
Graduation thesis submitted in partial ful�llment of the requirements for the degree of

Master of Science in de Toegepaste Informatica

CrossWoW: Towards Rapid Prototyping of

Cross-Device Interaction

TOM DE RYCKE

Academic year 2016 - 2017

Promoter: Prof. Dr. Beat Signer

Advisor: Audrey Sanctorum
Faculty of Science and Bio-Engineering Sciences

c©Vrije Universiteit Brussel, all rights reserved.

Afstudeer eindwerk ingediend in gedeeltelijke vervulling van de eisen

voor het behalen van de graad

Master of Science in de Toegepaste Informatica

CrossWoW: Towards Rapid Prototyping of

Cross-Device Interaction

TOM DE RYCKE

Academiejaar 2016-2017

Promoter: Prof. Dr. Beat Signer

Advisor: Audrey Sanctorum
Faculteit Wetenschappen en Bio-Ingenieurswetenschappen

c©Vrije Universiteit Brussel, all rights reserved.

i

Abstract

Over the last decade, we have seen a signi�cant increase in new electronic
devices dealing with digital information and services. Just think of the wear-
able technology with the well-known smart watches and the Google Glass
technology.

Professionals, such as a photographer or a designer, own a lot of di�er-
ent electronic devices, like a digital camera, a tablet, an electronic drawing
board, a laptop or a big screen, and all these devices try to interact with
each other. The management of digital information has become particularly
challenging due to the diversity of devices and the lack of e�ective ways for
communication between these devices.

The goal of this thesis is to start searching for e�ective ways for the
development of cross-device interaction. After all, the problem is that inter-
actions across multiple devices are either completely decoupled or prede�ned
in a non-customisable manner. We start by exploring the state of the art of
distributed user interfaces and cross-device interaction and identify certain
shortcomings. Thereafter, we implement the proof of concept CrossWoW
application that supports cross-device interactions with a high granularity
and the support for o�ine interaction.

Finally, we will do some reverse engineering to propose possible guidelines
for a cross-device framework. In our proposal, we will try to �nd a framework
that is extensible, �exible and customisable.

ii

Acknowledgements

Writing this dissertation has only been possible thanks to the support of
many people. First of all, I would like to thank my advisor, Audrey Sanc-
torum. I had the pleasure of working with her and she helped me to put
together this research in a structured, qualitative way. I would like to sin-
cerely express my gratefulness for her continuous feedback, proofreading and
the time that she has spent over the past year to help me writing this thesis.
I would also like to thank my promotor Prof. Dr. Beat Signer to promote
this thesis and for his enormous enthusiasm during his lectures and his con-
tribution for this thesis.

Last but not least, I also received support from my family and especially
of my dear wife Ilse Van de Velde and my three sons: Wout, Vik and Je�.
Their love and support have helped me a lot during the past four years at the
VUB to obtain my Master's degree. My wife has to give me the opportunity
and the patience to study again. It must not have been easy to live with a
student and working husband who had to go to class in the evening and to
work for the school during weekends.

Contents

1 Introduction

1.1 Nation of Multi-Devices . 1
1.2 XDI is Still E�ort Consuming 5
1.3 Thesis Outline . 6

2 State of The Art

2.1 History . 7
2.1.1 One User - One Computer 7
2.1.2 Ubiquitous Computing 7
2.1.3 Cloud Services . 9
2.1.4 Distributed User Interfaces 11
2.1.5 Cross-Device Interaction 14

2.2 XDIs in Everyday Activities and Tasks 15
2.3 Challenges of Cross Device Interactions 17

2.3.1 Detection - Device Pairing 18
2.3.2 Tracking - Awareness 19
2.3.3 Communication - Transferring of Data 21
2.3.4 Flexible and Customisable 25

2.4 Interaction Techniques . 27
2.5 Design Guidelines for DUIs . 30
2.6 Conclusion . 31

3 Proof of Concept Applications

3.1 Towards Rapid Prototyping of XDI 33
3.1.1 Focus . 33
3.1.2 Prototyping and Rapid Prototyping 34

3.2 Methodology . 35
3.3 Description of the POC Applications 36

3.3.1 CrossWow Auto . 36
3.3.2 CrossWow Home . 37

3.4 Mission Statement Description 38
3.5 Audience Modeling . 39

CONTENTS iv

3.5.1 Audience Classi�cation 39
3.5.2 Audience Characterisation 39

3.6 Requirements . 39
3.6.1 Information Requirements 40
3.6.2 Functional Requirements 40
3.6.3 Navigation Requirements 43

3.7 User Object Model . 43
3.8 Style Guide . 44
3.9 Design . 44

3.9.1 Paper Prototypes . 44

4 Implementation

4.1 Android Prototyping . 49
4.1.1 Why . 49
4.1.2 Obstacles and Solutions 50

4.2 Local Media Files . 51
4.3 Device Pairing and Communications 52

4.3.1 Wireless Technology 52
4.3.2 Wi-Fi Direct . 53
4.3.3 Wi-Fi Hotspot . 54
4.3.4 Conclusion . 54

4.4 Alljoyn Library . 55
4.4.1 What is the Alljoyn Library 55
4.4.2 Architecture . 56

4.5 CrossDevice Wrapper . 58
4.5.1 Installation of Alljoyn 58
4.5.2 Evolution and Structure 58
4.5.3 Installation of our Wrapper 61
4.5.4 Obstacles and Solutions 64
4.5.5 Use of our Wrapper . 65

4.6 Multimedia Granularity . 71
4.7 Sending and Streaming Media 71

4.7.1 Webserver . 72
4.7.2 Exoplayer . 73

4.8 DB Structure . 74
4.9 Used Libraries . 76
4.10 Architecture . 76

5 Results

5.1 CrossWoW Auto . 79
5.1.1 Particular Scenario . 79

v CONTENTS

5.1.2 Bene�ts . 84
5.1.3 Evaluation . 85

5.2 CrossWoW Home . 87

6 Conclusion

6.1 Proposed Library and Future Work 89
6.1.1 Design Guidelines . 90

6.2 Summary and Contributions 93
6.3 Discussion . 93

A Your Appendix

1
Introduction

1.1 Nation of Multi-Devices

Mark Weiser had described already in 1991 a world in which people would
be surrounded by devices of di�erent sizes [65]. In public spaces like stations,
airports or museums, we can �nd a lot of big screens to show information for
the customers and sometimes we can even communicate with the di�erent de-
vices [23, 10]. At home, we �nd more and more devices that are connected to
the Internet and form part of the so-called Internet of Things (IoT). Fitness
trackers, thermostats or door locks are just a few examples of IoT devices
that have already become part of our everyday life. Last year, Google has
invented the Google Home1, a voice-activated speaker powered by the Google
Assistant. Amazon Echo2 and Lenovo Smart Assistant3, which is based on
Amazon Alexia, are other voice-activated speaker products like Google Home.

Figure 1.14 shows that the number of global users on a mobile device is
higher than on a desktop. Mobile �rst is the new pillar in a lot of companies.

1https://madeby.google.com/home/
2http://www.amazon.com/oc/echo/
3http://blog.lenovo.com/en/blog/raising-the-iq-of-todays-smart-home/
4http://www.smartinsights.com/mobile-marketing/

mobile-marketing-analytics/mobile-marketing-statistics/

Nation of Multi-Devices 2

Figure 1.1: Mobile vs. Desktop users

New projects will start �rst in Android and iOS because the clients increas-
ingly use the mobile applications instead of the web page through a browser.

Mobile devices like smartphones are not only used for making a phone
call but they are now also adapted for many other tasks. They are used
for making pictures, socialising, searching on the Internet or bank transfers.
Hence, they are used a lot for accessing digital media and services on the
Internet [45, 55]. Many applications have been moved from the desktop to
mobile platforms. Smartphones are used for daily activities and for playing
popular games, like Pokémon Go5. Smartwatches are used for frequent task
activities or as a remote control. Tablets, smart eyewear or laptops are all
acting for di�erent purposes. Users have now access to a variety of devices
and they will choose the device that best suits their purpose. Some of these
devices can also be shared with family and friends [20]. The explosion of all
these new devices has led to an ecosystem of displays [62] supporting a wide
variety of social setups going from individual use to a many to many social
group interactions. Santosa and Wigdor [52] describe that users will select
devices on their appearance. Tablets for reading or watching a movie on a

5http://www.pokemongo.com

3 CHAPTER 1. Introduction

train because of their size, weight and portability. Smartphones are more
used for quicker, smaller tasks. But, if we want to do more productively
work, laptops or desktop computers are the preferred devices.

If we make a SWOT analysis, we can determine the strengths, weak-
nesses, opportunities and threats for each device. After all, it is important
to get the most out of each device. We can then combine the strengths of
each device to enable rich and �uid interaction behaviours across multiple
devices. Google and Facebook, two important players on the Internet, have
already done a lot of research to understand the cross-platform consumer
behaviour. Google has conducted research in the US and has published their
results in �The New Multi-Screen World� [25]. Their conclusion is that we
are now a nation of multi-screeners. They talk about two main modes of
multi-screening: sequential and simultaneous screening (Figure 1.2).

(a) Sequential screening

(b) Simultaneous screening

Figure 1.2: Two main modes of multi-screening

What a lot of people do nowadays is to start a search operation on their
smartphone. If they want to do something more productive with their search
results, they complete their task on another device with a bigger screen
and with an easier input like a keyboard. This is an example of sequential
screening where we continue our task on another device. We could do this
by sending the URL via email from our smartphone to the mailbox on our
laptop, where we continue the task by opening that URL in our browser. We
are going from one computer to multiple heterogeneous devices per user [15].
Deep Shot [9] is a framework for migrating such tasks across devices by using
the mobile phone camera. Deep Shot captures the user's working state that
is needed for a task and resumes it on a di�erent device. For example, a
user is looking up a direction on their desktop computer in Google Maps.
But now, they would like to shift the same map to their phone for naviga-
tion in their car. With Deep Shot, users can migrate the same map on their

Nation of Multi-Devices 4

phone by simply taking a picture of it using the mobile camera of the phone.
Deep Shot will not only capture the pixels, but also the information behind
these pixels, which is the working state of an application. Hence, the cap-
tured map remains interactive on the phone. In addition to pulling out the
interactive map to the phone, Deep Shot can also push information back to
a computer. For example, a user would like to give a review about a restau-
rant that they have just visited. They have opened the page for writing the
review on their phone, but it is pain to type on a mobile phone. So, again
they would like to shift the review page to the desktop computer, where they
can easily type their review.

It becomes more challenging when we look to the simultaneous screening
where we use more than one device at the same time. If it is an unrelated
activity, we could speak of multitasking [25]. If we do a related activity, we
could then speak of complementary-usage. A lot of research is already done
to investigate a variety of behaviours that can be formed by orchestrating
a smartphone and a watch [28] or a personal digital assistant and a televi-
sion [49]. Television companies have begun to support some basic cross-device
behaviours, such as navigating media from a phone or tablet to a television.
Therefore, we can use some current media sharing protocols, such as Univer-
sal Plug and Play (UPnP) or the Digital Living Network Alliance (DLNA)6

which was founded by a group of consumer electronics companies and is still
very popular today. Casting content from one device to a television can be
done by Miracast, which is a standard for wireless connections from devices
to displays. It is a bit like �HDMI over Wi-Fi�, where the cable is replaced
by the Wi-Fi connection. Apple Airplay and Samsung AllShare are other
techniques for casting content to a television. Therefore, we must connect
an extra device like a Chromecast, Apple tv, Google tv or Amazon Fire
TV Stick at the target device. At these moments, we use di�erent devices
in combination, rather than using each device in isolation. These are some
simple examples of distribute our interfaces. We dive deeper into the term
Distributed User Interfaces (DUI) and some related work in Chapter 2.

Hence, as Weiser imagined more than two decades ago and as if has
been con�rmed by GSMA Intelligence7, we are currently living in a multi-
device world, where the number of mobile devices has surpassed the world
population.

6https://www.dlna.org/
7http://gsmaintelligence.com

5 CHAPTER 1. Introduction

1.2 XDI is Still E�ort Consuming

The management of all the digital information is a challenge due to the di-
versity of devices and the lack of e�ective ways for communication between
these devices. Cross-Device Interaction (XDI) continues to be an everyday
challenge for users to interact and is therefore still a hot topic. The problem
is that interactions across multiple devices are either completely decoupled
or prede�ned in a non-customisable manner [51]. A lot of current solutions
have a client-server architecture [58, 66, 26, 9] or are camera based [51] to
facilitate the communication between di�erent devices. Often we see that
only a part of the data can be shared across devices, for example, only web
pages or web elements can be shared. These are then more web-based ar-
chitectures with a low granularity [51]. In other cases, the data can only
be transferred to a �xed set of devices. Finally, most of these interactions
cannot be changed or modi�ed by the users. In Chapter 2, we focus on all
these current shortcomings.

Developers need to capture the user input, sensing events from multiple
devices and have to distribute the di�erent user interfaces to a (pre)de�ned
set of devices. The realisation of all these di�erent tasks requests a lot of e�ort
and is still time consuming. All these device-speci�c constraints, synchroni-
sation and communication are a technical challenge. It distracts developers
from their main development for creating the application logic. And, devel-
opers will create an application that is often di�cult to maintain and adapt
to new types of device combinations. Software maintenance is one of the
biggest costs in software development [3, 2]. But if we could, for example,
write less code, avoid reworking and avoid complexity that would help to re-
duce the software maintenance costs signi�cantly [8]. Therefore, we propose
an initial possible setup of a framework for rapid prototyping of cross-device
interaction (XDI) with a high granularity and support for o�ine interactions.
We expect that we could reduce the e�ort for the developers and help to im-
prove the maintainability and readability. So, we can reduce the budget of a
company. Frameworks are made for complex manufacturing problems [33].
The last decade, a lot of frameworks are already made which aim at decreas-
ing development time and improving interoperability. We expect that with
our framework, developers need less programming skills to create, change and
understand the logic of the asked programs and will improve their produc-
tivity. So, the software development and maintenance will be lower when the
applications are created with our framework. Hence, a framework can help
to reduce the size and the complexity of the implementation of software [67],
and increase the readability and maintainability.

Thesis Outline 6

The problem is that there is no framework for hands that can connect
di�erent devices based on a logical name for each device and that supports
the distribution of media �les with a certain form of granularity. Our con-
tributions can be summarised as follows. We will develop a wrapper of an
existing library that will make it easier for developers to create cross-device
applications with a high distribution granularity. This wrapper will not only
support the connection between di�erent devices in any location. It will
also have the necessary interface with corresponding messages to distribute
a list of media �les with some form of granularity and some accompanying
actions on these media �les. In order to demonstrate our wrapper, we pro-
vide a proof-of-concept application called CrossWoW. As last contribution,
based on our experience, we will propose some design guidelines to develop
a framework for the prototyping of cross-device applications.

1.3 Thesis Outline

We will start in Chapter 2 with a history and some de�nitions about
cross-device interactions. We will mention some related work and identify
certain shortcomings and existing approaches. With that information, we
propose two proof of concept applications (POCs) in Chapter 3 and the
methodology that we used to develop these applications. We will explain the
ideal solution of our two POCs. Thereafter, in Chapter 4, we will explain how
we have implemented our two POCs, which problems we have encountered
and how we have solved these problems. We will try to create a common
folder for the two applications. With all this information, we will evaluate
our implementation and propose an initial possible setup of a framework in
Chapter 5 and explain how it would be easier if we had already a framework
that can do the challenging job for the interactions between our di�erent
devices. In the last Chapter, we will give a conclusion with some possible
future work of our research and mention some design guidelines.

2
State of The Art

2.1 History

2.1.1 One User - One Computer

Throughout the 1980s and 1990s, desktop computers became common and
more and more popular. They were intended for the use of a single non
technical user. Because of the size and the power requirements, desktop
computers were placed at a speci�c location near a desk or a table. They
were certainly not portable. A desktop computer was also quite expensive
and was used by several people of the family. A desktop computer still
exists today but can have the ability to manage multiple user pro�les. In the
meanwhile, a lot of other devices like laptops, tablets and smartphones have
been added. Most of these devices are usually used by one speci�c person of
the family and so we can speak of a more personal device.

2.1.2 Ubiquitous Computing

In 1991 Mark Weiser [65] had described a world in which people would be
surrounded by devices of di�erent sizes. Devices would be integrated into
the environment and allow users to easily use computing power for everyday
interactions with the world. Mark Weiser referred his vision of modern com-

History 8

Figure 2.1: Ubiquitous Computing

puting as Ubiquitous Computing (UbiComp). Figure 2.1 shows that people
will be surrounded by Devices, Networks, and Space [31]. In our daily tasks,
a computer-enabled environment will be highly coupled with us where het-
erogeneous devices interact with each other to make di�erent content (eg.
video, audio or documents) available for their users. Weiser also predicted
that computers would have to deal with the problem of interconnection,
communication and of combining their capabilities to achieve a seamless ex-
perience for users and disappear into the background [65]. Cross-Device
Interaction can be seen as a part of their vision because we interact with
multiple di�erent devices in a certain environment that need to connect and
work together to have a spontaneous user experience. Another term that
means the same is Pervasive Computing. Posland [46] describes UbiComp
in three requirements: (1) Computers need to be networked, distributed and
transparently accessible; (2) Human-computer interaction (HCI) needs to be
hidden more; (3) Computers need to be context-aware in order to optimise
their operation in their environment.

9 CHAPTER 2. State of The Art

Saha and Mukherjee [50] described six fundamental challenges for Ubiq-
uitous Computing and distributed interactions:

Scalability: how to deal with a lot of more devices where explicitly
distributing and installing applications will become unmanageable, es-
pecially across the wide geographic area?

Heterogeneity: as heterogeneity increases, how to develop applica-
tions that run across all system platforms?

Integration: how to integrate all the already deployed components
to many environments into a single platform? How to deal with the
coordination between the distributed spaces?

Invisibility: how to �nd the right balance between human interven-
tion environment and self-tuned smart environments? How to �nd au-
tomated techniques to dynamically support the connection of devices
and applications?

Perception - Context Awareness: implementing perception from
di�erent sensors introduces signi�cant complications. How can we know
that the information that de�nes context awareness is accurate?

Smartness - Context Management: smartness involves accurate
sensing(input) followed by action (output) between machine and hu-
man. How can we translate this into something meaningful and under-
standable to the end user?

A wide range of multimedia and o�ce applications are di�cult to run
in a pervasive computing environment. Therefore, cloud services from big
companies like Amazon, Google and Microsoft try to make certain platforms
available to overcome these restrictions.

2.1.3 Cloud Services

Cloud services can help us to share data (eg. documents, pictures or videos)
across multiple personal devices. We can start editing a document on our
desktop computer and continue our task on our laptop. This is a typical
example of a sequential cross-device task. Big players of such �le-hosting ser-
vices are Microsoft Onedrive1, Apple iCloud2, Google Drive3 and Dropbox4.

1https://onedrive.live.com/about/en-gb/
2http://www.apple.com/icloud/
3https://www.google.com/drive/

History 10

They allow us to store �les or certain settings in the cloud, that can be
synced to all our personal computers who are connected with the Internet.
But, cloud services have one important shortcoming that is also described by
Hamilton et al. [26]. We cannot utilise multiple devices at the same time for
the same user. For example, editing a document in real time on our laptop
and our desktop computer. The main reason is that all these services need
an account to log in and a high-bandwidth internet connection. A remote
centralised server will handle all the communication between the di�erent
devices. With an invitation to other users, we can share our workspace with
other users, so that we can edit the same document at the same time. We can
speak of a collaboration of multiple users on the same document, where we
can see who is logged in and where he is typing text in the shared document.
This feature works very good in Google Docs and MS Word if both users use
the same application and each user is working on only one device at the same
time. Another shortcoming of all these services is that they are unaware of
devices that are surrounding them. This lack of awareness makes it di�cult
for the users to make a spontaneous connection. Finally, cloud services have
a lot of security and privacy challenges [61]. A lot of (banking) companies
are reluctant to place data in the cloud because they have a lot of sensitive
information about their clients. Hence, they are using their own data cen-
tres. There have been already a few incidents with data that is stored into
the cloud and which have fallen into the wrong hands. Therefore, a lot of
privacy-protection mechanisms must be provided.

To support a much more cross device interaction for multimedia content,
each company has their own hardware that can make a connection with the
television: Microsoft Xbox One5, Apple TV6 and Android TV7. Thanks to
these hardware solutions, users can also add media content into the cloud for
watching them later on the television. For example, Dropbox has recently
made a Windows app for the Xbox One to play the cloud multimedia content
with the help of the Microsoft game console to the television for users who
have not yet an Apple TV or Android TV or Chromecast8.

5http://www.xbox.com/en-GB/one
6http://www.apple.com/uk/tv/
7https://www.android.com/tv/
8https://www.google.com/intl/en_uk/chromecast/

11 CHAPTER 2. State of The Art

2.1.4 Distributed User Interfaces

User Interfaces (UI) are the space where interactions between humans and
machines occur. Mostly, we have the classical Graphical User Interface (GUI)
which is designed for interaction with input (keyboard, mouse) and out-
put (screen) devices that are attached to the single computing device unit.
Hutchings et al. [30] talked about the term Distributed Display Environment
(DDE) when they refer to a certain system that presents output to more
than one display. In the 1980s we have the popular Nintendo Donkey Kong
game (Figure 2.2a), which had two small screens above each other. We have
one single device with multiple screens. Hence, we could also speak about
the other more frequent term multi-display environment. Instead of one sin-
gle device, we could use more than one device, a Multi-Device Environment
or Multiple-Device Environment (MDE). Most of the time both terms will
overlap. MDE refers to a physical workspace where multiple devices are net-
working together. For example, we can couple multiple screens to a desktop
computer to create a multi desktop environment. Figure 2.2b is an example
of TDome9, a special touch-enabled input and output device that facilitates
the interactions between multiple displays. Multiple devices will interact
with each other to complete a task. So, the execution of the task must span
more than one device.

In order to achieve Distributed User Interfaces (DUI), it is important to
have responsive UIs. A lot of current websites have already a responsive UI
when the UI is presented on one single device and where the UI is adapting
the layout depending on the size of the screen. A popular framework on the
web to create responsive UI is Bootstrap10. DUIs is where we have di�erent
UI elements that can be distributed across users, platforms, and environ-
ments. For example, by coupling di�erent monitors to the same workstation,
we will distribute the UIs across the monitors. A de�nition for DUIs is given
by Elmqvist [19]: �A distributed user interface is a user interface whose com-
ponents are distributed across one or more of the dimensions input, output,
platform, space, and time�. In other words, we are distributing the UI over
multiple places. These places can be other devices, but multiple screens of
the same device are also possible. If we have one big single UI, it can be
moved or copied between di�erent devices. On the other hand, if we have
small single UI elements that are grouped, we have the possibility to dis-
tribute the small single parts across various devices. Then, we are talking
about the granularity of a DUI. We can even have a duplicated distribution.

9http://www.marcanudo.com/mde.html
10http://getbootstrap.com

History 12

Figure 2.2: (a) DDE - Donkey Kong
(b) MDE - TDome a novel touch-enabled input and output device

Hence, we talk about DUI when we are distributing parts or the whole UI
across various devices according to the input and the output possibilities of
these devices.

DUI separate interfaces or content and will cast, migrate or merge seam-
lessly these interfaces between a set of devices. DUI can also adapt the in-
terface to di�erent platforms [36] and try to achieve a continuous application
experience [64]. We have (at least) two devices involved in the rendering of
the DUI. The distribution of the UI can be dynamic [7] when the UI elements
can vary their location to the device during a user session. The opposite of
dynamic is static when the distribution con�guration cannot change during a
session [7]. The big advantage of DUI is that it allows users to interact with
an application through multiple devices at the same time, we can speak about
Cross-Device UIs. Deep Shot [9] is a framework that will help the users to
continue their task in its current state on another device by taking a picture
with the camera of their mobile device of the computer screen where they
were working on. This framework is based on a client-server architecture and
we will see that a lot of frameworks have a client-server architecture. The
shortcoming of such systems is the lack of support for o�ine interactions.

Sanctorum and Signer [51] described a classi�cation of DUIs by look-
ing to the supported granularity for DUI components in combination with
the interaction space. They have also highlighted the systems that support
the distribution of state. In Chapter 1, we have for example mentioned
Deep Shot [9] where the state can be distributed by using the mobile phone
camera. For the space classi�cation, they have described four categories of
space restrictions. The most limited space is with a table or camera [47].
The second category is restricted to a room because for example the need

13 CHAPTER 2. State of The Art

Figure 2.3: Deep Shot: continue the state

of multiple cameras [6]. The third category is when there is a network con-
nection to a server [58, 66, 26, 9]. The last category is the space without
constraints where DUI systems can be used anywhere [54, 11, 4, 35]. Sanc-
torum and Signer also determine two types of granularity. The �rst type can
only distribute the data as a whole while the second type can support a dis-
tribution of parts of the data. For example, the distribution of some pixels of
an image and not only the whole image. If we want to have the most �exible
DUI solution with the least restrictive possibilities, then we must search for
a DUI that can be used anywhere with a support for high or �ne granular-
ity. Weave [11] is an example of such a framework for developers of web
applications to create cross-device wearable interactions by scripting based
on JQuery11. Weave has some APIs to distribute UI and combine sensing
events and user input across mobile and wearable devices. Weave has also
a web-based programming IDE (Integrated Development Environment) for
helping developers to create and test Weave applications.

Instead of looking to the supported granularity and the interaction space,
Demeure et al. [16] described another classi�cation of DUIs. Their approach
is based on the four dimensions of computations, communications, coordi-
nation and con�guration. We will use the classi�cation of Sanctorum and
Signer.

11https://jquery.com

History 14

2.1.5 Cross-Device Interaction

Cross-Device Interaction (XDI) is still an ongoing investigation because more
and more new devices are invented and there is a need for communication be-
tween all these di�erent devices. Just think of the wearable technology, with
the well-known smartwatches which need to communicate with the smart-
phone. XDI remains a challenging research like already mention in Chapter 1.
Scharf et al. [53] give us a de�nition for XDI: �Cross Device interaction (XDI)
is the type of interaction, where human users interact with multiple separate
input and output devices, where input devices will be used to manipulate con-
tent on output devices within a perceived interaction space with immediate
and explicit feedback �. Robertson et al. [49] presented a �rst one-directional
interaction from the stylus pen of a personal digital assistant to a television.
Rekimoto et al. [48] showed us a technique to exchange information in both
directions between one computer screen to another screen with a stylus pen.
Handheld devices are often used as a remote control to manipulate digital
content on a large display. Instead of using the stylus pen as a remote con-
trol, we can use the stylus pen to make the connection between the multiple
devices. Stitching is an example of a more recent framework to connect two
pen-based tablets by stitching them together [27].

Instead of using a stylus pen, there exist a lot of other interaction tech-
niques. Some applications make use of one or more cameras to provide inter-
actions [9, 47, 42, 35]. Another popular technique is the use of QR codes to
make the interaction between multiple devices [22, 66, 18]. We still see that
technique today for transferring mobile payments between two di�erent users
or to complete an online payment by scanning the QR code on the screen with
the user's banking mobile app. We can have di�erent interaction methods:
touch gestures, rotation change, shake events and motion gestures [51]. We
can use these to trigger a cross-device interaction. Paternò and Santoro [44]
described di�erent possible triggers. The �rst one is user-initiated, where
the user is triggering the interaction by selecting the elements and select the
target device and what he likes to change. When the system triggers the in-
teraction, we speak of system-initiated. They speak about mixed-initiation
when the trigger is partially determined by the user and partially suggested
automatically from the system.

In the device ecology, we have multiple devices that can interact with
another device and they are in physical proximity to each other. These
devices will work together to perform a certain task for a user. We can,
for example, have a car device ecology where all the devices in the car may

15 CHAPTER 2. State of The Art

perform the task to listen to some music that is located on a certain device.
Cross Device Interaction is more the description of the interaction between
the devices of a device ecology. Before an interaction can occur, the devices
get aware of each other and start to transfer information that is useful for
the users. This can be a combination of their hardware capabilities. We
can speak of an ad-hoc XDI when the device ecology is created without an
installation of extra software by the users or setting up some special hardware.
Ad hoc is when it is made only for a particular purpose without a planning
ahead. Other terms that are also sometimes used for XDI are cross-surface,
multi-surface and multi-device interaction.

2.2 XDIs in Everyday Activities and Tasks

Jokela et al. [32] have done a study on how the combination of multiple
information devices is done in everyday activities and tasks. We will notice
that the diary study has a lot of similarities with the research of Google their
publication �The New Multi-Screen World� [25]. We have already mentioned
their publication in Chapter 1 to show that we are living in a nation of
multi-devices. Google talked about sequential and simultaneous screening.
Jokela et al. [32] have identi�ed four main ways on how people used their
devices. They have only studied the area of single-user with multi-devices,
not for multi-users. The distribution of the four main ways is shown in
Figure 2.4.

Sequential Use: 37% of multi-device cases where sequential. This
form is corresponding with the sequential screening of Google [25].
Users are completing their single task by changing their devices during
a task. But they do not use these devices at the same time. For exam-
ple, they are searching some information about a product they want to
buy on their smartphone, but they complete the task by buying that
product on their laptop.

Resource Landing: 27% of multi-device cases where resource landing.
The focus of the users is on one speci�c device while they are borrowing
resources from other devices. For example, connecting a laptop (a
resource of another device) to a television (focused device) to watch
the movie located on the laptop on a bigger screen.

Related Parallel Use: 28% of multi-device cases where related paral-
lel use. This is corresponding with complementary-usage of Google [25].
All devices are involved in a single task at the same time. For example,
using our smartphone for a slideshow on our television.

XDIs in Everyday Activities and Tasks 16

Figure 2.4: Four main ways on how people used their devices

Unrelated Parallel Use: 8% of multi-device cases where unrelated
parallel use. It is corresponding with multitasking of Google [25]. De-
vices are involved in di�erent tasks. For example, playing a game on
a smartphone and watching a boring football match on the television.
We have a foreground task (the game) and a background task(watching
TV). Another possible example is working on a laptop, while the user
is listening to music with their smartphone.

Supporting the �parallel use� continues to be a challenge. The same con-
clusion was made by Santosa and Wigdor [52]. They called it the �barriers
to parallelism� [52]. In their �eld study of multi-device work�ows, they have
described four work�ow patterns, one sequential pattern and three parallel
patterns:

Producer-Consumer: a sequential pattern where the searched infor-
mation is going from one device to another device.

Performer-Informer: a parallel pattern where a device is used for
reference while the main work is done on another device.

Performer-Informer-Helper: the same as the second pattern but
with an additional device (helper) as another helper device. This helper
device can be used for example for extra calculations or quick look up.

17 CHAPTER 2. State of The Art

Controller-Viewer/Analyser: a parallel pattern where various as-
pects of a single task were executed on multiple devices. The best exam-
ple here is using our smartphone as a remote controller for a slideshow
on a television.

Santosa and Wigdor have also mentioned some interesting shortcomings
for parallel patterns. The �rst shortcoming is the lack of support for moving
documents or applications states between di�erent devices. They formulate
it as follows �participants with many devices available have the opportunity
for rich parallel usage, yet they remain limited by the lack of cross-device
interaction supporting this� [52]. The second mentioned shortcoming it the
di�culty to know the location of nearby devices without additional hardware.
They formulate it as follows �parallel patterns in particularly would bene�t
from devices being mutually aware of each other's location, proximity, and
orientation� [52].

2.3 Challenges of Cross Device Interactions

Many questions arise when we need to develop a particular solution with an
interaction between di�erent devices. We usually deal with di�erent types
of devices, ranging from laptops, �xed computers, head mounted displays,
smart watches, but also interaction with IoT devices or real objects via RFID
tags. We can have devices that can only track input request, like sensors, eye
tracking, gestures or voices. Other devices can maybe produce only output
request, like information screens without input devices like a mouse or key-
board. But, most of the devices can managing input and output requests,
like smartphones or tablets. We see, what is already mentioned by ubiqui-
tous computing, an evolution where these devices become more and more a
part of our daily life. Which technology can we use for these interactions
that take place between these devices? Can we do an ad-hoc connection? Do
we need some client-server architecture to store some data in the cloud?

Hereby, Detection, Tracking and Communicating are three important
terms for cross-device interactions. Marquardt et al. [38] have described the
Gradual Engagement Pattern, where many interaction techniques and ap-
proaches have been proposed for the distributed con�guration problem. Be-
fore a device can interact with other devices, it must be aware of the other de-
vices and their capabilities. Some systems will only do a detection[22, 27, 26],
others will also track the devices[40, 29, 47, 39]. Understanding what infor-
mation can be used on each device. Marquardt et al. have summarised

Challenges of Cross Device Interactions 18

three important challenges within multi-device environments [38]: (1) De-
vice Pairing, (2) Awareness and revealing of information and resources and
(3) Transferring information from one device to another.

2.3.1 Detection - Device Pairing

For Device Pairing, we typically think about two important steps. First,
we must identify the target devices and afterwards we must setup a secure
communication channel between these devices. Both of them are already big
and di�cult challenges to treat. If we also want that the di�erent devices have
some awareness of each other's position then we are facing another additional
challenge that we will discuss in more detail in the next section. For example,
as a person, we can see with our eyes that two or more devices are lying next
to each other on a table and we can see some mutual structure between them.
But, it is a challenge to �nd some algorithm so that each device can detect
another device and vice versa but also to know their mutual positions.

Shortcomings

A pairing process that is frequently used for device pairing is an explicit
pairing system. For a Bluetooth connection between a smartphone and a
Bluetooth speaker, we can create some shared secret key, like a pass phrase
or some PIN code between these two devices. The disadvantage of this
process is that each pairing process requires some human input to manually
connect these two devices. Bluetooth is one of the more popular short-
range wireless technology today for device pairing. The mobile devices can
make a connection with each other using radio waves technologies such as
Direct Wi-Fi, Bluetooth or Near Field Communication (NFC), where each
connection has their own advantages and disadvantages. Apple Continuity12

is very popular because it allows a data exchange with nearby devices and we
can even transfer the current application state from one device to another.
But, it only works between iOS-devices. A similar tool exists for Android
and Windows devices, namely Airdroid13.

Hence, the spontaneous device sharing problem is a limitation for a
lot of current technology. We have to know the other device name so that we
can manually con�gure the connection between the di�erent devices. Most of
the time, extra software installation is needed or we need some special hard-
ware, like a camera, or some synchronous gestures to make the connection.
Examples of such a gestures are the following, shaking the devices, using a

12http://www.apple.com/macos/continuity/
13https://airdroid.com

19 CHAPTER 2. State of The Art

pen, bumping or simultaneously pressing a button or some other movements
to connect the devices. For every new device, we need to repeat these ges-
tures. For example, Frosini et al. [22] can dynamically add or remove devices
with the use of a QR code. Stitching [27] has an easy device pairing because
they are connecting the two devices with their pen. Hence, no computer
names are needed to connect the di�erent devices. The position of the de-
vices has an important relation. We can copy images by stitching from one
device to the other with a feedback of the transfer to the users.

Existing Solutions

While Apple Continuity is using the Bluetooth connection, Conductor [26]
is a framework that uses NFC for making devices to join a cross-device ap-
plication. This will work when two NFC-enabled devices come close to each
other. At that moment they establish a communication channel to exchange
information over Wi-Fi. This will allow the devices to connect to the same
remote WebSocket server. Certain companies use nowadays Bluetooth bea-
cons to detect how long clients are in their branch o�ce and to propose them
to give some feedback after their visit.

2.3.2 Tracking - Awareness

Awareness is another important concept when we are using multiple devices.
It is handier for the user if there is good awareness of device presence. Device
augmentation can be a way of making devices aware of surrounding devices.

Shortcoming

If we could have some physical awareness of the devices, we could also send
parts of an image to the di�erent devices so that we can, for example, spread
one picture on four devices to see one larger picture. This option is also miss-
ing in Conductor and Sanctorum and Signer [51] described that Conductor
and a lot of other systems support only the distributions of applications as a
whole. Users cannot transfer only parts of an image or a document. In cer-
tain situations, this may be a shortcoming and it is better to have a system
that at least supports a �ne granularity. Therefore, the devices must be �rst
aware of each other and we will describe some existing solutions.

Existing Solutions

The most e�ective solutions for making devices aware of their surrounding de-
vices is by using some sensors. Infra red sensors can be used. It will only work

Challenges of Cross Device Interactions 20

Figure 2.5: HuddleLamp: a desk lamp with an integrated RGB-D camera

if there is a direct link between the sender and the receiver. Merrill et al. [40]
described Siftables which are small cubical devices with a colour LCD, an
accelerometer and four infrared receivers. This last one will allow them to
detect other Siftables. Instead of infra red sensors, MagMobile [29] uses
magnetism for detection. Detecting and tracking other devices can be done
because bringing two magnetic �elds close to each other makes them dis-
tort. They have developed a external magnetic sleeve to detect other de-
vices. Therefore, to continuously track and calculate the relative position of
other devices, they have attached an Arduino board to the sleeve that sends
measurements to a shared server.

Another technique for device pairing is by using one or more camera(s).
The cameras will detect and track people and devices by using image pro-
cessing algorithms. An example of such a system is HuddleLamp [47] which
mounts a camera into a desk lamp and the camera will track all the de-
vices that are lying on a �at surface like a desk (Figure 2.5). This system
has a very limited space range, but on the other hand, it is cheap. The
Proximity Toolkit [39] is a more expensive alternative because this system
requires an entire room with cameras and a 3D model of the room. But, we
have a greater space range and it can track devices, people, gestures, posture
and non-digital objects. Therefore, there are many more options compared
to Huddlelamp.

Device awareness can also be met by the use of Acoustic Sensing, which is
a technique that uses the microphone of the devices to track device positions.
SurfaceLink [24] proposed an approach for the detection of devices using
acoustic sensing. All the devices must be �rst placed on a �at, rough, suitable
surface. We can then connect two devices by moving with the �nger on the
surface from device A to device B. Both devices have detected that sound on
the table and by communication that information with each device on the
table, both devices are able to determine their relative position.

21 CHAPTER 2. State of The Art

Figure 2.6: Client-server architecture

2.3.3 Communication - Transferring of Data

In the two previous sections, we have described di�erent technologies to make
a spontaneous connection and the awareness between various devices. In this
section, we will dive deeper into how we could exchange such data informa-
tion. We can divide this is in three sorts of communications: client-server,
same wireless network and short-range wireless communication. We will
mention some shortcomings and existing solutions for each of them.

Client-Server Architecture

The client-server architecture, which is shown in Figure 2.6, is the most fre-
quently used setup for communication between di�erent devices. The setup
is not di�cult and straightforward. We have a shared remote server and all
the devices know already how they must connect to that remote server. They
have a knowledge of TCP connections, WebSocket or REST to make that
connection.

A lot of applications and frameworks [26, 18, 9, 66, 58] are using this
architecture. Hence, they need to know the server beforehand and a shared
login is needed to make the connection to the remote server. Hence, it limits
the possible interaction space. Most of these frameworks are web applica-
tions and are deployable on a wide variety of web-enabled consumer devices.
Direwolf [34] needs an internet connection and it uses widgets that can be
shared, reused, mashed up and personalised. A widget is a self-contained
mini-application, but it only works for web applications. Instead of widgets,
we can �nd a little bit the same principle in Panelrama [66], where the com-
plete UI is divided into di�erent panels by surrounding a speci�c group of
HTML5 code with the panel tag which is illustrated in Listing 2.1. Properties
are attached to each panel using JavaScript (Listing 2.2), that will allow to

Challenges of Cross Device Interactions 22

distributing each panel to di�erent devices that have an internet connection.
For example, a video to a large device and the remote controller of the video
to a proximal device. The web applications are following the single user on a
single device computing model. It is a pity that a lot of frameworks support
multi-devices that only works for a single user. To have a good interaction
between a lot of di�erent users and devices, we must have a support for a
multi-device, multi-user collaboration.

<panel name="VideoPanel">
<div class="{{panelType}}" id='{{panelId}}'>
<iframe id='player' class="youtube−player"></iframe>

<div>
</panel>

<panel name="PlaybackPanel">
<div class="{{panelType}}" id='{{panelId}}'>
<button class="button" id="play">Play</button>
<button class="button" id="pause">Pause</button>
<button class="button" id="stop">Stop</button>

</div>
</panel>

Listing 2.1: Sample HTML template with panelType and panelId

function VideoPanel(stateVariables, id) {
this .type = "VideoPanel";
this .typeName = "Video Panel";
this . a�nity = {physicalSize: 5};

// playbackState may alternate between "play",
// "pause", and "stop"
this . stateVariables = {
playbackState: {defaultValue: "stop", sync: true}

};

Panel. call (this , id) ;
}
VideoPanel.prototype = new Panel();

Listing 2.2: A panel de�nition

Instead of using a client server architecture, Frosini et al. [22] are us-
ing a client side (presentation) and an engine side (distribution manager).
Hence, an internet connection is not always needed and it supports o�ine
interactions. Weave [11] and Connichiwa [54] are other examples of frame-
works that can be used anywhere. There are using a peer to peer (P2P)
connection that can be realised with a Bluetooth14 connection or with a
Wi-Fi connection where one device is the host. Stitching [27] is also not
limited in space, because the stitching server is hosted on one of the devices.
ReticularSpaces [4] is based on the concepts and principle of Activity-Based

14https://www.bluetooth.com

23 CHAPTER 2. State of The Art

Figure 2.7: P2P Architecture

Computing (ABC) [12]. In contrast to the 3rd and 4th generation of the ABC
infrastructure where the Activity Manager is located on a central server, each
peer (client) has an instance of the activity manager running. Each client
can also run the UI client which knows the network address of its activity
manager. So, we have much more �exibility for adding and removing devices
without a space limitation.

Same Wireless Network

Instead of using a shared remote server like in the client-server architecture,
all the di�erent devices can make a connection to the same wireless network.
An internet connection is not really needed and devices can communicate
directly and send information to each other. A popular system, therefore, is
a Peer-to-Peer (P2P) networking system which is illustrated in Figure 2.7. If
we look to the evolution of P2P, we can distinguish two di�erent generations
of P2P. The �rst popular P2P network system example was Napster. A very
popular P2P network for sharing music �les. It has a cluster of dedicated
servers that maintain the index for all the surrounded peers. All the peers
in the second generation have the same functionality, which makes it a pure
P2P architecture. Each peer can discover and query for resources. A remote
server like in a client-server architecture is not needed, each peer can act as
a server as well as a client. Gnutella was the �rst decentralised protocol for
P2P applications. Decentralised means that there are no servers, but there
are only clients in the network. Unlike Napster, where the entire network
relied on the central server, Gnutella can not be shut down by shutting down
any one node and it is impossible for any company to control the contents
of the network. Another example of a popular P2P network is the Bitcoin
network which is described by Satoshi Nakamoto [41]. This is a very robust
digital payment system which has no central authority like in a traditional

Challenges of Cross Device Interactions 24

bank transfer. And it has solutions against malicious entities and entities who
goes o�ine, thanks to their P2P network in combination with cryptography
and the Block chain.

Working on the same wireless network can be useful if an internet con-
nection is not really needed to ful�ll the device interaction. A problem here
is that the user still needs some knowledge about the network and the needed
con�guration, which can be a challenge to detect the correct device on that
network. Another challenge is security. Prevent eavesdropping is more di�-
cult for wireless communications, then for a closed wired network. For work-
ing on the same wireless network, Lucero et al. [37] have proposed a solution
so that devices do not need to know some knowledge about the number of
devices or their network addresses. They will broadcast all received packets
to all connected devices. Conductor [26] uses the principle �Cues� to broad-
cast a message to all the devices. Each user can accept the message and can
continue their work on that device. There is also the possibility to select
a target device to send the message. We can clone the session to another
device and use one keyboard on multiple devices (duet).

Short-Range Wireless Communication

Short-Range Wireless Communication is already mentioned for device pair-
ing. Bluetooth and NFC are the most used connections in commercial prod-
ucts. The Bluetooth Special Interest Group (SIG) has launched a new ver-
sion of Bluetooth, called Bluetooth 515. The enhancements of Bluetooth 5
is focused on increasing the functionality of Bluetooth for the IoT. With 4x
range, 2x speed and 8x broadcasting message capacity (255 bytes instead of
31 bytes), it continues to evolve to meet the needs of the industry as the
global wireless standard for simple, secure connectivity. Bluetooth 5 and
beacons can broadcast promotions of shops, restaurants, etc. at the moment
that someone is passing them or if someone leaves the shop they can open a
website or app asking to give a little feedback. Beacons can also be used for
indoor-navigation, where there is no GPS signal. Bluetooth 5 has again a
reduced energy consumption version: Bluetooth 5 Low Energy. This version
can create connections without user authorisation which makes Bluetooth
again more interesting for new applications in commercial products.

NFC is not so popular, because not all commercial products have this
option and a close proximity is needed. The connection is established when
two NFC devices are bought within the distance of 4 centimeters. NFC is
more used for making a handshake information between devices. NFC is very

15https://www.bluetooth.com/specifications/adopted-specifications

25 CHAPTER 2. State of The Art

intuitive, because they only require a simple touch to make the handshake.
Conductor [26] for example is using NFC for the initial handshake and there-
after the devices will join a common, remote WebSocket server. Therefore,
Conductor avoids large amount of data over NFC, but on the other hand,
Conductor requires at that moment an internet connection. Hence, Con-
ductor can not be used anywhere. Android Beam16 will share the current
application state of another device, by putting the devices back to back. For
example, to share the currently active website. So, with Bluetooth and NFC,
it is easier to make a device pairing, but transfer a large amount of data is
di�cult. There is also a limitation of devices that can connect simultaneously.
NFC only works for a really short distance between the devices. Bluetooth 5
tries to solve some of these problems. Bluetooth LE will be able to increase
its stability and range in the future through a mesh network like for Wi-Fi.
SIG has announced their support of a mesh technology17 for establishing a
many-to-many device communications. The big advantage is that Bluetooth
and NFC are not depending on space and can be used anywhere.

2.3.4 Flexible and Customisable

If we investigate the frameworks for distribution interactions, we can deter-
mine most of the time that these are built for speci�c applications [58, 27,
18, 22, 34, 28], and therefore, they are not so �exible or customisable. For
example, with Stitching [27], we can only interact between two devices with a
pen and is not always accurate. Watchconnect [28] is an application speci�c
for smartwatches who can interact with other devices.

A good approach to be �exible and customisable is the idea of component
based software development (CBSD). We can then combine the di�erent
components to more complex systems [60]. The concept of active components
(ACs) can be used to link pieces of components [57, 59]. Each AC has some
program code that may be an application on their own or that can be coupled
to have a richer application. Developers can reuse these ACs without having
to write any code themselves. Only, when they need some new functionality,
some programming e�ort is required to write a new AC. These ACs are
standalone lightweight components that can perform some operations on the
server or on the client side, see Figure 2.8. One advantage of ACs is that
we can store this programming code in a DB and do some remote method
invocation. The concept of active components, therefore, provides a clear
separation of interaction design and application logic.

16https://developer.android.com/guide/topics/connectivity/nfc/nfc.html
17https://www.bluetooth.com/what-is-bluetooth-technology/how-it-works/

Challenges of Cross Device Interactions 26

Figure 2.8: Active Components

Figure 2.9: Paperpoint: client-server architecture

PaperPoint [58] is an interactive paper application that uses the idea of
ACs (Figure 2.9). It is a cross-media information platform that enables links
between arbitrary digital or physical resources based on a resource plug-in
mechanism. We can turn the development of cross-media interfaces into
an authoring activity rather than a programming activity for a maximum
�exibility [57, 59]. It is easily extensible with the concept of Selectors and
Resources [57, 59]. The selectors representing the elements within the re-
sources. Hence, in PaperPoint, we have the shapes (selectors) on the pages
(resources) (Figure 2.10). For a movie, we can have the time span as the
selector and the source video as the resource.

Direwolf [34] describes widgets as a self-contained mini application with
some limited functionality. There the user can mash-up multiple widgets in
widget containers, that can be shared, grouped and personalised. Direwolf
is based on a publish-subscribe mechanism. Android has an url based navi-
gation for opening a browser (http:) or calling a telephone number (tel:) or
opening a map location (geo:), which could be interesting.

le-mesh

27 CHAPTER 2. State of The Art

Figure 2.10: iServer Resource Plugin

Authoring tools are interesting because we need less programming skills
and it can improve the maintainability and the rapid prototyping of appli-
cations. It can help to limit the gap between the concept design and the
full implementation, but on the other hand, it is more di�cult to make very
speci�c application in order to meet the requirements of the stakeholders.
This is also typically for software packages. We buy some core functionality.
If the user customises that package, it will be more di�cult to upgrade with
the new possibilities of some future functionality. Maintainability will be
better if we do not customise the software packages.

2.4 Interaction Techniques

There exist a lot of techniques to establish a connection between devices. We
will give a small selection of commonly used techniques, but there exist many
others. We have already mentioned some of them in the history section of
cross-device interaction and in the section of device pairing and awareness.
Table 2.1 gives an overview of the treated interaction techniques in this paper.

HuddleLamp [47] uses the camera inside the lamp and digital image pro-
cessing to track devices on the �at desk, but also to track the hands of users.
They have the �pick, drag and drop� gesture. Pick up an object of one device,

Interaction Techniques 28

Interaction Techniques System
Cross-Device pinching Pinch [43]
Deep shooting, deep posting Deep Shot [9]
(camera)
Digital Pen Stitching [27]

Pick-and-drop [48]
Dual Device User Interface Design [49]

Motion Based: tilting, tapping JerkTilts [1]
and jerking Tilt-And-Tap [17];

IntelliTilt [63]
Peek and pop Apple 3D touch
Pick, drag and drop (camera) HuddleLamp [47]
Real object (for example a pen) Proximity Toolkit [39]
QR code scanning CTAT [18];
(camera) Frosini et al. [22];

Panelrama [66];
Swiping, touching and tapping All touchable mobile devices [51]
Voice Siri

Cortana
Alexa Voice Service
Google Now
Google Assistant

Table 2.1: Interaction techniques

drag it and drop it on the other device. Proximity Toolkit [39] can detect
with all their cameras a lot of device and user movements and non-digital ob-
jects. The authors describe a media player application, that can stop playing
when users divert their attention to another user or a non-digital object such
as a magazine. They describe how certain objects like a pen can be used to
pause and resume a movie or show information about the movie when a user
enters the room. Stitching [27] describes how a pen can be used to connect
two di�erent devices. It is a very intuitive pen gesture that is easy to under-
stand for users. Pinch [43] describes a cross-device pinching gestures that are
based on synchronised swiping gestures across two devices. A cross-device
pinch is when there is a swipe to the edge on one device and at the same
time a swipe to the edge of another device. Pinch knows the relative posi-
tion of all the devices from these gestures. Tilt-And-Tap [17], IntelliTilt [63]
and JerkTilts [1] explain some motion-based interaction techniques. They
described tilting and tapping in combination with motion sensors. Tilting

29 CHAPTER 2. State of The Art

gestures are de�ned based on the speed an orientation of the device as mea-
sured by accelerometer and gyroscope sensors. Jerking action is more a rapid
movement from one position to another. Often it is a small movement and
in some cases may involve a movement forth and back so that the device
returns to a resting position. Jerk tilting can be used as a toggle gesture
for displaying or hiding menu items. Continuous tilting is when the system
performs an action continuously according to the speed of the device. Both
can be used in isolation or in combination with di�erent other kinds of touch
actions.

Another popular interaction technique is a voice. Apple has Siri18,
Microsoft has Cortana19, Amazon has Alexa Voice Service20 and Google has
Google Now21 and Google Assistant22. Google Now works from within the
Google Android and iOS app, while Google Assistant is found in Google's
Allo chat app23 and integrated into Google Home24 and Google's Pixel phones.
Maybe in the future, the two virtual assistants will merge into one. Bank
companies have now the possibility to make bank transfers by talking with
Siri to our smartphone25.

Swiping, touching and tapping are already frequently used gestures. Ap-
ple has unveiled since its iPhone 6S and iPhone 6S Plus a new type of screen
that can detect di�erent pressing levels with 3D touch and add consequently
new gestures. Apple's new iPhones now recognises force as well as gestures
and o�er more accurate haptic feedback. This means apps are now more ac-
cessible thanks to variations in pressure o�ering previews, quick swiping and
more. With Peek and Pop26, users can have now more menus. �Peek� is when
a user presses a little bit harder on the screen. �Pop� is when the user presses
more. �Peek� can for example opening a pop-up with the content of an email.
�Pop� will bring the user to a new place in the operating system. We can,
for example, jump straight to a sel�e cam from the home screen. There exist
much more possible interaction techniques. Hence, Table 2.1 contains only a
small part of the various possibilities.

18http://www.apple.com/ios/siri/
19https://www.microsoft.com/en-us/mobile/experiences/cortana/
20https://developer.amazon.com/alexa-voice-service
21http://www.google.co.uk/landing/now/
22https://assistant.google.com
23https://allo.google.com
24https://madeby.google.com/home/
25https://www.youtube.com/watch?v=Gflp16fWTog
26https://developer.apple.com/ios/3d-touch/

Design Guidelines for DUIs 30

2.5 Design Guidelines for DUIs

Guidelines can provide us with a good structure with a corresponding stan-
dardisation around possible design issues. They can help us to propose some
responses that may lead to the most wanted solution. It will help the de-
velopers and the designers to have some common principles to achieve their
solution. Therefore, they must be aware and learn the di�erent principles to
apply them in their projects.

Fisher et al. [21] have presented three peer-to-peer distributed user in-
terface applications: a media player, a multiplayer Tetris and a multi-device
collaborative search system. They have derived general design guidelines for
peer-to-peer DUI design:

Consistency: Keep a consistency between the user interfaces of mul-
tiple devices.

Synchronisation: All the actions of one device must be re�ected on
the other devices.

Heterogeneous Hardware: Allow various mobile and desktop sys-
tems to participate.

Volatile Device Ecosystem: Applications must cope with devices
that can join or leave an application at any time.

Limited Resources: Applications must cope with limited resources
on (mobile) devices.

Data Transfer: Applications should distribute limited resources au-
tomatically when necessary.

Physical Space: Devices can join or leave an application at any time,
so they must be autonomous. One device should not be dependant of
another devices.

Asymmetric Functionality: Sometimes it can be interesting that
each device have some di�erent functionality depending of their current
device ecology. So, it make sense to distribute functionality asymmet-
rically between various devices.

31 CHAPTER 2. State of The Art

2.6 Conclusion

Most cross-device frameworks are web based. A more general-purpose frame-
work is missing and most of the frameworks are made for special purposes or
require some special setup for example camera's, remote server, which made
them di�cult for commercial everyday products. Most of them are also made
for special operating systems or special hardware.

Sequential interaction across devices is no problem anymore with all the
already existing cloud services. But, none of them have some support for the
parallel use of devices on the same task. And, cloud services can also be a
security risk for data that is pushed to servers of di�erent companies.

The focus is more on mobile devices instead of laptops and desktop com-
puters (still used for more productive tasks). Cross-Device Interaction is very
tied to mobile devices.

Cross-Device interactions can only work if they are fast and reliable. Re-
mote servers can solve this, but then it is more di�cult to make interactions
that can work anywhere.

Conclusion 32

3
Proof of Concept Applications

3.1 Towards Rapid Prototyping of XDI

3.1.1 Focus

The focus is to start searching for e�ective ways for the development of
cross-device interactions. We have seen in Chapter 2 that it is still a challenge
for developers to create applications that work with multiple devices on the
same time. Developers have to deal with the problem of how they will setup
the di�erent protocols to do the communications between devices and how the
users can connect them in a user-friendly way. Adaptability and awareness
are two important principles. Maybe the users have no Internet connection,
but they still want to communicate between di�erent devices close to them.
Or they only want to broadcast a part of the video �le. Hence, support for
o�-line interactions with a high granularity is the �rst requirement of our
focus.

Reusabiltiy is the second important requirement. Don't repeat yourself
(DRY) or Duplication is Evil (DIE) is an important principle for the main-
tainability of a software program. If we have the same code in multiple places,
it is more di�cult to change some logic in the repeated coding. It will take
more time and a risk for higher potential errors in the coding. And if we have
di�erent reusable components, we can maybe combine these to have richer

Towards Rapid Prototyping of XDI 34

applications without a lot of needed coding. We want to reduce complexity.
The principle of component based software programming can help to divide a
system into pieces with a single responsibility. Pieces that can be put maybe
into a framework. It is better to have many speci�c pieces than one general
purpose piece. It is not needed to create pieces that will never be used. We
create only a component when it is useful, we do not want to overwhelm
users with too many pieces. Keep it Simple Stupid (KISS) and You Aren't
Gonna Need It (YAGNI) are other principles for software engineering that
we need to take into consideration where possible.

Having a Distribution Manager is the third important requirement, be-
cause we want to have a system that is customisable at run-time. A visual
authoring tool can help users of our system to connect all these di�erent
components instead of programming them. Creating a distribution manager
as a sort of visual programming language where users can easily adapt the
functionality and distribution of the di�erent components without modifying
the programming code of the di�erent pieces.

3.1.2 Prototyping and Rapid Prototyping

It is not so di�cult to get a description of the clients to know what they want
in global lines. But, getting complete, precise and correct requirements, is
much more di�cult. A possible approach is to create a Proof of Concept
(POC) where we built and try some possible systems. Therefore, prototyping
can help to create these trial versions of a system. Further, it will help to
clarify all the functional and usability requirements for the user. Most of the
time a POC is used to identify some possible critical design issues and to see
if everything could work that way before the �nal version will be built.

We can have two di�erent approaches for rapid prototyping (RP): itera-
tive and evolutionary prototyping [5]. The goal of RP is to create quickly a
wide variety of possible systems and choose one speci�c system and throw
the other away. RP will help to detect and �nd problems long before the real
start of the development.

Rapid Prototyping of XDI

The best way to help the developers to make a rapid prototyping of an
application is by making a framework with parameters to create something
rapidly.

Because we want to know for which problems a framework can help the
developers and which components can be interesting for a cross device in-
teraction application. We will �rst create two di�erent proof of concept

35 CHAPTER 3. Proof of Concept Applications

#. WSDM: Web Semantics Design Method 3

statement. It is formulated in natural language and must describe the
purpose, subject and target users of the web systems. In fact, the mission
statement establishes the borders of the design process. It allows (in the
following phases) deciding which information or functionality to include or
exclude, how to structure it and how to present it.

Figure #-1. WSDM Overview

The next phase is the Audience Modeling phase. The target users
identified in the mission statement are refined into so-called audience
classes. This means that the different types of users are further identified and
classified into audience classes. The classification is based on the
requirements of the different users. Users with the same information and
functional requirements become members of the same audience class. Users
with additional requirements form audience subclasses. In this way a
hierarchy of audience classes is constructed. For each audience class relevant
characteristics (e.g., age, experience level) are given.

The next phase, the Conceptual Design is used to specify the information,
functionality and structure of the web system at a conceptual level. A
conceptual design makes an abstraction from any implementation
technology or target platform. The information and functionality are

Figure 3.1: Steps for WSDM (Web Semantics Design Method)

applications that will have a lot of interactions with a possible high gran-
ularity and the support for o�ine and online interactions. We will explain
the idea and the implementation of the two POC applications in Chapter 3
and 4. And �nally, we will do some reverse engineering to propose a possible
solution for a framework that is extensible, �exible and customisable. Hence,
we will give some design guidelines for building such a framework.

3.2 Methodology

We will create two POC applications, that are not easy to implement or
where we did not �nd any alternative solution. �CrossWoW Auto� is the
�rst POC application that we will create. The second POC application is
�CrossWoW Home� and is created to �nd some common source code that
exists in both applications. With this information, we will propose a possi-
ble future library that can be created and investigated for future work. The
library must have the ideas that are mentioned in the previous section.

Description of the POC Applications 36

Figure 3.2: POC: CrossWow Auto

Before we will start with the real implementation, we will use a part of
the Web Semantics Design Method (WSDM)1 methodology [13, 14] to come
to our paper prototypes. Figure 3.1 shows the di�erent steps of the WSDM
methodology. There is also a cycle in this methodology. For example, we have
adapted our �rst prototypes because of logical and more technical reasons
that we have encountered during development. We will explain each step of
this methodology in the following sections.

3.3 Description of the POC Applications

3.3.1 CrossWow Auto

The purpose of the CrossWoW Auto application is to distribute media �les
from one device to all the other connected devices with some �ne granularity
and without the need of an internet connection in a user-friendly way.

We want to use it in the following scenario where a family with 3 children
goes on a holiday trip with their car. The father and the mother have both
a smartphone and the kids have all their own mini-tablet. The parents want
to share media content (video, images and audio) to the multiple devices in
their car. Figure 3.2 shows a visual representation of the wanted scenario in
our car where the main device is the smartphone of one of the parents which
is in front of the car. The kids have attached their tablets on a special �tablet
holder� which is attached to the front seats. The parents want to broadcast

1https://wise.vub.ac.be/content/wsdm-web-semantic-design-method

37 CHAPTER 3. Proof of Concept Applications

their media content to some speci�c devices at the back of the car. They
want to decide which device may have the remote controller (RC) that can
decide which content will be played on the di�erent devices. The image of
the video will be played on the di�erent devices, but the audio of the movies
must come from the radio boxes. Hence, the main device will send the audio
to the radio boxes and send the images of the video to the di�erent client
devices (publish subscribe principle). RC must work with gestures on the
device or with some limited voice control if the main device is controlled by
the driver of the car. It is also handy if we could copy con�gurations between
the di�erent devices of the parents.

Why

If each child has their own DVD player and they played all their own movie,
the parents hear a mix of audio in the car, which is a small room. Further-
more, the audio of each device goes always higher because each child want to
hear clearly the audio of their movie and this can lead to di�erent discussions
in the car.

Goal

Broadcast the image of a video �le to the di�erent devices and send the audio
of that video to the radio boxes (with some possible granularity) with support
for o�ine interactions. The app must have some Distribution Manager on
the engine side, which can block or allow some actions on all their client
sides. The Distribution Manager can allow certain devices to have a remote
controller with support for voice commands.

3.3.2 CrossWow Home

The goal of the CrossWoW Home application is to �nd some common source
code because this application will have the same purpose as CrossWoW Auto.
Namely, distribute media �les to other devices or to give them a remote
controller to decide how they want to interact with the media �les of the
main device. Figure 3.3 shows a visual representation of the wanted scenario
at home where a user has a lot of media content on their mobile device and
wants to show these content on another device, like a SmartTv or tablet for
example. The main user can also decide to show a RC with another user of
a device. The targeted user(s) can then decide when they want for example
to see the next picture of a slideshow or even download some of the pictures.

Mission Statement Description 38

In Figure 3.3, the right device has got the RC and can decide how he wants
to see the video in the middle that is located on the left device.

Why

People can show their vacation images on the television of their friends or
parents, where they can decide when they want to see the following image.
They can also copy the wanted images directly to their smartphone if the
main user allows this.

Figure 3.3: POC: CrossWow Home

Goal

Show and share media content with other people in a friendly way.

3.4 Mission Statement Description

The purpose of the POCs is to provide a mobile app where users (Head
Users) can show and share media content with other users (Client Users) in
a user-friendly way. Client Users can also become a Head User if they want
to share their media. The subject is a di�erent kind of media of the head
user with a high granularity. Hence, the target audiences are the head user
and the client users. The head users are the people that will share or show
their media content. The client users are the people that can download and
control the media of the head user.

39 CHAPTER 3. Proof of Concept Applications

Figure 3.4: Audience Classes: Head Users and Client Users

3.5 Audience Modeling

3.5.1 Audience Classi�cation

Figure 3.4 shows that the Audience Classi�cation consist of two types of
Audience classes: Head Users and Client Users.

3.5.2 Audience Characterisation

Table 3.1 gives an overview of the di�erent characterisation for the head
users and the client users. Basically, there is no di�erence between the two
Audience classes. For CrossWoW Auto, the Head User is an Adult and the
Client Users are children. They are both using the app in the car. Hence,
for usability, big buttons are needed. For CrossWoW Home, both audience
classes are normally adults or teenagers.

3.6 Requirements

The data that is needed in our application are media �les. We must at least
support an interaction with the local media �les of the main device. The
application must support MP4 video �les, MP3 audio �les, and the local
images. In the ideal solution, we would like to support multiple devices on
multiple OS. In our POC, we will only create the application in the native
Android language. But, we must search for an implementation that also
could work on iOS for example.

Requirements 40

Characterisation Head Users Client Users

Type of User Direct Direct
Motivation Share media content Download, share or

stream media content
Task Experience Spontaneously Spontaneously

Frequency Occasionally Occasionally
Task Knowledge Spontaneously Spontaneously

Use When needed When needed
Computer Literacy Average Average or Low
Number of Users No limitation No limitation

Training No No

Table 3.1: Audience characterisation for head and client users

3.6.1 Information Requirements

In the POC we will only support the English language. Table 3.2 gives an
overview of the used information.

ID Description

IR001 Information about the goal of the app
IR002 Information about the di�erent available media content

like video's, images and audio �les
IR003 Information about the connected head and client users

and their restrictions

Table 3.2: Information requirements for CrossWoW Auto and Home

3.6.2 Functional Requirements

Based on the descriptions of the POC applications, we have made a list of
all the functional requirements (FRs) with their corresponding usability re-
quirements (URs) in the ideal solution. The result of the analysis can be
found in Table 3.3. We have described the functionalities of some Distribu-
tion Manager for the main user who can block or allow some actions on the
target devices with support for some granularity.

Besides these requirements, there are some obvious requirements that
are typically needed for mobile apps: (1) users can download the mobile

41 CHAPTER 3. Proof of Concept Applications

application for free via the app store; (2) users must be aware of new versions
of the app and (3) new versions of the app must work with an older version
of the app (not for the new features).

FR UR Description

FR001 Allow to give a speci�c device name and modify
information about the device

UR001a Allow to de�ne the name of the device when the
application starts the �rst time

UR001b Allow to see the name of the device on each screen
UR001c Show some usability information in the settings

which can be changed at any time
(default startup screen, default �ltering)

FR002 Allow to easily browse and search for
the di�erent available media

UR002a Allow to search in the media in a user-friendly way
UR002b Allow to have only the necessary buttons and

big buttons in car modus
UR002c Allow to search in less than 0.5 second
UR002d Allow to have some sorting (name, date, ascending,

descending)
UR002e Allow to reminder the last chosen sorting (settings)

FR003 Allow to �nd other devices/users
UR003a Allow to �nd other device in a user-friendly way

FR004 Allow to see the restrictions (audio, video, remote)
for each device

UR004a Group for the head device and a separated group for
all the client devices. Eventually, group the client
devices by type of connection

FR005 Allow to switch between a head user (player device)
and a client user (receiver)

UR005a Allow to de�ne a default startup view. Always start
as a player device or as a receiver device

UR005b Allow to change if needed in a user-friendly way
in the menu of the settings

Table 3.3: Functional and usability requirements - Part 1

Requirements 42

FR UR Description

FR006 Allow to manage the restrictions for each device as
a head user (distribution handler)

UR006a Allow to manage in a user-friendly way which
device can hear some sound

UR006b Allow to do the same for the video track of a video
UR006c Allow to manage in a user-friendly way which device

can have a remote controller and which device can
have a download button to share a �le on a user
friendly way (only in home mode) (see FR008)

FR007 Allow to broadcast media content to di�erent client
users

UR007a Allow to do this in a user-friendly way with a maximum
of �ve clicks

FR008 Allow to receive media content from the head user
UR008a Allow to receive content in a user-friendly way taking

into account the restrictions
FR009 Allow to control media with a remote controller

(if allowed)
UR009a Allow to have a user-friendly way controller and in

Home mode with the ability to adapt it by creating
and modifying di�erent controllers (FR101)

FR010 Allow to have some granularity for video �les by
disabling the sound or the image of a video �le

UR010a Allow to do this with FR006 and the related URs
FR011 Allow to send the sound of a media �le to the

speaker of the car (BT, cable)
UR011a Allow to do this when sound is activated on the

head device with default output
FR012 Allow to have a remote controller with voice

commands
UR012a Allow to do this with only one click to accept voice

command

Table 3.4: Functional and usability requirements - Part 2

We also like to mention some URs that are not linked to a functional
requirement. The �rst one is learnability. We want that all users can use
the system without any form of training, therefore the system should be easy

43 CHAPTER 3. Proof of Concept Applications

to learn. Other important URs are consistency and attractiveness . Our
style guide must be followed on all the di�erent OS to have a consistent
look with an appealing layout and colour. We must, of course, implement
a reliable application with a certain degree of performance so that we can
interact with a least �ve di�erent devices at the same time. E�ciency is the
last requirement that we want to mention and that we can measure eventual
with some questionnaire where we test the satisfaction of the target users.

3.6.3 Navigation Requirements

The navigation must be clear and must follow the mobile principle of An-
droid, or target system where we will implement our POC applications.

3.7 User Object Model

In our application, we must store the information of the engine device with
all their connected client devices. Figure 3.5 show the engine device, which
is the CrossDevice entity with all their attributes. DisplayName will be
the logical device name. UniqueName will be the generated technical device
name from the framework that we will use which is explained in Chapter 4.
StartPlayerActivity, SortOrder and SortKey are needed to optimise the
usability of our application and can be changed in the settings of our appli-
cation. IsAudioEnabled, IsVideoEnabled and IsImageEnabled are needed
to know if we must show the media windows. These properties are managed
by the Distribution Manager screen in our application. The IpAddress is
needed so that the connected clients can �nd the media �les of the engine
device. Why this attribute is needed, is explained in Chapter 4.

Figure 3.5: ER diagram for the engine device with the connected clients

Style Guide 44

Figure 3.6: ERD for the engine device with the connected clients

Figure 3.6 shows the Entity Relationship diagram for the playlist func-
tionality. A playlist belongs to a speci�c media Type: audio, video or images.
And each playlist has their own Title and Description. With the attribute
IsActive, we can delete temporary a certain playlist. In one playlist, we can
have zero or multiple items with each their own Title and URI to specify
where that media �le can be found on the storage of the device. With the
attribute Type, we could maybe mix audio and video �les in one playlist.
But, we will not allow this mix in our �nal implementation.

3.8 Style Guide

We have used the Material Design for Android2. We added a logo which is
shown in Figure 3.7 and follows the colour style guide of Android as well.
The logo represents the wireless interaction between devices.

3.9 Design

3.9.1 Paper Prototypes

Before starting with the paper prototypes, it was important to get acquainted
with the Android Design Principles3 and with the Android Language. Since
Android is based on the Java language, it was important to start learning the
basics of Java. That is why I started reading the book Head First Java [56].
After that, I started learning Android by writing some small test applications

2https://developer.android.com/design/material/index.html
3https://developer.android.com/design/get-started/principles.html

45 CHAPTER 3. Proof of Concept Applications

Figure 3.7: Logo of our POC application

in Android Studio, the tool to develop Android apps. These test applications
have learned me some speci�c Android Material Components, like Floating
Action Buttons, Cards, Navigations, Lists and the di�erent layout possibil-
ities. With this background, I have created my paper prototypes. These
paper prototypes have gone through several cycles to get to the paper pro-
totypes that are �ndable in the appendix A.1. We have focused our paper
prototypes on the POC CrossWoW Auto, because that was the idea with
the highest challenge and without knowing whether we could actually realise
our idea.

These paper prototypes were still changed during implementation phase
because it was logical and technically a better solution to adjust our �rst
idea a little bit. We will explain why in the next Chapter. But this cycle of
adaptation of the paper prototypes is a normal evolution in the design of an
application.

On the next page, we show some paper prototypes examples. Figure 3.8
show our �rst design of our Welcome Screen. Figure 3.9 shows the �rst
design of the list of all the local video �les of the engine device. We can
play directly or Add to Playlist each video item. Figure 3.10 demon-
strate our �rst menu and settings screen. All these prototypes can be found
in the appendix A.1.

In the next Chapter, where we explain our implementation, we will start
by developing our Android Prototypes.

Design 46

Figure 3.8: Our �rst welcome screen

Figure 3.9: Player mode screen

47 CHAPTER 3. Proof of Concept Applications

Figure 3.10: Menu and settings screen

Design 48

4
Implementation

In the previous chapter, we have designed our �rst paper prototypes. Using
these prototypes we go to the next phase of our design cycle, which is the
implementation of the prototypes. We will separate our implementation into
di�erent sub-problems. Thereafter, we will delegate each sub-problem to its
own analysis and implementation. The goal, to distribute a media �le to dif-
ferent devices with some interactions, has multiple challenges where we must
�nd a solution for: try to �nd other devices; send messages between them;
communication technology; streaming; synchronising; transfers; granularity
and a remote controller.

4.1 Android Prototyping

4.1.1 Why

We have ended the previous chapter with our Paper Prototypes, which is a
variant of a throwaway prototyping or rapid prototyping. Hence, we have
created a model that will not become part of our �nal delivered POC ap-
plication. Instead of creating the screens in a software tool like for example
Axure1, we want to have some evolutionary prototyping or breadboard pro-
totyping, where the main goal is to make a strong prototype that we can use

1https://www.axure.com

Android Prototyping 50

and re�ne in our target POC application. The bene�t of this technique is
that we can still make some little changes during the sub-analysis that we
will make in our implementation phase. It is a more Agile approach where
the solutions can evolve during the process of development. Because our tar-
get development will be Android, we will make these prototypes in Android.
Hereby, it is also possible to understand better the corresponding tool An-
droid Studio2, which is the o�cial IDE for Android, along with the di�erent
Android concepts.

On the next page, we show the results of two of our �rst Android proto-
types. Figure 4.1a was our �rst Android Welcome Screen. We have modi�ed
this prototype in a later phase, because of a more technical and logical rea-
son. The Receiver Mode which is visible in the menu of Figure 4.1b, will
move to our Welcome Screen. Another proof that prototyping is indeed an
iterative process.

4.1.2 Obstacles and Solutions

During that iterative process, we have encountered already some problems.
In our paper prototypes, we have foreseen big action buttons instead of the
default Android buttons. After some research, we have used the Android
Support Libraries3 in our development projects for these features. This phase
was interesting to learn some of the basics of Android, like the di�erent layout
possibilities, fragments, activities, lists, adapters and the Android manifest
�le. Some problems were solved by a simple adaptation of the manifest �le.

Extra used libraries:

compile 'com.android.support:appcompat-v7:25.1.0'

compile 'com.android.support:support-v4:25.1.0'

compile 'com.android.support:design:25.1.0'

compile 'com.android.support:recyclerview-v7:25.1.0'

compile 'com.android.support:cardview-v7:25.1.0'

2https://developer.android.com/studio/index.html
3https://developer.android.com/topic/libraries/support-library/setup.

html

51 CHAPTER 4. Implementation

(a) Our �rst welcome screen (b) Player mode screen

Figure 4.1: First screen of CrossWoW and CrossWoW Auto

4.2 Local Media Files

If we want to distribute some media �les, we must also have access to them
in order to show them in our application. To achieve this goal, we have �rst
made several separated test applications, and we have implemented the most
e�ective and visual solution in our POC application. In our design, we have
foreseen three di�erent types of media: video, audio and picture �les. To
limit the complexity of the set of all the di�erent formats that there exist,
we have �ltered these �les so that we only take MP4 and JPG �les. The
performance was another issue, but therefore we have used Glide4, an open
source image loading library for Android. Glide has helped us to make a list
of media images that makes the scrolling of our list fast and smooth.

4https://github.com/bumptech/glide

Device Pairing and Communications 52

Before a user can use certain system data and features, like for example
the camera of a phone, Android requires that applications request a per-
mission before they can use them. Depending on the Android version, the
application can ask all the permissions at the installation time of the ap-
plication. Therefore, the developer must mention all these permissions in
the manifest �le. But, from Android 6.0 (Marshmallow) certain permissions
must be explicitly asked the users the �rst time they will need that permis-
sion. Hence, these permissions are granted at runtime. This is very similar
to how iOS has worked for years. Users can feel safe that their camera or
microphone will only be used if they explicit give their consent. Another
runtime permission is to read the media �les from the Android device, which
we are doing in this phase.

Extra used library:

compile 'com.github.bumptech.glide:glide:3.7.0'

4.3 Device Pairing and Communications

4.3.1 Wireless Technology

Now that we have our Android prototyping and that we have access to our
�les, we can start to analyse how we can communicate between the di�erent
devices. In our POC application, we are sitting in a car. So, most of the
cars have not yet a local area network, like we may have at home. In some of
the new cars, there is indeed an optional expensive mobile data subscription
possible that can share the internet connection with multiple devices. We
want to meet everyone and so we look for a solution that can be used in all
the cars.

If we look to the current wireless technology, we have Wi-Fi, Wi-Fi Direct,
Bluetooth (BT), Near Field Communication (NFC) and Bluetooth Low En-
ergy (BLE). Android O will have another technology, namely Neighbourhood
Aware Networking (NAN) mode for Wi-Fi. NAN has the possibility to �nd
other devices and communicate over Wi-Fi without an access point. NAN is
a sort of a combination of Wi-Fi Direct and Nearby. NAN is also the abbre-
viation for Near-me Area Network or Neighbourhood Area Network, which
focus is on the communication between wireless devices in close proximity.
The di�erence with a Local Area Network (LAN) is that the device in a LAN
network must share the broadcast domain. In a Near-me Area Network, the
devices can belong to a di�erent network. Hence, the communication can go
from one LAN to another LAN via the internet. We have not investigated in

53 CHAPTER 4. Implementation

the NAN communication because this is a technology that only works with
Android and only with the very recent version of Android.

At this moment, BT is too slow to stream a video �le to di�erent devices.
If we also want to support the interoperability between them with di�erent
operating systems in the future. BT is also not possible because Apple has
their own version of BT. So, if we want a BT connection, we must investigate
our research in BLE which can communicate between an iOS and an Android
device. But, BLE is also too slow. We have also skipped NFC, because of
the needed distance between two devices. With NFC we can establish a
communication by bringing the devices within four cm of each other. NFC
can be used to pair two devices or in contact-less payment systems. But for
our POC application where the devices are at �xed positions in the car, it is
not a useful protocol.

Hence, we will investigate our analysis for a Wi-Fi hotspot or use Wi-Fi
Direct. We start �rst with Wi-Fi Direct because that seems to be the best
solution to transfer data at long distances without connecting to a LAN
network.

4.3.2 Wi-Fi Direct

We start by investigating in the-low level Android API's by consulting the
Android developer website about Wi-Fi Direct5. Our �rst conclusion was
immediate that it will be a tough solution to work with the Google APIs.
But, we give it a change and start by testing the Wi-Fi Direct demo6 from
the Google Wi-Fi samples. The problem was that sometimes it takes a long
time before our test devices have found each other and sometimes there was
no problem.

Thereafter, we have searched some literature about Wi-Fi Direct and
we have tested some frameworks. An interesting article7 was found on the
internet as part of the Thaliproject. The conclusion of that article is that
they have done a lot of research about Wi-Fi Direct but that they gave it
up after a time and used BLE or BT. Wi-Fi Direct Peer Discovery seems to
work but it was not possible to send enough useful information around. Wi-Fi
Direct Service Discovery, on the other hand, seems to be unreliable. Phones
do not �nd each other especially if they are from di�erent manufacturers.

5https://developer.android.com/training/connect-devices-wirelessly/

Wi-Fi-direct.html
6https://github.com/android/platform_development/tree/master/samples/

WiFiDirectDemo
7http://thaliproject.org/androidWirelessIssues/

Device Pairing and Communications 54

Hence, Wi-Fi Direct seems not to be a good solution. To be sure, we
have tested two other frameworks that use Wi-Fi Direct: Wi-Fi Buddy8 and
Salut9. Wi-Fi Buddy is a Wi-Fi Direct functionality that uses the android
APIs. Salut is also a wrapper around the Wi-Fi Direct APIs. For Salut, we
found some limit support and apparently there is also a Wi-Fi connection
needed on the host. Wi-Fi buddy seems to be a recent research and the
readme �le contains enough information on how to use Wi-Fi Buddy. But,
again if we test the demo application Wi-Fi-direct-tester10, we �nd the same
problems as we have encountered with the sample of Google. Our test devices
are coming from di�erent manufacturers with di�erent Android versions.

Another disadvantage that we have found later in our research is that
Apple has also a proprietary version of Wi-Fi Direct. So, we can not inter-
operate between an iOS device and an Android device with Wi-Fi Direct.

4.3.3 Wi-Fi Hotspot

Hence, turning one device into a Wi-Fi Access point or hotspot seems to
be the preferred way if we want to transfer a lot of data over a wireless
communication. The only disadvantage of this approach is that one user has
to manually setup a Wi-Fi Access Point and the other users must manually
change their Wi-Fi endpoint to the hotspot. So, we lose some usability with
this approach. A big advantage is that we can interoperate between devices
with di�erent OS.

4.3.4 Conclusion

Hence, the best solution that we have found now is using a Wi-Fi Access
Point. So, we must investigate how we can easily �nd and communicate be-
tween the other devices over a Wi-Fi connection. After some further research
and testing some samples, we will use the Alljoyn library for the communica-
tion between our di�erent devices. The decision is made on a positive testing
of one of their samples, a lot of online documentation and some support on
di�erent blog sites. The Alljoyn library is used by LG and Microsoft and
has now an alliance, called Allseen alliances. Which is a consortium of com-
panies like Qualcomm, Cisco, Panasonic, Sharp, LG, and HTC. The other
advantage of Alljoyn is that they can work over cross OS and cross hardware.

8https://github.com/Crash-Test-Buddies/Wi-Fi-Buddy
9https://github.com/markrjr/Salut
10https://github.com/Crash-Test-Buddies/Wi-Fi-direct-tester

55 CHAPTER 4. Implementation

4.4 Alljoyn Library

4.4.1 What is the Alljoyn Library

The open source API framework Alljoyn11 is made for the IoT, but we will
use it for our cross-device interactions to send a message between the di�er-
ent devices. AllJoyn does not only support communication over Wi-Fi but
also over Bluetooth. In the past, they have also supported Wi-Fi Direct.
Wi-Fi Direct has become deprecated at a certain moment and now it is com-
pletely removed from the library. For the pairing, if all the devices are
connecting to the same Access Point, then they are also connected to the
same area. When the setup is correct then we can �nd the other devices who
want to be found.

Figure 4.2 show a typical example where the freezer door is still open and
consequently it will send an alert message to another device to keep the user
informed. The freezer is in the Alljoyn framework a thin client because it
has no UI. It uses an Alljoyn router to �onboard� the local wireless network.
Because the freezer has no display, it needs to inform the user of events.
Therefore, it runs an Alljoyn client and uses another Alljoyn device with a
display for event noti�cation.

Figure 4.2: Freezer Alljoyn example

11https://allseenalliance.org/framework

Alljoyn Library 56

4.4.2 Architecture

Before we can use the library or made a wrapper for it, we must understand
some concepts about the Alljoyn framework. In the next section, we will talk
more technical about the wrapper that we will write.

Figure 4.3 shows the high-level architecture of Alljoyn, where we have
Routing Nodes and Leaf Nodes. Leaf nodes can only connect to routing
nodes and routing nodes can connect to other routing nodes. The applica-
tions that expose the APIs are services. The consumer of these services are
called clients and the nodes that expose and consume are called peers.

Click to edit Master text styles

Second level
Third level

Fourth level
» Fifth level

High Level System Architecture

AllJoyn Bus is composed of two types of nodes:

Routing Nodes (RN)

Leaf Nodes (LN)
LN can only connect to RN

RN can connect to other RN

AllJoyn can be thought of as a mesh of stars

Routing
Node

Routing
Node

Leaf
Node

Leaf
Node

Leaf
Node

Leaf
Node Leaf

Node Leaf
Node

Routing
Node

Routing
Node

Leaf
Node

Leaf
Node

Leaf
Node

Routing
Node

Leaf
Node

Leaf
Node

Routing
Node

Leaf
Node

Leaf
Node`

Routing
Node

Leaf
Node

Leaf
Node Leaf

Node

Leaf
Node

Leaf
Node

Leaf
Node

Figure 4.3: Routing and leaf nodes

An important concept is Advertising. Advertising is the process to let
other applications know we are on the network and they can connect with
us. The interface that can be used between the di�erent devices is called
the About feature, which is the service level discovering. Discovery, let us
�nd other applications that are in the same area and hence nearby. When a
group of applications is connected, they have all the same Session which is
allowing them to exchange data.

57 CHAPTER 4. Implementation

The Alljoyn Bus is a way to move messages around in the distributed
system. Alljoyn is using D-Bus12 to exchange the data which can run over
any medium: Wi-Fi, Wi-Fi Direct, Ethernet, plc and Bluetooth. D-Bus is
a message bus system to talk to one another. An important term is mar-
shaling, which is the process of transforming a value into a sequence of bytes
(wire format). Unmarshalling is the other way, from the wire format to a
speci�c type. The D-Bus speci�cation13 are important to know if there are
some problems by sending a message between devices.

The device that will distribute the media �les in our POC application is
acting as a server, we will call it the engine router. This engine router is
needed to distribute the media �les to all of their client routers. Each router
must make a connection to the bus and let the bus know which interface the
router will support (About::Announce). Thereafter, each router must setup
some listeners to capture certain events that are coming from the bus. The
engine router is making the session and does a
BusAttachement::AdvertiseName so that the other routers can �nd that
speci�c engine router. The client routers can �nd the engine router with a
BusAttachement::FindAdvertiseName(prefix). The pre�x is needed for
some �ltering.

A client router can connect to a speci�c session on the bus, by calling
BusAttachement::BindSession. When a session is created, the Bus is ex-
tended. All peers are noti�ed on join and leave events and can interact via
their APIs or with multicast events. Be aware that sessions must be created
between the client and the engine routers before they can interact with each
other. All routers are de�ned with some options, but the engine router will
de�ne the name of the bus and the port of the session. Each node gets a
speci�c unique name. Hence, when there is a join between the engine and a
client router, we know the name of the bus, the unique name of the client
and the used session id.

Engine router: [options, bus name, session port]

Client router: [options, unique name, session id]

Join: [options, bus name, unique name, session id]

In the About interface we can de�ne three types of members: methods,
signals and properties. Methods are like in regular programming languages, a
function that can be called and return a certain result. Signals is the way to

12https://www.freedesktop.org/wiki/Software/dbus/
13https://dbus.freedesktop.org/doc/dbus-specification.html

CrossDevice Wrapper 58

broadcast, multicast or point to point asynchronous event noti�cations. It is
a one to many message that is shipped to all the connected devices where no
feedback is asked. Properties can be accessed by getter and setter methods.
We will use signals to broadcast messages from the engine router to their
client routers and we will use methods to call or trigger some functions from
the client routers to the engine router.

In order to e�ectively use the library in multiple Android applications, it
seems to be useful to write a personal wrapper around the library. We can
then import this Android library into our project as a module dependency.

4.5 CrossDevice Wrapper

4.5.1 Installation of Alljoyn

For the wrapper we have created an Android Library that we have called
the CrossDeviceWrapper. First we must install the Alljoyn library in our
library. Therefore, we must go through some steps. First, we have to create
two folders: �/app/src/main/jniLibs� and
�/app/src/main/jniLibs/armeabi�. Under the folder jniLibs, we must put
the �alljoyn.jar� �le. Under the folder armeabi, we must put the
�liballjoyn_java.so� �le. Both of them can be found on the Alljoyn
website. In the dependencies window of our project we add a link to the
�alljoyn.jar� �le. This will add an additional compile line to the manifest
line of the project. In the �le where we will use the Alljoyn code, we have to
add the snippet shown in Listing 4.1. Now, we can use the Alljoyn SDK in
our wrapper.

static {
System.loadLibrary("alljoyn_java");
}

Listing 4.1: Load the native alljoyn java library

4.5.2 Evolution and Structure

Creating a wrapper for the Alljoyn library was a huge challenge and it was
an iterating process that has take some time to reach the end result. Our
�rst step was to write the necessary code where we can make an engine with
a speci�c bus name and create the coding for the advertising of the engine.
After that, we have done the same for a client router, so that the client can

59 CHAPTER 4. Implementation

Method signature Type

(1) void sendMediaOnSignal(CrossDevMedia media) S

(2) void sendEngineActionOnSignal(String action) S

(3) void sendEngineSeekActionOnSignal(DeviceSeekAction seekAction) S

(4) void sendCon�gChangedOnSignal() S

(5) CrossDevCon�g getDevCon�g(DeviceName deviceName) M

(6) void sendDevInfo(DeviceName deviceName) M

(7) void sendDevState(DeviceState deviceState) M

(8) void sendDevAction(DeviceAction deviceAction) M

Table 4.1: BusInterface: BusSignals (S) and BusMethods (M)

�nd the engine. The next step was to send a simple signal message with only
a string as parameter to a client. And in the last phase, we have make the
necessary models and the signals and methods that we need for our POC
application.

The Java package name is be.vub.crossdeviceservice. In our library
we have created 3 sections: device, end and util. The util section is used
for our constants and logging helper functions. In the device section, we
have the necessary coding for the About interface. Hence we have created
the Alljoyn @BusInterface with the name
be.vub.crossdeviceservice.Device.Interfaces.IDeviceMediaInterface and
the corresponding implementation with the necessary BusSignals and
BusMethods. Table 4.1 gives an overview of all the signals and methods that
we have foreseen in our wrapper. The signals are going from the engine to all
the connected clients. The methods are going from one speci�c client to the
engine. Because we have not found a way to pass multiple parameters, we
have created speci�c models that can be passed or return as one parameter
for the signals and the methods. An overview of the di�erent models can be
found in Table 4.2. The model DeviceName for example contains the proper-
ties displayName and uniqueName. UniqueName is how the device is know
in Alljoyn and the displayName is a more logical name that the user can give
to their own device. The logical name is much more useful to know to which
device we are communicating with. For example, the user specify the display-
Name = �Tablet Tom�, so we know now the user is talking with Tom's tablet.
The unique name is an eight alphanumeric string and Alljoyn will create a
mapping of that unique name with the IP or Bluetooth address of the device.

CrossDevice Wrapper 60

CrossDevCon�g

DeviceName name To identify the device
boolean isDeviceEnabled Is the device enabled to receive
boolean isAudioEnabled Can the device play audio or not
boolean isVideoEnabled Can the device play video or not
boolean isRemoteContrEnabled Can the device have a remote controller
boolean isSharingEnabled Can the device download the media �le
boolean isImagesEnabled Can the device view an image or not

CrossDevMedia

DeviceName engineName To identify the engine device
String engineDomain The domain URI of the engine device
int currentWindowPosition Current video or audio position
MediaItem[] mediaItems Playlist of media items

DeviceAction

DeviceName clientName To identify the client device
String clientAction Remote Controller action

DeviceName

String displayName Logical device name
String uniqueName Unique name of Alljoyn

DeviceSeekAction

int windowIndex Index for the playlist
long positionMs Position of the media �le

DeviceState

DeviceName clientName To identify the client device
String clientState Client state

MediaItem

String name To identify the client device
String type Type of media (MP4/JPG/IMG)
String URI Location of the media on the engine device

Table 4.2: The di�erent created models that are used in the BusInterface

61 CHAPTER 4. Implementation

In the end section, we �nd the necessary coding for talking with our
library and the communication with the Alljoyn library. We have created
two di�erent service endpoints, one for the engine (EngineEndService) and
one for the di�erent clients (ClientEndService). The communication with
the Alljoyn library can be found for the engine in the EngineCommMgr and for
the clients in the ClientCommMgr. This is for the communication to Alljoyn.
The other way is done with some listeners. We have created some interfaces
that can be used by the application to listen to some events that are coming
from the bus system. Table 4.3 gives a brief overview of them and we will
explain most of them in the following section.

Both managers implement the BusListener and the SessionListener.
The BusListener is used to keep track of the di�erent engine routers and
their advertise name. The SessionListener is used to keep track of the
di�erent Members in a session.

4.5.3 Installation of our Wrapper

The only thing that must be done to use our wrapper in other Android ap-
plication is to import our .aar �le. This can easily be done by choosing �New
Module� and thereafter the �Import AAR package� option. As a last step
there must be determined a dependency to it that will update the gradle �le
with an extra line to compile the project(�:CrossDeviceWrapper�).

In the POC application, we have created a separated folder structure that
we have called the �crossdeviceservice�. In that package we have made
the same distinguish between the coding for the engine
(CrossEngineService.java) and the client (CrossClientService.java).
Both of them have to code the init, stop and start of their service and must
load the Alljoyn library. Beside of those two service �les, we have made some
custom interfaces for the listeners in the application and some helper func-
tions. The engine service has to implement some circle methods, bus signals
and the engine listeners from Table 4.3. The implementation of the inter-
face IAlljoynMsgListener contains code to know if the service is running
or not and it will save the Alljoyn unique name in our DB. The implemen-
tation of the interface IBusDataEngineListener contains several functions.
The function RecvDevConfig will return the con�g information of a speci�c
device that is stored in our DB. The function RecvDevInfo on the other
hand will save a new connected client device into our DB with some de-
fault options. A new device will not yet have access to show video, audio,
images or the remote controller. The engine device must �rst enable these
options in a speci�c manager screen. The two other functions are more like

CrossDevice Wrapper 62

IAdviceListener Engine

void getAdvStatus(boolean status)

IAlljoynMsgListener Client + Engine

void onSucc(String msg, int msgCode)
void onFail(AlljoynErr err)

IBusDataClientListener Client

boolean RecvURIBusData(String URI)
boolean RecvMediaBusData(CrossDevMedia media)
boolean RecvEngineActionBusData(String string)
boolean RecvEngineSeekActionBusData(DeviceSeekAction seekAction)
boolean RecvCon�gChangedBusData()

IBusDataEngineListener Engine

CrossDevCon�g RecvDevCon�g(DeviceName deviceName)
boolean RecvDevInfo(DeviceName deviceName)
boolean RecvDevState(DeviceState deviceState)
boolean RecvDevAction(DeviceAction deviceAction)

IGetServiceListener Client

void foundAddService(String name, short port)
void foundRemoveService(String name, short port)

IJoinCircleListener Client

void getJoinStatus(boolean status)

IJoinListener Engine

void addJoiner(long sessionId, String joinerName)
void delJoiner(long sessionId, String joinerName)
void getSessionStatus(String serviceName, boolean sessionStatus)

IServiceFoundListener Client

void addServiceFound(ServiceFound service)
void removeServiceFound(ServiceFound service)

ISessionStatusListener Client

void getSessionStatus(String serviceName, boolean status)
void addJoiner(long sessionId, String joinerName)
void delJoiner(long sessionId, String joinerName)

Table 4.3: The list of listeners to be implemented by the POC application

63 CHAPTER 4. Implementation

a door hatch to pass the information. The function RecvDevAction aims to
get di�erent commands coming from one of the clients' remote controller.
These commands are speci�ed by the enum ActionPlayer that is speci-
�ed in our wrapper. The possible commando's are: PLAY, PAUSE, PREV,
NEXT, REW, FFWD, NEXT_IMG, PREV_IMG, RELEASE and SYNC.
The IJoinListener serves to know if some client devices have added or have
leaved our circle. If the client device is disconnected, we will remove that
device from our DB. The engine service has also public methods that will
call the four signals of Table 4.1 and one method to the Alljoyn Bus to get
the current connected clients.

The client service must also implement some circle methods, bus methods
and the client listeners from Table 4.3. Like for the engine service, the im-
plementation of the interface IAlljoynMsgListener has code to know if the
service is running or not and it will save the Alljoyn unique name in our DB.
The implementation of all the other interfaces are more a door hatch to pass
the information. The methods of the interface IBusDataClientListener

have di�erent goals. Function RecvMediaBusData will treat the di�erent
media �les and put them for example in a array list to play them later on.
Function RecvEngineActionBusData must contain code to execute the ac-
tion that is send by the engine. Function RecvEngineSeekActionBusData

will jump to a speci�c �le and a speci�c position in that �le. Function
RecvConfigChangedBusData will notice all the already connected clients that
the engine has changed some restrictions for the di�erent devices, so the code
must contain a call to get the current con�g settings. The implementation
of the interface IServiceFoundListener shows a dynamic list of the active
engine routers. Each client can connect to one of them. The implementa-
tion of the interface ISessionStatusListener implements code to act when
a client is joining or leaving a circle. In our application we have used the
addJoiner function to send the current client device information to the en-
gine.

We have created three service listeners. The IEngineSourceListener is
corresponding with the IBusDataEngineListener listener of our wrapper.
We have split the IBusDataClientListener into two listeners because we
have two di�erent activities on the client. One activity
(IClientMediaListener) to make the connection and receive the media �les,
and one activity (IClientActionListener) to receive the di�erent actions
for the media list. The client service has also public methods that will call
the four methods of Table 4.1.

CrossDevice Wrapper 64

4.5.4 Obstacles and Solutions

First of all, we had to understand the Alljoyn library. Fortunately, there exist
a lot of online documentation and support. The simple but well-structured
examples have also helped us a lot to understand the FW even better. In
our setup, there are a lot of development �les involved to send a signal from
the engine to all of their clients or a method from the client to the engine.
On top of that, there are also a lot of listeners who listen to events coming
from the Alljoyn bus. Hereby, testing and �nding bugs was not always an
easy task. For example it was not possible to send an object where one of
the properties had a null value. We then got an Alljoyn java error which is
showed in Listing 4.2:

%E/ALLJOYN_JAVA: 6.313 ∗∗∗∗∗∗ ERROR ALLJOYN_JAVA lepDisp1_2
.../jni/alljoyn_java.cc:11445 | 0x0001

%W/System.err: org.alljoyn.bus.MarshalBusException: cannot marshal null into '(ss)'

Listing 4.2: Passing NULL values

Luckily, when we have found the second rule in our logging. We knew that
there was something wrong with the marshalling of a null value. Afterwards,
this seems logical. But, it is not so obvious to think about that problem
immediately, because an object whose properties contain null values usually
do not give any problems if we call other methods for example.
Another challenge for logging and testing was the multi threading issues. In
our solution we have made some variables volatile to indicate that a variable's
value can be modi�ed by di�erent threads. By declaring a volatile Java
variable, the value of this variable will never be cached thread-locally, all
reads and writes will go straight to the main memory. Another problem we
encountered was when we send a signal to all the clients and the moment
that the clients receive the signal, they will send a method to the engine. At
that moment we get the Alljoyn error of Listing 4.3:

ER_BUS_BLOCKING_CALL_NOT_ALLOWED

Listing 4.3: Callback error

The solution was here to call the
BusAttachement::EnableConcurrentCallbacks(). The
EnableConcurrentCallbacks tells the code to make the method call on a
di�erent thread than the current Alljoyn thread. Otherwise, our code will
deadlock and never return taking up one of the threads from the thread pool
inde�nitely. So, when there is a call to another AllJoyn method inside these
handlers then we should call EnableConcurrentCallbacks() before making
the call. Hence, we create a public method for EnableConcurrentCallbacks

65 CHAPTER 4. Implementation

in the ClientCommMgr that will execute the EnableConcurrentCallbacks()
on the Alljoyn Bus. Once the wrapper was �nished, it was easier to under-
stand the communication via our wrapper. So, our wrapper can help devel-
opers to make interactions between devices easier, but a disadvantage is that
the wrapper is now still speci�c made for our POC application.

4.5.5 Use of our Wrapper

On the next pages, we will show some snippets on how we have used our
wrapper. In our application, we have created two services that will commu-
nicate with our wrapper. In Listing 4.4 and Listing 4.5 we describe on how we
have init the player mode by starting our CrossEngineService.java that
will call the endpoint EngineEndService.java of our CrossDeviceWrapper.
In receiver mode, we do almost the same thing, but now we will commu-
nicate with the endpoint ClientEndService.java and the corresponding
ClientCommMgr.java that will communicate directly with the Alljoyn li-
brary. We have de�ned some listeners that will listen to all the existing
engines. In our application, we will call the joinCircle function to add the
receiver device to our circle which is show in Listing 4.6. All devices that are
connected to the Alljoyn bus can now communicate with each other.

CrossDevice Wrapper 66

//Snippet Code of our Player Main Activity
public static �nal CrossEngineService localEngineService = new CrossEngineService();

//Create EngineService
CreateCircle(devName);

private void CreateCircle(String devName) {
mModelName = devName;
...
if (localEngineService.isBound()) {
Toast.makeText(AutoPlayerMainActivity.this, "new circle!", Toast.LENGTH_LONG).show();

// called in another thread
Thread stopThread = new Thread(new Runnable() {
@Override
public void run() {
localEngineService.stopService(AutoPlayerMainActivity.this);

}
}, "stopthread");
stopThread.start();

}

Thread startTread = new Thread(new Runnable() {
@Override
public void run() {
while (localEngineService.isServiceRunning()) {
try {
Thread.sleep(1000);
Log.i(TAG, "waiting...");

} catch (InterruptedException e) {
e.printStackTrace();

}
}
boolean ans =
localEngineService. InitService (AutoPlayerMainActivity.this, false , mModelName);
Log.i(TAG, "ans: " + ans);
if (!ans) {
// notify
return;

}

mAdvListener = new AutoPlayerMainActivity.AdvListener();
localEngineService.setAdvListener(mAdvListener);

Log.i(TAG, "startService: " + localEngineService.isBound());
localEngineService. startService () ;

}

}, "startThread");
startTread. start () ;
Log.i(TAG, "Bound: " + localEngineService.isBound());

}

Listing 4.4: Init engine service

67 CHAPTER 4. Implementation

// InitService in CrossEngineService
public boolean InitService(Context context, boolean isClient , String circleName) {

Log.i(TAG, "startService");

if (mIsBound) {
Log.w(TAG, "already start service");
return false ;

}

mContext = context;
Intent intent = null;
intent = new Intent(context, EngineEndService.class); //engine
Bundle bundle = new Bundle();

bundle.putString(EngineCommMgr.class.getName(), "server");
if (null == circleName) {
Log.e(TAG, "service role, but not set circlename");

return false ;
}
mCircleName = circleName;

bundle.putString(AlljoynConst.SERVICE_NAME_KEY, AD_SERVICE_NAME);
bundle.putShort(AlljoynConst.SERVICE_PORT_KEY, AD_SERVICE_PORT);
bundle.putString(AlljoynConst.SERVICE_OBJPATH_KEY, BUS_OBJ_PATH);
bundle.putString(AlljoynConst.CIRCLE_NAME_KEY, mCircleName);

intent .putExtras(bundle);

boolean ans = context.bindService(intent, mConnection, Context.BIND_AUTO_CREATE);

if (!ans) {
Log.e(TAG, "bindservice fail");
return false ;

}

mIsBound = true;

return true;
}

//In the wrapper, we init the communication with Alljoyn
if (null == engineCommMgr) {
engineCommMgr = new EngineCommMgr(this.getApplicationContext(), this.getPackageName());
engineCommMgr.initAjEventHandler();

}

Listing 4.5: Init engine service

CrossDevice Wrapper 68

//CrossClientService
public static �nal CrossClientService localClientService = new CrossClientService();

//possible calls to our wrapper that will communicate with Alljoyn
mEndService.getAjCommMgr().setAlljoynMsgListener(mAlljoynMsgListener);
mEndService.getAjCommMgr().setBusDataListener(mBusDataListener);
mEndService.getAjCommMgr().setServiceFoundListener(mServiceFoundListener);
mEndService.getAjCommMgr().getSessionStatusListener(mSessionStatusListener);
mEndService.getAjCommMgr().connect();
//or
mEndService.getAjCommMgr().disconnect();

//join the circle that is created by the engine device
localClientService . joinCircle (name, port);

//in the wrapper
private BusAttachment mBus = null; //connect: message bus
mBus.joinSession(name, contactPort, sessionId, sessionOpts, new SessionListener() {
//coding for sessionLost / sessionMemberAdded / sessionMemberRemoved
) ;

Listing 4.6: Init client service

We will explain two di�erent examples where we will use three devices in
each scenario. One device will start the application in Player Mode, the two
other devices will start the application in Receiver Mode. In order to easier
explain the scenario and the corresponding diagram, we will give a name to
each device. �P� is the name for the device in Player Mode. �R1� and �R2�
are the names for the two devices that have started the Receiver Mode.

In the �rst scenario, we distribute our media list to all the clients.
Figure 4.4 shows the communications between all the di�erent entities. The
gray boxes (EngineCommMgr, Alljoyn BUS and ClientCommMgr) are part
of our wrapper. The other entities are part of our application code. In the
appendix, we show the corresponding coding for this scenario. In Listing A.1,
we describe the �rst part where we send our media list to the Alljoyn Bus.
In Listing A.2, we register the BusSignalHandler that will catch the signal
of P and send the list to all the clients, R1 and R2 in our scenario.

Where the previous scenario shows a signal example, we will now describe
the next scenario where one client R1 clicks on the pause button. Figure 4.5
shows the corresponding scenario with the di�erent communications between
the entities. Listing A.3 shows the method call that is followed by a signal
which is show in Listing A.4.

69 CHAPTER 4. Implementation

PP
Cr

o
ss

En
gi

n
eS

er
vi

ce
P

Cr
o

ss
En

gi
n

eS
er

vi
ce

P
En

gi
ne

Co
m

m
M

gr
P

En
gi

ne
Co

m
m

M
gr

P
A

llj
oy

n
 B

U
S

A
llj

oy
n

B
U

S
A

llj
oy

n
 B

U
S

A
llj

oy
n

B
U

S

se
nd

M
ed

ia
(m

ed
ia

)
se

nd
M

ed
ia

(m
ed

ia
)

se
nd

M
ed

ia
O

n
Si

gn
al

(m
ed

ia
)

Cl
ie

n
tC

o
m

m
M

gr

R
1

Cl
ie

n
tC

o
m

m
M

gr

R
1

Cr
o

ss
Cl

ie
nt

Se
rv

ic
e

R
1

Cr
o

ss
Cl

ie
nt

Se
rv

ic
e

R
1

A
ut

oR
ec

ei
ve

r
R

1
A

ut
oR

ec
ei

ve
r

R
1

h
an

dS
en

d
M

ed
ia

O
n

Si
gn

al
(m

e
d

ia
)

R
ec

vM
ed

ia
B

u
sD

at
a

(m
ed

ia
)

se
tR

ec
vM

ed
ia

(c
ro

ss
M

e
d

ia
)

Cl
ie

n
tC

o
m

m
M

gr

R
2

Cl
ie

n
tC

o
m

m
M

gr

R
2

Cr
o

ss
Cl

ie
n

tS
er

vi
ce

R

2
Cr

o
ss

Cl
ie

n
tS

er
vi

ce

R
2

A
ut

oR
e

ce
iv

er

R
2

A
ut

oR
e

ce
iv

er

R
2

h
an

dS
en

d
M

ed
ia

O
n

Si
gn

al
(m

e
d

ia
)

R
ec

vM
ed

ia
B

u
sD

at
a

(m
ed

ia
)

se
tR

ec
vM

ed
ia

(c
ro

ss
M

e
d

ia
)

Figure 4.4: Scenario 1: distribute media list to R1 and R1

CrossDevice Wrapper 70

PP
Cr

o
ss

En
gi

n
eS

er
vi

ce
P

Cr
o

ss
En

gi
n

eS
er

vi
ce

P
En

gi
n

e
C

o
m

m
M

gr
P

En
gi

n
e

C
o

m
m

M
gr

P
A

llj
oy

n
 B

U
S

A
llj

oy
n

B
U

S
A

llj
oy

n
 B

U
S

A
llj

oy
n

B
U

S
Cl

ie
n

tC
o

m
m

M
gr

R

1
Cl

ie
n

tC
o

m
m

M
gr

R

1
Cr

o
ss

Cl
ie

nt
Se

rv
ic

e
R

1
Cr

o
ss

Cl
ie

nt
Se

rv
ic

e
R

1
A

ut
oR

ec
ei

ve
r

R
1

A
ut

oR
ec

ei
ve

r
R

1

Cl
ie

n
tC

o
m

m
M

gr

R
2

Cl
ie

n
tC

o
m

m
M

gr

R
2

Cr
o

ss
Cl

ie
nt

Se
rv

ic
e

R

2
Cr

o
ss

Cl
ie

nt
Se

rv
ic

e

R
2

A
ut

o
R

ec
ei

ve
r

R
2

A
ut

o
R

ec
ei

ve
r

R
2

se
nd

C
lie

n
t

A
ct

io
n

(a
ct

io
n

)
se

nd
C

lie
n

t
A

ct
io

n
(a

ct
io

n
)

se
nd

D
ev

A
ct

io
n

(d
e

vi
ce

A
ct

io
n

)
se

nd
D

ev
A

ct
io

n
(d

e
vi

ce
A

ct
io

n
)

R
ec

vD
e

vA
ct

io
n

(d
e

vi
ce

A
ct

io
n

)
se

tR
ec

vD
ev

A
ct

io
n

(d
e

vi
ce

A
ct

io
n

)

se
nd

En
gi

n
e

A
ct

io
n

('
PA

U
SE

')
se

nd
En

gi
n

e
A

ct
io

n
(a

ct
io

n
)

se
nd

En
gi

n
eA

ct
io

n
O

n
Si

gn
al

(a
ct

io
n

)
h

an
dl

eS
en

dE
ng

in
e

A
ct

io
n

O
n

Si
gn

al
R

ec
vE

n
gi

n
eA

ct
io

n
B

u
sD

at
a(

ac
ti

o
n

)
se

tR
ec

vE
n

gi
ne

A
ct

io
n

(a
ct

io
n

)

h
an

dl
eS

en
dE

ng
in

e
A

ct
io

n
O

n
Si

gn
al

R
ec

vE
n

gi
n

eA
ct

io
n

B
u

sD
at

a(
ac

ti
o

n
)

se
tR

ec
vE

n
gi

ne
A

ct
io

n
(a

ct
io

n
)

Figure 4.5: Scenario 2: PAUSE action from client R1

71 CHAPTER 4. Implementation

4.6 Multimedia Granularity

As granularity in our application, we want to split the sound and image of a
video �le so that we can manage what we want or not want to play on our
target devices. When looking for a solution, we get a lot of speci�c audio and
video vocabulary. Our �rst idea was to extract the audio or the image of a
video �le. After investigation, the most popular tool therefore is FFmpeg14,
�a complete cross-platform solution to record, convert and stream audio and
video�. Or JAVE15, a wrapper of FFmpeg that can for example encode a
video into an audio �le. And there exist a lot of other open source github
projects around FFmpeg. But, we want to select a �le and stream it directly
without waiting before the video �le is �rst encoded into an audio �le. An-
other issue is that we want to make the decision when a video is already
playing on the target devices. Hence, extracting in advance is not a good
solution.

Another proposed solution is to route the audio from the target device,
back to the main device. This may a good solution if we cast a video on our
TV and we want to hear the sound on our mobile device. But, it is also not
the right solution for our problem. Hence, we must �nd a solution at render
time of our media �le. Our �rst idea was to mute the audio on the target
device only for a speci�c application. That may work if we always want to
see the image of the video �le on the target devices and that is not the case.
But, luckily there seems to be a possibility to select certain tracks in a video
�le and since Android API level 16, there is an
android.media.MediaExtractor16, which facilitates extraction of demuxed,
typically encoded, media data from a data source. Hence, we could do some
track selection in video �les. And in the next section, where we have searched
for a streaming option, we have found the perfect solution for this problem.

4.7 Sending and Streaming Media

We have now a wrapper that can send signals to all the connected devices
and send methods to the engine device. However, this way of working is
not suitable for sending or streaming large video �les. That is why we must
further investigate to �nd a solution for this.

14https://ffmpeg.org
15http://www.sauronsoftware.it/projects/jave/
16https://developer.android.com/reference/android/media/MediaExtractor.

html

Sending and Streaming Media 72

4.7.1 Webserver

To stream a �le, another device must reach the source �le. In certain OS,
we could work with shared folder, but this is not possible on an Android
device. It is also not an option to send �rst the full (large) �le, and af-
terwards start playing it. Certainly, if we want to work with a playlist of
media �les, this is not a possible solution. Hence, the only possible solution
is to create a web or media server for the engine device. After some little re-
search, we have selected NanoHttpd17, because it is an open-source very light
webserver that can be embedded in applications. When the webserver is ac-
tive, the source �le is for example �http://192.168.43.89:8080/storage/0123-
4567/DCIM/Camera/VID_20170108_183812.mp4�.

In Listing 4.7, we show some snippets on how we have used NanoHttpd
to de�ne an IP address and start our webserver.

//Add NanoHttpd as a gradle dependency
compile 'com.nanohttpd:nanohttpd−webserver:2.2.0'

//snippet to start our webserver
String ipdevice ;
FileServer mediaServer;

De�neIpAddress();
StartFileServer () ;

private void De�neIpAddress() {
Wi�Manager wi�Manager =

(Wi�Manager)getApplicationContext().getSystemService(WIFI_SERVICE);
Wi�Info wi�Info = wi�Manager.getConnectionInfo();
int ipAddress = wi�Info.getIpAddress();
ipdevice = String.format("http://%d.%d.%d.%d:8080", (ipAddress & 0x�), (ipAddress >> 8 & 0x�),

(ipAddress >> 16 & 0x�), (ipAddress >> 24 & 0x�));
Log.d(TAG, "IP device: " + ipdevice);
}

private void StartFileServer () {
mediaServer = new FileServer();
try {
mediaServer.start() ;
} catch (IOException ioe) {
Log.d(TAG, "The server could not start.");
}
}

Listing 4.7: Installation and use of NanoHttpd

17http://nanohttpd.org

73 CHAPTER 4. Implementation

4.7.2 Exoplayer

After some research for streaming video �les in a P2P network, WebRTC
seems to be the perfect solution. RTC stands for Real Time Communica-
tion (without plugins). WebRTC applications still need to do several things:
(1) get streaming audio or video; (2) get network information (IP addresses,
ports) to exchange with other WebRTC clients to enable connection; (3)
coordinate some communication for errors and close connections; (4) ex-
change information about media resolution and codec and (5) communicate
the streaming audio or video. Normally WebRTC is only designed for web
browsers, but there exists some custom frameworks for Android like WebRTC
for Android18. But, there is still a need for a WebView in the layout.

Moreover, there exists also an open source project from Google for stream-
ing media �les, namely Exoplayer19. On the internet, we have found a demo
application and a developer guide20. It is the application level media player
for Android, that is now also used for Youtube. It is an alternative for
the Android MediaPlayer API, where we can modify and extend the player.
Hence, we can modify the buttons of the remote controller and capture the
events when one of the buttons are pressed.

To select a speci�c track, we have to use the MappingTrackSelector.
With this selector we enabled or disabled a certain track. We show some
snippets of the code in Listing 4.8 where we disabled the audio and the
image track and some possible actions for the player. Exoplayer is an open
source project and has a lot of online documentation and support.

import com.google.android.exoplayer2.∗;
private SimpleExoPlayer player;
TrackSelection.Factory videoTrackSelectionFactory =
new AdaptiveVideoTrackSelection.Factory(BANDWIDTH_METER);

trackSelector = new DefaultTrackSelector(videoTrackSelectionFactory);
//disable video track
trackSelector .setRendererDisabled(0, false) ;
trackSelector . clearSelectionOverrides (0) ;
//disable audio track
trackSelector .setRendererDisabled(1, false) ;
trackSelector . clearSelectionOverrides (1) ;
//Exoplayer v2 − start player
player .setPlayWhenReady(true);
//pause player
player .setPlayWhenReady(false);
//go to speci�c media �le and position in that �le
//used for PREV + NEXT + REW + FFWD + SYNC
player .seekTo(seekAction.windowIndex, seekAction.positionMs);

Listing 4.8: Google Exoplayer v2 - used for audio and video

18https://github.com/SDkie/Webrtc-for-Android
19https://github.com/SDkie/Webrtc-for-Android
20https://developer.android.com/guide/topics/media/exoplayer.html

DB Structure 74

Exoplayer v2 will only work for Android devices, but VLC media player21

is also a free and open source cross-platform multimedia player that can
execute the same functionalities to select a track of a video �le. Exoplayer
can only play audio and video �les. So, in code 4.9, we demonstrate how to
parse an image to an ImageView.

private ImageView imageView;

imageView.setImageURI(Uri.parse(mediaURI_List.get(mediaPosition)));

Listing 4.9: ImageView used to display images

4.8 DB Structure

To store data, Android has an SQLiteDatabase which has methods to do
the CRUD (Create, Read, Update, Delete) operations and other common
database management tasks. We have searched for an easy Object-Relational
Mapper (ORM) tool, because we want to have an automatic mapping of our
object-oriented models to a relation DB. Hence, we have to deal less with
persistence-related programming because the ORM tool will generated the
required SQL statements behind the scene and we do not have to write a
single SQL statement. We �rst hit Sugar22 but a one to many relationship
was not that easy and therefore �nally we have chosen ActiveAndroid23 which
is also available on github24. We describe some snippets in Listing 4.10 that
shows how easy it is to use. In Listing 4.11, we show some snippets for the
CRUD operations from our application code.

21https://www.videolan.org/vlc/
22https://github.com/satyan/sugar
23http://www.activeandroid.com/
24https://github.com/pardom/ActiveAndroid

75 CHAPTER 4. Implementation

//creation of the tables
@Table(name = "CrossDevices")
public class CrossDevice extends Model {
//id is automatically generated
@Column(name = "DisplayName")
public String displayName; //also CircleName
@Column(name = "UniqueName", index = true)
public String uniqueName;
@Column(name = "IpAddress")
// all the other colunms
//Relationship − belong to one CrossDevice
//one to many
// This method is optional, does not a�ect the foreign key creation .
public List<ConnectedDevice> items() {
return getMany(ConnectedDevice.class, "CrossDevice");
}

//some constructors
public CrossDevice() {
super();
}
public CrossDevice(String displayName, String uniqueName) {
super();
this .displayName = displayName;
this .uniqueName = uniqueName;
this .isAudioEnabled = false;
// ...
this . startPlayerActivity = 0;
}

//selection
public static List<CrossDevice>getAllCrossDevices(){
return new Select().from(CrossDevice.class).execute();
}
}
@Table(name = "ConnectedDevices")
public class ConnectedDevice extends Model {
//id is automatically generated
//all the other columns can be found in de coding

//Relationship − belong to one CrossDevice
@Column(name = "CrossDevice")
public CrossDevice crossDevice;

//some constructors

//Select all
public static List<ConnectedDevice> getAllConnectedDevices(){
return new Select().from(ConnectedDevice.class).execute();
}

//Select one speci�c connected device based on uniqueName
public static ConnectedDevice getConnectedDevice(String uniqueName) {
return new Select()
.from(ConnectedDevice.class)
.where("uniqueName = ?", uniqueName)
.executeSingle() ;
}
}

Listing 4.10: Mapping Object-Oriented Models with Tables

Used Libraries 76

//Some CRUD operations examples
//Create + Update
//if not exist , insert device record
device = new CrossDevice(devName, "");
device.save() ; //insert + update

//Read
CrossDevice engineDevice = CrossDevice.getAllCrossDevices().get(0);

//Delete
new Delete().from(ConnectedDevice.class).where("uniqueName = ?", joinerName).execute();

Listing 4.11: CRUD operations

4.9 Used Libraries

Below, we mention all the extra libraries that we have used in our application.

compile 'com.android.support:appcompat-v7:25.1.0'

compile 'com.android.support:support-v4:25.1.0'

compile 'com.android.support:design:25.1.0'

compile 'com.android.support:recyclerview-v7:25.1.0'

compile 'com.android.support:cardview-v7:25.1.0'

compile 'com.github.bumptech.glide:glide:3.7.0'

compile project(":CrossDeviceWrapper")

compile 'com.nanohttpd:nanohttpd-webserver:2.2.0'

compile 'com.google.android.exoplayer:exoplayer:r2.2.0'

compile 'com.michaelpardo:activeandroid:3.1.0-SNAPSHOT'

4.10 Architecture

Figure 4.6 shows an overview of all the most important components that we
have used in our CrossWoW application. We have the CrossWoW Auto applica-
tion that will use our CrossDeviceWrapper. Our wrapper will manage all the
communications with the AlljoynLibrary. In the application, we have cre-
ated two services: CrossEngineService and CrossClientService. These will
handle all the communications with our wrapper. Each engine device needs
a �le server. Therefore we have used the NanoHttpd library. The Exoplayer
v2 library is used in each device for playing our media content. The last

77 CHAPTER 4. Implementation

component that is visible on our schema is the ActiveAndroid library that
we have used for adding some usability functionality and the creation of our
playlists.

CrossWoW

CrossDeviceWrapperCrossWoW Auto

Player
 CrossEngineService

Receiver
 CrossClientService

EngineEndService
 EngineCommMgr

ClientEndService
 ClientCommMgr

Exoplayer V2

ActiveAndroid DB

FileServer: NanoHttpd

AlljoynLibrary

Figure 4.6: High Level Overview of CrossWoW

Architecture 78

5
Results

In the previous chapter, we have described how we have implemented our
CrossWoW Auto application. However, we have not yet mentioned how
our tool can be used and what the bene�ts are. We will also mention how
three children with di�erent ages (13, 10 and 3 years) experience the appli-
cation. At the end of this chapter, we will mention our second application
CrossWoW Home, who intends to group the common code of the two appli-
cations to give a possible hint or proposition for a future library that we will
propose in the next chapter. Hereby, we will also mention some shortcomings
in our common code and some future design guidelines.

5.1 CrossWoW Auto

5.1.1 Particular Scenario

The application is written so that no additional manual is required. The dif-
ferent steps are very logical and are following the Android design principles.
Below, we will speak about two di�erent modes: the player mode and the
receiver mode. The player mode is the engine device in our system and the
receiver mode is made for the di�erent clients.

CrossWoW Auto 80

(a) First time opening the application (b) Welcom screen

Figure 5.1: Welcome screen with the possibility to change the logical name

I will explain with some screen shots how a family that goes on a holiday
trip with their car, can use our application. There is �rst some preparation
needed. So, before leaving for travel, the father must put the necessary
content on the external storage of their phone or tablet. How he does this,
is not important for the use of our application which will always read all
MP4, audio and JPG �les from the external storage. Afterward, he must, of
course, install and open our application. The �rst time every user who opens
our application will see Figure 5.1a for determining a more logical name for
that speci�c device instead of the default Android name. That logical name
will help later on to know for which device they decide to set up the di�erent
restrictions. Thereafter or the next time the user starts CrossWoW, they
will always see the screen of Figure 5.1b, which shows an option to choose
between the player mode or the receiver mode. Starting the device in player
mode will automatically start the engine mode in the background so that
the device can be found by other devices. The father can already make some

81 CHAPTER 5. Results

video, audio and images playlists. Figure 5.2 demonstrates how he can select
and make these playlists.

Figure 5.2: The di�erent playlist screens to add items to new or existing
playlists

There is also a possibility to change in the settings screen the start activity
and the sorting order for the items in the list, which is shown in Figure 5.3.
Hence, the father can, for example, select the playlists as the default startup
activity and order the items in descending order of the creation date.

CrossWoW must also be installed on all the client devices which will be
the tablets of the di�erent kids in the car. The father or the kids can give
a logical name to each device. All the devices can be installed in the car on
departure day. Holders exist here, like for example the picture 3.2 of Chapter
3 is showing.

The father connects the phone or tablet with a cable to the radio of the
car or makes a Bluetooth connection with the car. Afterward, he makes a
hotspot on one device and all the other devices must connect to it. Hereby,
they are all on the same wireless network. Figure 5.4 shows the �rst screen

CrossWoW Auto 82

(a) Menu in Player Mode (b) Settings screen in Player Mode

Figure 5.3: To improve the usability

when each device opens the receiver mode. They will get a dynamic list of
all the player devices that are connected to the same wireless network. A
manual click is still needed to connect to a speci�c engine. We will explain
why in one of the following sections.

(a) List of engine devices (b) After connection to one of them

Figure 5.4: First screen in Receiver Mode

83 CHAPTER 5. Results

Now, the passenger can distribute the desired video for example to all
the connected devices. Figure 5.5 shows the CrossWoW distribution screen
where the di�erent restrictions can be speci�ed in. The �rst device is always
the engine device. All the other devices are the connected clients. For the
engine device, it is possible to determine which parts of the media �le we
want to render. This allows us to dynamically determine the granularity of
the media �le. For each client device, we can further determine if this device
is enabled and whether it may have a remote controller.

(a) By default (b) Possible to open each device

Figure 5.5: Distribution manager in Player Mode

We will mention two di�erent possibilities, but there exist many other
possible setups. Figure 5.6a shows the settings where the engine device will
only render the audio of the video �le and all the clients will only render
the image of that video �le. One child (Vik) gets the remote controller.
Another setup is showed in Figure 5.6b where only one child wants to see
a speci�c video and we gave the full control to that device except for the
remote controller. Hence, it is not really needed to render the audio and
the image of the video on the engine device. The child may listen through
headphones so that he does not interfere with the rest.

CrossWoW Auto 84

(a) Audio only on main device (b) Only 1 device can see the video

Figure 5.6: Possible setups

5.1.2 Bene�ts

One of our challenges was to deal with the problem of interconnection and
communication. For the users of our application all the necessary coding
for combining these capabilities disappear in the background. They are not
aware of the di�erent technical ids like an IP address. They only work with
the logical names of the di�erent devices.

All devices are connected to the same network in a kind of a P2P network.
There is no problem if one connected device is lost or added. Our application
is robust for such changes and will continue to work. For an engine device,
it is a little bit di�erent when there are already some clients connected to
this device. They will no longer be able to use media �les from the engine
and they will all have to connect with another engine. On the other hand,
it is not a problem if a client device decides to become an engine device by
choosing the player mode in the application instead of the receiver mode. All
the devices can be both input and output devices depending on the settings

85 CHAPTER 5. Results

in the CrossWoW distribution screen. The engine device is always an input
device, but it can also render the media �les. A client device can also be
both. For example, it can contain only a remote controller to give input to
all the other devices. But, it can also contain only the rendering of a media
�le without a remote controller.

Another bene�t of our application is that our application can work in
a space without constraints. The XDIs can be used anywhere because no
internet connection or additional sensors are needed. If we look to the clas-
si�cation of Sanctorum and Signer [51], we can mention that our application
has also some granularity. The user can decide for playing only the image
of the video �le and not the audio or vice versa or even so playing the video
as a whole. Hence, our application can be used anywhere with some �ne
granularity. Together with that granularity, we have implemented a Multi-
Device Environment where one task span more than one device. We can see
our remote controller as a small single UI that can be distributed to one or
more clients. Not only can we change the granularity and the distribution
of the remote controller before we distribute the media �le, but even in the
middle of playback. Hence, the distribution of the UI is dynamic thanks to
our distribution screen. All these mentioned bene�ts improve the usability
of our application. We have not found a better solution in the Android Play
Store that can execute the same scenario.

In addition to the bene�ts to the users, we have an advantage if we
want to make similar applications in the future. We can reuse our current
CrossDeviceService, which is a wrapper of the Alljoyn library, to �nd and
communicate with the other devices. Hence, the advantage is that there is
less code needed for future similar applications and that the development can
happen much faster. In the next section, we will make a similar application
to �nd some other similarities.

5.1.3 Evaluation

A family of two adults and three children have tested the CrossWoW Auto
application for their auto trip from Belgium to France. Their �rst conclusion
was a big satisfaction of our work because the purpose of the application was
achieved. The distribution screen was very easy to use. They have tested the
application with a cable to the radio and everything was in sync with each
other. If this was not the case, they could put everything in sync with the
sync option on the screen that broadcast the same time to all devices. There
is still a sync problem when the engine is connected to a separate Bluetooth

CrossWoW Auto 86

speaker. All images of the video were in sync with each other but the sound
via the Bluetooth speaker came too late. The only solution that we could see
here is an extra screen where we can de�ne some o�set with a certain range.
Hence, with that option, we can play the sound via the Bluetooth speaker
three seconds earlier, which is the time to make it all in sync again.

One missing usability was the option to easily put the media content on
the player device. In order to increase its usefulness and not to work with
cables or SD cards, it may be an option to investigate how to put the shared
media on a hard drive which can make also a Wi-Fi hotspot. Another ad-
vantage of working with a Wi-Fi hard drive is that we have more memory to
put the di�erent media �les on it. This is now fairly limited.

Another feedback is that the resend option was not used. This option
was created to send the media list again to all the clients, especially some
new clients. But, the settings of these clients must be �rst enabled in the
distribution screen. And, by closing the distribution screen, we will resend
the media �le to all the peers, and after two seconds we will send the current
seek time of the video �le. In most of the cases, the user of the engine device
will �rst de�ne all the restrictions for each device and afterward sending the
media list to all the devices. But, the possibility exists to hook on the current
time in a movie that is already rendered on other devices.

There was one case where we have to use the resend button. That was
the case when we power o� the screen of the engine device. In the current
coding, we stop playing and close the activity of all the clients. This is some-
thing that we can improve in the coding of our application. It is not an issue
of our wrapper.

As for awareness, in the CrossWoW Auto application, it is not needed to
know where a speci�c device is located. Because the logical name will contain
for example �Tablet Wout�. Hence, the user knows that �Tablet Wout� is the
device of Wout who sits behind the passenger for example in the car.

Even we see some optimisations that are not currently provided in the
application but may increase their usability. In the car, the client must man-
ually connect to the engine. This can maybe optimised if we know that there
is always only one engine. We can then make an automatic connection. Or,
save the default engine so that the next time, we can make a direct connection
with the default engine. A gesture-based binding like explained in Chapter 2
is less convenient because our devices depend on their holders. Making a

87 CHAPTER 5. Results

binding by clicking on the logical name of the engine seems for this applica-
tion the best solution. At this moment, the application will not remember
the settings of the previous connections. If this is a usability requirement,
then we must keep this based on the logical name of the device. However,
this is not a uniquely de�ned name. The user can always put the logical
name of another device. Hereby, there arise also some security questions.
We could not do this on the unique name that is generated from the Alljoyn
library, because it will always generate a new id, even for the same device. If
really needed, we could, however, save some preferences into the cloud when
an internet connection is available, because this is not a requirement in our
application. We need then some cloud login and bind our device with that
login account. A login account may be useful for keeping certain informa-
tion on the server for future commercial purposes. It will also augment the
usability, but we must be aware of some privacy issues.

Hence, we have created the CrossWoW Auto application, where initially
we did not know yet if we could implement our ideal solution, with success.
In the next section, we will further investigate which code is suitable for
a possible future framework. We will do this by making a second similar
application where we are going to look what the common code is for both
applications.

5.2 CrossWoW Home

Our second POC application that we have also described in Chapter 3, has
the same possibilities but it is now connected with the local wireless network
at home, so with a possible internet connection. In principle, we can o�er
more functionalities for this application like for example �ltering or using
smaller or larger items in the lists or searching also on a Network Attached
Storage (NAS) server for media �les. In the ideal solution, we have also
mentioned creating a custom controller. However, this is not the reason for
creating this application. The goal for creating CrossWoW Home was to de-
tect common code that can, later on, moved to a possible future XDI library.
Ater creation of this application, we come to �nd to the next determination.

In our common code, we �nd three sections. The �rst one is our Cross-
DeviceService that will communicate with our CrossDeviceWrapper. This is
also the most important part of our common code and must de�nitely be
provided in a possible future library that we will discuss in the next chapter.
The second part is the coding for the Android DB access. This is common

CrossWoW Home 88

code for our application, but it is not really code that will help us to improve
cross-device interactions. The last common part in our code is the �le server,
for which we have used the NanoHttpd library. It is useful coding for our
Android device, but it is not a good idea to put these coding in the core
library that we propose in the next chapter. We can say the same about the
Exoplayer library that we use.

6
Conclusion

In this last Chapter, we will �rst propose some suggestions for an investiga-
tion in a future XDI library together with some design guidelines. Hereby,
we will base our suggestions on the common code that we have detected at
the end of the previous chapter together with some more ideas and possible
improvements. We will conclude this thesis with some conclusions.

6.1 Proposed Library and Future Work

Based on the common code that we have found, we propose a similar library
like the CrossDeviceWrapper, but with more dynamic possibilities. Our li-
brary is now built for speci�c media applications. Instead of only supporting
media �les, the future library must �nd a solution to communicate for exam-
ple contacts (address book of our device) between di�erent phones. There
exist a sample for the Alljoyn library where contacts can be transferred from
one device to another device. One of our ideas is to have some authoring
tool where we can combine the components that we need. Hence, a more
component-based approach to make the library more dynamic. We can then
make the library also extensible to other functionalities, like for example do-
motics.

Proposed Library and Future Work 90

In Chapter 2, we have mentioned three phases that are required for ef-
fective communication. These were detecting, tracking (or awareness) and
communicating (or transferring information). In our library, we have imple-
mented tracking and data communication. For the tracking phase, we have
not foreseen something. Hence, our library is missing some know-how to be
aware of nearby devices. We will leave this to a future investigation to review
this further. But, what may help is that our system can broadcast messages
to all the connected devices. The Alljoyn library that we use, call this feature
a signal. Hence, the system can forward location or speci�c sensor data to
all the other devices to implement some kind of awareness.

Something that should also be present in a possible library is security. A
disadvantage of working with a web server is that everyone who can inter-
cept the URI of our media �le can access our media �le. Even if they are
not connected to the engine router. The Alljoyn system provides already a
built in security framework for applications to authenticate each other and
send encrypted data between them. Their and other systems can be further
investigated in future research to have some secure communication channel.
If we want that our application can interoperate between di�erent OS and
di�erent devices, we have to provide the same CrossDeviceWrapper for Apple
and Windows Devices. Alljoyn has the possibility to work with these OS.

6.1.1 Design Guidelines

With the experience of making our CrossWoW application and
CrossDeviceWrapper, we propose some design guidelines. We are convinced
that these guidelines could help other developers to develop a library for the
prototyping of cross-device applications.

Independence of Network Infrastructure: It is important to cre-
ate a library that is not depending on one speci�c technology. In our
solution, the communication with the Alljoyn library is done with a
unique name. Behind the scene, Alljoyn will connect that unique name
with the Bluetooth address or IP address of that device. So, if there
is coming another connection in the future, we can connect that same
unique name behind the scenes with the new address. The advantage is
that the logic of the applications that use the library will still work and
the developers should not engage with network addresses. Hence, the
library must be written to work with di�erent network infrastructures
and must do the hard work to detect, connect and communicate with
the other devices.

91 CHAPTER 6. Conclusion

Android

UI
application

Cross Device
Library

C++

Java
wrapper

(glue code)

iOS Windows UWP

Tizen

Figure 6.1: Interoperability between devices

Extensible: The library must cope with new additional requests. So,
the library must be extensible.

Interoperability between Devices: The library must be developed
in a way that di�erent devices with di�erent OS can communicate
with each other. Figure 6.1 shows a possible approach where we write
once our library and where we can run that library everywhere. The
idea is that we write the library in a language that is runnable with
multiple programming languages. In our proposal, we have chosen

Proposed Library and Future Work 92

the C++ language. Android, for example, can run C++ code thanks
to the Native Development Kit (NDK) and the Java Native Interface
(JNI) framework. In iOS, we have the native programming language
Objective-C++ which is a language that allows running Objective-C
and C++ code. Figure 6.1 mention also a block where we can de�ne
some glue code so that it is easier to work with the library in the target
languages. If necessary, we can put in this block also some speci�c
coding for interacting with the OS. Otherwise, a reuse of our core C++
library for other devices is not possible. A possible bene�t of working
with a C++ library is that it also can work with IoT devices.

Versatility in Space: The library may not be designed for a par-
ticular space. Otherwise, we will limit the possibilities for using the
library. We must let the user of our library decide if they want to use
certain sensors or cameras. Hereby the users will limit the space, not
the library. So, we want a library that has the ability to work with-
out any space restrictions and can work anywhere, like our CrossWoW
application.

Versatility in Granularity: In our CrossWoW application, we have
the possibility to play video �les with or without the audio track. If
the library can support a �ne granularity for the o�ered items, more
cross-device applications are possible.

Flexible and Customisable: The library must be provided for the
use of di�erent types of applications. Our wrapper is only written for
media applications. For example, another feature can be the commu-
nication of one or all contact persons of our address book to another
device with some de�ned granularity. So, the library must provide
di�erent components where the users of the library can decide which
components and combinations they want to use.

Synchronised Devices: If a particular event occurs in one of the de-
vices, all other devices must be automatically noti�ed. In our wrapper,
each client device keeps the engine device informed of changes so that
these changes can be broadcast to all the other client devices.

93 CHAPTER 6. Conclusion

6.2 Summary and Contributions

The ultimate goal of this dissertation was to explore the possibilities for the
rapid prototyping of XDI. Therefore, we have made two POC applications
to �nd out which issues arise when creating an application that requires
interactions between di�erent devices. In doing so, we looked at what could
have helped us in the beginning if we had some framework available. What
were the biggest problems and what had cost us a lot of development time?
Based on this information, we have proposed a possible framework that can
be further investigated in the future.

In conclusion, we recapitulate a number of contributions that have been
made in this thesis. Thanks to our CrossDeviceWrapper we have been able
to implement our second proof-of-concept application CrossWoW Home very
quickly. Our wrapper has helped us to avoid unnecessary rework. Hence, we
did not have to start from scratch. Similar future media applications can use
our wrapper to create cross-device media applications in a faster way. Last
but not least, we provided some design guidelines, which will also guide future
developers in the creation of a framework for the prototyping of cross-device
applications.

6.3 Discussion

Because we have never made applications with cross-device interactions. This
study was a challenge and has learned us a lot about potential interactions
and what the important guidelines are to develop such applications.

We were very glad we have found a solution for our problem to commu-
nicate and stream media �les with some granularity to di�erent devices. A
problem for which we have not found a better solution in the Android play
store. In that solution, we have found a solution for detecting other devices
and communicating with these devices in a user-friendly way. After our POC
applications, we see also other possibilities of granularity for video �les. For
example, it would be perfectly possible to stream the same video �le with
multiple audio tracks to two devices where one device plays the video with
the Dutch audio and the other one with the English audio track.

We have implemented a parallel use of related content where a single
task is executed on multiple devices (controller-viewer/analyser). A solution
where no internet connection is needed, so we can execute our task anywhere
with some granularity.

If we compare our solution with the design guidelines of Fisher et al. [21],
we see that we have met most guidelines.

Discussion 94

Consistency: We have a consistent look on all our devices. For exam-
ple, our remote controller will have a consistent look on all the devices,
engine and clients.

Synchronisation: Our system can broadcast message, so all the ac-
tions of one device must be re�ected on the other devices. If this action
is coming from a client device, then we will send �rst that message to
the engine who will broadcast that action.

Heterogeneous Hardware: At this moment we only support Android
systems, but is perfectly possible to implement the same behaviour on
other devices to participate. The Alljoyn library can work on di�erent
OS and there exists also alternatives for the other solutions. For ex-
ample, an alternative solution for Exoplayer can be the VLC software1

which has solutions for multiple OS.

Volatile Device Ecosystem: Our application can cope with client
devices that can join or leave an application at any time. For engine
devices, this is of course not always the case.

Limited Resources: In our test, we have tested our application on
di�erent mobile devices and we have not found any problem with pos-
sible limited resources.

Data Transfer: Every device in our application can become an engine
device and can distribute the media �les where necessary.

Physical Space: In our solution, not all the devices can join or leave
at any time because our client devices are depending on our engine
device. The circle is created by the engine device and is also broken
when the engine device exit that circle. Hereby the connected client
devices are not connected anymore with each other.

Asymmetric Functionality: Each device can change their function-
ality. An engine device can become a client device and vice versa.

Our dissertation was a prerequisite for making a future framework that
is very important in a world where we are e�ectively surrounded more and
more by all kinds of devices and RFID tags. So, we look forward to seeing
the further evolution in XDI. Many companies encourage a paperless digital
world with the use of a lot of mobile devices. The success of this digital
world will certainly depend on the optimal interactions between these mobile
devices.

1https://www.videolan.org/vlc/

A
Your Appendix

A.1 Paper Prototypes

On the next pages, we show our �rst paper prototypes that we have created
for our Proof Of Concept applications. We have mentioned this phase of our
methodology at the end of Chapter 3.

A.2 Coding examples with the Alljoyn Library

We have explained in Chapter 4 two di�erent examples where we will use
three devices in each scenario. One device will start the application in Player
Mode, the two other devices will start the application in Receiver Mode. In
order to easier explain the scenario, we will give a name to each device. �P�
is the name for the device in Player Mode. �R1� and �R2� are the names
for the two devices that have started the Receiver Mode. In Listing A.1, we
describe the �rst part where we send our media list to the Alljoyn Bus. In
Listing A.2, we register the BusSignalHandler that will catch the signal of
P and send the list to all the clients, R1 and R2 in our scenario. Listing A.3
shows the method call that is followed by a signal which is show in Listing A.4.

Coding examples with the Alljoyn Library 96

Figure A.1: AUTO: Welcome Screen, where we can change the logical device
name

97 APPENDIX A. Your Appendix

Figure A.2: AUTO: First screen in Player Mode

Coding examples with the Alljoyn Library 98

Figure A.3: AUTO: Possible actions for video items

99 APPENDIX A. Your Appendix

Figure A.4: AUTO: Sceen for music items - same as for video items

Coding examples with the Alljoyn Library 100

Figure A.5: AUTO: Screen for images - same as for video items

101 APPENDIX A. Your Appendix

Figure A.6: AUTO: Playlist screens

Coding examples with the Alljoyn Library 102

Figure A.7: AUTO: Menu and settings screen

103 APPENDIX A. Your Appendix

Figure A.8: AUTO: First screen in Receiver Mode

Coding examples with the Alljoyn Library 104

Figure A.9: AUTO: Distribution Manager in Player Mode

105 APPENDIX A. Your Appendix

Figure A.10: HOME: First screen in Player Mode

Coding examples with the Alljoyn Library 106

Figure A.11: HOME: First screen in Receiver Mode

107 APPENDIX A. Your Appendix

Figure A.12: HOME: prototype for making a custom controller - NOT im-
plemented

Coding examples with the Alljoyn Library 108

//P starts Player Mode and start the CrossEngineService
//R1 & R2 starts Receiver Mode and connect to P with the logical name of P
//P send the media list to all the clients
private void DistributeMedia() {
Log.i(TAG, "Distribute Media");
CrossDevMedia media = new CrossDevMedia();
DeviceName name = new DeviceName();
name.displayName = localEngineService.storedDevice.displayName;
name.uniqueName = localEngineService.storedDevice.uniqueName;
media.engineName = name;
media.engineDomain = ipdevice;
media.currentWindowPosition=mediaPosition;
media.setMediaItemsCount(mediaURI_List.size());
int j = 0;
if (mediaURI_List.size() == mediaType_List.size()) {
for (String item : mediaURI_List) {
media.mediaItems[j].name = "name";
media.mediaItems[j].URI = ipdevice + mediaURI_List.get(j).replace(" ","+");
media.mediaItems[j].type = mediaType_List.get(j);
j++;
}
}
localEngineService.sendMedia(media);
}

//CrossEngineService
public boolean sendMedia(CrossDevMedia media) {
return mEndService.getAjCommMgr().sendMedia(media);
}

//EngineEndService: sendMedia
public boolean sendMedia(CrossDevMedia media) {
if (null == mDevI) {
Log.e(LOG_TAG, "mDevI is null");
return false ;
}
Log.i(LOG_TAG, "sendMedia media ");
Message msg = mBackgroundHandler.obtainMessage(SIGNAL_SEND_MEDIA);
msg.obj = media;
mBackgroundHandler.sendMessage(msg);
return true;
}
...
case SIGNAL_SEND_MEDIA:
doSignalSendMedia((CrossDevMedia) msg.obj);
break;
...
private void doSignalSendMedia(CrossDevMedia media) {
Log.i(LOG_TAG, "doSignalSendMedia media ");
if (mDevI != null)
{
try {
mDevI.sendMediaOnSignal(media); // <−−−
}
catch (BusException e) {
e.printStackTrace();
}
}
}

Listing A.1: Signal: send media list to Alljoyn Bus

109 APPENDIX A. Your Appendix

//ClientCommMgr − register signal handler
registerSignalHandlersHelper("handleSendMediaOnSignal", RecFromEngineHandler.iFaceName,
RecFromEngineHandler.sendMediaOnSignal, new Class<?>[]{CrossDevMedia.class});

//handler
@BusSignalHandler(iface = "be.vub.crossdeviceservice.Device.Interfaces.IDeviceMediaInterface",

signal = "sendMediaOnSignal")
public void handleSendMediaOnSignal(CrossDevMedia media) {
Log.i(TAG, "handleSendMediaOnSignal");
synchronized (RecFromEngineHandler.this) {
if (null == mIBusDataListener) {
Log.e(TAG, "mIBusDataListener is null, data lost");
return;
}

boolean bRet = mIBusDataListener.RecvMediaBusData(media); //<−− send message ...
if (!bRet) {
Log.e(TAG, "mIBusDataListener.RecvMediaBusData fail!");
}
}
}

//RecvMediaBusData −−> IBusDataClientListener must be implemented in application
//create your own listeners − region ∗∗∗∗ listeners methods ∗∗∗∗
//1. IClientActionListener is splitted because we have two activities
private IClientActionListener mSourceActionListener = null;
public void setSourceActionListener(IClientActionListener listener) {
Log.i(TAG, "Set Source Listener");
mSourceActionListener = listener;
}
private IClientMediaListener mSourceMediaListener = null;
public void setSourceMediaListener(IClientMediaListener listener) {
Log.i(TAG, "Set Source Listener");
mSourceMediaListener = listener;
}

//CrossClientService
private IClientMediaListener mSourceMediaListener = null;
private class BusDataClientListener implements IBusDataClientListener {
...
@Override
public boolean RecvMediaBusData(CrossDevMedia crossDevMedia) {
Log.i(TAG, "RecvMediaBusData data: " + crossDevMedia);
if (null != mSourceMediaListener) {
mSourceMediaListener.setRecvMedia(crossDevMedia); <−−−
}
return true;
}
...
}

//AutoReceiverMainActivity
private class ClientMediaListener implements IClientMediaListener {
@Override
public void setRecvMedia(CrossDevMedia media) {
// ... coding to go through the media list and start an speci�c activity
startActivity (intent) ;
}
}

Listing A.2: Signal: Receive signal and send it to all the clients

Coding examples with the Alljoyn Library 110

//R1 has received a controller and stops the video
//R1 send a method to P and P broadcast this message to all their clients
//1. R1 application
case R.id.exo_mypause:
action. clientAction = ActionPlayer.PAUSE.toString();
localClientService .sendClientAction(action);
break;
//2. CrossClientService R1
public boolean sendClientAction(DeviceAction action) {
return mEndService.getAjCommMgr().sendClientAction(action);
}
//3. ClientCommMgr R1
mDevI.sendDevAction(deviceAction);

//4. EngineCommMgr P
@Override
@BusMethod
public void sendDevAction(DeviceAction deviceAction) throws BusException {
Log.i(LOG_TAG, "sendDevAction string: " + deviceAction.clientAction);
if (null == mIBusDataListener) {
Log.e(LOG_TAG, "mIBusDataListener is null, data lost");
}
Log.i(LOG_TAG, "mIBusDataListener − start RecvDevCon�g");
mIBusDataListener.RecvDevAction(deviceAction);
};

//5. CrossEngineService P
@Override
public boolean RecvDevAction(DeviceAction deviceAction) {
Log.i(TAG, "RecvDevActionOnSignal data: " + deviceAction.clientName.displayName);
if (null != mSourceListener) {
mSourceListener.setRecvDevAction(deviceAction);
}
return true;
}

//6. P application
@Override
public void setRecvDevAction(DeviceAction deviceAction) {
Log.i(TAG, "Engine Player setRecvDevAction: " + deviceAction.clientAction);
...
if (deviceAction.clientAction .equals(ActionPlayer.PAUSE.toString())) {
View vw = �ndViewById(R.id.exo_mypause);
ActionClick(vw, false) ;
}
}
....
case R.id.exo_mypause:
localEngineService.sendEngineAction(ActionPlayer.PAUSE.toString());
player .setPlayWhenReady(false);

Listing A.3: Method: R1 send PAUSE action to P

111 APPENDIX A. Your Appendix

//7. CrossEngineService P
public boolean sendEngineAction(String action){
return mEndService.getAjCommMgr().sendEngineAction(action);
}

//9. ClientCommMgr R1 + R2
registerSignalHandlersHelper("handleSendEngineActionOnSignal", RecFromEngineHandler.iFaceName,
RecFromEngineHandler.sendEngineActionOnSignal, new Class<?>[]{String.class});
...
@BusSignalHandler(iface = "be.vub.crossdeviceservice.Device.Interfaces.IDeviceMediaInterface",

signal = "sendEngineActionOnSignal")
public void handleSendEngineActionOnSignal(String action) {
Log.i(TAG, "handleSendEngineActionOnSignal action: " + action);
synchronized (RecFromEngineHandler.this) {
if (null == mIBusDataListener) {
Log.e(TAG, "mIBusDataListener is null, data lost");
return;
}
boolean bRet = mIBusDataListener.RecvEngineActionBusData(action);
if (!bRet) {
Log.e(TAG, "mIBusDataListener.RecvEngineActionBusData fail!");
}
}
}

//11. CrossClientService R1 + R2
@Override
public boolean RecvEngineActionBusData(String s) {
Log.i(TAG, "RecvEngineActionBusData data: " + s);
if (null != mSourceActionListener) {
mSourceActionListener.setRecvEngineAction(s);
}
return true;
}

//12. AutoReceiver activity R1 + R2
@Override
public void setRecvEngineAction(String action) {
boolean isPlaying = false ;
....
if (action.equals(ActionPlayer.PAUSE.toString())) {
player .setPlayWhenReady(false);
}
}

Listing A.4: Signal: P broadcast the action from R1 to all the clients

Coding examples with the Alljoyn Library 112

Bibliography

[1] Mathias Baglioni, Eric Lecolinet, and Yves Guiard. JerkTilts: Using Ac-
celerometers for Eight-Choice Selection on Mobile Devices. In Proceed-
ings of ICMI 2011, Conference on Multimodal Interfaces, pages 121�128,
Alicante, Spain, 2011.

[2] Rajiv D Banker, Srikant M Datar, Chris F Kemerer, and Dani Zweig.
Software Complexity and Maintenance Costs. Communications of the
ACM, 36(11):81�95, 1993.

[3] Rajiv D Banker, Gordon B Davis, and Sandra A Slaughter. Software De-
velopment Practices, Software Complexity, and Software Maintenance
Performance: A Field Study. Management Science, 44(4):433�450, 1998.

[4] Jakob Bardram, So�ane Gueddana, Steven Houben, and Søren Nielsen.
ReticularSpaces: Activity-Based Computing Support for Physically Dis-
tributed and Collaborative Smart Spaces. In Proceedings of CHI 2011,
ACM Conference on Human Factors in Computing Systems, pages 2845�
2854, Austin, USA, 2012.

[5] Michel Beaudouin-Lafon and Wendy Mackay. Prototyping Tools and
Techniques. Human Computer Interaction-Development Process, pages
122�142, 2003.

[6] Jacob T. Biehl and Brian P. Bailey. ARIS: An Interface for Application
Relocation in an Interactive Space. In Proceedings of GI 2004, Confer-
ence on Graphics Interface, pages 107�116, London, Canada, 2004.

[7] Marco Blumendorf, Dirk Roscher, and Sahin Albayrak. Dynamic User
Interface Distribution for Flexible Multimodal Interaction. In Proceed-
ings of ICMI-MLMI 2010, Conference on Multimodal Interfaces and the
Workshop on Machine Learning for Multimodal Interaction, pages 20:1�
20:8, Beijing, China, 2010.

[8] Barry W Boehm. Understanding and Controlling Software Costs. Jour-
nal of Parametrics, 8(1):32�68, 1988.

BIBLIOGRAPHY 114

[9] Tsung-Hsiang Chang and Yang Li. Deep Shot: A Framework for Migrat-
ing Tasks Across Devices Using Mobile Phone Cameras. In Proceedings
of CHI 2011, ACM Conference on Human Factors in Computing Sys-
tems, pages 2163�2172, Vancouver, Canada, 2011.

[10] Keith Cheverst, Alan Dix, Daniel Fitton, Chris Kray, Mark Rounce-
�eld, Corina Sas, George Saslis-Lagoudakis, and Jennifer G Sheridan.
Exploring Bluetooth Based Mobile Phone Interaction with the Hermes
Photo Display. In Proceedings of CHI 2005, ACM Conference on Hu-
man Computer Interaction with Mobile Devices & Services, pages 47�54,
2005.

[11] Pei-Yu (Peggy) Chi and Yang Li. Weave: Scripting Cross-Device Wear-
able Interaction. In Proceedings of CHI 2015, ACM Conference on Hu-
man Factors in Computing Systems, pages 3923�3932, Seoul, Republic
of Korea, 2015.

[12] Nigel Davies, Daniel P Siewiorek, and Rahul Sukthankar. Activity-Based
Computing. IEEE Pervasive Computing, 7:20�21, 2008.

[13] Olga De Troyer and Sven Casteleyn. Modeling Complex Processes for
Web Applications Using WSDM. In Proceedings of the 3rd International
Workshop on Web-Oriented Software Technologies, pages 27�50, 2003.

[14] Olga De Troyer, Sven Casteleyn, and Peter Plessers. WSDM: Web Se-
mantics Design Method, pages 303�351. Springer London, London, 2008.

[15] David Dearman and Je�ery S. Pierce. It's on My Other Computer!:
Computing with Multiple Devices. In Proceedings of CHI 2008, ACM
Conference on Human Factors in Computing Systems, pages 767�776,
Florence, Italy, 2008.

[16] A. Demeure, J. S. Sottet, G. Calvary, J. Coutaz, V. Ganneau, and
J. Vanderdonckt. The 4C Reference Model for Distributed User In-
terfaces. In Proceedings of ICAS 2008,Conference on Autonomic and
Autonomous Systems, pages 61�69, March 2008.

[17] Linda Di Geronimo, Ersan Aras, and Moira C. Norrie. Tilt-and-Tap:
Framework to Support Motion-Based Web Interaction Techniques, pages
565�582. Springer International Publishing, Cham, 2015.

[18] Linda Di Geronimo, Maria Husmann, Abhimanyu Patel, Can Tuerk, and
Moira C. Norrie. Ctat: Tilt-and-tap Across Devices. In International
Conference on Web Engineering, pages 96�113, 2016.

115 BIBLIOGRAPHY

[19] Niklas Elmqvist. Distributed User Interfaces: State of the Art, pages
1�12. Springer London, London, 2011.

[20] Facebook. Facebook for Business. https://www.facebook.com/

business/news/Finding-simplicity-in-a-multi-device-world.
Retrieved on November 30, 2016.

[21] Eli Raymond Fisher, Sriram Karthik Badam, and Niklas Elmqvist.
Designing Peer-to-peer Distributed User Interfaces: Case Studies on
Building Distributed Applications. International Journal of Human-
Computer Studies, 72(1):100�110, 2014.

[22] Luca Frosini, Marco Manca, and Fabio Paternò. A Framework for the
Development of Distributed Interactive Applications. In Proceedings
of EICS 2013, ACM Symposium on Engineering Interactive Computing
Systems, pages 249�254, London, United Kingdom, 2013.

[23] Luca Frosini and Fabio Paternò. A Framework for Improving the Multi-
Device User Experience in Smart Cities. Smart Cities, page 14, 2014.

[24] Mayank Goel, Brendan Lee, Md. Tanvir Islam Aumi, Shwetak Patel,
Gaetano Borriello, Stacie Hibino, and Bo Begole. SurfaceLink: Using
Inertial and Acoustic Sensing to Enable Multi-Device Interaction on a
Surface. In Proceedings of CHI 2014, ACM Conference on Human Fac-
tors in Computing Systems, pages 1387�1396, Toronto, Canada, 2014.

[25] Google. The New Multi-Screen World Study - Think with
Google. https://www.thinkwithgoogle.com/research-studies/

the-new-multi-screen-world-study.html, 8 2012. Retrieved on
November 18, 2016.

[26] Peter Hamilton and Daniel J. Wigdor. Conductor: Enabling and Under-
standing Cross-Device Interaction. In Proceedings of CHI 2014, ACM
Conference on Human Factors in Computing Systems, pages 2773�2782,
Toronto, Canada, 2014.

[27] Ken Hinckley, Gonzalo Ramos, Francois Guimbretiere, Patrick Baud-
isch, and Marc Smith. Stitching: Pen Gestures That Span Multiple
Displays. In Proceedings of AVI 2004, ACM Conference on Advanced
Visual Interfaces, pages 23�31, Gallipoli, Italy, 2004.

[28] Steven Houben and Nicolai Marquardt. WatchConnect: A Toolkit for
Prototyping Smartwatch-Centric Cross-Device Applications. In Proceed-
ings of CHI 2015, ACM Conference on Human Factors in Computing
Systems, pages 1247�1256, Seoul, Republic of Korea, 2015.

BIBLIOGRAPHY 116

[29] Da-Yuan Huang, Chien-Pang Lin, Yi-Ping Hung, Tzu-Wen Chang,
Neng-Hao Yu, Min-Lun Tsai, and Mike Y. Chen. MagMobile: Enhanc-
ing Social Interactions with Rapid View-Stitching Games of Mobile De-
vices. In Proceedings of MUM 2012, ACM Conference on Mobile and
Ubiquitous Multimedia, pages 61:1�61:4, Ulm, Germany, 2012.

[30] Dugald Ralph Hutchings, John Stasko, and Mary Czerwinski. Dis-
tributed Display Environments. interactions, 12(6):50�53, November
2005.

[31] Djilali Idought and Aicha Azoui. SOA Based Ubiquitous Computing
System Design Framework. In Proceedings of MobiWac 2014, ACM
Symposium on Mobility Management and Wireless Access, pages 71�75,
Montreal, Canada, 2014.

[32] Tero Jokela, Jarno Ojala, and Thomas Olsson. A Diary Study on Com-
bining Multiple Information Devices in Everyday Activities and Tasks.
In Proceedings of CHI 2015, ACM Conference on Human Factors in
Computing Systems, pages 3903�3912, Seoul, Republic of Korea, 2015.

[33] Ali K Kamrani and Emad Abouel Nasr. Rapid Prototyping: Theory and
Practice, volume 6. Springer Science & Business Media, 2006.

[34] Dejan Kovachev, Dominik Renzel, Petru Nicolaescu, and Ralf Klamma.
DireWolf - Distributing and Migrating User Interfaces for Widget-Based
Web Applications. In Florian Daniel, Peter Dolog, and Qing Li, editors,
Proceedings of ICWE 2013, ACM Conference on Web Engineering, pages
99�113, Aalborg, Denmark, 2013.

[35] Sang-won Leigh, Philipp Schoessler, Felix Heibeck, Pattie Maes, and
Hiroshi Ishii. THAW: Tangible Interaction with See-Through Augmen-
tation for Smartphones on Computer Screens. In Proceedings of TEI
2015, ACM Conference on Tangible, Embedded, and Embodied Interac-
tion, pages 89�96, Stanford, USA, 2015.

[36] JJ Lòpez-Espin, JA Gallud, E Lazcorreta, A Peñalver, and F Botella. A
Formal View of Distributed User Interfaces. In Proceedings of CHI 2011,
ACM Workshop on Distributed User Interfaces, pages 97�100, Castilla-
La Mancha, Spain, 2011.

[37] Andrés Lucero, Jussi Holopainen, and Tero Jokela. Pass-them-around:
Collaborative Use of Mobile Phones for Photo Sharing. In Proceedings of
CHI 2011, ACM Conference on Human Factors in Computing Systems,
pages 1787�1796, Vancouver, Canada, 2011.

117 BIBLIOGRAPHY

[38] Nicolai Marquardt, Till Ballendat, Sebastian Boring, Saul Greenberg,
and Ken Hinckley. Gradual Engagement: Facilitating Information Ex-
change Between Digital Devices as a Function of Proximity. In Pro-
ceedings of ITS 2012, ACM Conference on Interactive Tabletops and
Surfaces, pages 31�40, Cambridge, USA, 2012.

[39] Nicolai Marquardt, Robert Diaz-Marino, Sebastian Boring, and Saul
Greenberg. The Proximity Toolkit: Prototyping Proxemic Interactions
in Ubiquitous Computing Ecologies. In Proceedings of UIST 2011, ACM
Symposium on User Interface Software and Technology, pages 315�326,
Santa Barbara, USA, 2011.

[40] David Merrill, Jeevan Kalanithi, and Pattie Maes. Siftables: Towards
Sensor Network User Interfaces. In Proceedings of TEI 2007, ACM
Conference on Tangible and Embedded Interaction, pages 75�78, Baton
Rouge, Louisiana, 2007.

[41] Satoshi Nakamoto. Bitcoin: A Peer-to-peer Electronic Cash System,
2008, 2012.

[42] Michael Nebeling, Elena Teunissen, Maria Husmann, and Moira C. Nor-
rie. XDKinect: Development Framework for Cross-Device Interaction
Using Kinect. In Proceedings of EICS 2014, ACM Symposium on Engi-
neering Interactive Computing Systems, pages 65�74, Rome, Italy, 2014.

[43] Takashi Ohta and Jun Tanaka. Pinch: An Interface That Relates Appli-
cations on Multiple Touch-Screen by `Pinching' Gesture, pages 320�335.
Kathmandu, Nepal, 2012.

[44] Fabio Paternò and Carmen Santoro. A Logical Framework for Multi-
Device User Interfaces. In Proceedings of EICS 2012, ACM Symposium
on Engineering Interactive Computing Systems, pages 45�50, Copen-
hagen, Denmark, 2012.

[45] Sarah Perez. Majority of Digital Media Consumption Now Takes Place
in Mobile Apps. https://techcrunch.com/2014/08/21/majority-of-
digital-media-consumption-now-takes-place-in-mobile-apps/, 2014. Re-
trieved on October 23, 2016.

[46] Stefan Poslad. Ubiquitous Computing: Smart Devices, Environments
and Interactions. Wiley Publishing, 1st edition, 2009.

BIBLIOGRAPHY 118

[47] Roman Rädle, Hans-Christian Jetter, Nicolai Marquardt, Harald Re-
iterer, and Yvonne Rogers. HuddleLamp: Spatially-Aware Mobile Dis-
plays for Ad-hoc Around-the-Table Collaboration. In Proceedings of ITS
2014, ACM Conference on Interactive Tabletops and Surfaces, pages 45�
54, Dresden, Germany, 2014.

[48] Jun Rekimoto. Pick-And-Drop: A Direct Manipulation Technique for
Multiple Computer Environments. In Proceedings of UIST 1997, ACM
Symposium on User Interface Software and Technology, pages 31�39,
Ban�, Canada, 1997.

[49] Scott Robertson, Cathleen Wharton, Catherine Ashworth, and Marita
Franzke. Dual Device User Interface Design: PDAs and Interactive
Television. In Proceedings of CHI 1996, ACM Conference on Human
Factors in Computing Systems, pages 79�86, Vancouver, Canada, 1996.

[50] D. Saha and A. Mukherjee. Pervasive Computing: A Paradigm for the
21st Century. Computer, 36(3):25�31, Mar 2003.

[51] Audrey Sanctorum and Beat Signer. Towards User-De�ned Cross-Device
Interaction. In Proceedings of DUI 2016, Workshops on Distributed User
Interfaces, pages 179�187, Lugano, Switzerland, 2016.

[52] Stephanie Santosa and Daniel Wigdor. A Field Study of Multi-Device
Work�ows in Distributed Workspaces. In Proceedings of UbiComp 2013,
ACM Conference on Pervasive and Ubiquitous Computing, pages 63�72,
Zurich, Switzerland, 2013.

[53] Florian Scharf, Christian Wolters, Michael Herczeg, and Jörg Cassens.
Cross-Device Interaction : De�nition, Taxonomy and Application. In
Proceedings of AMBIENT 2013, Conference on Ambient Computing,
Applications, Services and Technologies, pages 35�41, Porto, Portugal,
2013.

[54] Mario Schreiner, Roman Rädle, Hans-Christian Jetter, and Harald Re-
iterer. Connichiwa: A Framework for Cross-Device Web Applications.
In Proceedings of CHI EA 2015, ACM Conference Extended Abstracts
on Human Factors in Computing Systems, pages 2163�2168, Seoul, Re-
public of Korea, 2015.

[55] Mike Shaw. Cross Channel Measurement - Understanding Con-
sumer Behaviour Across Multiple Devices - comScore, Inc. http:

//www.comscore.com/Insights/Presentations-and-Whitepapers/

119 BIBLIOGRAPHY

2014/Cross-Channel-Measurement, october 2014. Retrieved on
October 23,2016.

[56] Kathy Sierra and Bert Bates. Head First Java. O'Reilly Media, Inc.,
2005.

[57] B. Signer and M. C. Norrie. A Framework for Developing Pervasive
Cross-Media Applications Based on Physical Hypermedia and Active
Components. In Proceedings of ICPCA 2008, Conference on Pervasive
Computing and Applications, pages 564�569, Oct 2008.

[58] Beat Signer and Moira C. Norrie. PaperPoint: A Paper-Based Presen-
tation and Interactive Paper Prototyping Tool. In Proceedings of TEI
2007, ACM Conference on Tangible and Embedded Interaction, pages
57�64, Baton Rouge, Louisiana, 2007.

[59] Beat Signer and Moira C. Norrie. Active Components as a Method for
Coupling Data and Services � A Database-Driven Application Develop-
ment Process, pages 59�76. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2010.

[60] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley Longman Publishing Co., Inc., Boston,
USA, 2nd edition, 2002.

[61] Hassan Takabi, James BD Joshi, and Gail-Joon Ahn. Security and
privacy challenges in cloud computing environments. IEEE Security &
Privacy, 8(6):24�31, 2010.

[62] Lucia Terrenghi, Aaron Quigley, and Alan Dix. A Taxonomy for and
Analysis of Multi-Person-Display Ecosystems. Personal and Ubiquitous
Computing, 13(8):583, 2009.

[63] Bradley van Tonder and Janet Wesson. IntelliTilt: An Enhanced Tilt
Interaction Technique for Mobile Map-Based Applications, pages 505�
523. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[64] Chris Vandervelpen, Geert Vanderhulst, Kris Luyten, and Karin Con-
inx. Light-Weight Distributed Web Interfaces: Preparing the Web for
Heterogeneous Environments, pages 197�202. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2005.

[65] Mark Weiser. The Computer for the 21st Century. Scienti�c american,
265(3):94�104, 1991.

BIBLIOGRAPHY 120

[66] Jishuo Yang and Daniel Wigdor. Panelrama: Enabling Easy Speci�-
cation of Cross-Device Web Applications. In Proceedings of CHI 2014,
ACM Conference on Human Factors in Computing Systems, pages 2783�
2792, Toronto, Ontario, Canada, 2014.

[67] John A Zachman. A Framework for Information Systems Architecture.
IBM systems journal, 26(3):276�292, 1987.

