input. Multi touch support
is also required to integrate multi-touch gesture recognition capabilities.

Lately, many hardware platforms make use of the TUIO protocol. The TUIO
protocol [32] is a communication protocol for multi-touch surfaces. It allows
for abstraction of touch and tangible events and as such it can be used
to facilitate implementation of tabletop applications (but is not limited to
horizontal surfaces) by providing interfaces for sensors and displays.
As it was designed to allow for interconnection of table interfaces, its default
communication channel is UDP (User Data Protocol) transport. Anyone
familiar with TCP/IP and UDP/IP could remark that UDP is not obvious
choice for communication hardware events since UDP does not guarantee
successful transmission or correct ordering of packets. The specification of
TUIO explains that the authors opted for UDP because of its low latency.
The downsides of UDP (most notably, potential packet loss) is mitigated with
the inclusion of redundant information to packets, which allows the system to
handle packet loss gracefully. Since TUIO has become a standard protocol,
any framework that offers multi-touch functionalities should be compliant
with the protocol.

3.2 Gesture Support
Multi-touch gestures can be seen as an extension of multi-touch, or as a sub-
set, depending on the definition of multi-touch interaction. In multi-touch
interaction, the availability of information of more than one touch point si-
multaneously allows for gesture processing1. Gestures, such as simple multi-

1However, it is important to note that gestures such as double tap or single stroke
interactions are also gestures, although they are not multi-touch interactions.

31 CHAPTER 3. Requirements

touch interactions, have become natural interactions. The most common
and intuitive gestures include dragging (single or multi-touch), rotating and
scaling and are usually found in gesture frameworks. Dragging is sometimes
omitted since it is possible to bind the position of a touch point to a trans-
lation of an object, which results in the same outcome.

Beyond the set of standard gestures, many complex gestures can be imple-
mented. The possibility space of gestures includes gestures using two hands
and distinguishing between the number of fingers used in the gesture. Com-
plex gestures open up a whole range of interaction possibilities and appli-
cation short cuts that can be used, making multi-touch gesture interaction
a very verbose interaction method. Going even further, gestures combining
multi-touch and tangibles could be implemented.

3.3 Tangibles Support

Tangibles are physical objects that can be placed on an interactive surface.
They can be useful to have in an application context, since they differ from
touch interaction in some interesting ways. First, they are more persistent
than touch points. Every time a touch point is released, its existence is
lost forever to the application. Another touch point with the same identifier
might exist, but they cannot be considered the same. Tangibles tend to have
a one-to-one mapping with their identifiers. Another part of their higher
persistence is that the time between entry and removal is generally longer
than that of a touch point.

Another characteristic of tangibles is that they can have orientation and
size, which makes their static properties more expressive than that of a touch
point. On the flip side, the dynamic interaction of touch points (gestures) are
more expressive than those of tangibles, but depending on the requirements
of the application, the different properties of interaction makes tangibles a
useful application component.

3.4 Paper Document Support

The use of paper documents on interactive surfaces has been around since
Wellner’s first conception of the DigitalDesk [73], previously mentioned in
Section 2.1. Wellner’s original critique on the prediction of the paperless
office still stands: as shown in Figure 3.1, the paper industry did not show

Paper Document Support 32

any signs of decline before 2009, which is when the financial crisis hit every
market. After 2009, the production of paper products has since increased
and is showing signs of stagnation [21]. These statistics are indicative of an
ever steady use of paper.

Figure 3.1: Evolution of paper production from 1990 to 2013
(source: faostat)

Sellen & Harper published The Myth of the Paperless Office [26] in 2001, in
which they argue that the paperless office is most likely a false prediction.
Their research points towards an increase in total paper usage, rather than
a decline. This is a significant finding, considering that - according to the
authors’ research - 30 to 40 percent of the paper use (in the United Kingdom
and the United States) occurs in the office. Due to its physical nature, paper
is also easier to understand and to interact with. Interacting with digital
documents requires interaction skills that are harder to obtain. Sellen &
Harper state that paper will preserve its predominant position in knowledge
work.
Sellen & Harper’s work is slightly dated, but other studies seem to confirm
the findings of their work. An example of such a publication which has shown
that paper is still in active use can be found in [69].

It remains unsure whether the paperless office will ever arrive, but presently

33 CHAPTER 3. Requirements

we cannot ignore the presence of paper in our daily lives, as well as individual
preferences to paper usage.

3.5 Territoriality

Applications sometimes require interactions such as selection of objects. This
functionality is difficult to implement when dealing with multiple users on
the same interface. Multiple solutions for this problem exist.

One of those solutions is to group interactions together based on locality:
whenever touch points are below a certain distance threshold, they are con-
sidered to be coming from the same user and could be interpreted as a gesture.
The advantages of this method are that users can freely move around the in-
teractive surface. The disadvantages include the fact that interactions from
users which are close to each other might interfere. This ambiguity could
be difficult to handle properly, especially when gestures are targeted at the
same object and are contradicting.

Another approach to this problem is to split the surface area into smaller
areas that contain user interactions per user [60][9]. This solution has the
advantage that user interactions do not need to be preprocessed and there is
no ambiguity as to the destination of the interaction events. There is also the
possibility of implementing support for user area communication, which can
change the semantics of an interaction based on the source and destination
user area. The disadvantages of this approach are that user cannot freely
move around the interactive surface without moving their user area. The
most suitable solution will depend on the application area.

3.6 Visualisation Support

As interactive surfaces are heavily reliant on visual interaction, it is strongly
advised to include a graphics library in a development framework. This
graphics library should be high level and focus on rapid development rather
than performance optimisation. Although the focus of the support should
be high level, performance can be an issue. For instance, the underlying
hardware platform can be a bottleneck, but this most likely occurs when
dealing with a lot of users or when using resource-demanding graphics. For
the latter it is generally possible to use a lower level graphics library that can
be integrated in the application. For instance, many graphics libraries have

Platform Independence 34

OpenGL2 bindings to accommodate demanding graphics. As discussed in
Section 2.3.1, visualisation support in multi-touch frameworks varies heavily
from no support at all to widget support. The advantage of providing no
visualisation support is that the developer can choose how to implement the
interface. Such is the case when using Sparsh-UI (or any other framework
that uses a network protocol to send touch data) which allows the developer
to choose any framework in any impelmentation language.

3.7 Platform Independence
Platform independence can refer to both hardware and operating system in-
dependence or cross-platform compatibility. As mentioned in [33], hardware
independence can be achieved by creating a hardware abstraction layer or
by designing a framework to work with hardware independent protocols such
as TUIO or the Windows 7 touch protocol. It is also possible to provide
support for device adapters, which are small pieces of code that handle com-
munication with a hardware interface.

Operating system independence refers to the ability of the system to be ran
independent of the hardware’s operating system. This can be achieved in
two ways. The first option is to implement a framework in an implementa-
tion language which is operating system independent by itself such as Java
or C# since they both run on a virtual machine. The second option is to
build an abstraction layer that supports various operating systems. Such
an abstraction layer would provide a unified interface to the hardware that
handles differences related to the operating system. This allows applications
to use the provided abstractions without having knowledge of the underlying
hardware and how the hardware is accessed.

ADFIS is implemented in Java. The choice of programming language is
mainly due to its popularity, which allowed us to explore many options re-
garding frameworks for individual components since many libraries have a
Java API. Java applications are also cross-platform since they rely on execu-
tion in the Java Virtual Machine (JVM) rather than compilation.

2http://www.opengl.com

4
ADFIS Architecture

This chapter discusses the hardware that was used to develop ADFIS, ex-
plains its architectural design and documents the implementation details of
the framework.

4.1 Development Platform

Ideally, a hardware solution for interactive surfaces has every component in-
tegrated into the surface. The perfect platform does not have any hardware
components above or beneath the surface. This presents many engineering
challenges and such a system does not exist at the time of writing. It can be
argued that the next best alternative is back projection in the case of hori-
zontal orientation of the interactive surface, since the space underneath the
surface is less used and provides a less intrusive setup than when using over-
head mounted components. It should be noted that hardware components
beneath the surface will restrict the use of the system to a standing position,
as there will be limited or no leg room. Back projection does have the added
advantage of not creating occlusion issues as is the case when using overhead
projection or detection.

A schematic of the hardware platform is given in Figure 4.1. It shows the
hardware components used by ADFIS: multi-touch is achieved with an over-

Development Platform 36

lay over an LED TV which displays the application’s GUI. A camera and
projector are mounted overhead on the ceiling. The camera and touch over-
lay are connected to a computer with USB, and the projector and LED TV
are connected with a VGA and HDMI cable respectively.

Figure 4.1: Schematic of the development hardware

The development of our framework and its demo application was done using
a Samsung UN46F5000 TV1 with an overlay specific for that model from
Tabler.tv which is shown in Figure 4.2.

1http://www.samsung.com/us/video/tvs/UN46F5000AFXZA

37 CHAPTER 4. ADFIS Architecture

Figure 4.2: Samsung UN46F5000 with overlay from Tabler.tv, mounted on
an adjustable table

The overlay consists of a frame that is mounted on top of the UN46F5000
screen. This allows for touch point detection over USB using Windows 7
touch or the TUIO protocol. The technology used in this frame is a patented
touch detection technique named Cell Imaging Technology, of which the de-
tails are not public domain. What is known is that the technology uses
IR-based optical imaging to detect touch points. This technology consists of
modules that project IR light and detect changes in the registered light. If
the changes are above a certain threshold, touch is detected. A maximum of
32 touch points can be detected simultaneously.

The technology used by Tabler.tv — IR-based optical imaging — has a num-
ber of advantages and disadvantages. On the upside, the technology is very
cost-effective. Because of the use of modules, applications that require a
less demanding hardware can opt for less modules which reduces the total
cost. Detecting IR light is also quite fast, in a test that draws circles at the
position of touch points we found no noticeable delay. The most negative
point is that because of the use of IR light, sunlight will interfere with the
detection of touch points. Exposing the overlay to direct sunlight will flicker
touch points on and off and will dramatically interfere with the touch points
that need to be detected. It also restricts the further use of IR light, such as
for the purpose of blob detection. Another issue is that using optical tech-
nologies will detect any object as a touch point, limiting the use of tangibles

Development Platform 38

and paper documents. A solution for those issues is presented in Chapter 4.

For tangible recognition, a video feed is sent to reacTIVision using a Microsoft
LifeCam Studio 2, which is mounted overhead to the ceiling. The LifeCam
Studio camera allows for zooming, panning and tilting the image to center
on the tabletop. This is not accurate enough to get an acceptable position
for the tangibles, but the reacTIVision framework provides the option to use
a calibration grid on the image feed to correct any positioning issues. Using
the LifeCam Studio camera also allows for adjusting image brightness, white
balance, contrast, saturation and exposure. We found that some fine-tuning
is needed to ensure that reacTIVision consistently tracks fiducials3. If the
configuration is not optimal, detection of fiducials in certain positions can
flicker, triggering tangible entry and removal events very quickly. Reflection
can also be an issue: when using a reflective surface, non-consistent lighting
in the room can affect detection.

Projection on documents is done using an Optoma Pico PK320 projector4,
which is also mounted overhead, next to the USB camera. To avoid warping
of the image, the camera and projector are mounted as close as possible to
each other. Calibration of the image is less important here, because slight
shifts of position are less disruptive than in tangible detection, in which
position is more important.

2https://www.microsoft.com/hardware/en-us/p/lifecam-studio/Q2F-00013
3Fiducials are predefined patterns that can be recognised in an image in a robust and

accurate manner. This is explained in more detail in Section 4.7.
4http://arc.optomausa.com/products/detail/Pico-PK320

39 CHAPTER 4. ADFIS Architecture

4.2 Overview

The framework can be represented in a layered view, as illustrated in Figure
4.3. Using the standard layout of data, logic and presentation the components
of ADFIS are grouped together in a logical manner.

Figure 4.3: Overview of the ADFIS architecture

In the data layer, three components are shown. The TUIO protocol is used
to receive touch events from the hardware and is also used to receive tan-
gible events which are dispatched from the reacTIVision framework. The
reacTIVision framework dispatches those events by analysing frames origi-
nating from a video stream. Sparsh-UI [51] (see Section 4.6 is the gesture
recognition component of the framework, which is based on a client-server
architecture but runs locally.

In the logic layer, the most important components are the event dispatcher,
the managers and the interceptors. The event dispatcher is the central point
where input events are sent to and are processed before dispatching. The
event dispatcher also finds the correct event target. The event dispatcher is
aided by a tangible manager and a blob manager, their function is to maintain
a reference to every tangible and blob currently in the system and provide

Graphical User Interface Structure 40

the event dispatcher with information needed for touch point filtering. The
touch point filter, gesture detector and blob recogniser are interceptors, they
modify the default behaviour of the event dispatcher. The detailed mecha-
nism of the interceptor system is given in Section 4.5.

In the presentation layer, the JavaFX5 library is used as the facilitating
library to create graphical user interfaces. To better provide developers with
the necessary abstractions, ADFIS provides some visualisation support on
top of JavaFX. The ISelectable interface allows for objects to be selected in
the application’s context. ADFIS also includes two widgets, the user area
and the radial menu. User areas are parts of the surface that are distinct
and are designed to accommodate one user. Radial menus are designed to
allow for easier menu navigation in multi-touch applications.

4.3 Graphical User Interface Structure
As previously mentioned, a graphical user interface or GUI can be built us-
ing JavaFX. JavaFX is a graphics library which is included in the Java pro-
gramming language starting from JDK/JRE (Java Development Kit/Java
Runtime Environment) 7u6 onwards. It is a modern library that provides
developers with a Rich Client Platform (RCP) for development of local or
web-based applications. JavaFX is designed to provide a lightweight and
hardware-accelerated UI platform.

When developing an application using JavaFX, the developer is encouraged
to make use of the Stage-Scene system. A Stage is the name of any window
that is created. By default, one Stage is created when running any appli-
cation. More stages can be created programmatically. The Stage always
shows a Scene, which is the container that contains the scene graph (which
is explained the next paragraph). Scenes are typically used for one specific
view or state of the application. When the application changes state or view,
the current scene is replaced by another scene with different UI elements.
This is important because accessing the current scene is needed to properly
dispatch events. Ignoring this would result in a defective event dispatching
system.

JavaFX, like many GUI frameworks, organises its UI elements in a hierar-
chical structure that can be visualised using a tree diagram. The JavaFX

5http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-
2158620.html

41 CHAPTER 4. ADFIS Architecture

event system is based on the use of a scene graph. As shown in Figure 4.4,
the scene graph system works like any tree, with a root node that has branch
nodes that can either be branch nodes themselves or a leaf node.

Figure 4.4: Scene graph system
(source: 6)

When put into practice, the scene graph will contain nodes specified by the
developer. One of the most commonly used root nodes is the Group class7.
The Group class allows components to be placed using an absolute coordinate
system. As shown in Figure 4.5, the scene graph presented here has a Group
as the root node. Two of its branches, the Circle and Rectangle nodes, are
leaf nodes. The Region node is an intermediary node that has a Text node
and an ImageView as leaf nodes.

4.3.1 Event System

When events are fired, they are targeted at one of the elements in the scene
graph. This process consists of four steps8, but the essence of this process
is that a chain of targets is constructed by chaining all nodes together that
intersect with the coordinates of an event. When this event dispatching chain
is created, the event travels from the targeted node back to the root node of
the scene graph. Each node in the event dispatching chain that has a handler

6http://docs.oracle.com/javase/8/javafx/scene-graph-tutorial/
scenegraph.htm

7The others being the WebView and Region classes. The WebView class is used to display
web pages, and the Region class is a class that has subclasses which manage layout in a
more structured manner, less fit for interactive surface interface design.

8https://docs.oracle.com/javafx/2/events/processing.htm

Multi-touch 42

for the event can then trigger. Whenever a node is reached, its handler can
consume the event, meaning that the event will not travel further down the
chain to the root node. This system allows for very fine-tuned behaviour to
events of different event types.

Figure 4.5: Example instantiation of a scene graph
(source: 9)

4.4 Multi-touch

As previously mentioned, the multi-touch capabilities of the framework are
mainly based on communication using the TUIO protocol in the case that
other communication protocols such as Windows 7 touch are absent or dis-
abled.

As shown in Figure A.1 in Appendix A, the framework implements a TUIO
listener. This TUIO listener is implemented by the TUIOConnection class,
which listens to asynchronous events fired by TUIO on the hardware. The
TUIOConnection class then does two things. First, it translates the coordi-
nates in the TUIO cursor event to coordinates on the screen (touch points are
called cursors in the TUIO specification). This is necessary because TUIO
cursor coordinates are normalised; they are are floating point numbers be-
tween 0 and 1. The TUIOConnection scales those coordinates to screen size.
When the coordinates are translated, the TUIO cursor event is converted
to a JavaFX TouchEvent. A new TouchEvent is created and its parameters

9http://docs.oracle.com/javase/8/javafx/scene-graph-tutorial/
scenegraph.htm

43 CHAPTER 4. ADFIS Architecture

are assigned10. The TouchEvent is then sent to the EventDispatcher for
processing11.

In the EventDispatcher class, a number of preprocessing steps are per-
formed. First, the BlobManager will check if the touch point in the TouchEvent
does not intersect with a blob that is currently detected on the surface. By
default, the response of the framework is to interpret this case as an update
to the state of the blob. This is because the development hardware imple-
ments blobs as a collection of touch points. When different hardware if used
that specifies blob detection differently, this behaviour can be changed by
modifying the processTouchEvent method in the blob manager.
If the blob manager does not claim the touch point, the interceptors have
the opportunity to process and/or claim the TouchEvent. The inner work-
ings of the interceptor system are detailed in Section 4.5. If neither the blob
manager or the interceptors claim the TouchEvent, the event is dispatched.
Dispatching the event consists of finding and setting the target for the event,
and then firing that event to the target.

Finding the event is done through the use of the getNode method in the JFX-
tras library12. The JFXtras library contains auxiliary methods that expose
parts of the JavaFX library that are otherwise not accessible. The getNode
method takes as arguments a Parent object, x and y-coordinates and a class
parameter. It returns the last node that is an implementation of the class
parameter, starting the search at the Parent object. The class parameter
works as a filter for the search. Every element in the scene graph is an instan-
tiation of the Node class or a subclass thereof, so providing Node.class will
return a leaf node in the scene graph (the topmost element on the scene).
The workings of this method were necessary to explain to clarify how the
location process was adapted in the framework. It is true that getNode re-
turns the last implementation of the Node class, but the Group class is also
an subclass of the Node class. Group objects usually contain more nodes, so
it is necessary to recursively apply getNode until the result is not a Group.
When the actual topmost element is located, the EventDispatcher fires the
event to the targeted Node subclass on the scene.

10A number of parameters are unused, but they can be set using an interceptor before
dispatching if those parameters are required in the context of the application

11This dispatcher class is not the same as the EventDispatcher type in JavaFX
12http://jfxtras.org/

Interceptor System 44

4.5 Interceptor System
In the framework, the event dispatching system’s rules for dispatching events
can be modified using interceptors. Whenever the dispatcher receives an in-
struction to process an event, interceptors are notified of the event first. The
interceptors then have the choice to retain the event and process it, or release
the event to the dispatcher which will dispatch it normally.

Since interceptors might have a long computation time (such as the blob
detector), it is advised to implement interceptors asynchronously, e.g. as a
Runnable in a separate thread. If computationally heavy interceptors ran
on the same thread, they become a bottleneck in the system. There is also
a minor issue that releasing events from the interceptors might result in
duplicate events being fired by the event dispatcher. A possible solution to
this would be to extend the interceptor system with a locking system where
releasing the event from each interceptor reduces the lock state of the event,
which is then dispatched normally when the lock state is nullified.

4.5.1 Blob Detection

The prime example of the interceptor system is blob detection. A blob detec-
tor will collect touch press events during a certain period of time. Between
those intervals, the detector will analyse the touch points that were collected
during the last interval. If there are enough touch presses that were not nul-
lified by touch releases, a blob is detected and its properties are calculated
such as the center, the dimensions and the outline of the blob. This state is
then encapsulated in a blob entry event and sent to the event dispatcher.
The process that allows for blob introduction can be summarised in the fol-
lowing steps:

• The hardware sends touch events over TUIO to the TUIOConnection;

• the TUIOConnection sends the touch events to the EventDispatcher
for processing;

• the touch events are intercepted by the BlobDetector;

• after a set interval, the BlobDetector analyses the contents of its
buffer. If a blob was not detected, the touch events are released back
to the EventDispatcher where they are dispatched normally;

• if a blob was detected, a new BlobEvent is created;

• the BlobEvent is sent to the EventDispatcher for processing;

45 CHAPTER 4. ADFIS Architecture

• the EventDispatcher creates a RegionFilter that is sent to the BlobManager,
which provides an ID for the blob. The RegionFilter is added to the
BlobDetector so touch events that intersect with the blob region are
intercepted and will update the blob state;

• the BlobEvent is dispatched to its target.

(a) A paper document creates a number of touch points.

(b) Non-extreme points are filtered.

(c) A polygon represents the blob’s shape. The center point is calculated and
used as the blob’s position.

Figure 4.6: The blob creation process

The BlobEvent that is dispatched encapsulates a BlobState object, which
represents the state of the blob. This state is largely based on the parameters
of a blob in TUIO. The blob state contains blob coordinates, the inner state
of the blob (entry, stationary, update, removal), the shape of the blob in the
form of a Polygon and a list of touch points. The coordinates of the blob

Gestures 46

are determined by calculating the extreme points in the set of touch points,
from which a midpoint is calculated which coordinates are set as the blob’s
coordinates. Because of this method of coordinate calculation, a minimum
of three touch points is required to detect a blob. This method of blob
detection is a circumvention of the limitations of the hardware. The blob
detection is parametrised; both the number of touch points that is required
to consider a blob and the detection frame in which touch points are collected
can be modified programmatically. This process is illustrated graphically in
Figure 4.6.

4.5.2 Tangibles Accommodation

Another type of interception that is enabled by default is the filtering of
touch points beneath tangibles. Because of the non-capacitive touch tech-
nology in the hardware, any object that touches or is in extreme proximity
of the development surface will trigger a touch point. A system is in place
that makes sure that tangibles do not interfere with touch interactions and
more importantly, gestures. As mentioned before the event dispatcher can
be modified with interceptors. By default, when processing an event the
dispatcher will also have the tangible manager check whether a touch point
does not intersect with a tangible. This is done by checking for each tangible
if it intersects with a certain radius around the tangible. This radius can be
modified on a case-by-case basis, but has a default value.

4.6 Gestures

As previously mentioned, the framework implements gesture recognition through
the use of the Sparsh-UI framework. In this section we motivate our choice
to use Sparsh-UI as opposed to MT4j, another framework written in Java,
and we detail the use of Sparsh-UI.

4.6.1 Motivation

MT4j13 (Multi-Touch for Java) is an open source framework for the develop-
ment of multi-touch applications. MT4j’s main purpose is to speed up the
development of multi-touch applications. It provides high level functionality
in the form of a toolkit.

13http://www.mt4j.org

47 CHAPTER 4. ADFIS Architecture

The MT4j framework implements its functionalities by propagating TUIO
events and other input events such as mouse and keyboard to a unified input
system which abstracts from the hardware. On the presentation side, MT4j
has a custom approach that is reminiscent of how JavaFX works, which is
the technology used in this thesis on the presentation side.

Similarly to Tactive, MT4j provides a proper basis for the development of
multi-touch applications. On the flip side, it also has the same limitations of
Tactive (but it does support tangibles). Multi-touch applications are a subset
of interactive surface applications. The project also seems to be abandoned,
as the last update to its source code was in December 201214. It also has
some gesture limitations such as restricting zoom gestures to one.

Gesture recognition is implemented using the Sparsh-UI framework [51]15,
a cross-platform (C++ and Java) framework for multi-touch and was devel-
oped at Iowa State University’s Virtual Reality Applications Center (VRAC).
The project’s development seems to have halted since the last modification
to the source code was in 201016, but the framework is functional and readily
available.

Sparsh-UI features gesture recognition though a client-server architecture.
The server component is the core component of the framework, it receives
touch data as input and transmits touch points and recognised gestures. It
supports a set of basic gestures which can be extended by sub classing the
Gesture class (both in C++ and Java). Clients connect to the server and
they are either input sources or Sparsh-UI clients. Input sources transmit
touch data. The reception of this touch data is broadcast to clients which
can then claim the data and mark themselves as destination for touch points
or gestures. Sparsh-UI clients can then receive gesture messages and process
them according to the application’s rules.

Because of this client-server architecture, it is possible for the server to run
in Java while the clients are a mix of Java and C++, since communication is
done over TCP/IP which also opens up the possibility of distributed appli-
cations. In ADFIS, this client-server architecture is circumvented by running
the server and clients locally, but it is possible to undo this with minimal
effort. By design, the Sparsh-UI integration is very loosely coupled.

14https://code.google.com/p/mt4j/source/list
15https://code.google.com/p/sparsh-ui/
16https://code.google.com/p/sparsh-ui/source/list

Tangibles 48

As demonstrated in the section on usage of gestures in the framework (Sec-
tion 5.4), the gesture detector is an interceptor that is added to the event
dispatcher.

4.7 Tangibles

As previously mentioned, tangibles are supported through the use of the
reacTIVision framework [31]. The reacTIVision framework is a framework
for tangible interactions. Created by the same authors as the TUIO pro-
tocol, the reacTIVision framework makes use of TUIO for communication
between input devices and applications. The framework consists of a stan-
dalone application that processes a real-time video stream. Processing the
video stream consists of performing visual pattern recognition, which can
be done quickly and robustly. The visual patterns that are recognised are
predetermined patterns called fiducial markers or fiducials. A more common
example of fiducials is the QR-code, which is a block-shaped pattern that
can also contain information such as a hyperlink. There are many types and
variants of fiducials. The fiducials used by reacTIVision are amoeba-shaped,
as they consist of a blob-shaped ellipse containing circles and dots, reminis-
cent of amoebas. Examples of these amoeba-shaped fiducials are shown in
Figure 4.7.

Figure 4.7: Fiducial markers used by reacTIVision
(source: http://reactivision.sourceforge.net)

The use of reacTIVision requires a video feed. The optimal hardware plat-
form for this video feed is through the use of a camera inside the interactive

49 CHAPTER 4. ADFIS Architecture

surface, which means that the patterns are face down on the surface, which
opens up more opportunities to combine tangibles with projection. In our
hardware setup we did not have access to such a technology, so we resorted
to using the fiducials face up and used a USB camera to register the markers.

ReacTIVision sends Tuiobject events over TUIO’s default port on UDP,
which is listened to by a TuioConnection in ADFIS. TUIO object events
are processed analogous to how touch events are processed before dispatch-
ing. The coordinates detected by reacTIVision are normalised, so a trans-
formation to the application’s UI dimensions are applied. It is also possible
that the video feed’s coordinate space is not equal to the application logic,
therefore coordinates can be mirrored around the X or Y-axis before dis-
patching. When sent to the dispatcher, the dispatcher has the opportunity
to handle the events before dispatching, similarly to the touch interceptor
system. By default, the dispatcher will filter out touch points that overlap
with an estimate area of the tangible at its detected location.

Tangibles 50

5
ADFIS Functionality

In this chapter the functionalities that are included in ADFIS are detailed.
First, in Section 5.1, we discuss the graphical user interface component of
ADFIS that can be used to aid development. Second, we detail the multi-
touch functionality in Section 5.3, followed by presenting Section 5.4 on the
framework’s gestures functionality. After this, Section 5.5 details the tan-
gibles functionality. Finally, Section 5.6 details the functionality involving
paper documents. In each section, sample code is included that demonstrates
how an application built using the framework can make use of its features.

5.1 Graphical User Interface

Rather than implementing its own UI framework, ADFIS makes use of the
JavaFX framework to allow for UI development. Some facilitating support
is offered by ADFIS which is not included in JavaFX. The following sections
explain why the choice was made to integrate JavaFX in the framework as
opposed to the older, more supported Swing framework and why JavaFX
has an edge over Swing because of its feature set, supported technologies
and ease of use.

Graphical User Interface 52

5.1.1 Discussion

ADFIS uses JavaFX as an enabling technology. By implementing the hard-
ware abstractions on top of JavaFX, developers can implement their applica-
tions using the standard way of working in JavaFX. Only a few method calls
are required to make use of the hardware abstractions of ADFIS. If needed,
more functionality of the individual components of ADFIS can be accessed.
ADFIS also includes other visualisation support build on top of JavaFX in
the form of widgets (user area and radial menu) and the ISelectable inter-
face. Those elements are detailed in the previous chapter and their use is
demonstrated in the next section.

JavaFX has many features that make it beneficial to develop user interface
with. One of the major features is JavaFX’s integration with web technolo-
gies. Amongst those technologies is a web rendering engine that allows for
mixing of Java features and web technologies. It also features FXML, which
is an XML syntax used to script user interfaces and allows the the use of
CSS (Cascading Style Sheets) to style the interface of an application. The
support of CSS allows for separation of function and style, as well as adap-
tive layouts for different screen sizes (made popular by its use in cross-device
development of web applications, but this is also relevant for interactive sur-
faces).

Another key point of JavaFX is its event-driven character. In JavaFX, user
input is handled by triggering events of a specific type which is then dis-
patched to the relevant UI component. The software components of this
event system are reused and extended in the framework to allow for dis-
patching and receiving of multi-touch, gesture and blob events.

JavaFX is still fairly new. Its initial release was in 20081 and is still in
active development, although it has received some major updates over the
years. It is possible to argue that it is better to develop graphical Java
applications in Swing2, the graphics library that is also included in Java.
Swing is considerably older than JavaFX and has many third-party libraries,
so Swing might include some features that JavaFX does not. JavaFX’ modern
approach to GUI’s and integration of web technologies still make it the library
of choice for development of GUIs in the context of interactive surfaces.

1http://www.oracle.com/technetwork/java/javafx/1-0-140175.html
2http://docs.oracle.com/javase/tutorial/uiswing/

53 CHAPTER 5. ADFIS Functionality

5.1.2 Sample Code

In listing 5.1, the code is given that makes up a very basic JavaFX ap-
plication. Every implementation of a JavaFX application needs to extend
the Application class that is found in the JavaFX package. By extending
Application, a class is required to implement the inherited abstract method
void start(Stage primaryStage), which is called when the application is
ran. The sample application creates a window in the form of a Stage object
that is shown with its initial Scene3.
Some IDEs or development environments require that the main method calls
launch(args), so it is included for sake of completeness.

1 pub l i c c l a s s SampleAppl icat ion extends App l i ca t ion {
2 p r i va t e f i n a l Group root = new Group () ;
3 p r i va t e double width = 1920 ;
4 p r i va t e double he ight = 1080 ;
5
6 @Override
7 pub l i c void s t a r t (Stage primaryStage) throws Exception {
8 Scene scene = new Scene (root , width , he ight) ;
9 primaryStage . s e tScene (scene) ;

10 primaryStage . show () ;
11 }
12
13 pub l i c s t a t i c void main (St r ing [] a rgs) {
14 launch (args) ;
15 }
16 }

Listing 5.1: Basic code for a JavaFX application

5.2 Other Visualisation Support

ADFIS contains a few other functionalities that support user interface imple-
mentation: support for element selection and the radial menu, an example
of a widget.

5.2.1 Selectable Components

Selection of one or more UI components is an interaction method that is
ubiquitous. In the context of interactive surface UIs, selection is possible in
a certain territorial context such as a window or a user area. JavaFX sup-
ports selection by providing the SelectableNode interface, but this does not

3More information about how different views are organised in JavaFX can be found at
docs.oracle.com/javafx/

Other Visualisation Support 54

include support for user areas. As such, we have updated selection function-
ality by providing the ISelectable interface. This interface is constructed
to allow for selection of components in a user area, in such a way that each
user area has a different selection.

In listing 5.2, an example is provided that shows the implementation of a
selectable rectangle by combining the Rectangle class with the ISelectable
interface. In this example, the SelectableRectangle is implemented in
such a way that reception of a touch press calls the setSelected method
(line 17). Calling this method will set a border for the rectangle, providing
visual feedback to the user and sets the selected boolean to true. Other
behaviour is context sensitive: on line 27 the method onObjectSelected is
called, which processes this event. A default handler would set selection on
other components to false, but more complex interactions can be defined
by the developer.

1 pub l i c c l a s s S e l e c t ab l eRec tang l e extends Rectangle implements I S e l e c t a b l e {
2 p r i va t e boolean s e l e c t e d = f a l s e ;
3 p r i va t e UserArea area ;
4
5 pub l i c S e l e c t ab l eRec tang l e () {
6 t h i s . setOnTouchPressed (new EventHandler<Event >() {
7
8 @Override
9 pub l i c void handle (Event event) {

10 Se l e c t ab l eRec tang l e . t h i s . s e t S e l e c t e d (t rue) ;
11 event . consume () ;
12 }
13 }) ;
14 }
15
16 @Override
17 pub l i c void s e t S e l e c t e d (boolean value) {
18 i f (va lue) {
19 t h i s . s e tS t roke (Color .BLACK) ;
20 t h i s . setStrokeWidth (10) ;
21 t h i s . s e l e c t e d = true ;
22 } e l s e {
23 t h i s . s e tS t roke (nu l l) ;
24 t h i s . s e l e c t e d = f a l s e ;
25 }
26 i f (s e l e c t e d) {
27 area . onObjectSe lected (t h i s) ;
28 }
29 }
30 . .
31 @Override
32 pub l i c void setContext (UserArea area) {
33 t h i s . area = area ;
34 }
35
36 }

Listing 5.2: Use of the ISelectable interface

55 CHAPTER 5. ADFIS Functionality

5.2.2 Radial Menu

Widgets are UI components that are pre-constructed and available to devel-
opers. ADFIS currently does not have a library of widgets, but implementing
them is relatively easy (depending on the complexity), and by implementing
them once a lot of time for future development is saved. As an example of
a widget, ADFIS contains a radial menu. A radial menu is a menu that has
its elements organised in a circle. This has a distinct advantage over tradi-
tional drop-down menus: all elements in a radial menu are equally close to
the center of the menu, which is usually also the location of the touch points.
Selecting elements in a drop-down menu using touch can be more difficult
since elements in a drop-down menu will have a different distance from the
touch point’s location. The most common varieties of radial menus are either
donut shaped or have bubbles representing elements. ADFIS uses the bubble
layout, because in a such a layout the elements are separated which ensures
that releasing a touch point is never overlapping two options, as would be
the case when using a donut layout.

1 double x = 500 ;
2 double y = 600 ;
3 MenuItem accept = new MenuItem () ;
4 MenuItem de c l i n e = new MenuItem () ;
5
6 RadialMenu menu = new RadialMenu (new MenuItem [] { accept , d e c l i n e }) ;
7 menu . setCenterX (x) ;
8 menu . setCenterY (y) ;

Listing 5.3: Using a radial menu

In listing 5.3, an example of the use of a radial menu is shown. Before
initialising a radial menu, menu items must first be created. They can then be
provided to the constructor of the radial menu. A menu item is implemented
as a Node, which allows them to have event handlers. The suggested use is
to set the handler with the desired function in the Node.onTouchReleased
method, but other event handlers can be used as well. When creating a radial
menu, the elements will be automatically spaced over the available space in
the menu. The radius will also depend on the number of elements, which
ensures that there are no graphical problems when using a radial menu.

5.3 Multi-touch

Multi-touch capabilities are included in the framework in two forms. Hard-
ware platforms that support multi-touch on the level of the operating system

Multi-touch 56

trigger touch events that can be received by JavaFX directly. All other plat-
forms that support the TUIO standard will have their touch events converted
to JavaFX events, so developers do not need to distinguish between events.

The supported touch events are entry, update and removal.

5.3.1 Sample Code

Reusing the code from Section 5.1, an example is given of how touch events
can be used in an application in listing 5.4. In this listing, an event handler is
set for the Scene object that is currently used by the application. When the
Scene object receives a touch press event, the background will be coloured
black.

1 pub l i c c l a s s SampleAppl icat ion extends App l i ca t ion {
2 . .
3 @Override
4 pub l i c void s t a r t (Stage primaryStage) throws Exception {
5 . .
6 scene . setOnTouchPressed (new EventHandler<Event >() {
7 @Override
8 pub l i c void handle (Event event) {
9 scene . s e t F i l l (Color .BLACK) ;

10 event . consume () ;
11 }
12 }
13
14 }
15 }

Listing 5.4: Processing touch events

On line 10 the event is also consumed. Event consumption dictates that
a certain object that is an implementation of the Node class has processed
the event, and that no other GUI element will receive the event. JavaFX
dispatches its events to the topmost node in the scene graph from the root
down, and then works its way back to the root element of the scene graph.
In other words, the topmost element will receive the event first, and the root
of the scene graph will be the last to receive it. Whenever an element con-
sumes an event, that event will stop making its way back to the root element.

The code sample discussed above is purely JavaFX code and will work in
many scenarios, on the condition that there is a software component that
dispatches touch events. For instance, from Windows 7 onward, the oper-
ating system has multi-touch support built-in4 which allows developers to
implement multi-touch interactions just by adding event handlers. However,

4http://windows.microsoft.com/en-us/windows7/products/features/touch

57 CHAPTER 5. ADFIS Functionality

Windows 7 touch is not open source. The default set of gestures can not
be extended using source code and its default set of gestures is fairly rigid
e.g. a long press is interpreted as a right click which might not be desirable
behaviour in some applications.

It is possible that there is no software component present in the operating
system that dispatches touch events. In that case it suffices that the hardware
platform supports the TUIO protocol to make use of the framework. This is
demonstrated in listing 5.5.

1 pub l i c c l a s s SampleAppl icat ion extends App l i ca t ion {
2 f i n a l Group root ;
3 . .
4 @Override
5 pub l i c void s t a r t (Stage primaryStage) throws Exception {
6 . .
7 EventDispatcher d i spa t che r = new EventDispatcher (root) ;
8 TUIOConnection tu i o = new TuioConnection (d i spa t che r) ;
9 tu i o . connect () ;

10 . .
11 }
12 }

Listing 5.5: Processing TUIO touch events

In this sample we can see that an EventDispatcher and TUIOConnection ob-
ject are utilised. The TUIO connection is an object that implements a TUIO
listenern which starts listening for TUIO events on line 9 using the connect()
method. The TUIO connection is responsible for converting TUIO events to
JavaFX events and is linked to the event dispatcher. The event dispatcher
will determine where the events are sent, and adhere to specific rules with
regard to grouping, filtering and preprocessing when there are applicable.
This is explained in-depth in chapter 4.

5.4 Gestures
Gestures are implemented using the gesture server from Sparsh-UI. Since
Sparsh-UI is written in Java, it was possible to re-purpose those components.
More information about this is implemented can be found in Section 4.6. The
framework currently provides developers with four gestures: rotate, zoom,
swipe and double tap. Gestures can be added by extending theGestureEvent
class found in JavaFX and by dispatching those gesture events from a gesture
recognition component such as Sparsh-UI. Sparsh-UI only supports a number
of events, so adding a gesture without other gesture recognition software
would require adding the recognition code to the Sparsh-UI gesture server
software as well.

Gestures 58

5.4.1 Sample Code

In the code sample below, a simple application is given that demonstrates
the use of the rotate gesture event. Rotate events received the the rectangle
component will translate to a rotation of the rectangle.

1 pub l i c c l a s s SampleAppl icat ion extends App l i ca t ion {
2 p r i va t e f i n a l Group root ;
3 p r i va t e Rectangle r e c = new Rectangle (400 , 300) ; // width & he i gh t
4
5 @Override
6 pub l i c void s t a r t (Stage primaryStage) throws Exception {
7 . .
8 r ec . setOnRotate (new EventHandler<Event >() {
9 @Override

10 pub l i c void handle (Event event) {
11 RotateEvent r o t a t e = (RotateEvent) event ;
12 r ec . se tRotate (r ec . getRotate () + ro ta t e . getAngle ()) ;
13 event . consume () ;
14 }
15
16 }) ;
17 r ec . setX (100) ;
18 r ec . setY (100) ;
19 root . getChi ldren . add (rec) ;
20 . .
21 EventDispatcher d i spa t che r = new EventDispatcher (root) ;
22 GestureDetector ge s tu r eDetec to r = new GestureDetector () ;
23 ge s tu reDetec to r . s tartSparshUI () ;
24 d i spa t che r . addInte rceptor (ge s tu r eDetec to r) ;
25 TUIOConnection tu i o = new TuioConnection (d i spa t che r) ;
26 tu i o . connect () ;
27 . .
28 }
29 }

Listing 5.6: Processing gesture events

It is important to note that the code sample presented uses a shortcut to
handle the rotate event. JavaFX has built-in support for four gesture types,
which have a corresponding method that is somewhat shorter. To demon-
strate the use of a gesture that is supported by SparshUI but not JavaFx,
the following code snippet is given. The DoubleClickEvent class was added
to the framework and instances are converted from SparshUI and dispatched
by the gesture detector interceptor.
Note: setting the background of a scene object should be ran on the JavaFX
thread, this is omitted.

59 CHAPTER 5. ADFIS Functionality

1 pub l i c c l a s s SampleAppl icat ion extends App l i ca t ion {
2
3 @Override
4 pub l i c void s t a r t (Stage primaryStage) throws Exception {
5 . .
6 scene . addEventHandler (DoubleClickEvent .DOUBLE_CLICK, new

EventHandler<Event >() {
7
8 @Override
9 pub l i c void handle (Event event) {

10 scene . s e t F i l l (Color .BLACK) ;
11 }
12 }) ;
13 . .
14 }
15 }

Listing 5.7: Processing gesture events not native to JavaFX

5.5 Tangibles
The framework also supports tangibles by supporting reacTIVision markers,
which can be applied to any tangible. These markers are fiducials that are
recognised using the reacTIVision application. This application takes a video
feed such as from a webcam and searches for distinct, well-defined patterns.
ReacTIVision fiducials have a position and a rotation that can be used in an
application. The supported tangible events are entry, update and removal.
The use of reacTIVision is detailed in Section 4.7.

5.5.1 Sample Code

The code in listing 5.8 demonstrates how tangibles can be used in an ap-
plication. In this code sample, a Rectangle object is created and added
to a Group object which serves as the root node for the scene graph. An
event handler is added which handles tangible entry events. Tangible events
contain the state of a tangible, from which the position and rotation of the
tangible can be accessed. Here the rotation of the rectangle is set to the
rotation of the tangible.

Paper Documents 60

1 pub l i c c l a s s SampleAppl icat ion extends App l i ca t ion {
2 p r i va t e f i n a l Group root ;
3 p r i va t e Rectangle r e c = new Rectangle (50 , 50) ; // width & he i gh t
4
5 @Override
6 pub l i c void s t a r t (Stage primaryStage) throws Exception {
7 . .
8 scene . addEventHandler (TangibleEvent .ADDED, new EventHandler<

TangibleEvent >() {
9 @Override

10 pub l i c void handle (TangibleEvent event) {
11 Tangib leState s t a t e = event . g e tS ta t e () ;
12 double r o t a t i on = event . getRotat ion () ;
13 r ec . se tRotate (r o t a t i on) ;
14 event . consume () ;
15 }
16 }
17 rec . setX (100) ;
18 r ec . setY (100) ;
19 root . getChi ldren . add (rec) ;
20 . .
21 EventDispatcher d i spa t che r = new EventDispatcher (root) ;
22 TUIOConnection tu i o = new TuioConnection (d i spa t che r) ;
23 tu i o . connect () ;
24 . .
25 }
26 }

Listing 5.8: Processing tangible events

Since reacTIVision uses TUIO as a method of communication, it is also
required to create a TUIO connection and event dispatcher. However, a
TUIO connection can and should only be initialised once, it handles touch
and tangible events simultaneously.

5.6 Paper Documents
Paper documents are supported in the form of blob recognition. In its cur-
rent form, the framework can recognise blobs by collecting and filtering touch
points. When certain criteria are met, touch points will be grouped into a
blob (this process is explained in Section 4.5.1). Blob events encapsulate a
blob state, which contains the position, the list of touch points in the blob
and a polygon representation of the blob. The supported blob events are
entry, update and removal which correspond with the detection of paper,
moving of paper and removal of paper respectively.

Currently, it is the responsibility of the application to distinguish between
blob event types; the developer needs to make sure that events coming from
paper documents are handled as such. It is possible to accommodate this as
done in the demo application (see chapter 6) using a fiducial.

61 CHAPTER 5. ADFIS Functionality

5.6.1 Sample Code

Listing 5.9 demonstrates how blob events can be processed. In this sample,
an event handler is added to the scene that retrieves the shape of a blob and
displays it in the form of a polygon.

1 pub l i c c l a s s SampleAppl icat ion extends App l i ca t ion {
2 p r i va t e f i n a l Group root ;
3
4 @Override
5 pub l i c void s t a r t (Stage primaryStage) throws Exception {
6 . .
7 scene . addEventHandler (BlobEvent .BLOB_ADDED, new EventHandler<

BlobEvent >() {
8
9 @Override

10 pub l i c void handle (BlobEvent event) {
11 BlobState s t a t e = event . g e tS ta t e () ;
12 BlobRegion reg i on = d i spa t che r . getBlobManager () . getRegion (

s t a t e . ge t Id ()) ;
13 root . ge tChi ldren () . add (r eg i on . getShape ()) ;
14 }
15 }) ;
16 . .
17 }
18 }

Listing 5.9: Processing blob events

Since blob detection is based on touch points, it is also required to create a
TUIO connection and event dispatcher. This is shown in listing 5.10.

1 pub l i c c l a s s SampleAppl icat ion extends App l i ca t ion {
2 p r i va t e f i n a l Group root ;
3
4 @Override
5 pub l i c void s t a r t (Stage primaryStage) throws Exception {
6 . .
7 d i spa t che r = new EventDispatcher (root) ;
8 double detect ionFrame = 50 ;
9 BlobDetector de t e c t o r = new BlobDetector () ;

10 de t e c t o r . setDetect ionFrame (detect ionFrame) ;
11 Thread t = new Thread (de t e c t o r) ;
12 t . setDaemon (t rue) ;
13 t . s t a r t () ;
14 d i spa t che r . addInte rceptor (de t e c t o r) ;
15 tu i o = new TuioConnection (d i spa t che r) ;
16 tu i o . connect () ;
17 . .
18 }
19 }

Listing 5.10: Setup of blob detection

This code sample requires some explanation. The event dispatcher is the
same as used in previous code samples in this chapter. As mentioned before,
this dispatcher can be modified to interpret event differently before dispatch-
ing them. This is done using an interceptor model: a number of interceptors

User Areas 62

have the chance to handle the events before they are dispatched to UI ele-
ments. Blob detection is quite intensive to compute, thus a daemon is created
that does these computations in the background. This is explained in more
detail in chapter 4.

5.7 User Areas
User areas are a component of the framework that allows interactions to be
separated from each other. They are a well-defined areas of an interactive
surface that support any interaction that can be performed on the whole
surface and also has the potential to support inter-area interactions.

5.7.1 Discussion

The framework provides developers with user areas, which are UI elements
that function as interaction areas which are separated but not isolated from
the entire surface. This entails that while a user while mostly interaction with
the UI components in their user area, interactions between user areas are still
possible. An example of this would be to share information represented by
a UI component by dragging that component to another users’ interaction
area. In a user area, interactions such as selection of objects and gestures
are not ambiguous, they do not interfere with other users’ interactions as
would be the case when multiple user actions are allowed simultaneously in
the same interaction area.

63 CHAPTER 5. ADFIS Functionality

Figure 5.1: An application demonstration the separate selection contexts of
two user areas

An example of the use of user areas is shown in Figure 5.1. Two user areas
are shown with handles for repositioning and resizing. Inside the user areas,
two rectangles are displayed. Both pairs of rectangles can be selected, which
triggers a black outline as a visual cue. Selection of either rectangle in one
user area will not interfere with another user area, providing developers with
a tool to group and separate UI contents for a specific user.

5.7.2 Sample Code

User areas are easily used by simply defining their dimension and position,
and adding them to the root node of the scene graph as would be done with
any JavaFX node. As many user areas can be added as needed.

Projection 64

1 pub l i c c l a s s SampleAppl icat ion extends App l i ca t ion {
2 p r i va t e f i n a l Group root ;
3
4 @Override
5 pub l i c void s t a r t (Stage primaryStage) throws Exception {
6 . .
7 UserArea area = new UserArea () ;
8 area . setX (100) ;
9 area . setY (100) ;

10 area . setWidth (700) ;
11 area . s e tHe ight (400) ;
12 root . getChi ldren () . add (area) ;
13
14 scene = new Scene (root , 1920 , 1080) ;
15 pr imaryState . s e tScene (scene) ;
16 . .
17 }
18 }

Listing 5.11: Using a user area

Being implemented as a sub class of the JavaFX Group class, adding compo-
nents to a user area is exactly the same as adding components to the root of
the scene graph.

1
2 . .
3 UserArea area = new UserArea () ;
4 Rectangle r e c t ang l e = new Rectangle () ;
5 C i r c l e c i r c l e = new C i r c l e () ;
6
7 area . getChi ldren () . add (r e c t ang l e) ;
8 area . getChi ldren () . add (c i r c l e) ;
9 . .

Listing 5.12: Adding components to a user area

5.8 Projection
Projection on documents is used in Chapter 6, where a projected image over-
lays on top of a paper document. ADFIS supports projection, but does not
provide abstractions to accomplish this. In fact, projection is considered to
be no different from displaying the UI on a monitor or external display such
as the TV used in the development hardware.

As mentioned in Section 5.1, JavaFX makes use of a the Stage-Scene sys-
tem, where stages correspond to windows and scenes contain UI elements.
To project an image, it suffices to create another Stage that contains the
elements which need to be projected. The newly created Stage will need to
be displayed on the correct output display, which is the responsibility of the
developer.

65 CHAPTER 5. ADFIS Functionality

5.9 Summary
In this chapter we presented the feature set of ADFIS and demonstrated
their use with code samples consisting of small applications that focus on
one feature. The features of ADFIS consist of the most important interac-
tion methods of interactive surfaces, support for paper document interactions
and visualisation support on top of the JavaFX framework.

Applications have a strong integration with the JavaFX framework, which
allows UI components to receive events of every interaction method type.
Visualisation support in ADFIS also includes user areas, radial menus and
selectable components. User areas provide separate areas of the surface that
allow for a separate interaction contexts for any interaction methods. Selec-
tion of components is also supported.

ADFIS supports multi-touch interactions, gesture interactions, tangible in-
teractions and paper document interactions. Touch events can be received
over the Windows 7 touch protocol or over the TUIO protocol. Gesture
events can be enabled or disabled as needed. Tangibles are supported through
support of the reacTIVision framework. Paper documents can be recognised
by performing blob detection and provides the application with a shape and
location of the document.

Summary 66

6
Demo Application

In this chapter we present the demo application that was built using ADFIS
to demonstrate its capabilities.

6.1 Scenario

The general idea of the demo application was to create a small proof-of-
concept that demonstrates as many features of ADFIS as possible, but the
application should also consist of a practical example that can be used in a
real world situation. Although this is a challenging objective, we managed to
construct a scenario in which nearly every feature of ADFIS is demonstrated
in a meaningful way. The scenario of the demo application is given in the
following paragraphs:

“A user approaches the interactive surface and starts interacting
with it by putting a tangible on the surface. This tangible has
a fiducial marker on it, which the surface recognises. As soon as
the tangible is recognised, the surface displays an interaction area
that is personal to that user (it could — for instance — be the
same interaction area that they used at work). In the personal

Demonstration 68

interaction area, the user places a physical document.

A second user approaches the interactive surface and puts their
tangible on the surface. The second user is also accommodated
by the surface with their personal user area. The two users be-
gin discussing the contents of the document on the surface. The
first user wishes to share their document with the second user.
By pressing a broadcast button, the second user’s area receives
a notification that another user is sharing content. The second
user can now press their user area, spawning a radial menu that
allows them to receive the content or dismiss the notification. Ac-
cept the broadcast causes the document to be transferred to the
second user’s area; the document is copied to the user context of
the second user and is shown in their user area as a digital copy.
This digital copy can be interacted with using zoom and rotate
gestures.

The second user annotates their digital copy and would like to
share their annotations. The second user presses a share button,
which causes the annotations to be shared with the first user.
The annotations are now projected on the document of the first
user.”

This is a scenario that would be fairly time-consuming to implement com-
pletely. As such, the components that are not features of ADFIS are simu-
lated with placeholder functionality, since they are the responsibility of the
developer to implement and do not contribute anything to the demonstration
of ADFIS. Some of those components could be the subject of future work
and/or extensions to the framework. In order of use: the user area linking to
the tangible is hard-coded; the annotations on the document are contained
in an image that is linked to the digital document and copying the file is
purely visual and does not actually transfer a file.

6.2 Demonstration
Initially, the surface is blank, devoid of any content or UI elements. The
first interaction is user one placing a tangible on the surface. This tangible is
detected and recognised, triggering a tangible entry event in the framework.

69 CHAPTER 6. Demo Application

As can be seen in Figure 6.1, the application responds to this event by cre-
ating a user area element at the location of the tangible. The tangible now
functions as a handle for the user area; repositioning the tangible will also
reposition the user area. The user area can be resized with another handle
located at the opposite corner of the tangible. User interactions can now be
distinct based on whether they are inside the user area or not.

Figure 6.1: State of the application after introduction of a tangible

After the introduction of the user area, a paper document is placed on the
surface, inside the user area. The document used in this demo is the sec-
ond page of Wellner’s DigitalDesk [73] paper. Introducing this paper sheet
triggers a blob entry event and is detected as a number of touch presses
in a specific time frame. This is detailed in Section 4.5.1. As can be seen
in Figure 6.2, a rectangle is added to show the detection area of the paper
sheet, which has the exact dimensions and position of the area in which touch
points are regarded as part of the blob. The paper document can be moved
around, but this may not track the document accurately. Along with the
rectangular region, a button is shown at the bottom of the region with a
broadcast icon. This broadcast functionality was inspired by [23], in which
the authors uses broadcast functionality to communicate between different
devices such as tablets. Tablets and user areas are comparable in the sense
that they usually belong to one user and support multi-touch interactions.

Demonstration 70

Figure 6.2: Introduction of a paper document is detected

A second tangible is then introduced that spawns a second user area, in the
same way that the first tangible creates its own user area. This is shown in
Figure 6.3.

Figure 6.3: A second user area is created

Pressing the broadcast button will now add a notification to the second user
area that the first user is sharing the DigitalDesk document. When a touch

71 CHAPTER 6. Demo Application

press is detected in the second user area, the application will create a radial
menu that has two options: accept or decline. This is shown in Figure 6.4.
If the touch point moves to either option, it will set the option as selected
with visual feedback.

Figure 6.4: A radial menu is created with an accept and decline option

If the touch point is released on top of an option, the radial menu option will
trigger its listener that listens to touch release events. The accept option is
selected, which creates and adds a view of the DigitalDesk document shown
in Figure 6.5.

Figure 6.5: A digital copy of the document is created

The view of the DigitalDesk document supports gesture interaction. Zooming
and rotating the document is possible using the commonly used two finger

Demonstration 72

multi-touch gestures: moving touch points closer and further respectively
decreases and increases the size of the document; moving touch points in a
clockwise or counter-clockwise motion rotates the documents accordingly.
Included in the UI component that contains the view of the DigitalDesk doc-
ument is an annotation button. Pressing this button allows for the addition
of annotations to the document1. This is shown in Figure 6.6.

Figure 6.6: The digital copy is annotated

Finally, the annotation can be shared by pressing the share button also con-
tained in the view of the document. This transfers the user-created anno-
tation to the original user area. On reception of this transfer, the paper
document is augmented using the overhead projector. The overhead projec-
tor overlays the annotations on the document.

1As explained in Section 6.1, this is mocked.

73 CHAPTER 6. Demo Application

Figure 6.7: Sharing the annotations causes an overlay to be projected on the
physical document

6.3 Findings

From the implementation of the demo application certain conclusions can
be drawn about how well ADFIS has facilitated development. The basis
for those conclusions is comparing the development of the application with
ADFIS against a situation where the provided abstractions were not avail-
able. For evaluation purposes, an identical technical environment is assumed,
development would have to be done using the same hardware.

The use of tangibles in the application was implemented by adding event
listeners to certain UI components that are registered to listen to tangible
events. Without using ADFIS, this could have been achieved by also using
the reacTIVision framework or another comparable framework, but the devel-
oper would have to invest time in implementing abstractions for handling the
raw input events coming from the reacTIVision framework by implementing
a TUIO listener. Implementing a TUIO listener would also have to take into
account conversion of normalised coordinates and possible coordinate space
inversions in the case that the registration hardware’s axes are different from

Findings 74

the application’s. If non-capacitive touch was used, filtering of touch points
underneath tangibles would also have to be implemented.

Implementing multi-touch functionality has become a fairly standard practise
in interactive surfaces, which is reflected by its number of available frame-
works, discussed in Section 2.1. The multi-touch features in the demo appli-
cation could have easily been implemented in a different framework, which
is preferable to implementing a TUIO listener. When opting to choose Win-
dows 7 touch, developers would be locked into using Microsoft technologies
(.NET framework, WPF, etc). However, since multi-touch is just one of the
functionalities of ADFIS, the greatest advantage of using ADFIS was the ease
of combining different interaction methods. Using different frameworks for
each interaction method would require an equal number abstractions to be
implemented, or to follow the example of ADFIS and unify the input events
in an event dispatching system where event listeners are generic and can be
parametrised depending on the interaction method.

In the demo application, gestures were supported by adding gesture event
listeners to UI components. It is however necessary to create a gesture de-
tector, start detection and add it as an interceptor to the event dispatcher.
Gesture recognition is not enabled by default as it is done in a separate
thread, and obscuring this would hinder the developer. Implementation of
gestures without ADFIS is possible, but it is recommended to use one of the
existing gesture frameworks as they can be time-consuming to implement,
especially when allowing simultaneous gestures. The use of Sparsh-UI allows
a decent set of basic gestures to be used and offers good extensibility. During
prototyping, we found that basic gesture interaction such as a combination
of dragging, zooming and rotating work as desired. However, in the imple-
mentation of the demo application, rotation and zoom events do not work
perfectly. The events are received but are not handled. This is likely be-
cause of the fact that Sparsh-UI dispatches events for all enabled gestures
as soon as touch data is processed, independently of the value of the gesture
(e.g. rotation events can be dispatched with an angle of zero degrees) caus-
ing processing issues. A filter that only lets through non-zero events might
alleviate this problem.

Because of the hardware platform and the method used, detection of paper
documents is one the more problematic features of the demo application.
The detection of a paper document relies on the speed of entry of the doc-
ument, which is not completely reliable due to the hardware’s touch point

75 CHAPTER 6. Demo Application

detection technology. Sometimes the entry speed is too low, and the paper
sheet’s touch points are not grouped. This can also cause problems when
multiple users perform touch presses at the same time, although this could
be mitigated by adding area constraints to the detection algorithm. Moving
a paper sheet is less problematic and translates the movement of the paper
fairly accurately, although sometimes touch points are only detected at the
edge of the paper sheet. This causes the detected position of the paper sheet
to be at the edge of the sheet as well. A possible solution to this would be to
add a probabilistic component to the tracking of movement. During proto-
typing we found that detecting smaller blobs and objects with a more solid
surface is less problematic due to the fact that they produce touch points
that are closer to each other. Their behaviour when moving the object is
also more stable. We have argued before that although non-capacitive touch
makes this form of paper document tracking possible, capacitive touch in
combination with computer vision achieved with detection inside or beneath
the surface is optimal.

Considering that some applications include the notion of territoriality, the
availability of user areas in ADFIS is a feature that can save developers a
lot of time. Since they are well-integrated in JavaFX, user areas can be
treated as any building block of the UI. During the development of the demo
application, the use of user areas proved to be very easy to separate touch
and gesture interaction from other parts of the surface. Although not used
in the demo application, the added support for selectable components also
provides developers with much flexibility.

Findings 76

7
Conclusion

In this chapter we conclude this dissertation by summarising its contents.
The findings from related work are listed again and were used to substan-
tiate the claim that a framework such as ADFIS are a contribution to the
research field of interactive surfaces. Additionally, other contributions are
also restated.

7.1 Contribution
Over the course of the previous chapters a number of contributions were
made of which the implementation of the ADFIS framework is the most
significant, but other contributions were made as well. A short summary is
provided below, after which they are discussed briefly in the next sections.

• We created an overview of the research field of interactive surfaces by
reviewing related work starting from its origins to modern research,
covering various important topics.

• We created a hierarchical classification for interactive surfaces based
on hardware characteristics.

• We engineered requirements for a framework for a subset of the clas-
sification which is satisfied by ADFIS, a framework for application de-

Contribution 78

velopment for interactive surfaces which we implemented.

• We investigated the integration possibilities of several interaction meth-
ods.

• We implemented a paper document detection algorithm, achieved with
blob detection for IR-based optical imaging technology.

7.1.1 Overview

In the overview of the research field we established that interactive surfaces
can be very distinct. They usually have different hardware systems and use
different technologies although specialised frameworks or libraries such as
TUIO provide some abstraction. Many systems use multi-touch and support
different interaction methods complementary to touch interactions. We also
concluded that the use of paper documents is not diminishing as predicted,
which entails that paper documents are an interaction method that should
also be taken into account.

In the introductory chapter, we discussed the problem that application devel-
opment for interactive surfaces is being hindered by the need to implement
hardware interfaces and software components that could be reused from other
projects. The most important finding from investigating literature is that
software support for interactive surfaces is limited to specific components.
Therefore we proposed that there is a need for a framework that provides
developers with better support on a higher abstraction level.

7.1.2 Hierarchical Classification

Due to the fact that hardware platform for interactive surfaces are very dis-
tinct we propose a hierarchical classification based on the characteristics of
the interactive surface. Those characteristics are physical in nature and al-
lowed us to define which systems ADFIS could be used for and what systems
it does not support or could potentially support with some modifications or
extensions.

7.1.3 ADFIS

In terms of provided features, the feature set of ADFIS includes support
for all interaction methods on interaction surfaces, with the exception of
the stylus. We have included a discussion regarding stylus- and pen-based

79 CHAPTER 7. Conclusion

interaction in Section 8.4 in the chapter on future work. However, to our
knowledge, there is no other framework with the same set of features. More
important than the support of individual features is the support of combining
them in an application by unifying interaction methods in an event dispatch-
ing system that allows the developer to easily implement listeners for those
event on different parts of the UI. ADFIS is easy to use yet is still flexible
enough to allow developers to add or change functionality as needed.

7.1.4 Interaction Method Integration

Since ADFIS supports several interaction methods, we learned that some in-
teraction methods are more easily integrable than others. This depends on
which specialised frameworks are used, they can have a different implemen-
tation language or use different communication methods. Some restrictions
also apply on the physical level. The use of IR-light for touch detection
entails that IR-based approaches cannot be used for other purposes, such
as IR-based blob detection. Furthermore, we experimented with using com-
puter vision for paper document detection (which is discussed further in
Section 8.1.2 but since we already used reacTIVision, the overhead camera’s
stream was not available for computer vision.

7.1.5 Paper Document Detection Algorithm

During development of ADFIS we observed that using non-capacitive touch
technologies can be an issue when supporting physical objects on the surface
of the system. Specifically, physical objects can be detected by the touch
technology as being touch points instead of blobs or tangibles. Tangibles
on the surface clearly interfere with the touch detection as they should only
be registered as a tangible. Paper documents and other objects provided
us with the opportunity to keep blob detection in the surface as opposed to
using other techniques such as computer vision and IR-detection.

The algorithm that we propose is based on the temporal and spatial aspects
of touch points. In summary, during a given interval a collection of touch
points can be recognised as a blob if the collection is of a certain size. The
detection frame and collection size can be parametrised, although large de-
tection frames will introduce a latency in the detection. From the detected
collection of touch points, a blob is recognised and its position and outline is
calculated, providing a region of the surface that can intercept touch events.
The detailed workings of this algorithm are explained in Section 4.5.1.

Evaluation of ADFIS 80

7.2 Evaluation of ADFIS
To properly evaluate ADFIS a user study should be performed which com-
pares the use of ADFIS versus using only specialised frameworks and libraries.
Such as study was performed by the authors of Tactive [22]. Due to time
constraints this was not possible. Instead, we evaluated ADFIS by imple-
menting the demo application in Chapter 6. Other aspects not covered in
the discussion of the demo application are covered in the next paragraphs.

Since the application possibilities of interactive surfaces are numerous, exten-
sibility is an important factor of ADFIS. This is achieved in multiple ways.
First, the event dispatching system allows for the addition of new interaction
methods. It suffices to create a new event type for event listeners. Events of
that type then need to provide access to encapsulated state of an interaction
method. Second, the interceptor system allows an application to modify the
default behaviour of a component of ADFIS, although intercepting events is
less relevant to other interaction methods than multi-touch.

The performance of the system is also relevant for the overall quality of the
system. During the development of the framework we used several prototype
applications as a test bed. We experienced no noticeable input lag when
developing a single function, nor are there noticeable delays in the demo ap-
plication, where multiple interaction methods are combined. Minimal delays
are achieved by the use of multi-threading. Other than the UI running on
a separate thread, which ensures UI responsiveness, interceptors can be run
on a different thread than the application’s main thread. This is the case
with gesture recognition, and is recommended when using blob recognition,
since increasing the detection frame causes delays between introduction and
detection of a blob.

8
Future Work

In this chapter we discuss the future possibilities of ADFIS. Those future
possibilities include improvements to individual components, as well as inte-
grating the entire framework in other software solutions.

8.1 Improvements

In this section we analyse the different components of ADFIS for which tech-
nologies exist that could replace and improve the current functionality of the
relevant component.

8.1.1 Gestures

Gesture recognition is currently implemented using Sparsh-UI. Sparsh-UI
provides a set of basic gestures that can be extended, but this requires a
programmatical approach to gesture definition. Other gesture recognition
technologies exist that approach gesture definition differently.

Proton++ [36], GeForMT [34] and Midas [61] are frameworks that replace
the programmatical approach to gestures with a descriptive approach. In
GeForMT, gestures are defined using short descriptions in a gesture syntax.

Improvements 82

Proton++ is a declarative framework where gestures are defined using regu-
lar expressions. Midas is also a declarative framework that uses a prolog-like
language to define gestures. All of the aforementioned frameworks offer more
expressiveness and flexibility regarding definition of gestures and would be
hugely beneficial to developing applications that can benefit from complex
gestures. Important to note is that using a declarative approach might not
contribute to lowering development time as there might be a learning curve
involved in using the declarative syntax.

To better support interactive surface applications, Cirelli and Nakamura [11]
defined an extended set of requirements that should be met by gesture recog-
nition frameworks. These requirements were based on previous work done by
Kammer et al. [34]. Although the authors did not evaluate every framework
or gesture recogniser that they mentioned in their work, they included Mi-
das, Proton++, $N-Protractor [3] and MT4j in their comparison using the
proposed requirements. They found that Midas meets 11 of the 16 require-
ments, failing only spatial invariance and easy prototyping. Accuracy was
not evaluated due to a lack of data. Other frameworks did not meet at least
half of the proposed requirements.

8.1.2 Paper Documents

ADFIS currently supports paper document interaction through blob detec-
tion, which only provides positional information about a document, and dis-
tinguishes between different documents. This could be extended in a few
ways. First, the information that is accessible to the developer can be ex-
tended to also include rotation, as is the case with tangibles. Second, the
information about the document can also be extended to include informa-
tion about the content of the document, which implies that documents are
no longer just blobs with a certain identification number.

As previously mentioned in Section 2.2, different technologies exist that allow
for identification of documents. When trying to identify documents, the
main issue is clear: robust tracking requires the identification component
to know what it is searching for (i.e. pattern recognition), or it requires a
complex computer vision algorithm that can identify the shape and content
of a document.

83 CHAPTER 8. Future Work

Pattern Recognition

Pattern recognition can be done by familiarising the identification component
with the document. We have discussed this before when considering [35], in
which the system has a database of images to use as patterns. When using
such a technique, we propose a less strict limitation: it should be required to
have a digital copy of a document in a format such as PDF, and recognition
features should be generated automatically using the same algorithm that
extracts features from the captured image.

Due to its dependence on assumed knowledge of documents, using pattern
recognition is limiting. The alternative is using computer vision to discover
paper documents. The clear advantage here is that paper can be used without
any sort of modification or augmentation. The problem here is that the
identification algorithm needs to perform multiple tasks. It needs to discover
documents and identify them, which is not an easy task and requires much
programming effort.

Computer Vision

We attempted to achieve document discovery using OpenCV1, but encoun-
tered some significant problems. Our approach was to use background sub-
traction to identify moving shapes. The algorithm used was the Improved
Adaptive Gaussian Mixture Model [77], referred to by OpenCV as MOG2
(Improved Mixture of Gaussians). After the background was subtracted,
shape recognition was applied to the resulting image, searching for rectangu-
lar shapes of a certain size. This was done using OpenCV’s edge detection
and polygon approximation on the detected edges. At several stages there
were issues. The background subtraction subtracted too much from the im-
age, detecting only the rough edges of the sheet. Changing the parameters of
the algorithm - threshold and learning rate - did not improve the detection
quality. Since they are also moving with respect to the background, a user’s
hands were also detected.

During these experiments we also found that moving UI elements are detected
as foreground, which is problematic. A possible solution for this would be
to refresh the background model if the UI changes, but doing so would re-
quire large scale changes to the UI framework. Shape detection was also
problematic since there was no clear way of removing user limbs from the
image, which shifts the problem towards recognising and filtering limbs from

1http://www.opencv.org

Extensions 84

the image before paper sheets could be detected. For the issues mentioned
in this section, we abandoned the computer vision approach.

Optical Character Recognition

Optical Character Recognition (OCR) is the name given to a number of
technologies that translate printed text to digital text through mechanical
or electronic means. OCR dates back as far as 1870 and has known several
generations of improvement [18]. Nowadays, OCR technologies are available
through a number of frameworks, of which the Tesseract engine2 is the most
accurate and has the advantage of being open source [43]. It is also used by
other frameworks as their recognition engine.

OCR can be used in the framework to improve the detection of paper doc-
uments, provided that the contents of the document contain printed text
(or even handwritten text, but this requires different algorithms). Depend-
ing on the algorithm used - such as Tesseract - OCR can be applied even
if the source image is rotated. By recognising text, it also becomes possible
to identify the document on top of detecting its location, which is a huge
advantage.

8.2 Extensions

Some components or features of ADFIS are functional but offer the possibility
of extension. In this section we discuss some of the functionalities of ADFIS
that can be extended.

8.2.1 Near Field Communication

Some of the applications and interactive surfaces in chapter 2 support the use
of devices that contain Near Field Communication (NFC) technology. NFC is
a group of technologies and communication protocols that allows for commu-
nication between devices over short distances, typically 5 to 10 centimetres.
The typical use of NFC is allow smartphones to act as communication point
between the user and the system, or between users. Previously mentioned
in Section 2.1.4, smartphones are used for file transfers and payments. User
identification can also be an application of NFC in interactive surfaces.

2https://code.google.com/p/tesseract-ocr/

85 CHAPTER 8. Future Work

8.2.2 Territoriality

User areas in their current implementation separate areas from the interac-
tive surface. Currently, a user area is limited to being distinct from another
area in that it supports selection, grouping of touch points and the ability
to perform gestures separately. Although this opens up a wide variety of
possibilities, this is still limited. The shape of the user area is rectangular,
which might not be the optimal shape when the interactive surface has to ac-
commodate many users, or when the hardware platform is shaped differently
than a tabletop or wall-mounted display. We refer back to the BendDesk
mentioned in Section 1.2, which would not be fully compatible with the cur-
rent implementation of user areas.

Inter-area interactions are currently the responsibility of the developer. It
would prove useful to developers if communication between user areas was
support in predefined inter-area interaction methods such as drag-and-drop
interactions. User areas are currently also identical in function. We sug-
gesting investigation of the use of heterogeneous user areas such as common
and personal areas. Moving beyond one hardware device, it is possible that
user areas are no longer contained to one specific interactive surface. Explo-
ration of the possibility of distributed user areas would also prove useful to
developers.

8.2.3 Multiple Screen Support

ADFIS allows for multiple monitors to be used, limited only by the capabil-
ities of the graphics card(s) used the hardware on which it is ran. However,
there is no support for using multiple screens, either for linking them together
to create one large display or using multiple monitors to create an interactive
environment ran on one instance of the framework.

8.3 Integration
Since interactive surfaces can exist in an environment that contains more
devices or other surfaces, the possibility exists for integration of ADFIS in
an interactive context. An example of an interactive environment is given in
Section 2.1.4, where a presentation by Samsung shows the combination of a
tabletop with a large wall projection. Interactions on either the tabletop or
the interactive wall affect the state of the other component of the environ-
ment. This opens up a wide array of possibilities, but would require some
sort of protocol or messaging model that allows for easy and generic sharing

Pen-based Interactions 86

of content between devices.

Another integration possibility would be to allow smartphone interactions.
Using standard Wi-Fi, a communication model could be designed that al-
lows for multi-user interaction. For example, interactive presentations could
be given using a vertical interactive surface, where the audience can be in-
teracted with by asking multiple choice questions which the audience can
respond to by submitting an answer.

8.4 Pen-based Interactions
A subject that has not been previously discussed is the use of stylus interac-
tions. Historically, this has been one of the interaction methods used in inter-
active surfaces, dating back as far as DigitalDesk (see Section 2.1). However,
in modern interactive surfaces and devices, the stylus seems to be disregarded
as an interaction method and replaced by multi-touch. This is most likely
due to the fact that single touch interactions could be performed with a sty-
lus or finger, but multi-touch is a very expressive interaction method, and its
expressiveness is comparable to the mouse. A stylus only has the advantage
of being more precise and consequently, more fit to input text or drawings.
However, in most mobile and interactive surface applications, inputting text
or drawings is not a common input method. In those applications, multi-
touch and virtual keyboards are more efficient.

Although the stylus as an interaction method is less used, the digital pen has
become an interesting new input method which partially replaces the stylus.
Digital pens are ballpoint pens that are augmented using a micro-controller
and an integrated camera. As presented in [65], augmenting paper with
a pattern of tiny dots provides a grid structure that allows the integrated
camera to track the pen’s position. This grid structure does not interfere
with the contents of the page, it merely gives the paper sheet a gray tint.
Certain areas of the paper can be interpreted by an application to trigger
a certain function. In Signer and Norrie’s PaperPoint system, this is used
for various presentation interactions such as random access to specific slides.
The positional tracking is used to annotate in real-time on both the physical
document and the slide currently being presented.

87 CHAPTER 8. Future Work

In the demo application for ADFIS (see Chapter 6), annotations are added
to a digital copy of a document, and projected back onto a physical copy.
Although it is not impossible to conceive a system that automatically up-
dates a physical document in a permanent fashion, it would certainly require
specialised hardware. The other way around, adding content to a physical
copy and synchronising this with a digital copy can easily be done using the
digital pen described in this section. In the context of an interactive surface,
modifying a paper document would most likely occur either on or in the close
proximity of the surface. In PaperPoint, the digital pen uses Bluetooth for
short-to-medium range wireless communication, meaning distance would not
be a limiting factor.

Pen-based Interactions 88

A
Sequence Diagrams

90

T
U
IO

-
H
ardw

are
T
U
IO

C
onnection

TouchP
ointM

apper
E
ventD

ispatcher
B
lobM

anager
TouchE

ventInterceptor

cursor
event

m
apX

(..)

return
x

m
apY

(..)
return

y

dispatch(TouchE
vent)

processTouchE
vent(TouchE

vent)

intercept(TouchE
vent)

dispatch(TouchE
vent)

getTopN
odeA

t(x,y)

N
ode

fire(TouchE
vent)

F
igure

A
.1:

Sequence
diagram

oftouch
event

processing
from

hardw
are

to
event

dispatching

Bibliography

[1] qTUIO. Retrieved from: qtuio.sirbabyface.net. Last accessed: July 29,
2015.

[2] Michelle Annett, Tovi Grossman, Daniel Wigdor, and George W. Fitz-
maurice. Medusa: A Proximity-Aware Multi-Touch Tabletop. In Pro-
ceedings of the 24th Annual ACM Symposium on User Interface Software
and Technology, Santa Barbara, CA, USA, October 16-19, 2011, pages
337–346, 2011.

[3] Lisa Anthony and Jacob O. Wobbrock. $N-protractor: A Fast and Ac-
curate Multistroke Recognizer. In Proceedings of the Graphics Interface
2012 Conference, GI ’12, Toronto, ON, Canada, May 28-30, 2012, pages
117–120, 2012.

[4] Thomas Augsten, Konstantin Kaefer, René Meusel, Caroline Fetzer, Do-
rian Kanitz, Thomas Stoff, Torsten Becker, Christian Holz, and Patrick
Baudisch. Multitoe: High-Precision Interaction with Back-Projected
Floors Based On High-Resolution Multi-Touch Input. In Proceedings
of the 23rd Annual ACM Symposium on User Interface Software and
Technology, New York, NY, USA, October 3-6, 2010, pages 209–218,
2010.

[5] Sriram Karthik Badam and Niklas Elmqvist. PolyChrome: A Cross-
Device Framework for Collaborative Web Visualization. In Proceedings
of the Ninth ACM International Conference on Interactive Tabletops
and Surfaces, ITS 2014, Dresden, Germany, November 16 - 19, 2014,
pages 109–118, 2014.

[6] Nikola Banovic, Frank Chun Yat Li, David Dearman, Koji Yatani, and
Khai N. Truong. Design of Unimanual Multi-Finger Pie Menu Inter-
action. In ACM International Conference on Interactive Tabletops and
Surfaces, ITS 2011, Kobe, Japan, November 13-16, 2011, pages 120–129,
2011.

BIBLIOGRAPHY 92

[7] Hrvoje Benko. Beyond Flat Surface Computing: Challenges of Depth-
Aware and Curved Interfaces. In Proceedings of the 17th International
Conference on Multimedia 2009, Vancouver, British Columbia, Canada,
October 19-24, 2009, pages 935–944, 2009.

[8] Matthew Blackshaw, Anthony DeVincenzi, David Lakatos, Daniel Lei-
thinger, and Hiroshi Ishii. Recompose: Direct and Gestural Interaction
with an Actuated Surface. In Proceedings of the International Confer-
ence on Human Factors in Computing Systems, CHI 2011, Extended Ab-
stracts Volume, Vancouver, BC, Canada, May 7-12, 2011, pages 1237–
1242, 2011.

[9] Harry Brignull, Shahram Izadi, Geraldine Fitzpatrick, Yvonne Rogers,
and Tom Rodden. The Introduction of a Shared Interactive Surface into
a Communal Space. In Proceedings of the 2004 ACM Conference on
Computer Supported Cooperative Work, CSCW 2004, Chicago, Illinois,
USA, November 6-10, 2004, pages 49–58, 2004.

[10] Pizza Hut Chaotic Moon Studios. Interactive
Concept Table, March 2014. Retrieved from:
https://www.youtube.com/watch?v=xvT0MCugb58. Last accessed:
July 22, 2015.

[11] Mauricio Cirelli and Ricardo Nakamura. A Survey on Multi-touch Ges-
ture Recognition and Multi-touch Frameworks. In Proceedings of the
Ninth ACM International Conference on Interactive Tabletops and Sur-
faces, ITS 2014, Dresden, Germany, November 16 - 19, 2014, pages
35–44, 2014.

[12] Peter Dalsgård and Kim Halskov. Tangible 3D Tabletops. Interactions,
21(5):42–47, 2014.

[13] Chi Tai Dang and Elisabeth André. A Framework for the Development
of Multi-Display Environment Applications Supporting Interactive Real-
Time Portals. In ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS’14, Rome, Italy, June 17-20, 2014, pages
45–54, 2014.

[14] Alessandro De Nardi. Gesture Recognition mAnagement Framework
for Interactive Tabletop Interfaces. Master thesis, University of Pisa,
December 2008.

[15] Paul H. Dietz and Darren Leigh. DiamondTouch: a Multi-User Touch
Technology. In UIST, pages 219–226, 2001.

93 BIBLIOGRAPHY

[16] Pierre Dillenbourg and Michael Evans. Interactive Tabletops in Edu-
cation. I. J. Computer-Supported Collaborative Learning, 6(4):491–514,
2011.

[17] Florian Echtler and Gudrun Klinker. A Multitouch Software Architec-
ture. In Proceedings of the 5th Nordic Conference on Human-Computer
Interaction 2008, Lund, Sweden, October 20-22, 2008, pages 463–466,
2008.

[18] Line Eikvil. OCR - Optical Character Recognition, 1993.

[19] Michael A Evans and Jesse Jay LM Wilkins. Social Interactions and In-
structional Artifacts: Emergent Socio-Technical Affordances and Con-
straints for Children’s Geometric Thinking. Journal of Educational
Computing Research, 44(2):141–171, 2011.

[20] George W. Fitzmaurice, Hiroshi Ishii, and William Buxton. Bricks:
Laying the Foundations for Graspable User Interfaces. In Human Fac-
tors in Computing Systems, CHI ’95 Conference Proceedings, Denver,
Colorado, USA, May 7-11, 1995., pages 442–449, 1995.

[21] Food and Agriculture Organization of the United Nations. 2013 Global
Forest Products Facts and Figures, 2014. Retrieved from: http://www.
fao.org/forestry/statistics/80938/en/. Last accessed: August 22,
2015.

[22] Ombretta Gaggi and Marco Regazzo. Tactive, a Framework for Cross
Platform Development of Tabletop Applications. In WEBIST 2014 -
Proceedings of the 10th International Conference on Web Information
Systems and Technologies, Volume 2, Barcelona, Spain, 3-5 April, 2014,
pages 91–98, 2014.

[23] Peter Hamilton and Daniel J. Wigdor. Conductor: Enabling and Un-
derstanding Cross-Device Interaction. In CHI Conference on Human
Factors in Computing Systems, CHI’14, Toronto, ON, Canada - April
26 - May 01, 2014, pages 2773–2782, 2014.

[24] Jefferson Y. Han. Low-Cost Multi-Touch Sensing through Frustrated
Total Internal Reflection. In Proceedings of the 18th Annual ACM Sym-
posium on User Interface Software and Technology, Seattle, WA, USA,
October 23-26, 2005, pages 115–118, 2005.

BIBLIOGRAPHY 94

[25] Jefferson Y Han. Multi-Touch Interaction Wall. In SIGGRAPH ’06:
ACM SIGGRAPH 2006 Emerging Technologies, Boston, MA, USA -
July 30 - August 3, 2006, page 25, 2006.

[26] Richard Harper and Abigail J Sellen. The Myth of the Paperless Office.
MIT Press, Cambridge, MA, USA, 2001.

[27] Steven E. Higgins, Emma Mercier, Elizabeth Burd, and Andrew Hatch.
Multi-Touch Tables and the Relationship with Collaborative Classroom
Pedagogies: A Synthetic Review. I. J. Computer-Supported Collabora-
tive Learning, 6(4):515–538, 2011.

[28] Ideum. GestureWorks. Retrieved from: http://www.gestureworks.com.
Last accessed: July 18, 2015.

[29] Hiroo Iwata, Hiroaki Yano, Fumitaka Nakaizumi, and Ryo Kawamura.
Project FEELEX: Adding Haptic Surface to Graphics. In SIGGRAPH,
pages 469–476, 2001.

[30] Yvonne Jansen, Thorsten Karrer, and Jan O. Borchers. MudPad: Tactile
Feedback and Haptic Texture Overlay for Touch Surfaces. In ACM In-
ternational Conference on Interactive Tabletops and Surfaces, ITS 2010,
Saarbrücken, Germany, November 7-10, 2010, pages 11–14, 2010.

[31] Martin Kaltenbrunner and Ross Bencina. reacTIVision: A Computer-
Vision Framework for Table-Based Tangible Interaction. pages 69–74,
2007.

[32] Martin Kaltenbrunner, Till Bovermann, Ross Bencina, and Enrico
Costanza. TUIO - A Protocol for Table Based Tangible User Interfaces.
In Proceedings of the 6th International Workshop on Gesture in Human-
Computer Interaction and Simulation GW 2005, pages 1–5, 2005.

[33] Dietrich Kammer, Mandy Keck, Georg Freitag, and Markus Wacker.
Taxonomy and Overview of Multi-Touch Frameworks: Architecture,
Scope and Features. In Engineering Patterns for Multi-Touch Interfaces
2010. A workshop of the ACM SIGCHI Symposium on Engineering In-
teractive Computing Systems, June 2010.

[34] Dietrich Kammer, Jan Wojdziak, Mandy Keck, Rainer Groh, and Sev-
erin Taranko. Towards a Formalization of Multi-Touch Gestures. In
ACM International Conference on Interactive Tabletops and Surfaces,
ITS 2010, Saarbrücken, Germany, November 7-10, 2010, pages 49–58,
2010.

95 BIBLIOGRAPHY

[35] Jiwon Kim, Steven M. Seitz, and Maneesh Agrawala. Video-Based Doc-
ument Tracking: Unifying Your Physical and Electronic Desktops. In
Proceedings of the 17th Annual ACM Symposium on User Interface Soft-
ware and Technology, Santa Fe, NM, USA, October 24-27, 2004, pages
99–107, 2004.

[36] Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh Agrawala.
Proton++: A Customizable Declarative Multitouch Framework. In The
25th Annual ACM Symposium on User Interface Software and Tech-
nology, UIST ’12, Cambridge, MA, USA, October 7-10, 2012, pages
477–486, 2012.

[37] Daniel Klinkhammer, Markus Nitsche, Marcus Specht, and Harald Reit-
erer. Adaptive Personal Territories for Co-located Tabletop Interaction
in a Museum Setting. In ACM International Conference on Interactive
Tabletops and Surfaces, ITS 2011, Kobe, Japan, November 13-16, 2011,
pages 107–110, 2011.

[38] Daniel Leithinger and Hiroshi Ishii. Relief: A Scalable Actuated Shape
Display. In Proceedings of the 4th International Conference on Tangible
and Embedded Interaction 2010, Cambridge, MA, USA, January 24-27,
2010, pages 221–222, 2010.

[39] Roberto Martínez Maldonado, Andrew Clayphan, Christopher James
Ackad, and Judy Kay. Multi-Touch Technology in a Higher-Education
Classroom: Lessons In-the-wild. In Proceedings of the 26th Australian
Computer-Human Interaction Conference on Designing Futures - the
Future of Design, OZCHI ’14, Sydney, New South Wales, Australia,
December 2-5, 2014, pages 220–229, 2014.

[40] Nicolai Marquardt, Johannes Kiemer, and Saul Greenberg. What
Caused That Touch?: Expressive Interaction with a Surface Through
Fiduciary-Tagged Gloves. In ACM International Conference on Interac-
tive Tabletops and Surfaces, ITS 2010, Saarbrücken, Germany, Novem-
ber 7-10, 2010, pages 139–142, 2010.

[41] Nicolai Marquardt, Johannes Kiemer, David Ledo, Sebastian Boring,
and Saul Greenberg. Designing User-, Hand-, and Handpart-Aware
Tabletop Interactions with the TouchID Toolkit. In ACM International
Conference on Interactive Tabletops and Surfaces, ITS 2011, Kobe,
Japan, November 13-16, 2011, pages 21–30, 2011.

BIBLIOGRAPHY 96

[42] Tobias Meyer and Dominik Schmidt. IdWristbands: IR-based User Iden-
tification on Multi-Touch Surfaces. In ACM International Conference on
Interactive Tabletops and Surfaces, ITS 2010, Saarbrücken, Germany,
November 7-10, 2010, pages 277–278, 2010.

[43] Ravina Mithe, Supriya Indalkar, and Nilam Divekar. Optical Character
Recognition. International Journal of Recent Technology and Engineer-
ing (IJRTE), 2:72–75, 2013.

[44] Christian Müller-Tomfelde and Morten Fjeld. Tabletops: Interactive
Horizontal Displays for Ubiquitous Computing, volume 45, pages 78–81.
2012.

[45] Takashi Nagamatsu, Masahiro Nakane, Haruka Tashiro, and Teruhiko
Akazawa. Multi-Push Display using 6-axis Motion Platform. In Proceed-
ings of the Ninth ACM International Conference on Interactive Table-
tops and Surfaces, ITS 2014, Dresden, Germany, November 16 - 19,
2014, pages 65–68, 2014.

[46] Kosuke Nakajima, Yuichi Itoh, Takayuki Tsukitani, Kazuyuki Fujita,
Kazuki Takashima, Yoshifumi Kitamura, and Fumio Kishino. FuSA
Touch Display: A Furry and Scalable Multi-touch Display. In Proceed-
ings of the ACM International Conference on Interactive Tabletops and
Surfaces, ITS ’11, pages 35–44, New York, NY, USA, 2011. ACM.

[47] Robert J. Orr and Gregory D. Abowd. The Smart Floor: A Mecha-
nism for Natural User Identification and Tracking. In CHI ’00 Extended
Abstracts on Human Factors in Computing Systems, CHI Extended Ab-
stracts ’00, The Hague, The Netherlands, April 1-6, 2000, pages 275–
276, 2000.

[48] James Patten, Hiroshi Ishii, Jim Hines, and Gian Pangaro. Sensetable:
A Wireless Object Tracking Platform for Tangible User Interfaces. In
Proceedings of the CHI 2001 Conference on Human Factors in Com-
puting Systems, Seattle, WA, USA, March 31 - April 5, 2001., pages
253–260, 2001.

[49] Roman Rädle, Hans-Christian Jetter, Nicolai Marquardt, Harald Reit-
erer, and Yvonne Rogers. HuddleLamp: Spatially-Aware Mobile Dis-
plays for Ad-hoc Around-the-Table Collaboration. In Proceedings of the
Ninth ACM International Conference on Interactive Tabletops and Sur-
faces, ITS 2014, Dresden, Germany, November 16 - 19, 2014, pages
45–54, 2014.

97 BIBLIOGRAPHY

[50] Raf Ramakers, Davy Vanacken, Kris Luyten, Karin Coninx, and Jo-
hannes Schöning. Carpus: A Non-Intrusive User Identification Tech-
nique for Interactive Surfaces. In The 25th Annual ACM Symposium on
User Interface Software and Technology, UIST ’12, Cambridge, Mas-
sachusetts, USA, October 7-10, 2012, pages 35–44, 2012.

[51] Prasad Ramanahally, Stephen Gilbert, Thomas Niedzielski, Desirée
Velázquez, and Cole Anagnost. Sparsh-UI: A Multi-Touch Framework
for Collaboration and Modular Gesture Recognition. In ASME-AFM
2009 World Conference on Innovative Virtual Reality, pages 137–142.
American Society of Mechanical Engineers, 2009.

[52] Matthias Rauterberg, Morten Fjeld, Helmut Krueger, Martin Bichsel,
Uwe Leonhardt, and Markus Meier. BUILD-IT: a planning tool for
construction and design. In CHI 98 Conference Summary on Human
Factors in Computing Systems, CHI ’98, Los Angeles, California, USA,
pages 177–178, 1998.

[53] Sarah E Reed, Oliver Kreylos, Sherry Hsi, Louise H Kellogg, Geoffrey
Schladow, M. Burak Yikilmaz, Heather Segale, Julie Silverman, Steve
Yalowitz, and Elissa Sato. Shaping Watersheds Exhibit: An Interactive,
Augmented Reality Sandbox for Advancing Earth Science Education.
In AGU Fall Meeting Abstracts, San Fransisco, California, USA - De-
cember 15 - 19, 2014, volume 1, page 1, 2014.

[54] Jun Rekimoto. SmartSkin: An Infrastructure for Freehand Manipula-
tion on Interactive Surfaces. In Proceedings of the CHI 2002 Conference
on Human Factors in Computing Systems: Changing our World, Chang-
ing ourselves, Minneapolis, Minnesota, USA - April 20 - 25, 2002., pages
113–120, 2002.

[55] Stephan Richter, Christian Holz, and Patrick Baudisch. Bootstrapper:
Recognizing Tabletop Users by Their Shoes. In CHI Conference on
Human Factors in Computing Systems, CHI ’12, Austin, TX, USA -
May 05 - 10, 2012, pages 1249–1252, 2012.

[56] Markus Rittenbruch, Andrew Sorensen, Jared Donovan, Debra Polson,
Michael Docherty, and Jeffrey I. Jones. The Cube: A Very Large-Scale
Interactive Engagement Space. In The ACM International Conference
on Interactive Tabletops and Surfaces, ITS ’13, St Andrews, United
Kingdom - October 06 - 09, 2013, pages 1–10, 2013.

BIBLIOGRAPHY 98

[57] Volker Roth, Philipp Schmidt, and Benjamin Güldenring. The IR Ring:
Authenticating Users’ Touches on a Multi-Touch Display. In Proceedings
of the 23rd Annual ACM Symposium on User Interface Software and
Technology, New York, NY, USA, October 3-6, 2010, pages 259–262,
2010.

[58] Samsung. Interactive Full Room Wall, January 2014. Retrieved
from: https://www.youtube.com/watch?v=8fJ2ORNuwKI. Last ac-
cessed: July 27, 2015.

[59] Dominik Schmidt, Ming Ki Chong, and Hans Gellersen. HandsDown:
Hand-contour-based User Identification for Interactive Surfaces. In Pro-
ceedings of the 6th Nordic Conference on Human-Computer Interaction
2010, Reykjavik, Iceland, October 16-20, 2010, pages 432–441, 2010.

[60] Dominik Schmidt, Raf Ramakers, Esben Warming Pedersen, Johannes
Jasper, Sven Köhler, Aileen Pohl, Hannes Rantzsch, Andreas Rau,
Patrick Schmidt, Christoph Sterz, Yanina Yurchenko, and Patrick Baud-
isch. Kickables: Tangibles for Feet. In CHI Conference on Human Fac-
tors in Computing Systems, CHI’14, Toronto, ON, Canada - April 26 -
May 01, 2014, pages 3143–3152, 2014.

[61] Christophe Scholliers, Lode Hoste, Beat Signer, and Wolfgang De
Meuter. Midas: A Declarative Multi-Touch Interaction Framework. In
Proceedings of the 5th International Conference on Tangible and Embed-
ded Interaction 2011, Funchal, Madeira, Portugal, January 22-26, 2011,
pages 49–56, 2011.

[62] Stacey D. Scott, M. Sheelagh T. Carpendale, and Kori M. Inkpen.
Territoriality in Collaborative Tabletop Workspaces. In Proceedings of
the 2004 ACM Conference on Computer Supported Cooperative Work,
CSCW 2004, Chicago, Illinois, USA, November 6-10, 2004, pages 294–
303, 2004.

[63] Teddy Seyed, Chris Burns, Mario Costa Sousa, Frank Maurer, and An-
thony Tang. Eliciting Usable Gestures for Multi-Display Environments.
In Interactive Tabletops and Surfaces, ITS’12, Cambridge/Boston, MA,
USA, November 11-14, 2012, pages 41–50, 2012.

[64] Teddy Seyed, Mario Costa Sousa, Frank Maurer, and Anthony Tang.
SkyHunter: A Multi-Surface Environment for Supporting Oil and Gas
Exploration. In The ACM International Conference on Interactive

99 BIBLIOGRAPHY

Tabletops and Surfaces, ITS ’13, St Andrews, United Kingdom - Oc-
tober 06 - 09, 2013, pages 15–22, 2013.

[65] Beat Signer and Moira C. Norrie. PaperPoint: A Paper-Based Presen-
tation and Interactive Paper Prototyping Tool. In Proceedings of the 1st
International Conference on Tangible and Embedded Interaction 2007,
Baton Rouge, Louisiana, USA, February 15-17, 2007, pages 57–64, 2007.

[66] SmartPixel.tv. Multitouch Application for Real Estate Agents Pre-
sented on an Interactive Table, October 2014. Retrieved from:
https://www.youtube.com/watch?v=IonqPE7jPs8. Last accessed: July
27, 2015.

[67] Takram. On the Fly Paper, June 2015. Retrieved from:
http://www.engadget.com/2015/06/05/intel-takram-paper-ui/. Last
accessed: July 23, 2015.

[68] TMSolutions. Multi-Touch Interactive Restaurant Table, August 2013.
Retrieved from: https://www.youtube.com/watch?v=gPHC9MkqHpE.
Last accessed: July 27, 2015.

[69] Sandra Trullemans and Beat Signer. From User Needs to Opportunities
in Personal Information Management: A Case Study on Organisational
Strategies in Cross-Media Information Spaces. In IEEE/ACM Joint
Conference on Digital Libraries, JCDL 2014, London, United Kingdom,
September 8-12, 2014, pages 87–96, 2014.

[70] Brygg Ullmer and Hiroshi Ishii. The MetaDESK: Models and Prototypes
for Tangible User Interfaces. In ACM Symposium on User Interface
Software and Technology, pages 223–232, 1997.

[71] Xin Wang, Yaser Ghanam, and Frank Maurer. From Desktop to Table-
top: Migrating the User Interface of AgilePlanner. In Engineering In-
teractive Systems, Second Conference on Human-Centered Software En-
gineering, HCSE 2008, and 7th International Workshop on Task Models
and Diagrams, TAMODIA 2008, Pisa, Italy, September 25-26, 2008.
Proceedings, pages 263–270, 2008.

[72] Malte Weiss, Simon Voelker, Christine Sutter, and Jan O. Borchers.
BendDesk: Dragging Across the Curve. In ACM International Con-
ference on Interactive Tabletops and Surfaces, ITS 2010, Saarbrücken,
Germany, November 7-10, 2010, pages 1–10, 2010.

BIBLIOGRAPHY 100

[73] Pierre Wellner. The DigitalDesk Calculator: Tangible Manipulation on
a Desktop Display. In Proceedings of the 4th Annual ACM Symposium
on User Interface Software and Technology, UIST 1991, Hilton Head,
South Carolina, USA, November 11-13, 1991, pages 27–33, 1991.

[74] Pierre D. Wellner. Interacting with Paper on the DigitalDesk. Commu-
nications of the ACM, 36(7):86–96, 1993.

[75] Andrew D. Wilson. PlayAnywhere: A Compact Interactive Tabletop
Projection-Vision System. In Proceedings of the 18th Annual ACM Sym-
posium on User Interface Software and Technology, Seattle, WA, USA,
October 23-26, 2005, pages 83–92, 2005.

[76] Takuto Yoshikawa, Buntarou Shizuki, and Jiro Tanaka. HandyWid-
gets: Local Widgets Pulled-out from Hands. In Interactive Tabletops
and Surfaces, ITS’12, Cambridge/Boston, MA, USA, November 11-14,
2012, pages 197–200, 2012.

[77] Zoran Zivkovic. Improved Adaptive Gaussian Mixture Model for Back-
ground Subtraction. In 17th International Conference on Pattern Recog-
nition, ICPR 2004, Cambridge, UK, August 23-26, 2004., pages 28–31,
2004.

