
FACULTY OF SCIENCE AND BIO-ENGINEERING SCIENCES
DEPARTMENT OF COMPUTER SCIENCE

Enhanced Retrieval and Discovery of
Desktop Documents

Graduation thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in Applied Sciences and Engineering: Computer Science

Trung Ngoc Tran

Promoter: Prof. Dr. Beat Signer
Advisor: Ahmed A. O. Tayeh

Academic year 2014-2015

i

Abstract
With recent advances in technology, it is becoming more convenient and af-
fordable to accommodate thousands of documents. The rapid increase in
the overall volume of information has exposed significant challenges regard-
ing retrieval tasks, especially on the computer desktop, since modern desktop
searches insufficiently support the retrieval of items from documents. Indeed,
documents do not exist in isolation, but rather pertain to each other. The
relationships between documents can be implicit due to similarities between
the document content and metadata, or explicit due to the links (associa-
tions) created by a cross-document link service. Through a review of different
techniques for document retrieval on the desktop, we have identified funda-
mental flaws of the built-in tools, including: (i) the static hierarchical struc-
ture that imitates the physical desktop, (ii) the lack of automatic components
in document management and (iii) the insufficient search features that limit
advanced search compositions (e.g. boolean queries and wildcards). We also
examined different attempts to enhance document retrieval and discovery on
the desktop and classified them into three categories according to approach:
(i) those that provide different visualisation methods of the hierarchy, (ii)
those that change to a non-hierarchical structure and (iii) those that move
towards the memex using associative trails.

Based on the findings of our review, we have developed a novel model that
supports the retrieval of documents and overcomes many of the shortcomings
of document retrieval systems on the desktop. In our model, the document
content and metadata are used to establish implicit relationships between
documents using data mining algorithms. The explicit links are considered
to enhance the retrieval of documents. Furthermore, users can establish ad-
vanced search queries by means of boolean queries and wildcards. We have
proposed an extensible architecture with two main advantages. First, the
system is not limited to a specific document format, but is compatible with
both existing and emerging document formats via a plug-in mechanism. Sec-
ond, the visualisation component of the system can be extended to support
any kind of visualisation (e.g. the schemaball and the ordinary list). We have
also developed a prototype as a proof of concept for the proposed solution.
The prototype has been evaluated by end users to obtain feedback about the
proposed solution.

ii

Declaration of Originality
I hereby declare that this thesis was entirely my own work and that any addi-
tional sources of information have been duly cited. I certify that, to the best
of my knowledge, my thesis does not infringe upon anyone’s copyright nor
violate any proprietary rights and that any ideas, techniques, quotations, or
any other material from the work of other people included in my thesis, pub-
lished or otherwise, are fully acknowledged in accordance with the standard
referencing practices. Furthermore, to the extent that I have included copy-
righted material, I certify that I have obtained a written permission from the
copyright owner(s) to include such material(s) in my thesis and have included
copies of such copyright clearances to my appendix.

I declare that this thesis has not been submitted for a higher degree to
any other University or Institution.

iii

Acknowledgements
I would like to express my immeasurable appreciation and deepest gratitude
to those who supported me in different ways during the course of this thesis.

First and foremost, I own deep gratitude to my supervisor Ahmed Tayeh,
for his valuable comments, suggestions and advices that contributed to this
thesis. I have worked directly with him since September 2014 and since
then, I have learned from him that the research is possible with perseverance
and focus. Without his persistent support, this thesis would have not been
accomplished.

I am very much thankful to my promoter Prof. Dr. Beat Signer who,
while burdened with countless responsibilities, found time to proofread parts
of my thesis, and give valuable comments.

Last but not least, it is my privilege to thank Belgian Development
Agency for granting me the scholarship to pursuit the Master study at Vrije
Universiteit Brussel. I treasure precious moments and profound knowledge
this opportunity has given me.

Contents

1 Introduction
1.1 Context . 1
1.2 Problem Statement . 2
1.3 Research Objectives . 3
1.4 Thesis Structure . 3

2 Background
2.1 Information Retrieval . 5

2.1.1 A Brief Look at IR . 6
2.2 Text Indexing . 7
2.3 Vector Space Model . 8

2.3.1 Building Term Vocabulary 9
2.4 Distance Measure . 10

2.4.1 Euclidean Distance Measure 11
2.4.2 Squared Euclidean Distance Measure 11
2.4.3 Manhattan Distance Measure 11
2.4.4 Cosine Distance Measure 12

2.5 Scoring and Term Weighting 12
2.5.1 Term Frequency . 13
2.5.2 Inverse Document Frequency 13
2.5.3 Term Frequency - Inverse Document Frequency 14
2.5.4 Latent Semantic Analysis 14

2.6 Clustering . 14
2.6.1 What is a Cluster? . 15
2.6.2 Challenges . 16

2.7 Clustering Algorithm . 16
2.7.1 Hierarchical Clustering 17
2.7.2 Partitional Clustering 18

2.7.2.1 K-means Clustering 18
2.7.2.2 Fuzzy Clustering 19

2.8 Clustering in Information Retrieval 19

v CONTENTS

2.8.1 Search Result Clustering 19
2.8.2 Cluster-based Retrieval 20
2.8.3 Scatter/gather . 20

2.9 Clustering Evaluation . 20

3 Literature Review
3.1 The Desktop Metaphor . 23
3.2 Document Access on the Desktop 24

3.2.1 File Hierarchy Navigation 24
3.2.2 Document Searching 24

3.3 File Hierarchy Visualisation 25
3.3.1 3D Technique . 25
3.3.2 Focus + Context Technique 27
3.3.3 Space-filling Technique 28

3.4 Techniques for Non-Hierarchy File System 30
3.4.1 Self-organisation Map 30
3.4.2 Property-based Technique 30
3.4.3 Timeline-based Technique 32
3.4.4 Human Cognition-based Technique 33

3.5 Towards the Memex Vision . 34
3.5.1 Haystack . 35
3.5.2 SEMEX . 36
3.5.3 iMapping . 37
3.5.4 MyLifeBits . 39
3.5.5 Cross-Document Link Service 40

4 Enhanced Document Retrieval
4.1 Towards Enhanced Document Retrieval 43
4.2 Requirements . 46

4.2.1 Document Metadata 46
4.2.2 Document Content . 47
4.2.3 Using Clustering . 48
4.2.4 An Extensible Architecture 50

4.2.4.1 The Multitude of Document Formats 51
4.2.4.2 Support Multiple Visualisations 51

4.2.5 Explicit Links of Documents 52
4.2.5.1 Introduce Relevant Documents to the Search

Result . 52
4.2.5.2 Increase Clustering Quality 52
4.2.5.3 Stimulate Creating Explicit Links for the User 53

4.2.6 Enhanced Search Features 53

CONTENTS vi

4.2.6.1 Boolean Query 53
4.2.6.2 Wildcard . 54

4.3 Architecture . 56
4.3.1 General Architecture 56
4.3.2 Indexing . 57

4.3.2.1 Information Extraction 58
4.3.2.2 Document Representation 59

4.3.3 Extensible Clustering Engine 60

5 Implementation
5.1 Objectives . 63
5.2 Technologies . 63

5.2.1 Document Parsing with Apache Tika 63
5.2.2 Search with Apache Lucene 64
5.2.3 Text Mining with Apache Mahout 65
5.2.4 RESTful Web Services 66
5.2.5 Web-based Visualisation 66

5.3 Use Cases . 67
5.4 Prototype . 69

5.4.1 Query Builder . 69
5.4.2 Search Result Visualisation 70

6 Evaluation
6.1 Evaluation Methodology . 77
6.2 Evaluation Goals . 78
6.3 Evaluation Setup . 78
6.4 Quantitative Evaluation . 79
6.5 Qualitative Evaluation . 80
6.6 Results . 80

6.6.1 General . 80
6.6.2 Explicit Links . 81
6.6.3 Clustering . 82
6.6.4 Visualisation . 83
6.6.5 Enhanced Search Form 84

6.7 Conclusion . 84

7 Discussion and Future Work
7.1 Discussion . 85

7.1.1 Contributions . 86
7.2 Future Work . 87

7.2.1 Exploit Further Possibilities of Explicit Links 87

vii CONTENTS

7.2.2 Investigate the Performance of Synonym-based Search . 87

A Appendix

List of Figures

2.1 Building an index by sorting and grouping 8
2.2 An example of using vector space model to represent documents 9
2.3 Clustering and classification 15
2.4 An example of scatter/gather 21

3.1 The layout of a simple Cone Tree 26
3.2 An organisation chart using fisheye technique 28
3.3 The screen snapshot showing a Tree-map of 1000 files 29
3.4 An example of a WEBSOM map where the user is able to

explore the map using the labels 31
3.5 A screenshot of the Lifestreams interface 33
3.6 An example of semantic hierarchical network 34
3.7 An overview of Haystack. The interface illustrates a user’s

Inbox collection . 35
3.8 An overview of SEMEX interface 37
3.9 An illustration of iMapping with annotated links 38
3.10 An overview of the MyLifeBits application where files are or-

ganised into a timeline . 39
3.11 Bi-directional links between different document formats cre-

ated by the link service . 40

4.1 An enhanced search scenario 45
4.2 A possible visualistation that demonstrates clusters of docu-

ments and the explicit links 45
4.3 An example of uncategorised documents of a search result re-

turned by Finder in Mac OS 49
4.4 An example of visualising clustering of documents dynamically 50
4.5 Since A and B are documented as linked via the explicit link,

we add document B to the search result 52
4.6 An example of an enhanced search form 53
4.7 An example of a conjunction search in Mac OS Finder 54
4.8 The conceptual model of an advanced query 55
4.9 The conceptual architecture 56

ix LIST OF FIGURES

4.10 The process of building the index and vector from documents 57
4.11 The conceptual model of the extensible Parser component . . 59
4.12 The conceptual model of the extensible clustering component . 61

5.1 The index diagram with the merge factor b = 3 65
5.2 The use case diagram of the application 69
5.3 A screenshot of the prototype 70
5.4 The query builder form . 71
5.5 An overview of the search result using schemaball 72
5.6 The panel containing the information of a document displays

when we hover the mouse on the document name 73
5.7 Filtering the search result using the category name on the left

panel . 74
5.8 An overview of a search result using the ordinary list 75

6.1 Both quantitative and qualitative methods are integrated to
gather feedback . 77

6.2 The opinions about the application in general 81
6.3 The opinions about the explicit links 82
6.4 The opinions about the clustering 83

List of Tables

4.1 Example of query expressions that can be handled 55
4.2 Field types of the document model 60

5.1 The comparison of different Javascript libraries for web visu-
alisation . 68

1
Introduction

1.1 Context

“Data smog” is the term coined by David Shenk in his book of the same title
that presents the big picture of information evolution in the last few years
[74]. According to the book, with the advance of information technology,
individuals would face the problem of the overwhelming amount of data,
resulting in difficulties in finding and retrieving information. In an attempt to
assist the user in managing documents, existing computer systems, including
Microsoft Windows and Apple Macintosh, organise them in nested folders.
The user either navigate in a tree-like structure or insert keywords in the
search form to find documents.

Back in 1965, Ted Nelson introduced the concept of the zippered list to
give structure to personal documents [55]. Nelson’s project was inspired by
the idea of Vannevar Bush in the paper As We May Think [6], in which
Bush proposed to use associative trails between documents. So far there are
several researches such as Xanadu [55], oN-Line System [21] and NoteCards
[28] and the resource- selector-link metamodel (RSL) [75] working towards
Bush’s vision. The goals of these researches are to support hyperlinks be-
tween different types of media and reinforce document semantics through
annotations.

To us, it is intriguing when the user is enabled to make trails between their

Problem Statement 2

documents because it allows the user to “jump” from document to document
in any flexible way could imagine. The associative trails between documents,
if they can be exploited, can help us enhance the retrieval task on the desktop.

1.2 Problem Statement
Typically there are two methods for the user to search for documents on the
desktop. The user either traverses the hierarchical tree to find the docu-
ments or uses the built-in search (e.g., Windows Search, Mac OS Spotlight)
to retrieve the document. In the former method, most of the time the system
forces the user to recall their memory when they go through folders hierarchi-
cally to find the file [23]. The user also have problems with categorising and
retrieving documents later because the static directories are inadequate to
document organisation. Instead, documents should be grouped dynamically
according to their contents and the needs of the user. The latter method
is more flexible because the user can find documents directly. Most of the
time, the user will search for documents by title matching unless they tai-
lor their search by content matching. However, the content matching search
mechanism is still limited in the sense that it only returns documents that
contain the exact input keywords. However, the words usually have multiple
forms derived from a single root form. For example, the string “computing”
or “computer ” can be derived from the root form “compute”. Thus, the sys-
tem searches can neglect possible documents that are relevant to the user
queries when using simple keyword matching. Another issue with the sys-
tem searches is that they do not take into account the similarity between
documents to enhance document retrieval and discovery on the desktop.

Due to the these issues, there are efforts that try to enhance retrieval and
discovery task of the user on the desktop. One good example of research that
takes into account document similarity to improve document navigation is
DeFiBro [54]. However, DeFiBro has a critical issue because it solely focuses
on exploiting the document properties (for example, author and number of
words) and omits the content of the documents.

More importantly, there is a recent research called the cross-document
link service that offers a novel architecture allowing the user to establish ex-
plicit links between different documents from different document formats [84].
While the idea of creating explicit links between documents is intriguing, it
is so new that no effort is being made towards exploiting the explicit links
to enhance document retrieval and discovery task.

Whereas the novel idea of creating implicit links between documents us-
ing document content as well as taking the use of explicit links promises

3 CHAPTER 1. Introduction

better support for retrieving and discovering documents, it exposes critical
questions: how should we visualise both explicit and implicit links in a single
interface?, and what framework supports such visualisation? Indeed, both
issues stem from the fact that we lack a framework that not only supports
visualising both kinds of links but also needs to be open enough to embrace
multiple types of visualisation.

1.3 Research Objectives
The goal of this thesis were as follows.

• Review the state-of-the-art methods in desktop retrieval that support
the user. The methods are either system-provided tools or additional
models using machine learning techniques.

• Investigate how we can use implicit links between documents using text
mining algorithms and explicit links to support an innovative way for
document retrieval on the desktop.

• Investigate an extensible architecture to support the goal. The archi-
tecture is designed to be extensible in terms of supporting multiple
visualisations as well as multiple text mining algorithms.

• Implement a prototype as a proof of concept of the proposed model. The
implementation demonstrates how document retrieval is enhanced us-
ing automatic document categorisation as well as explicit links created
by the link service. The implementation also helps us reveal benefits
and challenges of advanced search features (i.e., complex Boolean and
wildcard queries).

• Conduct an evaluation with end-users to gather feedback and measure
the user experience of the proposed solution.

1.4 Thesis Structure
The structure of this thesis is as follows.

• Chapter 2: Background
This chapter lays the foundation of knowledge for what we will discuss
in the following chapters.

Thesis Structure 4

• Chapter 3: Literature Review
In this chapter, we review document access activities on the desktop us-
ing hierarchical structures. Next, a comprehensive review of different
visualisation techniques applied to the existing file hierarchy is rep-
resented. Finally, we discuss novel studies focusing on replacing the
desktop metaphor with nonhierarchical file structures.

• Chapter 4: Enhanced Document Retrieval
This chapter describes the requirements we have defined for our pro-
posed model and the extensible architecture we formulate to satisfy
these requirements.

• Chapter 5: Implementation
In this chapter, we discuss the implementation of our prototype as a
proof of concept for the proposed model.

• Chapter 6: Evaluation
This chapter explains the evaluation that we conducted with end-users.

• Chapter 7: Discussion and Future Work
We finalise our works with a discussion and highlight possible future
work.

2
Background

This section is to provide the essential background on information retrieval
(IR) and clustering techniques. We begin with an overview on IR to see key
developments in the past years. We then examine a modelling technique for
the document in the digital space, called the Vector Space Model (VSM).
The knowledge of the VSM is fundamental to understand how it is possible
to measure the similarity between document vectors. We will briefly review
some distance measures and then move to the scoring and term weighting.
The scoring and term weighting is essential in IR, where every term in the
document will be assigned a weight reflecting how important the term is to
the whole document. The two last sections are about clustering, where we
review how clustering can contribute to IR.

2.1 Information Retrieval

The activities of IR are broad. In the physical space, information retrieval is
concerned with normal activities like finding the correct journals in university
libraries. When moving from the physical space to the digital space, it is more
common to use built-in search tools on personal computers or online search

Information Retrieval 6

engines, such as Google1, Bing2, Yahoo!3 when it comes to the World Wide
Web.

According to [9], IR is an activity of “finding material (usually documents)
of an unstructured nature (usually text) that satisfies an information need
from within large collections (usually stored on computers)”.

2.1.1 A Brief Look at IR

The Dewey decimal classification [71] is a classical example of how documents
can be indexed in the physical space. In 1950s, Taube developed coordinate
indexing, which uses “uniterm” to organise document collection [83]. The
idea is to index documents using keywords. The use of keywords seems to be
trivial today but it is considered as a fundamental methodology of document
indexing until now. Later, the researchers started to use the probabilistic
methods in IR. Some examples are the boolean retrieval model, where queries
are boolean expressions [9]; or document scoring, where each document is
assigned a specific score regarding to a given query [47]. The concept of term
frequency was coined around the same time when [51] took into account the
usefulness of the frequency of a word occurrence when indexing a document.
One of the prominent systems built during this decade is the mechanised IR
system for the technical library of General Electric’s Aircraft Gas Turbine
Division in 1953 [1]. The system uses keyword for the coordinate indexing
system where the keywords were manually extracted from parts of documents
by professional librarians.

Next, a different methodology was proposed by [82] in 1960s where both
documents and queries are modelled by the vectors. The vector model be-
came popular and later was adopted by [69] to define the VSM, where the co-
sine similarity metric was used to measure the angle between vectors. In
addition to the VSM, Robertson proposed the principle of probability rank-
ing as an alternative model [65]. The principle depends on the assumption
that the relevance of a document to a query is not influenced by other docu-
ments in the same collection. Therefore, the rank of a document can be set
according to a specific query using the defined criterion variables.

Another significant concept in IR was coined in the 1970s when [77] de-
fined inverse document frequency (idf) based on the idea of term frequency.
Following the concept of inverse document frequency is the definition of term
frequency - inverse document frequency (tf-idf) [70]. Later, the concept of

1
https://www.google.com

2
http://www.bing.com

3
https://search.yahoo.com

7 CHAPTER 2. Background

latent semantic indexing (LSI) was introduced, where the implicit higher
order in the semantic structure of documents was taken into account [16].
LSI gave encouraging results when dealing with synonymy problems, but not
really well with polysemy problems.

In the 1990s, the World Wide Web was born and thrived vigorously.
Along with the development of the Web was the compelling for a Web search
engine in the middle of the 1990s. The links between the web pages are an
interesting characteristic of the Web, by which the Web page creators can
create references from their Web pages to other Web pages. This convention
was fully exploited by Sergey Brin and Lawrence Page when they built a pro-
totype of Google [4], and later when they developed the PageRank algorithm
to measure the score of Web pages [44].

2.2 Text Indexing
The inverted index is heavily used in both physical and digital text search
methods. In a nutshell, an inverted index is a sorted hashmap that allows
fast lookup from a word to a document or a document page. In digital IR,
the inverted index is built after a number of steps.

1. Provide an identifier for each document

2. For each document, the text will be tokenised, turning the document
to a bag of tokens.

3. The next step is optional, where we can process tokens using stemming
algorithms and remove stop words and so on.

4. We index documents in the collection using the inverted index.

In Figure 2.1, first, two documents are tokenised and organised into pairs
of terms and document IDs. Similar to the inverted index in physical text-
books, it is necessary to sort the inverted index in the digital format, turning
the existing inverted index into a sorted list of pairs in the middle column of
Figure 2.1. Next, instances of the same term are merged and organised into a
dictionary consisting of terms and postings (the right column of Figure 2.1).
Together with the corresponding document IDs, some extra information, such
as the document frequency of the given term, can be recorded.

Regarding the performance of the inverted index, a number of concerns
are given [13].

• Block update speed required time to index a document collection.

Vector Space Model 8

Figure 2.1: Building an index by sorting and grouping [9]

• Access speed required time to access the postings for a given word.

• Index size the amount of the space taken by the index.

• Dynamics how easy the index copes with changes.

• Scalability how the inverted index copes with the growing amount of
documents.

2.3 Vector Space Model
For a given document D

i

, [69] modelled the given document by using a t-
dimensional vector.

9 CHAPTER 2. Background

D

i

= (d

i1, di1, di1, ..., di l)

where d

i j

represents the weight of the j th term.

Figure 2.2: An example of using vector space model to represent documents

Consequently, the corpus or the collection of documents corresponds to
a term-document matrix of size (m x n) where m is the number of unique
terms or the index term extracted from the corpus and n is the number of
documents. It is noted that one potential disadvantage of the vector model
is that it contains no information about the word order. Another disad-
vantage is that the vector model is often called the sparse vector since the
number of index terms of the corpus usually exceeds the number of terms for
a single document. Figure 2.2 is an illustration of the vector representation
in 3D space where three documents are modelled using vectors with three
components.

2.3.1 Building Term Vocabulary

The process of building term vocabulary for the vector space model requires
primitive steps.

Distance Measure 10

• Filtering In the document, there are characters and punctuation that
do not hold any discriminative power and, therefore have to be re-
moved. The process of eliminating these characters from the corpus is
the filtering process.

• Tokenisation Tokenisation is the process that takes a stream of strings
as an input, and chops down it into smaller parts, called tokens. Tokens
may include words, phrases or other meaningful parts. Whitespace and
punctuation are usually removed through this process.

• Removing Stopwords Stopwords are commonly used words in doc-
uments. The words such as a, an, the, was are examples of stopwords
in English. Stopwords often need to be dropped because they do not
help to distinguish between documents, but in some exceptional cases,
they may help to convey the correct meaning of words, e.g., it would
be necessary to have the word the when searching for the book The
Lover. An example of a stemming algorithm is the Porter [56].

• Stemming Depending on the grammar context, words may have var-
ious forms (e.g., activity, activities). These words should have similar
basic meaning and origin from basic root form. The goal of stemming
process, therefore, is to reduce these inflectional forms [34].

• Pruning The process of pruning often uses a threshold value to re-
move terms that have a low frequency. This process is based on the
assumption that the terms whose frequency below the given threshold
may form meaningless clusters [49].

• Adding synonym One additional step when building term vocabulary
is to add synonym by using Wordnet[52]. However, the contribution
of using the WordNet ontology toward the clustering process is still
ambiguous[33, 72].

2.4 Distance Measure
In Section 2.3, we have discussed the vector space model to understand how
documents are represented using the algebraic model. Indeed, the vector
space model lays a foundation for further developments in IR. One of them
is the distance measure or the similarity measure.

In a nutshell, the distance measure or the similarity measure is to quantify
the similarity between document vectors. In this section, we will cover a
number of distance measure methods, including Euclidean distance measure,

11 CHAPTER 2. Background

squared-Euclidean distance measure, Manhattan distance measure and cosine
distance measure.

2.4.1 Euclidean Distance Measure

The Euclidean distance d between two points x = (x1, x2, x3, ..., xn) and
y = (y1, y2, y3, ..., yn) whose x

n

and y

n

are terms in Euclidean space with
n dimensions is given by

d(x , y) = d(y , x) =

vuut
nX

i=1

(x

i

� y

i

)

2

Based on the formula, the Euclidean distance is the length of line segment
xy between two points x and y.

2.4.2 Squared Euclidean Distance Measure

The squared Euclidean distance measure can be obtain by squaring the stan-
dard Euclidean distance. Therefore, we have

d

2
= (x � y)

2
=

nX

i=1

(x

i

� y

i

)

2

Using Squared Euclidean distance, we can increase weights of objects in
the further distance. Also, because the squared Euclidean distance does not
take the square root, it can be computed faster than the standard Euclidean
distance measure.

2.4.3 Manhattan Distance Measure

The Manhattan distance between two points x = (x1, x2, x3, ..., xn) and y =

(y1, y2, y3, ..., yn) is the total sum of paths in each dimension. It could be
obtained by absolute values of differences between corresponding terms.

d(x , y) =

nX

i=1

|x
i

� y

i

|

Scoring and Term Weighting 12

2.4.4 Cosine Distance Measure

Unlike the Euclidean or Manhattan distance measure, the cosine distance
measure assumes points as vectors whose components are terms of the points.

Suppose we have two points x = (x1, x2, x3, ..., xn) and y = (y1, y2, y3, ..., yn)

in the space with n dimensions. From these two points, we can create two
vectors �!a (x1, x2, x3, ..., xn) and

�!
b (y1, y2, y3, ..., yn) where a

n

and b

n

are terms
of the corresponding points. Then, the dot product of two vectors are given
by

�!
a .

�!
b =

nX

i=1

a

i

b

i

= a1b1 + a2b2 + ... + a

n

b

n

We can also have
�!
a .

�!
b = ||�!a ||||

�!
b || cos(✓)

where ✓ is the angle between vectors �!
a and

�!
b .

Then we can obtain the cosine of the angle between vectors

cos(✓) =
�!
a .

�!
b

||�!a ||||
�!
b ||

Based on the formula, we can see that this metric only shows the differ-
ence in the orientation of vectors, not the magnitude of them. Therefore,
the cosine distance measure can be used to measure similarity between doc-
uments with different lengths in term space.

2.5 Scoring and Term Weighting
A common scenario in any IR model is that the user often create a query
and the system will return a list of results accordingly. In order to do that,
often the system relies on a term weighting component that is in charge
of computing scores demonstrating the match between the query and each
document.

Indeed, the scoring requires a few steps. Firstly, we can weight each term
in the document by many methods. There are several possible weighting
schemes we can use. The most naive is to rely on the number of occurrences
of the term in the document, or we call term frequency. Aside from term
frequency, the inverse document frequency (tf) and term frequency and in-
verse document frequency (tf-idf) are the additional weighting factors that

13 CHAPTER 2. Background

contribute to a good weighting scheme [68]. In principle, when we know the
weighting score of all terms, we can compute the matching score for the each
document in the collection and the query. There are multiple methods that
help we decide the matching score (for example, the cosine distance or the
Euclidean distance) we will discuss closely in this section.

2.5.1 Term Frequency

As said, the term frequency tf is the most naive weighting scheme for terms.
The term frequency plainly takes into account the number of occurrences of
a term t in a document d. Since the term frequency of a term heavily relies
on the length of the document and often each document has different length,
it is plausible to divide the term frequency by the document length.

tf (t, d) =

f

t,d

l

d

where f

t,d is the frequency of term t in document d, l
d

is the length of the
document d or the total number of occurrences of all terms in document d.

2.5.2 Inverse Document Frequency

When using the term frequency, we implicitly treat all terms equally. Never-
theless, there is a number of terms that may have little power compared to
other terms, though they appear more frequently in the corpus. For instance,
a collection of books about Java will likely use the term “java” exhaustively,
but indeed the word “java” does not help to distinguish documents.

To weight down the effect of such terms, we define the inverse document
frequency idf

t

where the document frequency df

t

indicates the number of
documents in which the term t occurs and N the total number of docu-
ments [77].

idf

t

(t, d) = log

N

df

t

The equation implies the inverse document frequency gives low scores to
terms appearing frequently across the corpus and high score to rare terms.

Clustering 14

2.5.3 Term Frequency - Inverse Document Frequency

The term frequency and inverse document frequency (tf-idf) is a further step
from the idf when the tf-idf takes into consideration the frequency of term
as well as the inverse proportion of term in the entire corpus.

tf � idf

t,d = tf

t,d x idft

This metric favors the term that has high term frequency in a document
and low frequency in the whole collection. We call such term is the term
discriminator since it helps to distinguish documents from the rest.

2.5.4 Latent Semantic Analysis

Latent Semantic Analysis (LSA) designed to determine correlations in mean-
ing between words and passages. The underlying idea is that words in a large
text of corpus have mutual constraints to each others.

LSA relies on Singular Value Decomposition (SVD), which is used to
decompose original data into sub-components.

M = USV

T

in which M is the original matrix, U and V is the orthogonal and normal-
ized, S is a diagonal.

2.6 Clustering

From time to time, the primitive tasks of human beings are organising data
into classes and assigning unknown things into existing groups. By doing
so, people can understand the meaningful structure of data and relation-
ships between objects. Indeed, the former task is clustering and the latter is
classification.

In general, classification is supervised learning, whereas clustering is un-
supervised learning. Supervised learning means that we have to predefine the
classes before assigning unknown objects. Unsupervised learning, in contrast,
is to group similar objects together without predefined classes. Figure 2.3
clearly illustrates this distinction.

15 CHAPTER 2. Background

(a) Clustering (b) Classification

Figure 2.3: Clustering is about grouping unknown objects together whereas
classification assigns uncategorized objects into predefined labels [73]

2.6.1 What is a Cluster?

The definition of a cluster has evolved over time. According to a study,
a cluster is the representation of mixtures of multivariate normal popula-
tions [53]. This definition was adopted by researchers when they designed
clustering algorithms. When the mixtures are not constrained, the cluster-
ing algorithms can create overlapping clusters. The definition of ultrametric
based on the concepts of the single linkage and the complete linkage was
also used in the generation of some cluster structure [36]. More importantly,
most hierarchical clustering routines invoke the ultrametric inequality, and
therefore the algorithms can recover the space structure. The definition of a
cluster was made clearer when supplying definitions, such as the distance or
the similarity, was provided.

According to [76], a typical cluster has five following properties.

• Separation describes how much the cluster overlaps the space.

• Density describes the compactness of data points.

• Variance describes the degree of dispersion of the points within the
cluster. The distance is calculated from the centroid of the cluster to
the points.

• Dimension can be measured as the radious of a cluster but the cluster
is not necessarily a circle.

Clustering Algorithm 16

• Shape of a cluster could be many types, including ellipsoids or hyper-
spheres.

The notion of a cluster is variant. Indeed, there are different types of
clusters.

• Well-separated In this case, the cluster can be decided by the distance
from one point to another point in the cluster.

• Prototype-based When the data has continuous attributes, the pro-
totype of a cluster is the cluster centroid or the mean of all points in
the cluster. For data that has categorical attributes, the alternation is
often the medoid of the cluster or the most representative point.

• Graph-based In this case, the data often represents an undirect graph
where the points represent the nodes of the graph, and the links between
the nodes represent the vertices. This definition implies that there
would be many vertices within a cluster.

• Density-based The compactness of points in the cluster would be
higher than the remaining of the data.

• Shared-property Objects within a cluster usually share common prop-
erties.

2.6.2 Challenges

There are many considerable factors contributing to a good cluster. In loosely
speaking, a good cluster can encompass points that are similar to each other
in the clusters, and different from points of other clusters. To make a good
cluster, there are some challenges. First, the feature selection needs to be
considered. When it comes to document clustering, many clustering methods
model documents as the vectors. Secondly, clustering methods can be applied
in different domains, then picking the most suitable clustering methods is
challenging.

2.7 Clustering Algorithm
Clustering methods belong to a number of types.

• Hierchical clustering is a type of clustering where clusters can be
nested into each other.

17 CHAPTER 2. Background

• Partional clustering is a type of clustering where clusters do not
overlap each other.

2.7.1 Hierarchical Clustering

This clustering method will produce clusters in form of the hierarchy, where
one cluster can be nested into another. There are disadvantages of the hi-
erarchical clustering over the partitional clustering. Firstly, the hierarchical
clustering does not scale because of the merging or splitting phase. There-
fore, it is not suitable for real-time applications as well as large collections.
More importantly, the hierarchical clustering is slower than the partitional
clustering [81]. Typically, there are two types of strategies to produce the
hierarchical clustering.

• Agglomerative The cluster tree will be produced from bottom to top
where child clusters are merged to create parent clusters.

• Divisive In contrast to the agglomerative approach, the divisive ap-
proach will produce the cluster tree from top to bottom where one
parent cluster is divided into child clusters.

In both strategies, there are necessary distance measures and linkage cri-
teria to help deciding the merging or splitting of clusters. Aside from the
distance measures we discussed, there are typically some linkage criteria:

• Single Linkage In the single linkage clustering, the similarity between
two clusters is decided by the similarity of the closest objects or the
minimum distance between two objects in two clusters.

D(X ,Y) = min(d(x , y))

where X and Y are two clusters and x is the object in the cluster X
and y is the object in the cluster Y.

• Complete Linkage In contrast with the single linkage, the complete
linkage is decided by the least similar objects or the farthest distance
between objects in two clusters.

D(X ,Y) = max(d(x , y))

where X and Y are two clusters and x is the object in the cluster X
and y is the object in the cluster Y.

Clustering Algorithm 18

• Average Linkage The average linkage clustering is the average of
distances between pairs of objects in two clusters.

D(X ,Y) =

1

|A| . |B |
X

x 2X

X

y 2Y

d(x , y)

where X and Y are two clusters and x is the object in the cluster X
and y is the object in the cluster Y.

2.7.2 Partitional Clustering

The partitional clustering produces flat clusters, where every cluster is non-
overlapping. To run a partitional clustering algorithm, it is necessary to
supply a desire number of clusters K. This is considered as an disadvantage
of the partitional clustering compared to the hierarchical clustering. One of
the most well-known partitional clustering method is k-means.

2.7.2.1 K-means Clustering

The essential inputs of K-means include the number of clusters k, the seeding
clusters and the distance measure. These inputs implies that there are three
factors influencing the results of clustering. First, we can determine the
number of clusters k by running the diagnostic beforehand. Second, there
are various methods to obtain initial centroids. We can generate random
seeding centroids but most often, this method leads to a poor result. We can
also choose an initial centroid by running an algorithm beforehand, such as
the canopy clustering algorithm.

Suppose we have a set n points (x1, x2, x3, ..., xn) in a multi-dimensional
space. The k-means algorithm is to minimise the square of the difference
between the subset of points and the mean �

k

of a cluster c
k

they belong to.

K (c

k

) =

X
||x

i

� �
k

||2

And for all cluster k, we have

K =

kX

k=1

X
||x

i

� �
k

||2

19 CHAPTER 2. Background

The classical partitional clustering technique k-means is easy to imple-
ment but it also exposes drawbacks. First, the initial number of cluster
heavily affects the quality of clustering. Second, its time complexity is O(kni)
where k is the number of clusters, n is the number of documents, and i is
the number of iterations. Finally, both noise and outliers have great effect
to the algorithm.

2.7.2.2 Fuzzy Clustering

The fuzzy clustering technique produces non-hierarchical clusters but clusters
can overlap other clusters, making objects possibly belong to more than one
cluster. An example of a fuzzy clustering is fuzzy c-means

2.8 Clustering in Information Retrieval

The cluster hypothesis states that “closely associated documents tend to be
relevant to the same requests” [62]. In other words, if we can retrieve a
document that is relevant to a search query, we can also retrieve documents
in the same cluster with this documents for the search query.

2.8.1 Search Result Clustering

The search result clustering or the query-specific clustering is to apply a
clustering technique to a set of search results in order to return to the user
coherent groups of results instead of a flat list. This method is useful when
the query term carries different senses. For example, the user may search for
a types of coffee by the search keyword “java” instead of Java programming
books. As a result, the clustering technique organises the search results into
coherent groups, where each group contains documents of the same topics.

Since the query-specific clustering is only applied to a subset of the corpus,
it is faster than static clustering. Nevertheless, since the clustering occurs
after building the ranked list of results, it likely increases the retrieving time
(the time between search query insertion to result display).

Previous researches show that the query-specific approaches have strong
improvements on the document-based ranking search and can produce clus-
ters that fit the search query [86, 31]. All these researches also confirm the
correctness of the cluster hypothesis towards the query-specific approach.

Clustering Evaluation 20

2.8.2 Cluster-based Retrieval

Cluster-based retrieval is to compute the similarity between queries and clus-
ters, instead of the documents. For all clusters, there is a ranked list, where
the most relevant cluster has the smallest distance between the cluster cen-
troid and the query. According to each cluster, a ranked list of document in
the corresponding cluster will be computed. The top documents are consid-
ered as the most relevant documents to search queries. Since the number of
clusters is significantly smaller than the number of documents, the search is
extremely fast. However, it is important to know that there is a possibility
that the query will not match any pre-defined cluster.

In previous studies, retrieving by matching between clusters centroids
and the query performs poorly when compare to matching with individual
documents [27, 66].

2.8.3 Scatter/gather

Scatter/gather technique is a query-specific technique. It was initially devel-
oped for document browsing purpose [14]. This technique is inspired by a
real life situation, where people often narrow down their searching process in
a few steps. Scatter/gather works in the same manner when it first scatters
the corpus into clusters, then allows the user to select one or more clusters
from given clusters. All of the selected clusters are gathered and scattered
again. Then, the user can choose their narrowed clusters again. This itera-
tive process continues until the user find their desired information. A good
example of scatter/gather is Google News4

Figure 2.4 is an example of scatter/gather browsing technique. Initial
clusters were scattered from 5000 articles of New York Times News Service
and presented to the user. After the user selected three labelled clusters
“Iraq”, “oil” and “germany”, all articles in three selected clusters were gath-
ered for further clustering. Next, the user picked “Pakistan” and “Africa”
in the following step and ultimately they reached smaller stories they felt
interesting.

2.9 Clustering Evaluation

There is no inclusive evaluation method for every clustering algorithm. In-
stead, the evaluation method depends on the domain it is applied. Therefore,

4
https://news.google.com

21 CHAPTER 2. Background

Figure 2.4: An example of scatter/gather [14]

there are different metrics that are applicable to different fields. For exam-
ple, in IR, f-measure is favorable while in artificial intelligence, the applicable
metric could be the mutual information.

Typically, there are external validation measures to evaluate the quality
of clustering. Purity indicates the percentage of the frequent class are in a
given cluster. Entropy refers to the distribution of points for each reference
class within clusters. The entropy value amplifies when the points diversify,
indicating the clustering is not good. The additional validation measure is
f-measure and normalized mutual information.

• Purity can be obtained by assigning each cluster to the most frequent
class of the corresponding cluster, then computing the total correct
assigned documents and finally dividing by the total number docu-
ments [9]:

Pur ity(⌦ ,C) =

1

N

X

k

max

j

|!
k

\
c

j

| (2.1)

where ⌦ = {!1, !2, !3, ..., !
K

} is the set of clusters and C = {c1, c2,
c3, ..., c

J

} is the set of classes.

Clustering Evaluation 22

• F-measure In IR contexts, precision and recall are both basic mea-
sures. While precision is the subset of retrieved information that are
related to the request, recall is the subset of relevant information to the
request that is retrieved from all relevant information. The f-measure
metric is applicable in IR since it takes into account both precision and
recall measures.
For a positive real �, the formula F� is given as below:

F� = (1 + �2
) x

precison x recal l

�2
x precison + recal l

When � equals to 1, the precision and recall are equal for corresponding
F1. It is noted that F1 is considered to be biased [57], there are a
number of variation formula, and the most commonly used formulas
are F2 (�=2) and F0.5 (�=0.5).

• Normalized Mutual Information This metric is applicable when
the number of reference clusters diverge from the clusters created by
clustering algorithms. For example, we can achieve a good purity by
giving a high number of cluster. The mathematical definition is given
by [88]:

NMI =

P
h,l nh,l log

nn

h,l

n

h

n

lp
(

P
h

n

h

log

n

h

n

)(

P
l

n

l

log

n

l

n

)

3
Literature Review

3.1 The Desktop Metaphor

The desktop metaphor was originally introduced in 1970 [85]. It intrinsically
mimics the physical desktop where documents are placed in nested folder
structures. The view of a document corresponds to a paper document on
the real desktop and miscellaneous tools, such as the calculator, are included
in the interface as well. Over the last decades, the desktop metaphor has
been heavily employed by popular operating systems (for example, Microsoft
Windows or Apple Mac OS X), making it the only well-known working en-
vironment to the user.

Interestingly, even though the computer has been through tremendous
development in the last decades, the desktop remains almost the same. More
importantly, there have been many critical comments towards the usability
of the desktop metaphor [59, 60, 46], which include the intensified cognitive
load happening to the user imposed by the desktop in basic tasks, such as
classification and retrieval [46] or the confusion the user may experience due
to the separation of various pieces of information, such as bookmarks, emails,
files, etc. [60]. Moreover, putting documents into distinct folders does not
make sense when the content of a document spans several topics [46, 19].
More importantly, the organisation of documents depends not only on the
document contents but also on the task the user may conduct at a specific

Document Access on the Desktop 24

time [18]. Therefore, the imitation of the physical desktop in the form of a
nested folder structure is not as advantageous as it may seem. Instead, it
may hinder user activities in accessing the document space.

As stated, the classification activity caused by the desktop metaphor in-
tensifies the cognitive load of the user; therefore, it is necessary to support
automatic document classification on the desktop [50]. A number of investi-
gations from [50, 32] provide explanations of how the user names the folders
and creates the file structure. For example, it is given that the folder name
and structure imply a user-defined set of keywords for the documents, which
we know as the document metadata. Therefore, instead of forcing the user to
complete those excessive activities, the system should define automatic com-
ponents that are able to exploit the document metadata in order to conduct
the classification task for the user [32].

3.2 Document Access on the Desktop

3.2.1 File Hierarchy Navigation

An interesting report about how the user accesses their documents in the
system was based on the use of Windows Explorer, the most popular file
system visualisation [26]. In about 17% of the retrieval tasks performed by
users using their personal hierarchy, the users could not seem to remember the
location of the target document and in 75% of the tasks, the users could not
recall the file location. These statistics partially demonstrate the profound
problem of document access on the desktop.

3.2.2 Document Searching

From the beginning, operating systems have incorporated search engines to
help users search for information. There have been some improvements in file
browsing in recent updates of common operating systems, such as file tagging,
in order to help users organise their information space more efficiently. The
user can also use search technologies provided by operating systems, such as
Spotlight in Mac OS X, when looking for particular documents. Spotlight in
Mac OS X offers search functionality for items such as documents, images and
folders. Apart from basic properties like name, date created, date modified,
Spotlight can also index the content of certain files. Additionally, Spotlight
provides boolean conditions by which the user can search for items with
multiple parameters. The user, for example, can find documents that have
file names including the keyword “java” as well as using last modified date

25 CHAPTER 3. Literature Review

(e.g., within 1 week). Another advanced feature that may be familiar to the
experienced users is that the user can search using command lines instead of
a fancy user interface application like Spotlight. As Mac OS X is Unix-based,
computer experts can use built-in scripts to make complex searching queries
using the command line. Finally, for each search result, the user can also
sort and filter criteria like name, file type or date.

Operating systems have integrated several advanced features into their
document browsing, searching and retrieving tools in recent updates; how-
ever, none of these new features could create an immense impact that will
help people retrieve files more effectively and intuitively. A possible under-
lying reason is the mimicry of the traditional desktop in the digital space of
these file browsers.

3.3 File Hierarchy Visualisation

3.3.1 3D Technique

Since one of the most critical problems with the classical desktop metaphor
is the high cognitive load that the user may suffer when navigate through
the hierarchical structure of the file browser, some ideas were proposed to
replace the existing UI in order to minimise the cognitive load. A common
idea is to exploit the perceptual system by replacing the original 2D spatial
layouts with the new visualisation of 3D space [63, 43, 64]. The basic moti-
vation behind the idea is the support of spatial memory for human cognition,
which means an increased chance of people remembering the organisation of
documents in the office. For this reason, the studies expected that spatial
memory would be applicable to the virtual space.

Cone Tree [64] visualises the hierarchy information in 3D space where the
root of the tree is placed at the top of the space and the children will be
displayed along from top to bottom. All nodes at the same level will have
the same height and the tree will be displayed in an adjustable ratio that can
fit to the window (Figure 3.1). When the user chooses a node, the Cone Tree
will rotate in order to bring up the selected node to the front. The rotation is
enhanced further by movement animations, enabling the user to perceive the
spatial relationships of objects after the rotation. Additionally, Cone Tree
exploited three different visualisation techniques to maximise usability. The
first technique is to use a fisheye view of the information, while the second
technique is to make the 3D depth adjustable in order to reflect the distance
from the object to the user. Last, the idealised shadows of the hierarchy
reflected to the floor in the image partially impart the structure information

File Hierarchy Visualisation 26

regarding the hierarchy.

Figure 3.1: The layout of a simple Cone Tree [64]

The Data Mountain [63] prototype, for example, visualises collections of
documents by placing icons of documents in 3D space and integrating 2D in-
teraction techniques as general interactions. The flexible dragging interaction
enables the user to drag their documents to any place in the virtual space.
The user can also perceive the movement of the documents during dragging,
enabling the formation of spatial relationships between page objects in the
space. Audio is the second modality integrated into the prototype to provide
feedback for every user interaction.

All listed examples using 3D visualisation are interesting; however, insight
provided by several studies suggests that the performance using interactive
3D visualisation in storage and retrieval tasks is still unclear when compared
to the 2D interface. In detail, the completion time for retrieval tasks using a
3D interface is relatively higher than when using a 2D interface [11]. There
is no specific reason explaining the difference, but people seem to experience
difficulties when visually matching, which partially demonstrates that the
3D interface is less efficient than the 2D interface [12]. Nevertheless, it is
interesting to see that the user benefits from the 3D interface in the sense
that the 3D interface contributes to building the spatial memory [48].

27 CHAPTER 3. Literature Review

3.3.2 Focus + Context Technique

The fisheye technique was originally proposed to visualise large hierarchy
structures [8, 24]. Typically, the visualisation using the fisheye technique [8]
allows two observational perspectives for a single structure simultaneously.
The first perspective, the focus, provides the visualisation of information with
a high level of detail, using a soaring degree of magnification. The second
perspective, in contrast, represents the rest of the information structure at an
abstract level, enabling the user to grasp a typical structure of information
together with the focus view.

The hyperbolic file browser is a good example of a visualisation that uses
the fisheye technique to support viewing a complex hierarchical information
structure [45]. The hyperbolic browser initially maps the hierarchy structure
in ordinary 2D space onto a hyperbolic plane and then projects it to a circular
display (Figure 3.2). The depth of focus is different between nodes. Nodes
that are close to the centre of the circle will be magnified to a higher ratio
than nodes that are further away. By adjusting the focus depth accordingly,
this new presentation is not only capable of displaying tree structures up to
a thousand nodes but also preserves smooth navigation. The file browser has
certain advantages; however, some problems can also arise. First, compared
to 2D or 3D space, the orientation is changeable in the hyperbolic plane
when the user traverses the tree. Therefore, though the user can easily
understand the overall structure of the document collection with this kind of
visualisation, the user may have problems with identifying the location of a
particular node in the overall space.

Flip Zooming [2] is another example of the focus + context technique
that uses distortion to reduce information. However, unlike other distortion
techniques, such as the hyperbolic file browser, both focus and context objects
are in a single plane, in which only the focus tile is scaled linearly. The basic
element in Flip Zooming is the tile, and the focus tile is placed in the centre
with other tiles around it. If the viewer selects a new tile, the focus changes
and the selected tile becomes the context. When the hierarchy contains
multiple levels, each tile represents a Flip Zooming visualisation containing
nested tiles inside. This mechanism implies the interface is capable of having
multiple focus levels. While this feature provides easy navigation between
documents, it seems to be inappropriate for complex information space.

The focus + context technique in document discovery and retrieval is
noticeable but still needs careful consideration. We agree that the focus
+ context technique is superior to other techniques in terms of providing a
comprehensive overview of document entities. Nevertheless, if there is a large
number of children, especially near the outer edge, the performance of the

File Hierarchy Visualisation 28

Figure 3.2: An organisation chart using fisheye technique [45]

focus + context interface is weaker when compared to traditional browsers,
such as Microsoft Windows Explorer [10]. Also, the focus + context technique
seems to be appropriate for demonstrating formulated hierarchical structure
but not suitable to indicate random relations where documents are not in
the hierarchical structure.

3.3.3 Space-filling Technique

One good example of the space-filling technique is Tree-map [35]. Tree-map
visualises the information hierarchy using nested 2D rectangles (Figure 3.3).
This kind of visualisation is more favourable than traditional static methods
in the sense that it is capable of exploiting 100% of the space. In detail,
Tree-map visualises the tree structure using components of inner rectangles

29 CHAPTER 3. Literature Review

(Figure 3.3). In order to determine the size of the rectangles, Tree-map as-
signed a weight to each node, indicating the criticality of the corresponding
information in the overall structure. While Tree-map is good at depicting
information attributes using rectangles, the user reported difficulties in un-
derstanding the overall structure of the information space while using Tree-
map [78].

Figure 3.3: The screen snapshot showing a Tree-map of 1000 files [35]

The structure ambiguity of Tree-map visualisation leads to some enhanced
interfaces such as Sunburst [79]. The Sunburst tool allegedly conveys both
area and structure [78]. Compared to Tree-map, Sunburst is basically the
same, as when it also makes use of the space-filling technique. The biggest
difference between them is that Sunburst arranges portions of information
radically, which is called radical space-filling technique. Interestingly, Sun-
burst will not occupy 100% of the space as Tree-map does, so the term
“space-filling” is partially misnomered in this case. In detail, Sunburst ar-
ranges the hierarchy in the following way. The root of the tree is in the centre,
whereas the children are arranged further from the centre. The viewer can
easily distinguish nodes at different levels by comparing the radius of the
discs containing the nodes. Furthermore, the size of the node can be visu-
alised by its radical angle in order to effectively convey the file size to the

Techniques for Non-Hierarchy File System 30

viewer.
The concept of the space-filling technique is alluring in the sense that we

can exploit the space as much as possible. In addition, we are interested in
the overview given by the interface because it depicts the difference between
entities, especially the Sunburst interface. Nevertheless, we observe that
the space-filling technique is not suitable to document organisation, as it is
difficult for the user to understand the hierarchical structure, especially when
the tree level is high. Moreoever, the space-filling interface fails to express
random trails between entities.

3.4 Techniques for Non-Hierarchy File System

Besides approaches for novel UIs, there are a number of studies working
towards adding automated components into the document management sys-
tem. The purpose of automated components is to help filtering as well as
categorising documents into meaningful structures. The use of the clustering
technique is one such example, in which the user can obtain more relevant
information. The result is significant when documents are organised into
relevant categorisation automatically compared to the regular organisation
when the user tries to locate a document.

3.4.1 Self-organisation Map

WEBSOM [38] is an example of a document map as a histogram of word cat-
egories, allowing the user to explore document contents by either a content-
direct search capability or map manipulation. WEBSOM uses SOM [41]
algorithm to map documents that have semantic similarities into groups and
to organise them onto the document map. The interface of WEBSOM is com-
posed of terms derived from the automatic component and then arranged in
the map. The user is able to navigate the map by clicking on the labels or
to search to find interesting documents in the map.

3.4.2 Property-based Technique

Placeless Documents [18] states that the concept of the static location of a file
system interferes with user needs due to possible problems. First, the docu-
ment usually refers to several topics, but it can only belong to one place. The
static location of the document is more suitable to administrative tasks, such
as document backups, rather than document organisation. Specifically, the

31 CHAPTER 3. Literature Review

Figure 3.4: An example of a WEBSOM map where the user is able to explore
the map using the labels [38]

hierarchy of documents created by a person may not make sense to an other.
Therefore, the hierarchy structure hinders sharing activities of documents.

Placeless Documents uses another approach to organise documents. This
new approach essentially makes use of the file properties in order to organise
the document, making it possible for the document organisation to have
multiple facets. Using the properties also allows Placeless Documents to

Techniques for Non-Hierarchy File System 32

manage different facets with uniformity of interaction.
The design guidelines of Placeless Documents include three basic fea-

tures: uniform interaction (i.e., document metadata and other arbitrary val-
ues associated with the document), user-specific properties (i.e., properties
associated with the consumer of the document), and active properties (i.e.,
properties to control document behaviour). While the static properties al-
lows the system to group documents, the active properties make it possible
to execute management tasks behind the scene. For example, a documents
tagged with the “currently in progress” property should be maintained in
different revisions.

Another example of the property-based system is DeFiBro [54]. The sys-
tem harvests the file properties and organises them into a concrete structure
using Resource Description Framework (RDF) in order to represent file meta-
data. All file attributes are then simultaneously pre-processed by removing
stop words and punctuation and converting to lower case. For each docu-
ment, the model queries corresponding metadata values, which will be used
to construct a unified metadata index. The indexes are then grouped into
synsets using the WordNet lexical database. Additionally, the distance mea-
sure algorithm is also applied in order to evaluate the similarities between
documents.

3.4.3 Timeline-based Technique

One good example of a file system organised using the timeline technique to
visualise the hierarchy is Lifestreams [22]. Lifestreams replaces the hierarchy
structure with a novel concept, a stream of files. The file stream arranges
documents according to time, where the tail represents documents from the
past and the head represents documents from the present (Figure 3.5).

Lifestreams also replaces the concept of the static directory with an addi-
tional definition, a sub-stream. A sub-stream can be understood in multiple
ways. It is either a virtual view containing documents that satisfy a given
query or a temporary directory of documents similar to a static directory in
the old file browser. A sub-stream can be defined on the fly whenever the
user makes a query. The typical method to create a view is summary by
which the user invokes a filtering action on the document collection.

The timeline-based technique is indeed a specialised technique that only
suits to a relatively small document collection. In case the document size is
large, the user has to sift through a long list, which is inefficient. Also the
relations between documents are not expressible in this interface. We suggest
that the interface should be adopted by other interfaces in order to filtering
documents using document metadata such as created date or last modified

33 CHAPTER 3. Literature Review

Figure 3.5: A screenshot of the Lifestreams interface [54]

date.

3.4.4 Human Cognition-based Technique

The research concentrates on reducing cognitive load; for example, this in-
cludes uses of the spreading activation theory over ontologies [39]. In order
to make a decision, people must access information in their brains. The
spreading activation theory typically assumes that the human brain stores
information in the form of networks of nodes in which distances between
nodes are decided by how connected the nodes are (i.e., the link may be
shorter for closely related nodes and longer for loosely related nodes). The
networks can be in hierarchical form, where concepts are organised in higher
categories down to lower categories. The nodes can also be elaborated with
private properties and characteristics of each node.

To be more efficient, the human brain stores general properties at higher
level nodes and more specific properties at lower level nodes (Figure 3.6).
The structure of the hierarchal network plays an important role in decision
making. In the given example, people can rapidly verify whether yoghurt is
yoghurt, and it would possibly take them longer to verify whether yoghurt is

Towards the Memex Vision 34

Figure 3.6: An example of a semantic hierarchical network

dairy and even longer to verify whether yoghurt is food. Longer links between
nodes result in increased time to verify the links. In contrast, it is different if
it takes shorter time to verify whether yoghurt is dairy than it takes to verify
whether yoghurt is food. Due to this issue, the network is to be changed from
hierarchical to semantic networks in which there are possible direct links
between higher level nodes to lower level nodes. This substantial change
implies that the nodes would be connected to each other in the network.
When people activate a node in the network, they pull out related nodes
along with it. The theory is applied over personal ontology, which plays a
role as a repository of information for context inference to support user tasks.
The idea of [39] is intriguing in the sense that it automatically creates links
and weights nodes based on user interactions with nodes rather than requiring
users to make hyperlinks between them. Regrettably, the requirement of a
personal ontology must be fulfilled to make use of the proposed idea. As
mentioned in the paper, it is not easy to create a personal ontology by any
means, and as a consequence, it would not feasible to adopt the idea in
practice.

3.5 Towards the Memex Vision

In the last section, we briefly reviewed projects that work towards the idea
of enhancing document access in digital space. However, all of projects men-
tioned above still expose limitations. To better understand, we will take a
look on the vision proposed by Vannevar Bush in his 1945 paper. In the pa-
per, the Memex described by Bush supports fundamental features: creating
links between pages as well as annotating resources and links. However, all
the systems we mentioned do not contain any facilities that support linking
and annotating resources. Therefore, in this section, we are going to review

35 CHAPTER 3. Literature Review

studies that take a step towards the Memex vision.

3.5.1 Haystack

Haystack is a novel framework that aims to enhance management of per-
sonal information in digital space. The concepts of Haystack are typically
based on the flexibility of individual needs when it comes to information
management. Haystack emphasises the personlisation of information man-
agement, which suggests that the user should take control in deciding which
and how objects and their relationships to be stored and represented. In
the current systems, the user’s information often comprises various types.
The information could be a bookmark, email, documents, etc. (Figure 3.7).
Each kind of information is managed by individual application, and in order
to access a certain kind of information, the user must use the supporting
application. This separation of information hinders the effectiveness of the
individual since the user usually considers the information to be unified. In
Haystack, the separation of information is minimised since Haystack is able
to record arbitrary information objects and aggregate them into collections.
Haystack offers a compromise between structure and schema in order to pro-

Figure 3.7: An overview of Haystack. The interface illustrates a user’s Inbox
collection [37]

Towards the Memex Vision 36

vide both richness in a data model and flexibility in the UI. The data model
structure of Haystack is semistructured, which means that it can offer both
the flexibility of a data model by allowing the user to modify the schema and
the advantage of a predefined structure like a database-type structure. To
create the data model structure, Haystack employs the RDF since the RDF
schema is resilient enough to cope with changes in the schema from the user.

To create an interface that is flexible enough to represent aggregations
of arbitrary data types, Haystack uses the recursive rendering architecture
where the root view only has to know the root object rather than related
objects. In addition to the view, Haystack defines lens in order to represent
groups of attributes for given objects. This facility allows the user to spe-
cific their views of different attributes of the objects. For example, the user
can create a “help” lens for a certain object and only make it visible when
necessary.

Haystack is an excellent example of personal information management
system. Using Haystack the user has a lot of flexibility in modifying his
information space. Still, we would like to see in the future how Haystack
expands its flexibility in terms of truly dynamic links. For example, the
user can link parts of an arbitrary email to parts of arbitrary document and
annotate the links.

3.5.2 SEMEX

SEMEX targets personal information management by means of creating a
search application [7]. Basically, SEMEX makes access to multiple kinds of
data possible using a repository of objects and their associations. By means
of association, SEMEX defines possible relationships between objects, such
as between the email and the sender in address book. Therefore, SEMEX
not only focuses on keyword matching search but also identifying associations
between objects in order to reveal further relevant search results.

To reconcile references between different kinds of data, SEMEX employs
a reconciliation algorithm in its core [17]. Briefly, the algorithm can com-
pare references and make reconciliation decision, and then enrich references
based on the results of the propagation of information between reconciliation
decisions.

As stated, the searching mechanism in SEMEX exploits references be-
tween objects and returns objects that are relevant to keyword-matched
search results. To do this, SEMEX defines a signification score for objects
by weighting the associations between them.

In Figure 3.8 is a screenshot of SEMEX. In the top left and bottom left
panels, the user can define the search query for the whole information space

37 CHAPTER 3. Literature Review

Figure 3.8: An overview of SEMEX interface [7]

or a particular attribute. The research results in the right panel allows the
user to explore the search by association.

SEMEX is a comprehensive example of how different kinds of informa-
tion have references to each other. The reconciliation algorithm of SEMEX
is intriguing but also limited in the sense that the user does not have flexibil-
ity. If the user would like to manually establish relations between different
objects, the system would not allow this. More importantly, while Haystack
offers an interactive and meaningful interface, SEMEX simply displays the
information in a nested list. This limitation consequently requires the user
to shift through a long list when navigating the information. In addition, the
search feature of SEMEX does not allow the user to create a complex query
or to narrow the search by a particular data type.

3.5.3 iMapping

iMapping is developed on top of the ontology conceptual data structures [29].
The formal ontology can also be extended by associating links between items.
The file browser resembles the idea of a mind map in which items expand
outwards from a central node in a brain-like structure.

Towards the Memex Vision 38

Figure 3.9: An illustration of iMapping with annotated links [29]

Typically, the user can begin with placing resources anywhere in the map.
Because iMapping organises resources hierarchically, it allows the user to put
resources inside another resource in the same manner as a static directory.
By means of nested resources, iMapping creates a view of multiple resources
at different levels so that when the user zooms out of the display, the children
resources may be hidden from the view, and when the user zooms in, the view
will be enhanced with additional details corresponding to the focus context.

Interestingly, whereas the hierarchy structure implies implicit references
between resources, iMapping provides additional mechanisms to establish
explicit references between them. These mechanisms are labelled and un-
labelled links and hyperlinks. While the labelled and unlabelled links are
links from one resource to another that are drawn manually by the user, the
hyperlink behaves the same as that in the World Wide Web (Figure 3.9).

While the zoomable interface allows the user to zoom, span, and scroll
to navigate, the built-in semantic search helps the user to create meaningful
queries. The components supporting the semantic search are the Conceptual
Data Structures, which store data semantically using primitive relations, such
as order, hierarchy, linking, and annotation. To communicate with the front-
end interface, there is a java-based CDS-API that supports basic querying
and reasoning functionalities.

Even though iMapping allows dynamic links and annotation, the system
is confined when it abstracts documents by defining a local resource type.
For example if user who uses iMapping wants to exchange information with
other systems, the resource must be manually exported to popular document
formats, but even doing so, the metadata of the links and the annotations

39 CHAPTER 3. Literature Review

made would not be retained.

3.5.4 MyLifeBits

Figure 3.10: An overview of the MyLifeBits application where files are or-
ganised into a timeline [25]

The idea of a flexible hypermedia system is also demonstrated by the
MyLifeBits project where categorisation no longer exists [25]. Instead, the
story is the essential concept of the application. Documents, therefore, are
organised by time and space in order to construct a meaningful story for the
user.

Besides supporting a keyword matching search, MyLifeBits organises the
search results into different views. There are typically four views, including
detail, thumbnail, timeline and clustered-time (Figure 3.10). By organising
the resources into a specific view, MyLifeBits implicitly forms associations
between them. Unfortunately, these associations will be discarded for another
search query and not be used in order to enhance further search results. In
addition, MyLifeBits allows the user to annotate resources using text and

Towards the Memex Vision 40

audio as well. The user can annotate the resource directly or indirectly.
The indirect annotation is when the user creates stories using the Interactive
Story By Query; stories will be stored as annotations.

To us, the most inspirational idea of MyLifeBits is to organise documents
using clustered-time. However, it would be better if MyLifeBits could en-
hance information retrieval using existing resources such as annotation or
possible resources, such as trails between information.

3.5.5 Cross-Document Link Service

The cross-document link service [84] addresses the issue of creating links
between documents of different document formats. Using the link service,
the user can create and annotate links between parts of documents regardless
of the document type. The core component of the link service is based on
the RSL hypermedia metamodel [75]. One of the advantages of the RSL
metamodel is the flexibility that allows it to support evolving hypermedia
systems. With such an extensible core, the link service can adopt different
document formats by using data and visual plug-ins.

Figure 3.11: Bi-directional links between different document formats created
by the link service [84]

Figure 3.11 illustrates bi-directional links between different document for-
mats including PDF, XML and HTML. Whereas the PDF and XML docu-
ments are rendered in the prototype, the HTML document is still natively vi-
sualised by the web browser. In the figure, the user creates two bi-directional
links: one between a PDF and XML document within the prototype and one
between a PDF and an HTML document.

41 CHAPTER 3. Literature Review

Because the explicit link created by the link service can formulate the
relationships between documents, we consider it a good resource to enhance
document retrieval on the desktop. In the following section, we will outline
possible scenarios where the explicit link can contribute to the retrieval task.

Towards the Memex Vision 42

4
Enhanced Document Retrieval

4.1 Towards Enhanced Document Retrieval

With the boom of information technology in the last decades, there has been
an increasing amount of information for individuals to deal with on a daily
basis. People have shifted from paper-based documents to digital documents.
Since it is incredibly easy to create, edit and share, the digital document have
become extremely popular, allowing individuals to be capable of holding a
small library in a laptop. Unfortunately, if the revolution of technology
offers the individual many tools to build a digital library, there are only a
few instruments that can be used to manage that library.

The first and most common tool every individual can use is the tradi-
tional hierarchical desktop file browser. Despite the underlying architectural
differences between operating systems, traversing through nested folders is
required to locate documents. This method is easy to follow, but previous
research shows that it is ineffective and cognitively demanding [26]. Alter-
natively, the second method is to use the built-in search system to retrieve
documents directly from the search query. The search systems, such as Win-
dows Search and Mac OS Finder, allow the user to search based on different
criteria. Still, they expose a number of limitations: (i) the user cannot create
complex queries, (ii) there is no text snippet extracted from the contents of
the document results, the user has little information about the document ex-

Towards Enhanced Document Retrieval 44

cept the file name and (iii) the document result is a flat list as the user must
sift through every single item. Other alternative solutions are DeFiBro [54],
Cone Tree [64], Dynamic Timelines [43], etc., but they expose a number of
shortcomings. They either neglect document content or stick with a tra-
ditional hierarchical tree, or are confined within a predefined visualisation.
Still, recent research has facilitated the concept of explicit links between doc-
uments [84]. As this facility is new, there has been no research exploiting
this concept in order to enhance search tasks on the desktop.

All of the issues we have addressed must be resolved. First, it is essential
for the user to be able to compose complex queries, such as boolean queries
or wildcards. Take SEMEX [7] as a good example. Even though SEMEX
provides search functionality to the user, the user can only create simple
keyword-based queries. The search result returned by SEMEX is also lim-
ited, as it is simply a list without extra information, which we consider a
usability problem because the task is more memory-demanding. Therefore,
we suggest that for each information object, the new model should provide a
rich set of extra information to resolve such problems. Moreover, instead of
organising information by static attributes, such as information type, we sug-
gest that the system should organise information dynamically, which could
be achieved using clustering techniques. Therefore we would like to promote
the use of clustering techniques in our proposed model because it allows us to
flexibly create a virtual directory (e.g., document cluster) flexibly. More im-
portantly, the explicit link created by the link service can be used to enhance
the search task. For example, we can suggest relevant documents or increase
the cluster quality via the explicit links. Finally, the extensibility in terms
of multiple visualisations allows the system to provide the user maximum
insight regarding the information set.

We have reviewed common issues with previous works and revealed sug-
gestions that can resolve them. Therefore, to make a step forward towards
enhanced document retrieval, we would like to formulate a model that (i) is
extensible in the sense that it can accept current and future document for-
mats, (ii) offers different kinds of visualisations, (iii) can exploit the concept
of explicit links in order to enhance document retrieval task (iv) enhance
retrieval tasks by grouping similar documents into groups, (v) can allow the
user to create a complex search query.

In Figure 4.1, we illustrate a scenario where we take into account the
advanced search query, the document metadata and content, the explicit
links between documents and the multiple visualisations. At the beginning,
the user can perform their searches using an advanced search form, where
they can combine as many fields as they want. There are various fields, such

45 CHAPTER 4. Enhanced Document Retrieval

Figure 4.1: An enhanced search scenario

Figure 4.2: A possible visualistation that demonstrates clusters of documents
and the explicit links

as the content, the author, the title and the date created. It is also necessary

Requirements 46

for the user to use a specific field more than one time. When the system
receives the search queries from the user, it will perform the search over the
index database, where words of all documents are stored. When the search
finishes, it will return a list of matching documents. This document list will
be passed to the data mining component. In addition to clustering using
the document content and metadata, this component takes into account the
explicit links to suggest relevant documents. When the data mining task
finishes, the system will visualise the results and display to the user. There
will be different visualisation styles that are supportd by the visualisation
component and the user can decide the most suitable to use. Figure 4.2
depicts the schemaball as a possible visualisation that demonstrates clusters
of documents and the explicit links. In this figure, documents are organised
into different clusters on the right panel, whereas the names of clusters are on
the left panel. The explicit links are depicted by connecting curves between
documents. In the following sections, we elaborate on the requirements for
enhanced document retrieval and explain the architecture and all components
used to realise the system.

4.2 Requirements

4.2.1 Document Metadata

Metadata is a broad term known by many people as “data about data”. Ac-
cording to [20], metadata “provides a user (human or machine) with a means
to discover that the resource exists and how it might be obtained or accessed”.
There are two different approaches towards the issue of metadata: the biblio-
graphic control approach and the data management approach [5]. Regardless
of the differences between these two approaches, they both concentrate on
using metadata to document information about the resource [20].

We agree that metadata is a useful resource and can influentially con-
tribute to the effectiveness and efficiency of our model. We have investigated
scenarios where metadata can be used to enhance the search task. In the tra-
ditional hierarchical folder, the files are organised in a static structure. By
using metadata, we can provide different perspectives for a unique document
repository to the user based on the search query over the metadata. The
user, for example, can display data based on the title keywords in combina-
tion with the author keywords to create a unique data perspective that suits
the user. Moreover, with the support of the boolean and wildcard queries
that will be discussed later, the user can specialise their search by combining
as many metadata properties as desired to enhance the searches. Second,

47 CHAPTER 4. Enhanced Document Retrieval

the metadata can also be used to suggest relevant documents by text mining
techniques. For example, we would create a vector space model from the title
property and suggest relevant documents by measuring the distance between
the vectors.

4.2.2 Document Content

The document content forms the largest part of a document. It can range
from a phrase to a hundred pages; therefore, document content concerns all
information of the document. Indeed, if we consider that document meta-
data is the door to get to know a document, the document content is ev-
erything about it and allows us to distinguish a document from others. A
good example of how document metadata cause misunderstandings about
the information in the document is when we consider documents with the
title “Gone with the Wind”. The mentioned title may be familiar to many
people, because there exists a famous fiction book with the same title. Dif-
ferent from human beings, the search system will not make any assumptions
about a document when people search using a query. If people search using
“Gone with the Wind”, they may get a documentary book about villages
destroyed by storm because it seems to make sense if the book is named as
such. Therefore, to provide the search system with more in-depth informa-
tion about a document, besides the document metadata, it is necessary to
acquire the textual data of the document in order to provide a better search
result.

In our solution, the document content serves two purposes. First, apart
from the document metadata, we use the document content to build the in-
verted index to support full-text search. The second purpose is to use the
document content for clustering, but before the clustering process it is nec-
essary to preprocess the document content. During the preprocessing step,
we first remove punctuations as well as stop words using a predefined list.
Next, we convert all remaining words into lower case and apply a stemming
algorithm. After the preprocessing step, we obtain a list of content-bearing
terms. The next step is to weight these terms using TF-IDF. At the end of
the second step, we obtain a list of vectors that represent our original doc-
ument collection. The produced vectors will be used later in the clustering
process.

While investigating possible uses of the document content in the model,
we have also realised the possibility of supporting a synonym-matching search.
By means of matching a synonym, we would not only return documents that
contain the input keyword but also documents containing keywords that
means exactly or nearly the same as the input keyword. If the user, for

Requirements 48

example, searches documents using the keyword “computer ”, we can add
documents containing the keywords “calculator ” to the final search result.
This feature indeed could be achieved using the lexical database of Word-
Net [52] by which we would query a list of synonyms for every search keyword
and then execute the search with the generated list. Unfortunately, we have
realised the synonym matching search has many drawbacks. First, it would
be bandwidth and time consuming if we continue sending requests between
the local computer and WordNet database for each search. Second, because
we built the vector space model using the document content, the dimension
of the vector is already large, and using the synonym to enrich the term vo-
cabulary may not be as effective as imagined. We have examined DeFiBro as
a reflective example of the document retrieval system that exploits WordNet
to enrich the term vocabulary. However, because DeFiBro builds the vector
space model using the keywords extracted from the document metadata, the
term vocabulary of DeFiBro is extremely small compared to ours. That is
why WordNet is considerably useful to DeFiBro.

4.2.3 Using Clustering

Clustering is the method that is used to group similar information into cat-
egories. It has proven effective in reducing the time and effort of search
tasks [87]. Vivisimo [42] is a famous example that illustrates the applica-
tion of clustering for a Web-search engine. In desktop browsing, clustering
is appealing in the sense that instead of forcing the user to scroll through
a long list of documents, it offers an opportunity that allows the user to
minimise the scale of search results by organising documents into different
subsets. Thus, the user can have a broad view of the search results, which is
beneficial in terms of reducing searching time in retrieving and finding doc-
uments. More importantly, clustering helps the user avoid typical scenarios,
such as when the user encounters documents with the same name, they can
be easily distinguished by selecting the category name. Another scenario is
when the user search for a common term, such as “twilight”, and obtain many
documents of the same name in different categories.

Even though clustering is beneficial for desktop file browsing in the men-
tioned scenarios, it is still an unimplemented feature of search systems, such
as Windows and Mac OS. The user usually has no information about docu-
ments returned by the search systems, except the document filename. When
the user encounters a large set of documents, it would take an enormous
amount of time to examine the search list. In Figure 4.3, we demonstrate
the need for document clustering for the search results in the desktop by
using the keyword “java” to perform the search. For a common keyword, we

49 CHAPTER 4. Enhanced Document Retrieval

encountered a large number of documents whose topics ranges from learning
Java, Windows Form to a job resume, which creates difficulty when trying
to locate a specific document.

Figure 4.3: An example of uncategorised documents of a search result re-
turned by Finder in Mac OS

Instead of leaving the user with a flat list of document results, grouping
documents into categories using clustering promises a better solution. Fig-
ure 4.4 illustrates how similar documents can be grouped and visualised. In
the figure, documents are no longer in a flat list. Instead, document items in
the same group are placed next to each other and have the same representa-
tional colour. Thus, there are a large number of documents though, the user
is still able to have a good overview of the document result.

To provide clustering to the search result, we investigate the feasibility of
dynamic clustering or query-specific clustering. Traditionally, cluster analy-
sis was applied to the information retrieval system in order to increase the
effectiveness and efficiency of the system [67]. Since then, it is common to
use the clustering method statically; the use of clustering method is applica-
ble to a stable set of document collection. Besides the static application, an
exceptional use of clustering is to apply the clustering method dynamically
based on a given input (e.g., user query), which implies that cluster analysis
is restricted to a subset of document collection that is pertaining to the in-
put. The novel use of cluster analysis is alluring in the sense that if we take
a look again at the Cluster Hypothesis, we can assume that query-specific

Requirements 50

Figure 4.4: An example of visualising clustering of documents dynamically

clustering can return better results when categorising documents.
The case is alluring but so far, there are only a few examples of investi-

gation of the effectiveness of query-specific clustering [58, 31]. Additionally,
though we can expect non-static cluster analysis would yield a better cat-
egorisation, in return, we can assume that the application that uses this
method might be more time-consuming than the traditional method since
the clustering process is conducted during the running time.

4.2.4 An Extensible Architecture

This section describes our motivations for an extensible architecture that
can cope with a variety of document formats as well as support multiple
visualisations. We first explain our investigation of the diversity of documents
and how it motivates us to build a system that not only read many kinds of
formats but also accepts future document formats. Second, we demonstrate
that the system should not be confined by any visualisation style. Instead,
it should be flexible in the sense that new visualisations can be integrated
into existing components without hassle.

51 CHAPTER 4. Enhanced Document Retrieval

4.2.4.1 The Multitude of Document Formats

In the beginning, the original purpose of the electronic document was to
replace the paper-based document so that it is possible for us to create,
edit and then print it out. Later, people started to think about the idea of
document distribution when the computer network had achieved important
steps in development. Instead of printing documents and sending them in
person, people have distributed documents digitally. This adjustment has
brought convenience to our daily lives. However, it has created a fundamental
problem that we still cannot solve, the incompatibility of document formats.

To understand the problem of document format incompatibility, we com-
pare the variety of document formats to the diversity of languages. Typically
there are hundreds of languages in the world, making it impossible for peo-
ple to communicate if they do not know the other languages. In the same
manner, due to particular purposes, there is a large number of document
formats in use. The most popular document formats include PDF, XML,
DOC, XLM, and if we meticulously look at one of the most common file
format today, the PDF file, there are eight versions of the PDF format in
total [30]. Nevertheless, a document retrieval system must be able to read
multiple document formats in order to extract the textual content as well as
metadata for indexing. Still, it would not be sufficient if we build a search
system that solely focuses on existing document formats because the system
would become obsolete as soon as there are new document formats. For
the given reasons, the future search system should not be confined by any
concrete architecture, instead it should be extensible in the sense that we
can increase the number of document formats it could read by adding new
libraries.

4.2.4.2 Support Multiple Visualisations

In the same manner as the ability to support existing and future document
formats, we make a step forward towards the extensibility of visualisation
for three distinct reasons. First, every visualisation schema has its strengths
and weaknesses. Therefore, being confined to any particular visualisation
schema will limit our model. Second, the flexibility in supporting multiple
visualisations offers us additional opportunities to widen our investigation on
how different visualisation styles affect the document retrieval task. Third,
being extensible to accept different visualisation implies that the user can
switch between various visualisation schemas; therefore, the user can would
have more than one choice in choosing an appropriate visualisation style

Requirements 52

4.2.5 Explicit Links of Documents

Aside from textual content and metadata, explicit links produced by the link
service are an excellent resource we can exploit to enhance the search results.
In this section, we analyse a number of possibilities where the explicit link
facility is applicable to our application.

4.2.5.1 Introduce Relevant Documents to the Search Result

Since the ultimate goal of the link service is to allow the user to create trails
between documents, we can assume that when the user creates a link between
document A and document B, both documents are related to each other to
some extent. Therefore, for a given input query, if the document A belongs
to the search results, it is likely that document B may be of interest to the
user. Within the scope of this application, we exploit this assumption to
enhance the search results. In the use of the explicit links in our application,
we do not evaluate the relevant degree of the link between documents A and
B. Instead, if documents A and B are linked to each other via an explicit link
and document A contains the search result keyword, we will add document
B to the search results (Figure 4.5).

Figure 4.5: Since A and B are documented as linked via the explicit link, we
add document B to the search result

4.2.5.2 Increase Clustering Quality

According to the Cluster Hypothesis, documents that are similar to each
other tend to belong to the same clusters. If documents A and B have a
link between them, we can assume that documents A and B are relevant
to each other; therefore, it is more likely that they may belong to a cluster.
Nevertheless, the case would be more extreme if we realise that the similarity
is only applicable to a particular perspective where the user establishes links
between documents A and B. Unsupervised clustering algorithms do not

53 CHAPTER 4. Enhanced Document Retrieval

follow the same manner, where they group documents based on the document
vector similarity. The vector is constructed from textual values, including
content as well as metadata, whereas the metadata from the link service is
not textual data that can be used to model the vector space. Due to this
limitation, we leave the case of using explicit links to enhance the clustering
quality for future research, and therefore do not exploit explicit links for
clustering enhancement.

4.2.5.3 Stimulate Creating Explicit Links for the User

Besides using explicit links to enhance search-related activities, we would like
to see how the application may encourage the user to create further explicit
trails. When the user grasps a comprehensive overview of the categorised
documents and is able to see how the documents are related to each other,
there might be interest in adding links between them.

4.2.6 Enhanced Search Features

We have addressed that the common issue of built-in file search systems in
both Mac OS X and Windows is the constraint possibility of both search
method and display. For instance, using the Mac OS Finder, all we can do to
hone our search is to combine criteria in multiple fields, including document
type, file name, contents, created date and last opened date. There are many
possibilities the search system is missing.

Figure 4.6: An example of an enhanced search form

4.2.6.1 Boolean Query

In Mac Finder, the combination of various criteria is set with the logical
operation AND by default, which means that we are unable to create a

Requirements 54

flexible query with logical operation OR or both. In Figure 4.7, we illustrate
an example of a search in Mac OS using Finder. The example is a search that
queries PDF documents containing “java” as the keyword, created within 100
days, and last modified within 50 days. By default, Mac Finder only offers
the conjunction search, which means we could not search for documents
that satisfy either one of the three conditions. In contrast, we illustrate
an example of an enhanced search form (Figure 4.6), in which the user can
combine as many fields as they want. The user can also search using a specific
field more than one time. There exist various fields, such as the content, title,
author, date created. The user can use either the disjunctive search or the
conjunctive search to formulate the search logic.

Figure 4.7: An example of a conjunction search in Mac OS Finder

4.2.6.2 Wildcard

Some applications, such as SQL or MS-DOS, heavily use the concept of
the wildcard in the search query because it offers a tremendous benefit to
the flexibility of the search query. For example, people who are looking
for documents whose title contains the keywords “compute”, “computer” and
“computing” would apply the wildcard comput*.

We mentioned scenarios that are convenient to the user but are unsup-
ported by built-in visual search systems, including Windows Explorer and
Mac OS Finder (the user can use the wildcard in the command line inter-
face, such as Windows MS-DOS or Mac OS Terminal). To overcome such

55 CHAPTER 4. Enhanced Document Retrieval

Query Seach for documents
english Contain the term english
english france Contain the term english or france, or both
english AND france Contain both english and france
title:english Contain english in title field
title: english -subject:france Contain english in the title field and do not

have france in the subject field
english* Contain terms that begin with english
english˜ Contain terms that are close to the word en-

glish, for example, england
publisheddate: [1/1/2014 to
1/1/2015]

Have published date values between
01/01/2014 and 01/01/2015

Table 4.1: Example of query expressions that can be handled [30]

limitations, we supply our search system with additional flexibility in terms
of the search query composition. To achieve such flexibility, a dynamic com-
position of the field query is illustrated in Figure 4.8. In the beginning, there
is a query with multiple fields. Query parser then handles the search query.
The duty of query parser is to analyse the given query, output it as a form
of distinct combinations of field name and field value. For each combina-
tion, query parser will match it with a corresponding field name and use the
given field value to search documents based on the matching field. Table 4.1
illustrates some examples of the search query the query parser supports.

Figure 4.8: The conceptual model of an advanced query

Architecture 56

4.3 Architecture
This section describes the architecture of our proposed model that satisfies
the requirements we have specified. We first focus on explaining how it
is possible for the system to accept different document formats as well as
different clustering methods. Then, we describe the procedure by which we
index the document collection and construct the vector repository.

4.3.1 General Architecture

In general, the architecture consists of three distinct modules (Figure 4.9).
The first module is the searching module where the full-text search is per-
formed. The second module is the clustering module where we proceed with
the clustering of documents. The third module will collect the search results
as well as the output from clustering to formulate the search results.

Figure 4.9: The conceptual architecture

In the beginning, the user inputs a search query using the search interface.

57 CHAPTER 4. Enhanced Document Retrieval

The search interface makes a corresponding request to the system. The
request made by the user is handled by the searching module where the query
is parsed and searched over the index. When searching completes, it returns
a list of matching documents based on the given query. After that, the search
result is passed to the explicit link exploiter, where relevant documents will be
retrieved via explicit links and added to the list. The enhanced search result
is then passed to the clustering module. In this module, the vector exactor
returns matching vectors based on the list from the vector repository. The
clustering engine reads the matching vectors and performs the text mining
process. When it finishes, it returns the clustered point dictionary that
describes the final cluster result. Both search results and the clustered point
dictionary are passed to the publishing module where the search result is
finally formulated into categorised structured and ready to be published for
further visualisations on the client side.

4.3.2 Indexing

In this section, we explain in detail the process of building the index with the
extensible parser component. Together with the parser is a representation
we define to exhibit a document entity within our application. We name it
the unit document. In Figure 4.10, the unit document will be consumed by
index writer to produce the index.

Figure 4.10: The process of building the index and vector from documents

Architecture 58

4.3.2.1 Information Extraction

Typically, there are many kinds of document formats, and the very first step
is to pull out the information from given documents. In the model, we use the
extensible parser to consume documents. In return, the parser will produce
text fragments from both the metadata and content. The text fragment is
modelled using the unit document in the next step.

The conceptual model of our the extensible parser is illustrated in Fig-
ure 4.11. The parser model is extensible in the sense that it is possible to add
a new parser to the parser repository. Together with the parser repository,
there are two additional repositories, including the language repository and
MIME type repository. The language repository is employed by the language
detector in order to detect the language of document automatically. Simi-
larly, the MIME type repository is employed by the MIME type detector
in order to identify the MIME type of the document. When a new docu-
ment is passed to the interface, the exactor facade will automatically detect
the language and the MIME type of document and correspondingly invoke
the appropriate parser in order to pull out the content and metadata of a
document.

In general, the model offers a number of features:

• A general abstract class for parsing
Even though there are a large number of document types, the model
simplifies the process using a general parsing facade that includes all
parsers, language detection, and MIME detection.

• MIME database and detection
The classification of document formats is stored within a single database,
and this database is extensible enough for further MIME types. In
addition to the MIME database, the MIME type detector class corre-
spondingly detects the MIME type of the document by referencing the
MIME repository.

• Language database and detection
Since documents could be composed in different languages, the lan-
guage repository allows adding new languages for further language de-
tection.

• Extract metadata dynamically
When parsing the document, not all metadata will be extracted. In-
stead, we are able to specify which kinds of metadata we need.

59 CHAPTER 4. Enhanced Document Retrieval

Figure 4.11: The conceptual model of the extensible parser component

4.3.2.2 Document Representation

As soon as the content and metadata from the documents are pulled out,
we need to index all of the information for a further full-text search. Before
proceeding to the indexing step, we first need to translate and composite all
of the text fragment we extracted by using a representational model that the
index writer can digest. Since every digital document contains not only the
plain content but also extra information, such as author, title, etc., we define
a model that represents a document entity with all additional fields. In the
general model, we define it as the unit document or the document model.
Therefore, for every document model, there will be a number of predefined
fields that match actual fields of the document entity. These fields include
author, title, file URI, filename, published date.

Moreover, for each field, there are several possibilities. The field is either
converted to the inverted index (i.e., indexed fields), or stored (i.e., stored
fields), or both (i.e., indexed and stored fields). While indexed fields are fields

Architecture 60

whose inputs are plain text and the output are inverted indexes, stored fields
take the inputs as plain text and store it permanently for further retrieving
purposes. Indeed, stored fields consume more space than indexed fields,
but in contrast, they allow original text retrieval when the indexed fields go
through additional steps when we want to recover the original forms of the
indexed fields.

As discussed above, the metadata of documents are fields that are suitable
for storage since they are small in size and we can easily retrieve them later.
In contrast, the document content should be indexed, not stored because it
is space-consuming. More importantly, we need to analyse the document
content to remove stop words or punctuation. The analysing step not only
helps reducing the field size but also contributes to further text mining in
the following steps.

In general, we define our document model with fields as in Table 4.2.

Field name Indexed Stored Analysed
Content YES NO YES
Author YES YES NO
Title YES YES NO
Filename NO YES NO
Published date NO YES NO
File URI NO YES NO

Table 4.2: Field types of the document model

4.3.3 Extensible Clustering Engine

This section describes our conceptual model of the clustering engine that is
centred around the extensibility feature. Figure 4.12 illustrates the compo-
nent model where the clustering facade abstracts individual clustering com-
ponents, such as k-means, fuzzy k-means, from the rest of the application.
Therefore, our choice of clustering algorithms is not restricted to any specific
method. Instead, we can enrich the algorithm library by further clustering
methods in the future.

61 CHAPTER 4. Enhanced Document Retrieval

Figure 4.12: The conceptual model of the extensible clustering component

Architecture 62

5
Implementation

5.1 Objectives
Typically, there are four propelling objectives of the implementation. The
first and foremost is to develop a prototype as a proof of concept for the pro-
posed model. The second objective is to prove our enhanced search features
can assist the user in retrieval tasks. In addition, the implementation is a
manifestation of using explicit links visioned by Bush to improve retrieval of
documents on the desktop. Finally, we illustrates the extensibility of our ar-
chitecture with two different visualisations, the schemaball and the ordinary
list.

5.2 Technologies

5.2.1 Document Parsing with Apache Tika

Apache Tika is a de factor open source document parsing library that sup-
ports exacting texts from a large number of document formats. It was ini-
tially proposed by Doug Cutting in Apache Software Foundation (ASF).
Generally, Apache Tika offers special features:

• A general abstract class for parsing

Technologies 64

There are a large number of document formats though, Tika provides
a general parsing facade that includes all parser classes, language de-
tection and MIME detection. Its goal is to offer simplicity.

• MIME database and detection
The classification of document formats is stored within a single database
and this database is extensible enough for further MIME types. In
addition to the MIME database is the MIME detection class that cor-
respondingly detect the MIME type of the document by querying the
MIME database.

• Language database and detection
Since documents could be composed in different languages, the lan-
guage database allows adding new languages for further language de-
tection.

• Low memory usage
The text is parsed incrementally into SAX-based XHTML events, al-
lowing the low memory consumption.

• Extract metadata dynamically
Apache Tika does not exact the metadata using a fixed structure. In-
stead, it uses a user-defined template when extracting the metadata.
For example, we can decide which types of metadata Apache Tika needs
to extract, such as the author, the title, and which types of metadata
have to be discarded, such as the file size.

5.2.2 Search with Apache Lucene

Apache Lucene is a de facto open source library targeting search and search-
related tasks such as indexing or querying. Lucene uses the inverted index
data structure to index documents. The indexing strategy of Lucene is differ-
ent from others when it creates segments and merges them, rather than uses
a single index. Typically, an index segment consists of a dictionary index, a
term dictionary and a posting dictionary.

Figure 5.1 illustrates an example of an index, where the merge factor
equals three. In the example, there are 14 documents in the collection.
Lucene repeatedly creates a segment for a document and periodically merges
a group of 3 documents. The process is similar when Lucene keeps merging a
group of 3 segments until there is no more segment to merge. After merging,
all greyed segments will be removed and in total, Lucene merged 5 times

65 CHAPTER 5. Implementation

after the indexing finishes. The approach of merging and deleting segments
is considerably useful as the document collection does not change frequently.

More importantly, the segment will never be modified. Instead, Lucene
creates new segments when the document collection changes and later, it
merges segments into new ones and deletes the old segments. This strategy
ensures there is no conflict between reading writing indexes. Furthermore,
this strategy also allows Lucene to avoid complex B-trees to store segments.
Instead, all segments will be stored in flat files.

Figure 5.1: The index diagram with the merge factor b = 3

5.2.3 Text Mining with Apache Mahout

Apache Mahout is an open source machine learning framework created by
Apache Software Foundation1. The idea of Mahout was originally proposed
in 2008 in the project Apache Lucene. Since machine learning is a general
term, we have to distinguish which areas the library covers. At the moment,
Mahout provides frameworks for the following areas.

• Clustering
The purpose of clustering techniques is to group similar items into cat-
egories. At the moment, the framework has clustering algorithms, in-
cluding k-means, fuzzy k-means, streaming k-means and spectral clus-
tering.

• Collaborative filtering
Collaborative filtering is a generalisation process that introduces the

1
http://www.apache.org

Technologies 66

idea “I like what you like” in the social media context. The framework
includes typical filtering techniques such as user-based collaborative
filtering, item-based collaborative filtering.

• Classification
Classification is the process of assigning unlabelled items into prede-
fined categories. The framework provides several classification algo-
rithms including naive bayes, random forest, logistic regression.

5.2.4 RESTful Web Services

REST or Representational State Transfer is an architecture style that relies
on the HTTP protocol. The idea of REST is to offer simpler web services
to replace complicated mechanisms like Remote Procedure Calls (RPC) or
other web services, such as SOAP, WSDL.

Since using HTTP as a standard protocol in the architecture, REST offers
all standard HTTP methods such as POST, GET, HEAD, PUT, DELETE.
In addition, to develop a RESTful web service, people can use any program-
ming languages and more importantly, there is no limitation in the platform
(UNIX or Windows) while developing a RESTful web service.

To demonstrate how lightweight and simple a RESTful web service is,
firstly we look at a code snippet of a SOAP-based web services.
<?xml ve r s i on=" 1 .0 "?>

<soap : Envelope

xmlns : soap="http ://www.w3 . org /2001/12/ soap�enve lope "

soap : encod ingSty l e="http ://www.w3 . org /2001/12/ soap�encoding ">

<soap : body pb="http ://www. example . com/ user ">

<pb : GetPersonalUserInfo>

<pb : UserID>a54baf</pb : UserID>

</pb : GetPersonalUserInfo>

</soap : Body>

</soap : Envelope>

In a nutshell, the purpose of the given code is to retrieve the personal
information of a user by using a userID. The code is sophisticated. Alter-
natively, the RESTful web service offers a much more simpler solution by
sending a plain GET request to the targeting service using the following
URL.
http : //www. example . com/user /UserDeta i l s / a54baf

5.2.5 Web-based Visualisation

With the flourishing of web technologies, the visualisation on the web has
become trending. The visualisation on the Web extends to many topics,

67 CHAPTER 5. Implementation

including chemistry, physics and so on. Currently, there are many libraries
supporting the visualisation on the web. Some examples of Javascript li-
braries are D3.js[3], RaphaelJS [15], Google chart [89], Processing.js [61]. In
addition to Javascript language, there are other technologies that support
the visualisation on the web, including Flare 2, Dynamic Data Display 3.

To build the interface for the model, we will use the Javascript library
D3.js to visualise data. In this section, we will briefly explain prominent
features that make D3 an excellent tool for the application.

• Excellent documentation
The library has a clear and updated documentation. Besides, there are
many real examples with clear instructions.

• Active project
The library is frequently updated by many contributors.

• Native language
Rather than using the third parties software, such as Flash (Flare) or
Silverlight (Dynamic Data Display), the library is based on SVG to
create the canvas. Since SVG is native to all browsers, D3 ensures the
visualisation is cross-browser.

• Flexible tool
D3 library is not limited in any predefined visualisation styles. Instead,
it is truly a tool that allows the user to create any types of visualisation.

5.3 Use Cases
In this section, we introduce the use cases of our application. In Figure 5.2,
we can see that the unique use case for the user is to search and for which,
the use can have extended use cases as follows.

• View file details The use can examine the metadata of a document by
hovering the mouse. A context modal containing file information will
be displayed. All file information, such as the metadata, are included
in the context modal.

• Filter files by category The clustering process will organise documents
into different categories. The user can filter the search results by click-
ing the category name.

2
flare

3
https://dynamicdatadisplay.codeplex.com

Use Cases 68

Library Advantages Disadvantages
Google Chart 1. The library contains

built-in chart templates
that are ready to use
2. The developers are
allowed to create custom
charts

1. Although it is possible
to create custom charts, it
is complex to do when com-
pare it to other libraries, for
example, D3.js

RaphaelJS 1. The library uses SVG to
create graphics
2. The API is easy to un-
derstand

1. The API is suitable
for starters to create charts,
however, there are only
a small sets of functions
within the API. If the devel-
opers want to create compli-
cated charts, they have to
use additional libraries
2. There are not many
contributors for the project.
The latest release is from
August 2013

D3.js 1. The library uses SVG to
construct the graphics like
RaphaelsJS
2. It have a good documen-
tation with real examples
3. There is a large commu-
nity for the library
4. Many previous exam-
ples prove that it is possible
to create customise charts,
even the complicated charts

1. The library is big

Processing.js 1. It uses the canvas to cre-
ate the graphics and anima-
tions rather than SVG

1. It is not suitable to create
charts

Table 5.1: The comparison of different Javascript libraries for visualisation

69 CHAPTER 5. Implementation

• Change result display There are two kinds of visualisations, the schema-
ball and the ordinary list. This use case demonstrates the ability of
switching between two visualisations.

Figure 5.2: The use case diagram of the application

5.4 Prototype
In this section, we present a prototype that we have implemented for our
proposed model. Figure 5.3 is a screenshot of the prototype, where we per-
formed a search to find documents that contain either the keyword “food ” or
the keyword “dog” and have created date after 01-01-2013. In the figure, the
top is the query builder and the bottom is the result panel where the search
results are visualised. In the result panel, the user have a list of cluster names
on the right panel, and the visualisation style on the left panel.

5.4.1 Query Builder

Figure 5.4 is a snapshot of the search form where we can create complex
queries. The user can use many rules by clicking “Add rule”, and for each rule,
the user must specific the field type. At the moment, we support common
fields, such as content, file name, date created, author. We can also extend
the number of supporting fields by extending the query parser. In the figure,
we present a scenario where we search for documents whose the content have

Prototype 70

Figure 5.3: A screenshot of the prototype

two keywords “keyword1” and “keyword2”, the date created after a specific
date “keyword3”, the author contains “keyword4” and the filename contains
“keyword5”.

5.4.2 Search Result Visualisation

Currently we have implemented two different visualisations. The first visual-
isation is the schemaball, where we can minimise the space as well as demon-
strate the explicit links and the document groups on a single plane (Fig-
ure 5.5). In the schemaball, we applied the proximity principle [40] to group
documents in a same category. The explicit links are visualised using the

71 CHAPTER 5. Implementation

Figure 5.4: The query builder form

connecting curve. The user can view the metadata of a document by hover-
ing (Figure 5.6) and filter documents by the category name when they click
on the category name on the left panel (Figure 5.7).

The second visualisation is the ordinary list. The list consumes more
space than the schemaball but in return, it displays a rich set of information
for each document result, which includes the filename, the text snippet with
highlighted keywords, the document path and the explicit links to other
documents. Note that the list can only display documents in one cluster at
a time.

Prototype 72

Figure 5.5: An overview of the search result using schemaball

73 CHAPTER 5. Implementation

Figure 5.6: The panel containing the information of a document displays
when we hover the mouse on the document name

Prototype 74

Figure 5.7: Filtering the search result using the category name on the left
panel. In this case we highlighted documents of the category “digital”

75 CHAPTER 5. Implementation

Figure 5.8: An overview of a search result using the ordinary list

Prototype 76

6
Evaluation

6.1 Evaluation Methodology

In the evaluation, we will use both quantitative and qualitative methods to
evaluate our proposed solution. According to [80], the benefit of the quan-
titative method is the objective and reliable results, whereas the qualitative
method produces subjective, rich and detailed data. The combination of
both approaches, therefore, is to compensate the weaknesses of each other.
In Figure 6.1, we illustrate the model, where both quantitative and qualita-
tive methods are used equally to produce the results. In this case, we will
use the results from each method to cross-validate the evaluation outcomes.

Figure 6.1: Both quantitative and qualitative methods are integrated to
gather feedback

Evaluation Goals 78

6.2 Evaluation Goals
The ultimate goals of the user evaluation are as follows.

• Measure the usability of the proposed solution in terms of the useful-
ness, the ease of use, the ease of learning and the satisfaction.

• Identify the usability issues in the user interface.

• Gather user feedback for future improvements.

6.3 Evaluation Setup
The evaluation is conducted with 10 participants (5 female). They are either
Master or PhD students. There are 5 participants using Windows and 5
others using Mac OS X in their daily work.

Since the focus of the usability testing is to find to which extent the
application supports the user in retrieval tasks, it is unnecessary to use the
personal document collections of the user. Instead, we prepared a wide range
of document collections beforehand. We decided to choose the Dummies1

how-to books as the testing data for particular advantages it offers.

• It includes a great extent of topics from accounting, photography, com-
puting to blogging.

• The content of the book collection is not too abstract to prevent the
participants from discovering.

The evaluation progress is organised as follows.

• Step 1
We briefly explain to the user the objective of the research and the
concept of the cross-document link service in terms of objective and
usage (for example, what the cross-document linking is and how the link
service enables the user to link between different document formats).

• Step 2
We introduce the book collection to the user and give them five to ten
minutes to explore the data. During this step, the user can use the
file browsers (Windows Explorer or Mac OS Finder) and the search
functionalities (Windows Search or the search box of Mac OS Finder)
of the operating system to discover the book collection.

1
http://www.dummies.com

79 CHAPTER 6. Evaluation

• Step 3
After the user feel familiar with the dataset, we explain to them our
prototype:

– How to make the boolean query by combining different fields in-
cluding content, title, author, date created, date modified?

– How to switch between different visualisations?

– How to examine the schemaball visualisation to discover and browse
documents?

– How to filter the search results using the category names?

– How to find relevant documents using the explicit links and the
clusters?

• Step 4
The user are asked to complete the questionnaire and the interview.
The entire questionnaire and interview questions are included in Ap-
pendix A.

6.4 Quantitative Evaluation
We prepared 25 questions in five different parts for the quantitative evalua-
tion. In the list below, we briefly introduce the objective of each part.

• About you (3 questions): To collect the general information about
the user.

• Usefulness (6 questions) To collect data on the usefulness of the
overall application as well as specific features, including the schemaball
visualisation, the explicit links, the clustering, the complex query and
the text snippet.

• Ease of Use (6 questions) To collection information about to which
degree the user can use the system effectively to accomplish their search
goals.

• Ease of Learning (3 questions) To collect information about to
which degree the user can quickly become skillful with the system.

• Satisfaction (7 questions) To collect information about to which
degree the user are satisfied with the system.

Qualitative Evaluation 80

6.5 Qualitative Evaluation
The qualitative evaluation is the semi-structured interview, where we prepare
6 main questions (Appendix A). The goal of the qualitative evaluation is to
help us collect the subjective information about the system from the user’s
perspectives.

6.6 Results
In this section, we discuss the evaluation findings collected from the evalu-
ation. During the discussion, we introduce both the quantitative and qual-
itative data to gain a better insights of the user experience. We will begin
with the general information and go deep into specialised features including
the explicit links, the clustering, the visualisation and the enhanced search
form.

6.6.1 General

In general, we received promising feedback from the participants about the
application in both the quantitative data (Figure 6.2) as well as the quali-
tative data. Firstly, we asked the participants about the advantages of the
application. All participants answered they were delighted at seeing the re-
lationships between documents in terms of the explicit and implicit links.
Particularly, there were 3 participants clearly indicated because they are re-
search students, they have to work with many journals in different topics.
Normally, most of the journals are on the desktop and they have ambiguous
file names, therefore, realising relationships between documents is valuable
to their work. “It is really a great application because I can find the relation-
ships between documents, especially when you have to do the Master thesis.
You have many references and you want to find the relationships between
documents. You do not have any application does that”, one said. Secondly,
8 participants showed their interests in using the content-based search. It
is an interesting finding because both Windows and Mac OS X support this
feature, but there were three Windows participants had no knowledge about
this availability beforehand. “I have not searched for the content like this
before. I can only search with the title in Windows”, a Windows participant
said. Also, all 5 participants who use Mac OS are not satisfied with the
content-based search feature of Mac. They complained that the system gives
no clue about the document content.

Apart from the mentioned advantages, all participants reported the slow

81 CHAPTER 6. Evaluation

performance of the application. However, one participant said, “In case I
want to find the relationships between documents, I can accept the lagging
time”. More critically, when we asked a participant about the problems she
can encounter when she uses Windows Explorer to manage her documents,
she replied she usually does not have many problems. “I only have a small
number of folders. I know where a specific document is”, she explained how
she retrieves a document. “The application is more applicable to the library
where you have many documents”, she commented. Finally, one interesting
idea we recorded during the interview is one participant suggested that she
would prefer to use the application as a plugin of Windows Explorer or Mac
OS Finder, rather than an independent application.

Figure 6.2: The opinions about the application in general

6.6.2 Explicit Links

Despite the fact that all participants had no knowledge about the concept
of explicit links in advance, the collected data from both quantitative and
qualitative methods confirm the contribution of the explicit links to document
retrieval on the desktop. Figure 6.3 shows the mean scores of the explicit links
in terms of the usefulness, the ease of learning and the satisfaction. Whereas
the scores of the usefulness and the satisfaction indicate the explicit links
are very much beneficial to all participants, the score of the ease of learning
gives a hint about the unfamiliarity of the concept to them.

Results 82

During the interview, 9 of 10 participants gave positive comments on the
explicit links. One said, “Maybe it is good for doing something like literature
search or something like that”. Another participant said, “It is like a recom-
mendation to another document”. Nevertheless, because we had created the
explicit links ourselves early instead of letting the participants create the ex-
plicit links themselves, one participant expressed her trouble when we asked
if she could easily find the relevant documents via the explicit links. “I did
not read the content of documents so I cannot find if it is useful ”, she stated.
One also expressed his frustration with being unfamiliar with the dataset, so
he could not confirm if the explicit links suggested relevant documents. This
drawback can partly explain the lower score of the ease of use when compare
it to the usefulness and satisfaction. In contrast, one particular did not like
the explicit links. “If you have too many links, when you visualise, it will not
make sense. It will be like a web”, she said.

Figure 6.3: The opinions about the explicit links

6.6.3 Clustering

Figure 6.4 shows the mean score of the clustering feature in terms of the
usefulness, the ease of use and the satisfaction. The result is very encourag-
ing, indicating the need of an automatic support to the retrieval tasks of the
user. During the interview, one participant clearly mentioned the document
clustering is an advantage. “I can see which documents are linked together,
she supported her claim. Another participant said the clusters are really

83 CHAPTER 6. Evaluation

useful because she can see the topics of different groups and can differentiate
them through the colors of the clusters. In contrast, one participant was not
happy about the name of the clusters. “I am afraid that sometimes the cluster
name does not relate to the content of documents”, he said. Moreover, in the
same manner as the explicit links, being unfamiliar with the dataset made
the participants frustrated when we asked them to evaluate the correctness
of the clustering.

Figure 6.4: The opinions about the clustering

6.6.4 Visualisation

The participants expressed their interests towards the visualisation. They
were interested in seeing different topics in different colors, the visualisation
of explicit links as well as multiple visualisations. One stated that using
different colors for different clusters are intuitive, so she can know to which
category documents belong. Another comment on the interface is when she
tried to search by multiple keywords, instead of a single text snippet, she sug-
gested that our application should have multiple text snippets where each of
them containing a corresponding keyword. One participant also gave a hint
about the needs of arrows for the explicit links to indicate the direction of
the link. For the inquiry regarding to additional visualisations for the sys-
tem, 9 of 10 participants thought that they were satisfied with two current
visualisations, whereas one participant suggested another kind of visualisa-
tion that supports hierarchical clustering where he can zoom in and out by
the topic name. “For example, in the information technology topic, you put

Conclusion 84

subtopics such as machine learning, computing”, he described his idea about
the visualisation. About the multiple visualisations, he gave us a positive
comment, “We prefer to have more options, because it is easier to represent ”.

6.6.5 Enhanced Search Form

The user user evaluation reveals an interesting fact that while all Mac OS
participants know the search system supports content-based search, 4 out
of 5 Windows participants did not know this features is also supported in
Windows. The boolean query was interesting to all of participants, indicating
the needs of a more flexible search in both Windows and Mac OS X.

6.7 Conclusion
Both the collected quantitative and qualitative data state our proposed solu-
tion consisting the explicit links, the clustering, the advanced search features
is contributive to the document retrieval. Valuable suggestions from the par-
ticipants open the model to new possibilities including the hierarchical clus-
tering, the multiple text snippets and the additional search fields. Finally, it
is critical to improve the search time in the future.

7
Discussion and Future Work

7.1 Discussion

The ultimate goal of this thesis was to enhance retrieval and discovery of
desktop documents by focusing further on the idea visioned by Vannevar
Bush that document retrieval should be analogous to the human brain, where
people are capable of retrieving them effortlessly using a given hint [6]. To
accomplish the goal, we have proposed a novel model where we take into
account both explicit and implicit links between documents. Whereas the
novel model defines the implicit link using text data mining techniques for
document’s metadata and content, the explicit link, which is analogous to
the associative trails of the memex, is enabled using the link service [84]. In
this thesis, we have outlined a number of possibilities that explicit links can
contribute to the desktop retrieval and within the scope of this thesis, we
have utilised the use case that explicit links can be used to suggest relevant
documents.

Besides the explicit and implicit links, the novel model that we have pro-
posed is adapted to concur specific requirements. First, we have emphasised
the issue of the multitude of digital document formats and designed an exten-
sible parser that is capable of resolving the issue. Furthermore, we enhance
the search features by means of boolean queries and wildcards, and designed
an extensible architecture that can adopt different document formats as well

Discussion 86

as visualisation styles. Finally, we have instantiated the model by an im-
plemented interface with two different visualisations, the schemaball and the
ordinary list. To evaluate the solution, we conducted an evaluation with end
users using both quantitative and qualitative methods. The result of the user
study is optimistic, indicating the model would be useful in supporting the
retrieval task on the desktop.

Our proposed model has overcame many of the shortcomings of previous
researches. First, none of those considers the content of documents. They
only focus on the metadata to organise the document collection. Further-
more, they do not consider the explicit links to enhance the retrieval tasks and
support the retrieval tasks with enhanced search features, such as boolean
queries or wildcards. Finally, their visualisations are limited because they
only focus on a specific visualisation.

7.1.1 Contributions

To summarise, we outline the contributions of our research as follows.

1. We identified challenges of document retrieval and discovery on the
desktop by making a comprehensive review. The review includes both
built-in search systems and different techniques that have been pro-
posed.

2. Based on the results of our review, we have proposed a novel model
for document retrieval and discovery on the desktop. It first takes full
advantage of the document attributes as well as the content to support
the retrieval task. By exploiting the explicit links between documents,
it ensures the search results are more relevant and personalised to the
user.

3. We designed an extensible architecture that can adopt different digital
document formats as well as visualisation styles.

4. We implemented a prototype as a proof of concept for the proposed
model. To illustrate, we implemented two different visualisation styles
for the prototype, the schemaball and the ordinary list.

5. To evaluate the solution, we conducted an evaluation with end-users.
The results of our evaluation confirm the potential of our proposed
model in supporting retrieval and discovery of documents on the desk-
top.

87 CHAPTER 7. Discussion and Future Work

7.2 Future Work

7.2.1 Exploit Further Possibilities of Explicit Links

In this thesis, we have outlined a number of use cases where the explicit links
can contribute to the document retrieval task. So far we have only taken into
consideration the use case that the explicit link can suggest relevant docu-
ments to the user. We believe that there is still room for future researches
with remaining use cases: (i) use explicit links to improve clustering quality,
(ii) mining explicit links to suggest further links to the user, (iii) study the
explicit links at the paragraph level (i.e. take into consideration the exact
location of the explicit link within the document).

7.2.2 Investigate the Performance of Synonym-based Search

During the implementation, we realised that the idea of using WordNet to
support synonym-based drastically decreases the search speed of the system
because we have to make multiple requests for a single search as well as
remote query to WordNet. In future research, if we can address the perfor-
mance issue of the synonym-based search then we can open new possibilities
to document retrieval where we can retrieve more relevant documents.

Future Work 88

A
Appendix

Quantitative Questions

About You

1. What is your gender?

2 Male

2 Female

2. What is your academic position?

2 Bachelor

2 Master

2 Phd

2 Other

3. What operating system (OS) do you use?

2 Windows

2 Mac OS

2 Other

90

Usefulness

4. To what degree do you think the Schemaball visualisation is
useful in organising documents (1 = not at all, 5 = extremely
useful) ?
2 1
2 2
2 3
2 4
2 5

5. To what degree do you think the explicit link between doc-
uments is useful in helping you find and discover documents
(1 = not at all, 5 = extremely useful) ?
2 1
2 2
2 3
2 4
2 5

6. To what degree do you think the automatic categorisation
(the keyword on the left) is useful in helping you find and
discover documents according to the topic (1 = not at all, 5
= extremely useful) ?
2 1
2 2
2 3
2 4
2 5

7. To what degree do you think the search form of our appli-
cation is useful in giving you more control over the search
query (1 = not at all, 5 = extremely useful) ?
2 1
2 2
2 3
2 4
2 5

91 APPENDIX A. Appendix

8. To what degree do you think the text snippet in the search
results is useful in finding and discover documents (1 = not
at all, 5 = extremely useful) ?
2 1

2 2

2 3

2 4

2 5

9. To what degree do you think our application is effective in
finding and discovering documents (1 = not at all, 5 = ex-
tremely effective) ?
2 1

2 2

2 3

2 4

2 5

Ease of Use

10. To what degree do you think our application visualisation is
easy to use (1 = not at all, 5 = extremely easy) ?
2 1

2 2

2 3

2 4

2 5

11. To what degree do you think using the query model (AND,
OR, *) is easy to use (1 = not at all, 5 = extremely easy) ?
2 1

2 2

2 3

2 4

2 5

92

12. To what degree do you think you can use the application with-
out instructions (1 = totally impossible, 5 = totally possible)
?
2 1

2 2

2 3

2 4

2 5

13. To what degree do you think the automatic categorisation of
documents is consistent when you use it (1 = not consistent
at all, 5 = extremely consistent) ?
2 1

2 2

2 3

2 4

2 5

14. To what degree do you think changing between different vi-
sualisation is easy to use (1 = not consistent at all, 5 = ex-
tremely easy) ?
2 1

2 2

2 3

2 4

2 5

15. To what degree do you think you can finding detail informa-
tion about a document by hovering the mouse on it is easy
to use (1 = not consistent at all, 5 = extremely easy) ?
2 1

2 2

2 3

2 4

2 5

93 APPENDIX A. Appendix

Ease of Learning

16. To what degree do you think you can learn to use the search
form quickly (1 = very difficult to learn, 5 = extremely easy
to learn) ?
2 1
2 2
2 3
2 4
2 5

17. To what degree do you think you can learn to use the explicit
links quickly to find relevant documents (1 = very difficult to
learn, 5 = extremely easy to learn) ?
2 1
2 2
2 3
2 4
2 5

18. To what degree do you think you can quickly became skilful
with our application (1 = very difficult to learn, 5 = ex-
tremely easy to learn) ?
2 1
2 2
2 3
2 4
2 5

Satisfaction

19. To what degree do you think you are satisfied with the system
in general (1 = not satisfied at all, 5 = extremely satisfied) ?
2 1
2 2
2 3
2 4

94

2 5
20. To what degree do you think you are satisfied with using the

search form with different fields to search for documents (1
= not satisfied at all, 5 = extremely satisfied) ?
2 1
2 2
2 3
2 4
2 5

21. To what degree do you think the the search form with dif-
ferent fields is pleasant to use (1 = not pleasant at all, 5 =
extremely pleasant) ?
2 1
2 2
2 3
2 4
2 5

22. To what degree do you think you are satisfied with the doc-
uments you find and discover through explicit links (1 = not
satisfied at all, 5 = extremely satisfied) ?
2 1
2 2
2 3
2 4
2 5

23. To what degree do you think you are satisfied with the doc-
uments you find and discover when documents in the same
topic are grouped together (1 = not satisfied at all, 5 = ex-
tremely satisfied) ?
2 1
2 2
2 3
2 4
2 5

95 APPENDIX A. Appendix

24. To what degree do you think you are satisfied with the docu-
ments you find and discover when using our application(1 =
not satisfied at all, 5 = extremely satisfied) ?
2 1
2 2
2 3
2 4
2 5

25. To what degree do you think you are satisfied with the doc-
uments you find and discover when using built-in search sys-
tems in Windows or Mac OS (1 = not satisfied at all, 5 =
extremely satisfied) ?
2 1
2 2
2 3
2 4
2 5

Qualitative Questions
1. In your opinion, what are the advantages of our application?

2. In your opinion, what are the disadvantages of our application?

3. In your opinion, what suggestions do you have for improvement?

4. In your opinion, what are the differences between our system and the
system of Mac/Windows?

5. In your opinion, do you think we need more visualisations?

6. In your opinion, what do you think about the performance of our ap-
plication? Is it slow or fast?

96

Bibliography

[1] A. R. Barton, V. L. Schatz, and L. N. Caplan. Information Retrieval on
a High-Speed Computer. In Proceedings of the Western Joint Computer
Conference, pages 77–80, 1959.

[2] S. Björk. Hierarchical Flip Zooming: Enabling Parallel Exploration of
Hierarchical Visualizations. In Proceedings of AVI 2000, pages 232–237,
2000.

[3] M. Bostock, V. Ogievetsky, and J. Heer. D3 Data-Driven Documents.
IEEE TVCG, 17:2301–2309, 2011.

[4] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web
Search Engine. Computer Networks and ISDN Systems, 30:107–117,
1998.

[5] K. Burnett, K. B. Ng, and S. Park. A Comparison of the Two Tradi-
tions of Metadata Development. Journal of the American Society for
Information Science, 50:1209–1217, 1999.

[6] V. Bush. As We May Think. The Atlantic Monthly, 176(1):101–108,
1945.

[7] Y. Cai, X. L. Dong, A. Halevy, J. M. Liu, and J. Madhavan. Personal
Information Management with SEMEX. In Proceedings of SIGMOD ’05,
pages 921–923, 2005.

[8] S. K. Card, J. D. Mackinlay, and B. Shneiderman. The FISHEYE View:
A New Look at Structured Files. In S. K. Card, J. D. Mackinlay, and
B. Shneiderman, editors, Readings in Information Visualization, pages
312–330. Morgan Kaufmann Publishers, 1998.

[9] P. R. Christopher Manning and H. Schutze. Introduction to Information
Retrieval, chapter 1, pages 1–17. Cambridge University Press, 2008.

BIBLIOGRAPHY 98

[10] A. Cockburn, A. Karlson, and B. B. Bederson. A Review of
Overview+Detail, Zooming, and Focus+Context Interfaces. ACM
CSUR, 41:1–31, 2008.

[11] A. Cockburn and B. Mckenzie. 3D or Not 3D? Evaluating the Effect
of the Third Dimension in a Document Management System. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 434–441, 2001.

[12] A. Cockburn and B. Mckenzie. Evaluating the Effectiveness of Spatial
Memory in 2D and 3D Physical and Virtual Environments. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 203–210, 2002.

[13] D. Cutting and J. Pedersen. Optimization for Dynamic Inverted Index
Maintenance. In Proceedings of the 13th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
pages 405–411, 1990.

[14] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey. Scat-
ter/Gather: A Cluster-Based Approach to Browsing Large Document
Collections. In Proceedings of the 15th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
pages 318–329, 1992.

[15] D. D. M. . D. Dawber. Learning Raphaël JS Vector Graphics. Packt
Publishing, 2013.

[16] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman. Indexing by Latent Semantic Analysis. JASIS, 41(6):391–
407, 1990.

[17] X. Dong, A. Halevy, and J. Madhavan. Reference Reconciliation in
Complex Information Spaces. In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, pages 85–96, 2005.

[18] P. Dourish, W. K. Edwards, A. Lamarca, J. Lamping, K. Petersen,
M. Salisbury, D. B. Terry, and J. Thornton. Extending Document Man-
agement Systems with User-Specific Active Properties. ACM Transac-
tions on Information Systems, 18:140–170, 2000.

[19] S. T. Dumais and T. K. Landauer. Using Examples to Describe Cate-
gories. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 112–115, 1983.

99 BIBLIOGRAPHY

[20] E. N. Efthimiadis and A. Carlyle. Organizing Internet Resources: Meta-
data and the Web. Bulletin of the American Society for Information
Science and Technology, 24:4–5, 1997.

[21] D. C. Engelbart. Augmenting Human Intellect: A Conceptual Frame-
work. In N. Wardrip-Fruin and N. Montfort, editors, The New Media
Reader. MIT Press, 1962.

[22] E. Freeman and D. Gelernter. Lifestreams: A Storage Model for Personal
Data. SIGMOD Record, 25(1):80–86, 1996.

[23] E. Freeman and D. Gelernter. Beyond Lifestreams: The Inevitable
Demise of the Desktop Metaphor. Kaptelinin and Czerwinski, pages
19–48, 2007.

[24] G. W. Furnas. Generalized Fisheye Views. CHI ’86, 17(4):16–23, 1986.

[25] J. Gemmell, G. Bell, R. Lueder, S. Drucker, and C. Wong. Mylifebits:
Fulfilling the Memex Vision. In Proceedings of the Tenth ACM Interna-
tional Conference on Multimedia, pages 235–238, 2002.

[26] M. Golemati, a. Katifori, E. Giannopoulou, I. Daradimos, and C. Vassi-
lakis. Evaluating the Significance of the Windows Explorer Visualization
in Personal Information Management Browsing Tasks. In Proceedings
of IV’07, pages 93–100, 2007.

[27] A. Griffiths, H. C. Luckhurst, and P. Willett. Using Interdocument
Similarity Information in Document Retrieval Systems. Journal of the
American Society for Information Science, 37:3–11, 1986.

[28] F. G. Halasz, T. P. Moran, and R. H. Trigg. Notecards in a Nutshell. In
Proceedings of the SIGCHI/GI Conference on Human Factors in Com-
puting Systems and Graphics Interface, pages 45–52, 1987.

[29] H. Haller and A. Abecker. Imapping: A Zooming User Interface Ap-
proach for Personal and Semantic Knowledge Management. In Proceed-
ings of the 21st ACM Conference on Hypertext and Hypermedia, pages
119–128, 2010.

[30] E. Hatcher and O. Gospodnetic. Lucene in Action. Manning Publica-
tions, 2 edition, 2004.

[31] M. A. Hearst and J. O. Pedersen. Reexamining the Cluster Hypothesis:
Scatter/Gather on Retrieval Results. In Proceedings of the 19th Annual

BIBLIOGRAPHY 100

International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 76–84, 1996.

[32] S. Henderson. Genre, Task, Topic and Time: Facets of Personal Dig-
ital Document Management. In Proceedings of the 6th ACM SIGCHI
New Zealand Chapter’s International Conference on Computer-Human
Interaction: Making CHI Natural, pages 75–82, 2005.

[33] A. Hotho, S. Staab, and G. Stumme. Ontologies Improve Text Docu-
ment Clustering. In The Third IEEE International Conference on Data
Mining, pages 541–544, 2003.

[34] D. A. Hull. Stemming Algorithms: A Case Study for Detailed Eval-
uation. Journal of the American Society for Information Science and
Technology, 47(1):70–84, 1996.

[35] B. Johnson and B. Shneiderman. Tree-Maps: A Space-Filling Approach
to the Visualization of Hierarchical Information Structures. In Proceed-
ings of the 2nd Conference on Visualization ’91, pages 284–291, 1991.

[36] S. C. Johnson. Hierarchical Clustering Schemes. Psychometrika,
32(3):241–254, 1967.

[37] D. R. Karger, K. Bakshi, D. Huynh, D. Quan, and V. Sinha. Haystack:
A Customizable General-Purpose Information Management Tool for
End Users of Semistructured Data. In G. W. Michael Stonebraker and
D. Dewitt, editors, Proceedings of the CIDR Conference, pages 13–28,
2005.

[38] S. Kaski, T. Honkela, K. Lagus, and T. Kohonen. Websom “Self-
Organizing Maps of Document Collections”. Neurocomputing, 21:101–
117, 1998.

[39] A. Katifori, C. Vassilakis, and A. Dix. Ontologies and the Brain: Using
Spreading Activation through Ontologies to Support Personal Interac-
tion. Cognitive Systems Research, 11(1):25–41, 2010.

[40] K. Koffka. The Environmental Field. In Principles of Gestalt Psychology,
pages 164–165. Taylor & Francis, 2013.

[41] T. Kohonen. The Self-Organizing Map. Neurocomputing, 21:1–6, 1998.

[42] S. Koshman, A. Spink, and B. J. Jansen. Web Searching on the Vivisimo
Search Engine. Journal of the American Society for Information Science
and Technology, 57:1875–1887, 2006.

101 BIBLIOGRAPHY

[43] R. L. Kullberg. Dynamic Timelines - Visualizing Historical Information
in Three Dimensions. Master’s thesis, MIT Media Lab, 1995.

[44] R. M. L. Page, S. Brin and T. Winograd. The Pagerank Citation Rank-
ing: Bringing Order to the Web. Technical report, Stanford Digital
Library Technologies Project, 1998.

[45] J. Lamping, R. Rao, and P. Pirolli. A Focus+Context Technique Based
on Hyperbolic Geometry for Visualizing Large Hierarchies. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, pages 401–408, 1995.

[46] M. W. Lansdale. The Psychology of Personal Information Management.
Applied Ergonomics, 19:55–66, 1988.

[47] H. Luhn. A Statistical Approach to Mechanized Encoding and Searching
of Literary Information. IBM Journal of Research and Development,
1(4):309–317, 1957.

[48] Maarten, Maarten, M. P. Czerwinski, M. Van Dantzich, G. Robertson,
and H. Hoffman. The Contribution of Thumbnail Image, Mouse-over
Text and Spatial Location Memory to Web Page Retrieval in 3D. Pro-
ceedings of the INTERACT’99, pages 163–170, 1999.

[49] R. Madsen, S. Sigurdsson, L. Hansen, and J. Larsen. Pruning the Vo-
cabulary for Better Context Recognition. In Proceedings of the 17th
International Conference on Pattern Recognition, volume 2, pages 483–
488, 2004.

[50] T. W. Malone. How Do People Organize Their desks?: Implications
for the Design of Office Information Systems. ACM Transactions on
Information Systems, 1(1):99–112, 1983.

[51] M. Maron, J. Kuhns, and L. Ray. Probabilistic Indexing. A Statistical
Technique for Document Identification and Retrieval. Technical report,
DTIC Document, 1959.

[52] G. a. Miller. Wordnet: A Lexical Database for English. Communications
of the ACM, 38(11):39–41, 1995.

[53] G. W. Milligan. An Examination of the Effect of Six Types of Error Per-
turbation on Fifteen Clustering Algorithms. Psychometrika, 45(3):325–
342, 1980.

BIBLIOGRAPHY 102

[54] G. Mosweunyane, L. Carr, and N. Gibbins. A Tag-like, Linked Naviga-
tion Approach for Retrieval and Discovery of Desktop Documents. In
H. Cherifi, J. Zain, and E. El-Qawasmeh, editors, Digital Information
and Communication Technology and Its Applications, Communications
in Computer and Information Science, pages 692–706. Springer Berlin
Heidelberg, 2011.

[55] T. H. Nelson. Complex Information Processing: A File Structure for
the Complex, the Changing and the Indeterminate. In Proceedings of
the 1965 20th National Conference, pages 84–100, 1965.

[56] M. F. Porter. An Algorithm for Suffix Stripping. Program, 40(3):211–
218, 2006.

[57] D. M. Powers. Evaluation: From precision, Recall and F-Measure to
Roc, Informedness, Markedness and Correlation. Journal of Machine
Learning Research Homepage, 2:37–63, 2011.

[58] S. E. Preece. Clustering as An Output Option. Proceedings of the
American Society for Information Science, 10:189–190, 1973.

[59] P. Ravasio, S. G. Schär, and H. Krueger. In Pursuit of Desktop Evolu-
tion: User Problems and Practices with Modern Desktop Systems. ACM
Transactions on Computer-Human Interaction, 11(2):156–180, 2004.

[60] P. Ravasio and V. Tscherter. The Users’ Theories on the Desktop
Metaphor - or Why We Should Seek Metaphor-Free Interfaces. In Be-
yond the Desktop Metaphor: Designing Integrated Digital Work Envi-
ronments, 2007.

[61] J. Resig, B. Fry, and C. Reas. Processing.js, 2008.

[62] C. J. V. Rijsbergen. Information Retrieval. Butterworth-Heinemann,
2nd edition, 1979.

[63] G. Robertson, M. Czerwinski, K. Larson, D. C. Robbins, D. Thiel, and
M. Van Dantzich. Data mountain: Using Spatial Memory for Document
Management. In Proceedings of the 11th Annual ACM Symposium on
User Interface Software and Technology, pages 153–162, 1998.

[64] G. G. Robertson, J. D. Mackinlay, and S. K. Card. Cone Trees: Ani-
mated 3d Visualizations of Hierarchical Information. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI
’91, pages 189–194. ACM, 1991.

103 BIBLIOGRAPHY

[65] S. Robertson. The Probability Ranking Principle in IR. Journal of
Documentation, 33:294–304, 1977.

[66] G. Salton. Search Strategy and the Optimization of Retrieval Effective-
ness. Proceedings of the FID/IFIP Conference on Mechanized Informa-
tion Storage, Retrieval, and Dissemination, 1967.

[67] G. Salton. Automatic Information Organization and Retrieval. Com-
puter, pages 41–56, 1980.

[68] G. Salton and C. Buckley. Term-Weighting Approaches in Automatic
Text Retrieval. Information Processing and Management, 24(5):513–
523, 1988.

[69] G. Salton, a. Wong, and C. S. Yang. A Vector Space Model for Auto-
matic Indexing. Communications of the ACM, 18(11):613–620, 1975.

[70] G. Salton and C. Yang. On the Specification of Term Values in Auto-
matic Indexing. Journal of Documentation, 29:351–372, 1973.

[71] M. L. Scott. Dewey Decimal Classification, chapter General Aspects
of the Dewey Decimal Classification, pages 13–19. Libraries Unlimited,
21st edition, 2005.

[72] J. Sedding and D. Kazakov. Wordnet-Based Text Document Clustering.
In Proceedings of the 3rd Workshop on Robust Methods in Analysis of
Natural Language Data, pages 104–113, 2004.

[73] S. Sharma and Vishal Gupta. Recent Developments in Text Clustering
Techniques. International Journal of Computer Applications, 37(6):14–
19, 2012.

[74] D. Shenk. Data Smog: Surviving the Information Glut, chapter The
Laws of Data Smog. Harper San Francisco, 2009.

[75] B. Signer and M. Norrie. As We May Link: A General Metamodel for
Hypermedia Systems. In ER 2007, volume 4801, pages 359–374, 2007.

[76] R. R. Sokal. Numerical Taxonomy. Scientific American, 215(6):106–116,
1966.

[77] K. Sparck Jones. A Statistical Interpretation of Term Specificity and Its
Application in Retrieval. Journal of Documentation, 28(1):11–21, 1972.

BIBLIOGRAPHY 104

[78] J. Stasko. An Evaluation of Space-filling Information Visualizations
for Depicting Hierarchical Structures. International Journal of Human-
Computer Studies, 53(5):663–694, 2000.

[79] J. Stasko and E. Zhang. Focus+Context Display and Navigation Tech-
niques for Enhancing Radial, Space-Filling Hierarchy Visualizations.
In IEEE Symposium on Information Visualization 2000, pages 57–65.
IEEE, 2000.

[80] A. Steckler, K. R. Mcleroy, R. M. Goodman, S. T. Bird, and L. Mc-
cormick. Toward Integrating Qualitative and Quantitative Methods:
An Introduction. Health Education Quarterly, 19:1–8, 1992.

[81] M. Steinbach, G. Karypis, and V. Kumar. A Comparison of Document
Clustering Techniques. In In KDD Workshop on Text Mining, volume
400, pages 525–526, 2000.

[82] P. Switzer. Vector Images in Document Retrieval. Statistical Association
Methods for Mechanized Documentation, pages 163–171, 1965.

[83] M. Taube, C. D. Gull, and I. S. Wachtel. Unit Terms in Coordinate
Indexing. American Documentation, 3:213–218, 1952.

[84] A. Tayeh and B. Signer. Open Cross-Document Linking and Browsing
Based on a Visual Plug-in Architecture. Proceedings of WISE 2014,
pages 231–245, 2014.

[85] C. P. Thacker, E. Maccreight, and B. W. Lampson. Alto: A Personal
Computer. In B. Siewiorek and Newell, editors, Computer Structures:
Principles and Examples, pages 549–572. Xerox, Palo Alto Research
Center, 2nd edition, 1979.

[86] A. Tombros, A. Tombros, R. Villa, and C. J. Van Rijsbergen. The Effec-
tiveness of Query-Specific Hierarchic Clustering. Information Processing
and Management, 38:559–582, 2002.

[87] O. Zamir and O. Etzioni. Grouper: A Dynamic Clustering Interface to
Web Search Results. Computer Networks, 31(11-16):1361–1374, 1999.

[88] S. Zhong and J. Ghosh. Generative Model-Based Document Clustering:
A Comparative Study. Knowledge and Information Systems, 8(3):374–
384, 2005.

105 BIBLIOGRAPHY

[89] Y. Zhu. Introducing Google Chart Tools and Google Maps API in
Data Visualization Courses. IEEE Computer Graphics and Applications,
32(6):6—9, 2012.

