: (Vrije Universiteit Brussel

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

A Framework to Provide User Control
in Context-aware Systems

Graduation thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in Applied Sciences and Engineering: Computer Science

Wouter Mensels

Promoter: Prof. Dr. Beat Signer
Advisors: Sandra Trullemans

Academic year 2013-2014

(©Vrije Universiteit Brussel, all rights reserved.

: (Vrije Universiteit Brussel

FACULTEIT WETENSCHAPPEN

VAKGROEP COMPUTERWETENSCHAPPEN

A Framework to Provide User Control
in Context-aware Systems

Afstudeer eindwerk ingediend in gedeeltelijke vervulling van de eisen voor het behalen van de
graad Master of Science in de Ingenieurswetenschappen: Computerwetenschappen.

Wouter Mensels

Promoter: Prof. Dr. Beat Signer
Advisor: Sandra Trullemans

Academiejaar 2013-2014

(©Vrije Universiteit Brussel, all rights reserved.

Abstract

Context-aware applications modify their behaviour based on the current con-
text. Information about this context does not have to be explicitly provided
by users. Part of this information can be automatically detected or derived
by the application. In its most simple form, contextual information can be
directly sensed by physical sensors (e.g. location and temperature). On the
other hand, more complex human-related context information such as user
tasks, goals or preferences needs to be derived by applying high-level rea-
soning. Given the variable nature of human behaviour, these human-related
contexts cannot be deterministically modelled upfront. Context-aware appli-
cations that exploit human context need to involve end users when processing
context. End users need to have an understanding of how the system detects
context and need to be able to control this process.

In this thesis, we present a framework that enables end users to define
their own contexts by creating models. Context is considered as generic as
possible where users should be able to define every context they need. In or-
der to provide generic context models, the framework needs to be flexible in
easily integrating new types of context information. Since end users usually
do not have programming skills, they require straightforward user interfaces
that are easy to use. These tools typically have limited expressive power.
Therefore, we present a context modelling framework which combines flex-
ibility and extensibility with easy to use modelling tools that can be used
by end users. The framework consists of three layers namely a plug-in layer,
a configuration layer and a context layer. Each layer covers a part of the
modelling tasks, produces different deliverables and is targeted to users with
different profiles. Deliverables created in one layer are used in the next layer.
Next to the modelling tools, the framework provides a runtime environment
for the real-time evaluation of user-defined contexts. This runtime envi-
ronment uses a rule engine. The framework translates user-defined context
models in declarative rules that can be loaded in the rule engine.

As a proof of concept we have applied the context modelling framework
to the domain of Personal Information Management (PIM). It is natural for
humans to use context when organising and re-finding personal information
items. This implies that context-aware computing can make a significant
contribution to PIM systems. We used the modelling tools to create a user-
defined context and integrated the runtime environment of the framework
with a context-aware desktop application.

ii

Acknowledgements

First of all I would like to thank my advisors Brecht De Rooms and Sandra
Trullemans for their support, frequent reviews and feedback. Even for me as
a working student with several years of professional experience and a previous
Master’s Thesis you have managed to set new standards for quality that I
have acquired for live.

I would further like to thank the teaching staff at the Computer Science
Department of VUB and especially the WISE research group for their flexi-
bility towards working students. At several occasions additional courses and
explanations were provided after business hours, often to a very small group
of students. The combination of study and work is a balanced exercise for
which all assistance and flexibility is highly appreciated. And of course I
want to thank my promoter for his advice and assistance.

Many thanks also to my friends and family, and especially to my partner
Heidi and her children Luckas, Marie and Katoo. I realise that living with a
working student can be demanding, especially during exam periods. Thanks
a lot for your patience and support!

Contents

1 Introduction

1.1
1.2
1.3

2.1

2.2

2.3

2.4

3.1
3.2

3.3

3.4

3.5

3.6

The Ubiquitous Computing Paradigm 1
Contribution of this Thesis 4
Thesis Structure 6

A User-centric Approach to Context

Introduction to Context 7
2.1.1 Context from a General Perspective 8
2.1.2 Context from a Computing Perspective 8
A User-centric Approach 11
Requirements for a Context Definition

Framework 16
SUMMAry e e 17

Frameworks for Context-aware Computing

Architecture of Context-aware Applications. 19
Context Toolkit o 22
3.2.1 Architecture and Components 22
3.2.2 A Sample Widget 25
3.2.3 Evaluation Lo oo 25
Adding Support for Intelligibility and Control 27
3.3.1 The Situation Component 27
3.3.2 Evaluation oo oL 28
Context Recognition Network Toolbox 28
3.4.1 Architecture and Components 29
3.4.2 Evaluation oo 31
The Jigsaw Project oL L. 32
3.5.1 The Framework 32
3.5.2 Evaluationo 33
Summary e 34

The Context Modeller Framework

CONTENTS iv

4.1

4.2

4.3
4.4

4.5

Custom Types 35
4.1.1 Creating Types 35
4.1.2 Type Compatibility 36
Layers of Abstraction 37
4.2.1 The Plug-in Layer 37
4.2.2 The Configuration Layer 39
4.2.3 The Context Layer 42
Context Evaluation, 42
Working with the Tools. 43
4.4.1 The ExpertUser Tool 43
4.4.2 The EndUser Tool 45
SUMMATY o v e e e e 48

5 Implementation

5.1
5.2

5.3
5.4
5.5
5.6
5.7

Technologies and Libraries 49
Application Structure 50
5.2.1 Graphical Elements 50
5.2.2 Extensible Types 50
The ExpertUser Tool 52
The EndUser Tool 54
Rule Generation 56
The Rule Engine 58
SUMMATY o v e e e 59

6 A Use Case in PIM

6.1
6.2
6.3
6.4

6.5
6.6

7.1
7.2

Personal Information Management 61
The Human Memory 63
Context applied to PIM 66
A User-defined Context for Information Items 68
6.4.1 A Context Example. 68
6.4.2 Creating Templates 69
6.4.3 Creating the Orchestration 72
The Context-aware Desktop 76
SUMIMATY . . .« v v v e v e e e 78

Conclusions and Future Work

Discussion 79
Future Work 80

Introduction

1.1 The Ubiquitous Computing Paradigm

During the 1980s, personal computers became available to a broad public
at affordable prices. In 1993 more than 150 million computers were in use
worldwide!. It seamed that computers started to become part of our daily
lives. However, these computers were not integrated with their environment.
They were installed at a fixed location as stand-alone devices. Personal com-
puters were only capable of responding to input explicitly provided by their
users, in a strict format dictated by the computer application. These short-
comings were addressed in 1991 by Mark Weiser in his paper "The Computer
for the 21st Century’ [65]:

"More than 50 million personal computers have been sold, and
the computer nonetheless remains largely in a world of its own.
It is approachable only through complex jargon that has nothing
to do with the tasks for which people use computers”

In this paper he introduced his vision of ubiquitous computing. This vision
refers to a world where people are surrounded by computing devices without
being aware of it. These devices would provide functions to assist users in

Lsource: ITU

The Ubiquitous Computing Paradigm 2

Figure 1.1: Various sensor components from the Arduino product family,
many sensors cost less than one Euro.

their everyday tasks and would do so in an unobtrusive manner. People
would use these functions unconsciously without even noticing the devices
that provide them.

Twenty years later, we can see that this vision has been partly realised.
Advances in hardware, network and sensor technology have provided low
cost components that support new ways of interaction. An example are ac-
celerometers in portable devices that derive their position based on sensed
gravity. Computing devices have taken different shapes. Many of the de-
vices predicted by Weiser have been realised in the form of smart phones or
tablets. People started to use computer technology everywhere and at any
time. At the same moment, interfaces have become more intuitive. For exam-
ple, many applications developed for children can typically be used without
any explanation. While we can agree that we are indeed more surrounded
with computing devices, these devices have not become unobtrusive. They
are not capable of anticipating our needs and provide us with the appro-
priate service at the appropriate time without being explicitly instructed to
do so. Attempts to do so have often resulted in applications that are more
a hindrance then a help since they frequently made incorrect assumptions
regarding user needs. As a result users abandoned them. The calming or
invisible aspect of the ubiquitous computing vision remains difficult |34].

With the introduction of ubiquitous computing, contert-aware comput-
ing became an important research field. Context-aware computing concerns
applications that use information derived from context. Whereas traditional
applications rely on explicit user input provided through mouse and key-

3 CHAPTER 1. Introduction

il ATET T 5:11 PM £ R llATET T 3:49 PM i ==

Find places travelers trust Accommodations. in

New York City, NY

L Hotels > change location
Ty Filter Accommeodations
oy REStaura"ts (hotel v BA&B, price)
£3 Things to do > Hotels (413} | B&Bs / Inns (76] | Other
Lodging (128)
) Flighls % Sorted by: Rating
Library Hotel
Write a Review » Rating: OEEOO
1 of 413 hotels in New
York City See on map

%
Find i

Figure 1.2: The Tripadvisor app uses location as context information.
http: / /tripadvisor.en.softonic.com/

board, context-aware applications have access to other information sources
such as sensors. Dey and Abowd [2| argue that context-aware computing
improves the human-computer interaction:

"By improving the computer’s access to context, we increase the
richness of communication in human-computer interaction and
make it possible to produce more useful computational services”

An example of a context-aware application is TripAdvisor 2, a mobile app
for tourists that presents relevant information (e.g. nearby restaurants, hotels
and places of interest) to a user depending on his current location. Figure
1.2 shows information as presented by the app.

Context information can take many forms, varying from simple data like
the current location, surrounding noise levels and temperature to more com-
plex information such as a users general preference. Applications that derive
contextual information from sensors are widely available. However, context is
not restricted to data that can directly be measured through a physical sen-
sor. From a human perspective, context can also relate to information such as
a users tasks or goals. Hofer 38| makes the distinction between physical and
logical context to differentiate between context data that can be sensed from
the physical environment and the more complex context that humans can
define. It is much harder to exploit logical context since it cannot directly be

2http://tripadvisor.en.softonic.com /

Contribution of this Thesis 4

measured. Therefore, logical context requires complex context models and
reasoning. Moreover, it requires the fusion of data acquired through various
sources such as the combination of data gathered from sensors with more
static data from databases. An example of a context-aware application that
exploits logical context is an online chatting tool that presents the availabil-
ity status of a user (e.g. available, busy, in meeting or do not disturb). An
availability status can be derived from context information such as a user’s
calendar, the time of day and personal preferences.

One might assume that the exploitation of logical context is just a more
complicated extension of the exploitation of physical context. However, there
appears to be a structural difference between physical and logical context.
Several researchers argue that it is impossible to deterministically model
complex human-related context in advance, as is usually done for physical
context. Belotti and Edwards [9] point out that any attempt to do so will
fail since there is too much variability in human behaviour. They propose a
new approach where users are involved in the processing of complex human-
related context. Users should have a good understanding on how a context-
aware application operates on context and should be able to influence this
process.

1.2 Contribution of this Thesis

In this thesis we address the issue of context modelling. We consider context
to be as generic as possible: every possible combination of context informa-
tion items that a system has access to is a possible context. This includes
complex human-related contexts for which end users need to be involved. To
achieve this we provide end users with the means to create their own context
models. Since end users typically do not have programming skills they require
straightforward and easy to use tools. At the same time we want to max-
imise the expressibility of these tools. The system should also be extensible
to allow an easy integration of new sources of context information.

To combine the requirements of end user programming, expressibility and
extensibility we have created a context modelling framework that consists of
three layers: a plug-in layer to support extensibility, a configuration layer
to maximise expressibility and a context layer to provide an easy to use
modelling interface for end users. These layers each cover their own part
of the modelling activities and are targeted to users with a different profile:
plug-in developers, expert users and end users.

Plug-in Layer: Since one framework typically does not fit all domains,
we provide a framework that allows programmers to create packages for a

5 CHAPTER 1. Introduction

specific domain which can be used in the other layers. Packages for different
domains can be combined in a flexible way.

Configuration Layer: In the second layer, an expert user creates tem-
plates which are the basic building block for the end user. For the creation of
templates we provide the ExpertUser Tool, a tool with a graphical interface.
Creating templates requires no programming.

Context Layer: In the third layer, an end user combines the context
information items using the templates created in the second step. For this
task we have created another tool with a graphical interface: the EndUser
Tool. The context layer supports the creation of user defined events, which
essentially allows the user to give his own interpretation to any combination
of context information items.

To our knowledge, this is the first framework that focuses both on low-
level data delivery as well as on the possibility to let end users understand and
reprogram the system through visual tools without a restriction to a certain
domain. Since we can deliver new packages with conditions and create new
templates in the ExpertUser Tool we do not focus on one particular scenario
or domain. We believe that the separation in three layers, the separation of
users in three categories, the two visuals tools and the ability for end users to
define their own events provides our framework with highly desired features
such as extensibility, flexibility and end user friendliness without sacrificing
expressiveness.

Next to the tools that support the modelling activities, we have integrated
a runtime environment into the framework. This runtime environment con-
sists of a rule engine. The framework translates user defined contexts in
declarative specifications that can be loaded in this rule engine. Plug-ins
also have runtime components that collect context information and forward
this information to the rule engine that performs a real time evaluation of
user defined contexts.

As a proof of concept we have applied our framework to the domain of
personal information management (PIM). As argued by Trullemans [56], con-
text can facilitate the retrieval of previously stored information items. She
created the Context-Aware Desktop, an application that presents users a dif-
ferent virtual desktop depending on the current context. We have integrated
this application with the runtime environment of our framework. We added
a user-defined context and simulated the basic context information items
required to activate the user-defined context in the Context-Aware Desktop.

Thesis Structure 6

1.3 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 introduces
context and context-aware computing. We explain context from a gen-
eral perspective and from an engineering perspective. We continue with an
overview of context-aware computing and address the problems of context
modelling. Next we explain why the user needs to be involved in the creation
of complex context models, introducing the concepts of intelligibility and con-
trol for context-aware applications. Chapter 3 elaborates on the architecture
of context-aware computing further. We present some generally accepted
architectural design principles, and investigate existing frameworks for the
creation of context-aware applications. Chapter 4 introduces our framework
for end user context modelling. The general structure of the framework and
its different modules are presented. We discuss the plug-in layer, configura-
tion layer and the context layer. This chapter focuses on the capabilities of
the framework, and how to use the tools. Chapter 5 gives the implementation
details of the components that constitute the framework. It explains what
libraries are used and how the modules are structured from a programming
point of view. Chapter 6 presents a use case related to Personal Information
Management (PIM). We give an introduction to PIM and explain why con-
text is important. We then use the modelling tools to create a user-defined
context related to the PIM domain. The context-aware desktop application
is integrated with the runtime environment of the framework. Chapter 7
presents our conclusions and suggestions for future work.

A User-centric Approach to
Context

This chapter explains how context information can be used in computer ap-
plications. We start with an introduction of the concept contert where we
provide definitions both from a general and from an engineering perspective.
Next we discuss some of the issues that context-aware computing has intro-
duced. We explain why end users need to be involved when applications
process context, and finally we formulate the requirements for a user-centric
context modelling framework.

2.1 Introduction to Context

The concept of context is studied in multiple domains, ranging from philos-
ophy, cognitive psychology, pragmatics and linguistics to human computer
interaction and artificial intelligence. First, we introduce context from a gen-
eral perspective. Second, we investigate context from an engineering perspec-
tive with an introduction to context-aware computing. We provide several
definitions within these perspectives and explain how they differ and overlap.

Introduction to Context 8

2.1.1 Context from a General Perspective

In the late eighties, the concept of context has taken a central role in various
disciplines concerning knowledge representation [11]. These cover engineer-
ing disciplines as well as domains more positioned in human sciences. Re-
searchers have reached the common understanding that organisms, objects
and events are integral parts of the environment [26]. However, different
research areas each have their own approach and definitions of the concept
contezt. Benerecetti, Bouquet and Ghidini [11] indicate that a general and
unifying theory or formalism of context has not yet been established. They
observed the fact that we are even not sure whether each research area is
handling aspects of the same problem when applying context. Dervin [27]
pointed out that although context is frequently cited in multiple areas, the
overall concept of context itself has not received much philosophical and the-
oretical treatment. She describes two extreme views on context. The first
view defines context as any possible analytic factor of the phenomenon un-
der investigation. This allows virtually every possible attribute of person,
culture, situation, behaviour, organisation or structure to be context. Be-
ing a clearly defined and separated attribute, the impact of context on a
phenomenon under investigation can be analysed in the traditional scientific
sense. For example, for a researcher focusing on human behaviour, attributes
related to income, age and education can be context. In the second view,
context cannot be resolved into separate factors. It is the general surround
of a phenomenon without which any possible understanding of human be-
haviour becomes impossible. In this view every context is different and an
analytical approach is not possible. Dervin proposes a definition of context
that takes a position in between these two views :

"Context constitutes the necessary conditions for sufficient un-
derstanding of phenomena."

2.1.2 Context from a Computing Perspective

The term context-aware was introduced by Schilit and Theimer [50] in 1994.
As part of the ubiquitous computing paradigm introduced by Weiser [65],
context-aware computing has become an important research field. The inte-
gration of context in ubiquitous computing is inspired by the important role
that context plays in human-to-human communication [24]. Dey et al. [2]
pointed out how successful humans are at conveying ideas and reacting ap-
propriately. This is not only due to the expressiveness of the used language
but also to a common understanding of everyday situations. Humans are
able to use this implicit situational information to increase the conversational

9 CHAPTER 2. A User-centric Approach to Context

bandwidth. If computers would have access to this implicit (i.e. context) in-
formation, human-computer communication could be enriched. This would
lead to more useful computational services.

It is generally accepted that the ’Active Badge Location System’ pre-
sented in 1992 by Want et al. [63] was the first context-aware application.
It used infra-red technology to locate a user in a building and used this in-
formation to automatically forward phone calls to a telephone nearby the
user. The following years, several context-aware tour-guides were developed
[54, 1]. These tour guides present information to a user based on the user’s
current location.

In the context-aware computing research community, several researchers
have proposed their definition of the concept context. An overview of these
definitions is provided by Dey and Abowd [2|. They illustrate how some of
the early definitions try to define context by enumerating a list of examples
[18, 51]. These enumerations typically consist of elements such as location,
time, objects and people nearby. Dey [28] extends this list with elements
that apply to more human related aspects of context such as emotional state,
focus of attention etc. Other definitions try to define the concept of context
by providing synonyms like environment [17], situation [35], or state [64].
However, Dey and Abowd claimed that these definitions are difficult to apply
in practice. Defining a concept as an enumeration or by providing synonyms
does not help when trying to identify what data can be considered as context.
Schilit et al. [50] provided a more operational definition where context is
defined as the constantly changing execution environment. The environment
in this definition consists of three parts:

e Computing environment: available processors, devices accessible for
user input and display, network capacity, connectivity, and costs of
computing.

o User environment: location, collection of nearby people, and social
situation.

e Physical environment: lighting and noise level.

The definition of context given by Dey and Abowd [2] is probably the most
accepted in the pervasive computing community, due to its general nature:

"Context 1s any information that can be used to characterize the
situation of entities (i.e., whether a person, place, or object) that
are considered relevant to the interaction between a user and an
application, including the user and the application themselves.”

Introduction to Context 10

The definition by Dervin |27] given earlier specified context to be the nec-
essary conditions for sufficient understanding of phenomena. If we compare
these two definitions, we see that both define the context of a concept (this
concept being for example an entity or a task) to be additional information
surrounding this concept. The definition of Dey however restricts context
information to items related to an application. Since we are interested in
every possible user context, we will follow the more generic definition given
by Dervin in this thesis.

Henricksen [37] points out that there is still a lack of precision and con-
sensus in definitions of context provided by the ubiquitous computing com-
munity. She explains this by the lack of separation between context, context
models, and context information:

e Context of a task: The circumstances surrounding a task that are rel-
evant to its completion.

e Context model: A subset of context that can realistically be sensed or
derived by an application, and can be exploited in the execution of a
task. It is explicitly specified by an application developer in a formal
language.

o (Context information: A set of data according to the context model.

We illustrate these three concepts with the example of a museum tour guide
application. In this example the context of the visiting task is the general
situation of a visitor while visiting the museum. The context model can
be restricted to the position of the visitor and objects nearby that posi-
tion. Context information consists of the actual values measured during the
visit. Henricksen points out that since applications work with well defined
context models, definitions for the context of tasks are less interesting for
context-aware applications. This thesis will focus on the context modelling
task. However, unlike Henricksen we do not consider this task to be the sole
responsibility of the system designer.

An important segmentation that can be applied to context information is
the one introduced by Hofer et al. [38]. They make a differentiation between
physical and logical context. Physical context refers to information that can
be measured by sensors (e.g. light, sound, movement, temperature) whereas
logical context refers to the human aspect of context. Logical context can
involve user goals, tasks or emotional state. Furthermore, it has either to be
explicitly specified by a user or must be derived from information captured
by monitoring user interactions. Location is the earliest type of physical
context that was actually used in context-aware applications [63]. Exam-
ples of context-aware applications that use logical context are the Watson

11 CHAPTER 2. A User-centric Approach to Context

project [19] and the Intellizap project |33|. Both use previously accessed in-
formation items as context information. The following section elaborates on
issues encountered when working with logical context.

2.2 A User-centric Approach

During the last two decades, several context-aware applications and frame-
works have been presented. Context-aware computing has however intro-
duced new concerns. Since context-aware applications operate on implicit
situational information they typically require less explicit user input. As a
result, users can loose control over the behaviour of the application. Some of
these issues are introduced by Bellotti and Sellen [10] in their research regard-
ing the design of context-aware computing environments. The authors argue
that humans have natural mechanisms of feedback and control when inter-
acting with other humans in order to protect them from undesired sharing
of information. When systems take over some of the functions that mediate
between people, it is possible that these mechanisms of control and feedback
are lost. Users have often no adequate feedback over what information they
expose to a system and they are not able to control the processing of this
information. For example, a context-aware application that uses location of
users might actually expose a users location to other users. Users can feel un-
comfortable with the idea that information regarding their location is being
shared.

Bellotti and Sellen argue that technology results in disembodiment and
dissociation. In human-to-human communication, people transfer cues on
top of the explicit verbal communication channel (e.g. non-verbal commu-
nication). In machine to human communication, this information stream is
disembodied. Tt is reduced to the formal vocabulary that a system supports,
additional contextual information (e.g.that the information is confidential) is
easily lost. Dissociation means that the result of an action is visible but the
action itself is not. A result of dissociation is that a user cannot respond to
an action or request since the user is not aware that the action was triggered.
In order to remedy the issues of disembodiment and dissociation, Bellotti and
Sellen present a conceptual framework that addresses the design of control
and feedback in context-aware systems. Control refers to the possibility for
end users to stipulate what information they expose to a system, and who
has access to this information. Feedback means that people are informed
about the kind of information that is being captured about them, when it is
captured, and to who this information is made available. In their framework,
the authors state that feedback and control can be applied to the capture,

A User-centric Approach 12

construction, accessibility and purpose of information:

e Capture: Applies to the kind of information that is being picked up
(e.g speech, image, etc.), including the type of sensors used for gather-
ing info, their location, etc.

e Construction: The processing and storage of information after cap-
turing. Information can be stored or not, can be encrypted or not,
etc.

e Accessibility: Information can be publicly available or availability
can be restricted to a limited set of users, etc.

e Purpose: Applies to the intentions people might have when using
information.

These four classes of concerns are not independent. Feedback over the cap-
ture of information is most important since it enables users to adapt their
behaviour. For example, users can modify their behaviour if they are aware
that they are in an area where a camera is active. Accessibility of informa-
tion also influences the capture of information: users might behave different
near a camera depending on who has access to the information captured by
the camera. Based on this framework, several criteria are proposed to assess
system design with regards to feedback and control. These criteria indicate
that feedback should be noticeable but in an unobtrusive way. This implies
that feedback should be selective and relevant for a user at the time it is
given.

Besides the importance of feedback and control to mitigate privacy re-
lated issues, a more structural issue is identified by Bellotti and Edwards [9]
regarding the modelling and processing of context information. For exist-
ing context-aware applications that work with physical context, the context
model is typically defined by the application designer. This context model
is fixed at design time with little or no possibility for the user to create or
modify it. Users can at best specify preferences to customize the behaviour of
their context-aware application (e.g. specify if calls need to be blocked when
the user is a meeting). Users cannot define for themselves what attributes
are relevant in a context model (e.g. specify the context information items
that the system uses to identify the ’'in a meeting’ context). Bellotti and
Edwards have pointed out that this approach does not work for applications
that make use of human context [9]. When human behaviour form part of the
context description, it becomes impossible to model every aspect of context
at design time. There is too much variability in actions a system should take

13 CHAPTER 2. A User-centric Approach to Context

for designers to model all outcomes in advance. Unlike systems, people make
unpredictable and non-deterministic judgements about context. Bellotti and
Edwards argue that end users need to be involved. End users need to be able
to control how the system uses context. In order to control the behaviour of
context-aware systems, users need to understand what the system is doing.
To formalize the involvement of end-users in the behaviour of context-aware
systems, Bellotti and Edwards introduce the concepts intelligibility and ac-
countability. A context-aware system is intelligible to the user if this user
has insights in its processing. This implies that users need to know what
context the system has identified, how it identified this context and what it
will do with this information. Next to providing intelligibility, context-aware
systems must enforce user accountability. This means that a user must be
made accountable for actions the system takes on his behalf. Accountability
is important in situations where computers start to mediate between people.
People are uncomfortable when confronted with actions taken by an anony-
mous system. As mentioned earlier in this section, Bellotti and Sellen refer
to this issue as the problem of disembodiment [10|. To support intelligibility
and accountability in context-aware applications, Bellotti and Edwards 9]
propose that systems should inform users about their capabilities. Systems
should further provide feedback about the capture, construction and accessi-
bility of information, and about its the purpose. And finally, systems should
provide the appropriate level of user control. A balance needs to be found
between minimizing human effort on one side and providing the desired out-
come at the other side. The level of control a context-aware system needs
to provide depends on how certain the system is about the desired outcome
based on the current context. In case the desired outcome can be derived
with high degree of certainty, the system can initiate the action without both-
ering the user. It is sufficient that the user has ways to correct the action
a system takes. In case there is more doubt regarding the desired outcome,
the system needs to ask confirmation before proceeding. When there is too
much doubt to select any action at all, the system needs to present the user
a set of choices before taking any action. With regards to the modelling of
context, Bellotti and Edwards [9] propose to use rich, ambiguous models that
do not fully specify the context, but leave room for interpretation by the end
user. Instead of allowing machines to interpret all context information, users
should be informed and allowed to complete or modify the detected context.

To investigate users’ sense of control in interactive applications, Barkhuus
and Dey [7] have performed a case study. In this study, the authors assessed
participants’ reactions and attitudes towards context-aware applications and
interactive applications in general. Three types of interactivity are given:

A User-centric Approach 14

personalisation, active context-awareness and passive context-awareness. In-
teractivity through personalisation means that a system does not take ini-
tiatives to change its behaviour. All initiative comes from the user who is
allowed to change the system behaviour. This can typically be accomplished
by changing settings such as setting ringtones or background pictures on a
mobile phone. Active context-awareness applies to applications that change
their behaviour autonomously based on sensed or derived context. They do
not ask confirmation. An example of active context-awareness is a mobile
phone that automatically changes its time settings when it detects entering
a different time zone. Finally, passive context-awareness applies to applica-
tions that sense or derive a context that they present to the user. They do
not autonomously change their behaviour. When presented with the con-
text, the user has the possibility to change the application behaviour. An
example of passive context-awareness is a mobile phone that informs the user
when it detects entering a different time zone. The application does not au-
tonomously change the phone’s time settings, it only suggests the user to do
SO.

The study shows that people feel less in control when using context-aware
services than using applications which only allow personalisation. Although
participants still prefer active and passive context-aware services over per-
sonalisation, the study illustrates that participants might become frustrated
by the perceived lack of control in context-aware services. Users are willing
to accept a certain level of autonomy only if the application’s usefulness jus-
tifies the associated loss of control. Applications that autonomously derive
human aspects of context will however always be error prone [9].

To improve the intelligibility of context-aware systems, a lot of research
has been performed on how applications can generate explanations for end
users that allow them to understand how the application processes context
[43, 44]. Lim and Dey [45] agree that users have a need for intelligibility to
improve user satisfaction, adoption and acceptance. However, they also show
that users may not be interested in all system generated information. Gen-
erated explanations should adapt to the varying situations of use. In a study
about requirements for intelligibility, Lim and Dey [45] assess what types
of information users are interesting in, and how intelligibility improves user
satisfaction. The study shows that users are interested in different types of
information depending on the type of application and the current situation.
In general, information about the application is highly desirable. People are
especially interested in the application model, which specifies the behaviour
of the application. Information about the detected situation was moderately
important. Knowing how to control an application was also an important

15 CHAPTER 2. A User-centric Approach to Context

requirement. People have more demand for intelligibility types when they
are aware that such types are available, or when the situation is more crit-
ical. Furthermore, Lim and Dey acknowledge that other explanation types
(e.g. history) that could be considered important, were not addressed in the
study. Though the study provides useful information on how to provide intel-
ligibility, it only applies to the content of information. The authors address
the question of what information is required to support intelligibility and
control. However, next to the content of information, intelligibility and con-
trol are also influenced by how the information is presented. Vermeulen [62]
indicates that there are different ways of presenting information to support
intelligibility. Designers have to decide when to present information related
to events (e.g. before, during or after the event takes place), who takes the
initiative for showing the information (the user or the system), and what
kind of control is provided to act upon the information. Furthermore, dif-
ferent types of interfaces can be used. Multiple modalities can be used and
different levels of integration are possible between the interfaces and the rest
of the application.

Lim and Dey [47] have presented a formative study on how to present and
provide explanations to help users understand and trust the autonomous
behaviour of context-aware applications. They have developed LaKsa, a
context-aware application for mobile devices that shares people’s availability
status. The authors used this application to explore the design, implemen-
tation and use of intelligibility. From this study, the authors propose four
design recommendations on how to present information to support intelligi-
bility:

e Reducing and aggregation explanations: information needs to be pre-

sented at an aggregated level, with the possibility to demand more
detail if needed.

e Explanations should be provided using simple and information specific
components: Simple components that answer all questions on a related
part of context (e.g. regarding location) are better than providing a
separate component per question that covers multiple parts of context.

e Streamlining questions: Intelligibility questions are not independent,
one question usually leads to a next question.

e Real-world explanations: In order to fully understand a context-aware
system, a detailed knowledge on the application domain is needed.
To integrate intelligibility with the application domain, systems might
need access to complex real-world concepts that might originally be out
of scope of the application.

Requirements for a Context Definition
Framework 16

Further research on the presentation of intelligibility was performed by Ver-
meulen [61] who has extended the ReWiRe framework with support for in-
telligibility. Vermeulen has extended a rule based context-aware system with
additional meta-data that links the rules together. By processing these an-
notations at runtime, a model of the system’s behaviour is created. Based on
these extensions, the PervasiveCrystal system is created which answers why
an why not questions [62].

Next to the complexity regarding intelligibility, a similar complexity exists
regarding control. The importance of user control in context-aware comput-
ing is pointed out by Van der Heijden [60], who argues that the transfer of
control from users to applications results in an increase of user discomfort.
From these arguments one can conclude that context-aware applications need
to focus on user control. However, increasing user control means reducing the
autonomy of a context-aware application. Since autonomy is one of the key
aspects of context-aware computing, it cannot be abandoned: applications
need to find a correct balance between autonomy and user control. Hardian,
Indulska and Henricksen have performed a survey on this topic [36] where
they find that the issue has received little attention so far:

"The challenge of designing applications to provide appropriate
control to users has traditionally taken a back seat to more fun-
damental problems in context-aware systems, like sensing and in-
terpreting context.”

Context models have been considered for internal use by the application
only, not to be exposed to users for understanding or control. One of the
exceptions is the Jigsaw editor [39] that supports end-user configuration.

2.3 Requirements for a Context Definition
Framework

For an application to successfully make use of context, it must sense the
environment and recognise information that can be relevant for a user [15].
For the first task, various cheap sensors exist. Some have already been com-
mercially launched (e.g. Microsoft Kinect). For the second task, the context
model is of critical importance since it defines what context information the
application can benefit from. Many techniques exist for modelling context,
varying in expressive power and support for reasoning [13]. This thesis will
focus on the development of a framework for context modelling where con-
text is considered as generic as possible. Based on the previous sections on
intelligibility and control, our key requirements for such a framework are:

17 CHAPTER 2. A User-centric Approach to Context

1. User centric: the framework must allow users to define their own con-
text model

2. Abstract: the framework should not restrict itself to specific subtypes
of context nor should it be restricted to types of sensor or to any tech-
nological constraint at all. It should be possible to derive high-level
context entities by combining existing knowledge.

3. Easy to use: since the framework targets end users rather than applica-
tion designers, it should provide a user friendly interface, with proper
attention for usability

4. Expressive: to allow users to define whatever context they can imagine,
the framework needs to provide a maximum of expressive power. It has
to provide the users with the necessary constructors to build complex
context models. The framework needs a good balance between ease of
use and expressibility.

2.4 Summary

Context is investigated in multiple research areas, varying from human sci-
ences to engineering. The concept has been defined by several researchers
but a general accepted definition is not available. The most general definition
for context is that it constitutes the necessary conditions for sufficient un-
derstanding of phenomena. Context-aware applications are applications that
use implicit situational input. These applications use context models to iden-
tify the context information they operate on. An important segmentation of
context is the separation between physical and logical context. Physical con-
text can be measured from sensors, logical context needs to be derived using
complex context models. Human related aspects of context typically are log-
ical context. Context-aware applications that operate on human aspects of
context cannot deterministically use pre-defined context models. The user
needs to be involved in the processing of context. These context-aware ap-
plications need to provide intelligibility and control to users to improve trust
and adoption. In order to allow users to create their own context model, a
user-centric context modelling framework is required.

Summary

18

Frameworks for Context-aware
Computing

This chapter discusses context-aware computing from a technical perspec-
tive. First, we present some architectural design principles that are generally
accepted in the community. Second, we introduce several frameworks that
have been created to facilitate the development of context-aware applica-
tions. We discuss their architecture and evaluate how they can contribute to
the user-centric framework that we want to present as part of this thesis.

3.1 Architecture of Context-aware Applications

A lot of research has been done regarding the architecture of context-aware
applications. Baldauf et al. [4] have presented a survey where they elabo-
rate on the common architectural principles for context-aware applications.
They point out that one of the main principles is the differentiation be-
tween the acquisition and the processing of context information. Only in
small-scale context-aware applications with limited functionality, acquisition
and processing can be integrated in a single module. For less trivial appli-
cations however, these functions need to be separated. Separating acquisi-
tion from processing increases flexibility and re-use, and facilitates the use
of distributed systems. Chen [21] has provided a similar survey focusing

Architecture of Context-aware Applications 20

on context-aware mobile computing research. Further elaborating on this
separation of acquisition and processing, Chen [23]| presents three different
approaches for context-aware applications to acquire context information :

e direct sensor access: Only for small scale applications with limited func-
tionality that have no distributed architecture. Sensors and drivers to
operate these sensors are locally built in the components that process
this data. An example of such an application is a basic thermostat that
senses temperature and activates or deactivates a central heating sys-
tem by comparing the actual temperature with a desired temperature.

e middleware infrastructure: Context-aware applications can apply a lay-
ered architecture to separate low-level sensing details from application
logic. Components can be distributed but are not shared between ap-
plications.

e context server: Context-aware applications can use a shared context
server to handle the sensing and pre-processing of context. The server
operates independently of its consumer applications.

In a distributed architecture multiple approaches can be followed to connect
components and share data between processes. Winograd [67] presents the
following context information processing models:

e Widgets: A software component that provides a public interface to
a sensor. Widgets encapsulate the technical details of operating the
Sensor.

e Networked service: Similar to the context server approach, uses a
shared context server where network connected services can be dy-
namically added or removed.

e Blackboard model: An data centric view where processes can post
messages to a central blackboard. This blackboard provides publish-
subscribe functions to client applications.

Next to separating acquisition and processing of context, Dey and Abowd [30]
propose to also separate the interpretation of context, and the reasoning on
context. They present a conceptual architecture consisting of five layers:

1. sensor layer: Consists of the physical sensors and data sources that
deliver context data.

2. data retrieval layer: This layer uses the sensor layer to retrieve context
data. It connects to drivers and APIs of components in the sensor layer.

21 CHAPTER 3. Frameworks for Context-aware Computing

3. pre-processing layer: In this layer low level context-data is transformed
to a higher abstraction level. This transformation process is also re-
ferred to as aggregation or composition. The pre-processing layer is
responsible for reasoning on context-data (e.g. by applying rules) and
for combining multiple data sources (referred to as fusion).

4. storage and management layer: A layer that implements the long term
storage of context-data (e.g. using a database) and the retrieval of pre-
viously stored data. It provides a public interface to client applications.

5. Application layer: A layer for client applications that consume pre-
processed context information. Application responses to detected con-
texts are implemented in this layer.

As discussed in section 2.1.2; the context model specifies the context infor-
mation that a context-aware application can use. To maximise re-usability
and separation of concerns, context models should have a formal represen-
tation that is separated from the rest of the application. Bettini et al. [13]
point out that the general functions of context-aware application should not
be mixed with the definition and evaluation of context information. Ear-
lier, Strang and Linnhof-Popien [53] already presented a survey on context
modelling where they identify generic formats for context models that can
be shared between applications. Each format comes with its own tools and
methods for validation and processing of context data. Lim and Dey [46]
have performed a review to investigate the most popular context-aware rea-
soning techniques. This review shows that the four most used techniques are
rules, decision trees, naive Bayes and hidden Markov models.

A full review of all context modelling formats an reasoning techniques is
outside the scope of this thesis. The framework created as part of this the-
sis applies rule based reasoning since this provides a good balance between
expressive power and runtime efficiency. Rule engines also support dynamic
behaviour since rules can be added or modified at runtime. Dynamic be-
haviour is interesting for user-centric systems where users should be able
to modify context-models in a flexible way. In our opinion, the Al-based
models provide less control. This is also illustrated by Youngblood [68] who
presents a context-aware system based on Hidden Markov Models where he
admits that the user occasionally needs to bypass the system because it lacks
sufficient flexibility and control.

To facilitate the development of context-aware applications, multiple frame-
works and tool kits have been presented. Examples are JCAF [6], Solar [22]
and Context Toolkit [30]. Baldauf et al [4] present several frameworks in

Context Toolkit 22

their survey. As pointed out by Dey and Newberger [31], these frameworks
address some of the common challenges of context-aware applications:

e using a distributed set of resources

e asynchronous message communication and event subscription
e resource discovery

e platform independent communication protocols

Taking away the need to explicitly program these technical functions, devel-
opers can focus on end user functionality. The component based architecture
of these frameworks promotes reuse of components (e.g. components encap-
sulating sensors) and facilitates extensibility.

3.2 Context Toolkit

3.2.1 Architecture and Components

One of the best known frameworks for building context-aware applications
is the Context Toolkit presented by Dey and Abowd [30] in 2001. This
conceptual framework separates the acquisition and representation of context
from the delivery to and the response from applications. It implements most
of the design principles mentioned in section 3.1. According to Dey and
Abowd, the architecture for a context-aware framework should implement:

e Separation of concerns: Frameworks should promote the use of inde-
pendent reusable components.

e Context interpretation: Frameworks should support the transformation
of low-level context data into high level context information that has a
meaning for applications.

e Transparent, distributed communications: Since context-aware appli-
cations typically have a distributed architecture, communication be-
tween components needs to be implemented. Frameworks should take
care of the implementation of communication protocols.

e Constant availability of context acquisition: Context-acquisition mod-
ules are independent modules, shared by several client applications.
They cannot be instantiated or controlled by the applications using
them.

23 CHAPTER 3. Frameworks for Context-aware Computing

Application Application

Aggregator

3 Widget Widget
Architecture
Sers)

Figure 3.1: Context Toolkit Components [Dey, Abowd, 2001|

i

e Context storage and history: This should not be a responsibility of the
application, but of the components that (pre-)process the context infor-
mation, so that historical context data automatically becomes available
for all client applications.

e Resource discovery: In a distributed and dynamic environment, mod-
ules can be added and removed. The framework should provide support
for the automatic adaptation to changing resources.

The authors have instantiated this conceptual framework in a toolkit: the
Context Toolkit. This toolkit provides built in features that support the
rapid prototyping of context-aware applications. In order to cover the above
architectural requirements, Dey and Abowd have created abstractions for
the separate functions involved in the acquisition and processing of context:
widgets, interpreters, aggregators, services, and discoverers. Figure 6.3 shows
how these components cooperate.

Context widgets are the central components of the architecture. The
name widget comes from an analogy with widgets in graphical user interfaces.
In traditional GUI systems, user interface widgets are reusable components
that mediate between users and applications. These components implement
low-level details regarding the graphical presentation and operation of the
widget, that are hidden for the application using the widget. Application
developers use the widgets interface to provide input or process output that

Context Toolkit 24

is delivered through the widget. Dey and Abowd have copied this approach
to context acquisition by introducing context widgets. A context widget is
a module that connects to sensors and captures information from these sen-
sors. Technical details on how to operate the sensors are encapsulated in
the widget. Widgets have a state and a set of methods. They make the
acquired context information available to clients through a public interface
that allows both pull and push mechanisms. A consumer of context infor-
mation can pull information using synchronous APT calls. Push mechanisms
are implemented using a classical publish-subscribe pattern. Consumers can
subscribe to a selection of events in order to be notified by the widget when
such events are detected.

Interpreters provide a mapping function, they transform information.
In this transformation process, interpreters can apply complex logic to raise
the level of abstraction of context information. Interpreters are stateless,
they simply provide processing functionality. Interpreters expose a public
interface that can be used by any other component: widgets, aggregators,
applications, etc.

Aggregators collect logically related context information from multiple
widgets. Given the distributed nature of context-aware systems, applications
typically integrate context information that is acquired by multiple sensors.
An aggregator would connect to all relevant widgets, and combine their infor-
mation, possibly raising the level of abstraction of this data into more useful
information. This information is then made available to clients through a
public interface, similar to the interface that widgets provide.

Services provide a interface to act upon the environment. Whereas
context widgets can be seen as input devices, services are output devices.
They hide low level implementation details on how to perform an action,
and provide a public interface.

Discoverers are responsible for managing the distributed environment.
In such an environment, components can be dynamically added or removed.
The discoverer keeps track of all active components and maintains a list of
the functions they provide. When an application needs context information,
it queries the discoverer that responds with a list of components that are
currently active and provide the required functionality.

BaseObject is an abstract class that implements communication func-
tionality. In the Context Toolkit all components need to be implemented as
subclasses from this abstract class.

25 CHAPTER 3. Frameworks for Context-aware Computing

3.2.2 A Sample Widget

Dey and Abowd have demonstrated the use of their Context Toolkit in vari-
ous applications, most of them involving location as part of the context. To
illustrate the use of the Context Toolkit, we discuss the IdentityPresence wid-
get presented by Salber, Dey and Abowd [49]. This widget controls a sensor
deployed at a specific location that senses the environment for the presence
of people. The sensor can also identify the people it detects. Identifying
nearby people can be useful for surveillance applications, tour guides, call
forwarding tools etc. As mentioned in previous section, a widget has a state
and a behaviour. The state can be queried at the client’s initiative in a syn-
chronous request, the behaviour consists of possible callback functions that
the widget can invoke when specific events are detected. The state consists
of three attributes: the location that the widget is monitoring, an identifier
for the last person it sensed, and the most recent time it detected a person
arriving. The behaviour consists of callback functions related to two types
of events: a person entering the area controlled by the widget and a person
leaving this area.

Multiple types of sensor can be used to implement the detection of these
events (examples are cameras with image recognition software, badge detec-
tion systems, transponder devices, etc.). These different implementations
are transparent for the applications using the widget. They can be replaced
at runtime and applications can even aggregate information from widgets
with different implementations. The authors have used the IdentityPresence
widget for building several straightforward context-aware applications:

e In/Out board : A board that indicates whether people are in a building
or not.

e Information Display application : Personalized information is shown to
a user on a nearby display.

e DUMMBO meeting board : An application that captures information
from meetings that occur spontaneously at a specific location.

3.2.3 Evaluation

From an application designer’s perspective, the Context Toolkit is a powerful
tool to implement context-aware applications. It has a modular design and
promotes reusable components. The toolkit enables rapid prototyping and
has been successfully applied in various projects. Salber et al. [49] added
context awareness to existing applications using the toolkit. They found
that this required only minimal code changes to these existing applications.

Context Toolkit 26

However, the Context Toolkit is only the start in building context-aware
applications. The framework offers little support for composing context in-
formation items or reasoning about context. As no templates or other com-
position mechanisms are available, all composition needs to be implemented
by coding. It is useful for straight-forward applications that do not require
complex reasoning on context but not for applications that work with com-
plex human related context. It misses explicit formalised context models,
which was already acknowledged by Dey and Abowd [30] who admit that
more attention needs to be given to knowledge modelling and representa-
tion. A similar remark was made by Bradley [15] who indicates that the
framework was implemented for very primitive applications only. He points
out that the Context Toolkit misses functionality to support codification of
complex contextual details since the context model is mixed with other func-
tions. No separate algorithms to manage inference are provided, even the
interpreter component is only an abstraction that needs to be implemented
by coding. The lack of a separate context model also makes it difficult to
implement dynamic behaviour.

In our opinion, it should be possible to create an additional layer that
implements a formal context model. This layer would collect callbacks from
several widgets and compose these according to the context model. This
would allow designers to reuse some of the components of the framework,
while adding dynamic behaviour and support for more complex context mod-
els. However, as most context-processing would be implemented outside of
the original Context Toolkit, this approach would reduce it to a simple set
of low level delivery channels.

Bellotti and Edwards |9] provide a more fundamental remark. They argue
that a component based setup cannot provide intelligibility. In a component
based setup the encapsulated modules that acquire context data cannot di-
rectly communicate with application users. As a consequence there is no
possibility to provide information to users on how the system acquired con-
text information and how it processed it. This results in applications with
poor intelligibility. Bellotti and Edwards also claim that all reasoning on
context must be situated in the application itself, because that is where the
relevant semantics reside. Dey has modified the original Context Toolkit to
provide support for intelligibility [29]. In this version, widgets get additional
functionality to communicate directly to users. In our opinion however, this
conflicts with the original design of Context Toolkit that focuses on encap-
sulation and reuse. We therefore agree with Bradley’s comment [15] that the
framework is best fit for straightforward applications with a simple static
context model.

27 CHAPTER 3. Frameworks for Context-aware Computing

3.3 Adding Support for Intelligibility and Con-
trol

In section 2.2 we elaborated on the importance of intelligibility and con-
trol for context-aware applications. Supporting intelligibility and control has
a significant impact on the adoption of context-aware applications [7]. As
discussed in above section, Bellotti and Edwards [9] pointed out that separat-
ing context acquisition, reasoning and response results in poor intelligibility.
Existing context-aware frameworks facilitate the creation of context-aware
applications but they do not provide support for intelligibility and control.

3.3.1 The Situation Component

Dey and Newberger [31] propose to extend existing frameworks for building
context-aware applications to explicitly support intelligibility and control.
They argue that intelligibility and control must be addressed at user inter-
face level since they are important for end users. This implies that a system
exposes its application logic (e.g. the context-aware rules) and underlying
infrastructure (e.g. the kind of sensors that are used) to end users. Intel-
ligibility and control means accessing and manipulaling application state.
Since context-aware applications typically have a distributed state, informa-
tion from various components needs to be integrated before presenting it.
This requires components that support intelligibility and control to be cen-
tral in the architecture of a context-aware system. Dey and Newberger [31]
introduce such a component called Situation. Situations are components that
encapsulate application logic and provide an APT to inspect and manipulate
application state. They organise applications in a similar way as component
architectures such as JavaBeans. The application logic of a context-aware
application typically consists of a set of context rules (e.g. when a user en-
ters a specific location, perform an action). A situation encapsulates such a
context rule, takes care of the acquisition of context, processes this informa-
tion and triggers the application response. Developers only have to provide
the context rule using a declarative mechanism. The details of resource
discovery, subscriptions, and the issues of dynamically appearing and dis-
appearing components at runtime are handled by the situation component.
This is accomplished by internally decomposing context rules into references,
parameters, and listeners:

e References: Situations encapsulate a rule. To validate whether the
condition of this rule is satisfied, specific context information needs
to be verified. To acquire this context information, situations create

Context Recognition Network Toolbox 28

references to information sources. When Context Toolkit is used as
underlying infrastructure, these information sources are abstracted as
widgets. References use a discover to check what information sources
are available, and subscribe to the relevant events.

e Parameters: Situations automatically extract parameters from a rule
when it is added. These parameters are similar to JavaBean properties,
and can be used to expose and manipulate application state.

e Listeners: Listeners are notified when state changes occur in the sit-
uation component. This can happen as a result of context data being
received from the information sources, or when a user manipulates state
using parameters. Listeners are also notified when actions are executed
as a consequence of a rule being triggered. Listeners provide a central
point for collecting information to support intelligibility.

Dey and Berger [31]| have implemented situations on top of Context Toolkit
since it is the most commonly used context-aware framework. The authors
claim however that any framework can be used as long as it supports resource
discovery, context input components an service actuators. The implementa-
tion also includes modules in Adobe Flash and Visual Basic that interface
with situation listeners and can be used to build user interfaces that present
application state and provide functions to modify application state.

3.3.2 Evaluation

While situations only support rule based application models, the toolkit was
later extended by Lim and Dey [46] to include support for Decision Trees,
naive Bayes classifiers and hidden Markov Models. Some types of explana-
tions however remain unsupported: intelligibility on history is not available.
All intelligibility types apply to current state, while application behaviour
can also be influenced by long term history. Control is supported but in a
limited way. Although parameters can be updated to modify state, the ap-
plication behaviour itself cannot easily be modified. Rules cannot be added
or modified at runtime.

3.4 Context Recognition Network Toolbox

The Context Recognition Network Toolbox presented by Bannach et al. [5]
is a framework designed for rapid prototyping and fast implementation of
context-aware applications. It provides a graphic interface to assist designers.

29 CHAPTER 3. Frameworks for Context-aware Computing

Context |nput _ Context Qutput
[~ i |
. . - ™, .- ol ”
- \
Widget — Service

Widget =4 Reference| __, . o
Widget | Sltuatlon —T>genvice

Widget (application logic)

—Display

Widget +{Reference |

Widget/ . [Parameter [Parameter|
Context [1_Ccntexl
Intelligibility ‘ Listener I Control

Figure 3.2: A situation component implemented on top of Context
Toolkit [31]

Multiple predefined modules are available for the processing of context data.
The Toolbox is designed for the recognition of end user activities. Attention
is given to an efficient runtime behaviour, and support for several target
platforms is provided.

3.4.1 Architecture and Components

The Context Recognition Network Toolbox helps designers to construct pro-
cesses that recognize activities based on sensor input. It provides a repos-
itory of parametrizable software components that are ready to use without
additional coding (illustrated by (1) in Figure 3.3). A Gui (illustrated by
(2) in Figure 3.3) is available for designers to compose activity recognition
processes. The Toolbox also provides a runtime environment for various
platforms (illustrated by (3) in Figure 3.3). Various components exist for
interacting with external applications (illustrated by (4) in Figure 3.3).

The Context Recognition Network Toolbox applies a data-flow driven de-
sign. A designer can define an activity recognition process by composing
tasks and data packets. A task is an active object that operates on data
streams. Tasks operate on data packets they receive at an in-port and gener-

Context Recognition Network Toolbox 30

@
Parameterizable
Components
Sensor Devices
I?
____ CRN Toolbox | — | Ext.
Runtime |<— | Tool
Confi i Ed'® l’ l @ N
onfiguration itor
O [©
Output Devices

Figure 3.3: CRN Toolbox [5]

ate new data packets at an out-port. Tasks are connected by data flows that
start at the out-port of a first task and end at the in-port of a second task.
Multiple types of tasks are available to construct the needed functionality:

e reader: A task from which a data-flow originates. It has no in-port.
Readers typically encapsulate sensors. Multiple generic (e.g. reading
from file or TCP socket) and specific (e.g. reading from a Wiimote or
various RFID devices) readers are available.

e writer: A task at which a data-flow ends. It has no out-port. Writers
provide a gateway to external systems. Available writers are a TCP
writer or a file writer.

o filter: A task that filters information from data-streams. Available filter
plug-ins include average signal energy, bandwidth, max, mean etc.

e classifier: A task that classifies input data. The toolbox offers support
for several classification algorithms (e.g. Hidden Markov Models, K-
Nearest Neighbour, Probabilistic Context-Free Grammar parsers, etc.).

e merger: Merge multiple data-streams according to a selected algorithm.

31 CHAPTER 3. Frameworks for Context-aware Computing

£ Toolbox Editor |
File Edit View Help

g

I = Werkspat:e 17

I MT9Reader
— | ‘Graphi

| ARSBReader I
e l MTO9Reader | | MTO9Reader ‘

| KeyboardReader |
 —

| KeyboardReader |

r;umsmmmask | LI_I
- |

— —

| Synchronizer | I Synchronizer | SWI:hmrizer

LT \
—

| sﬂlcmarmr | /
LI

- -
I SimpleMerger l

-
1

| ScaleFilter I | TCPWriter |

 —
-

Figure 3.4: CRN Toolbox Editor [5]

e splitter: Split data-streams according to a selected algorithm.

e synchroniser: Synchronise data-streams based on a synchronisation
event.

An example of the designer GUI is shown in Figure 3.4. Using this GUI, a de-
signer drags available components in a working area. Settings for parameters
of tasks are specified, and tasks are connected by streams. These activities
do not require coding. If all needed tasks are available, an activity recog-
nition application can be constructed without writing code. Banach et al.
illustrate this by presenting an application that recognizes kitchen activities
based on a motion sensor. No coding was required.

3.4.2 Evaluation

Bannach et al. [5] illustrate the successful use of the Context Recognition
Network Toolbox by providing a list of projects that applied this Toolbox.
They also mention a case study where students where able to complete an
activity recognition process within 20 hours. We agree that the Toolkit is
well suited for recognizing simple activities based in physical context. It
offers a complete solution thanks to the direct support for fusion of multiple

The Jigsaw Project 32

data sources, data manipulation and classification algorithms. The GUI for
composing processes is a step in the direction we need, but it remains a
tool for designers that is too complicated to be given to end users. The
absence of separate context models prevents complex reasoning on context.
Our conclusion is that the framework was not designed to be user-centric,
and does not support complex context models.

3.5 The Jigsaw Project

3.5.1 The Framework

Most frameworks for context-aware applications do not support end user
programming. One of the exceptions is the Jigsaw project presented by
Humble et al. [39], a framework for context-aware computing in domestic
environments. The framework includes a GUI for end users that can be used
to compose components (called transformers) into a process. These compo-
nents represent various devices that are present in a smart home (e.g. motion
sensors, cameras, switches). By composing these components in a process, a
user can program their behaviour.

The implementation of this component model is based on a shared data
space. A real world device can be added to this shared space by creating
a JavaBean that represents it. This JavaBean typically includes driver in-
formation, implements the required interface and defines the properties that
are made available to the framework. Components are called transformers.
Three main classes of transformers are available:

e Physical to Digital transformers measure a physical attribute using a
sensor. The measured value is transformed into a digital property that
is then shared through the dataspace.

e Digital to Physical transformers can trigger an action on a physical
output device based on values of shared digital properties.

e Digital transformers process digital information. They increase the
level of abstraction.

When transformers are registered to a shared data-space they become avail-
able in the configuration GUI. This GUI is based on the metaphor of assem-
bling jigsaw pieces and is therefore called the Jigsaw Editor (see Figure 3.5).
Users can create a process by connection jigsaw pieces sequentially from left
to right. Connecting pieces is accomplished by drag-and-drop manipulations
on a canvas. When a piece is selected for dragging, other pieces that have

33 CHAPTER 3. Frameworks for Context-aware Computing

Workspace
for assembling
components

T8 e AT AT e
f "" - .,!{‘::‘:.!: ir..: |
WS

Figure 3.5: The Jigsaw Editor [39]

compatible attributes are enabled. The piece can then be connected to any
of these enabled pieces. If multiple combinations of attributes can be con-
nected, a dialogue window opens in which the user can select the desired

property.

3.5.2 Evaluation

The Jigsaw project provides a user friendly configuration GUI for end users.
This GUT however is not very expressive. Humble et al. [39] already acknowl-
edge that their framework is more suited for understanding and changing the
configuration of smart devices in a home then to fully program such a con-
figuration. The framework is focused on straightforward implementations of
context. Since no separate context models are used it is difficult to implement
complicated context reasoning. While it is useful in a restricted environment
such as home automation, it is difficult to apply to a more generic environ-
ment.

Summary 34

3.6 Summary

In this section we have discussed the architectures of context-aware applica-
tions. Most researchers prefer layered architectures that separate the acqui-
sition, interpretation, and reasoning on context. However, care needs to be
taken to provide sufficient intelligibility and control when applying a compo-
nent based architecture. Many frameworks and toolkits have been presented
to facilitate the development of context-aware applications. We have pre-
sented the Context Toolkit, the Context Recognition Network Toolkit and
the Jigsaw project. These frameworks provide fast prototyping and come
with built in context acquisition and processing tools, but they either lack
control and intelligibility, or are too specific for our purpose.

The Context Modeller Framework

This chapter introduces the Context Modeller framework, our main contri-
bution in this thesis. We give a high level overview of the framework and its
layered structure. We then focus on the provided tools and explain how they
are combined to model context.

4.1 Custom Types

4.1.1 Creating Types

Creating context models implies working with context information items.
These information items have specific data types. Our framework does not
predefine these data types. To be as generic and extensible as possible, all
data types used in context models have to be defined using the framework.
A data types is either a primitive type, or a composed type. Primitive types
are data types known by the runtime environment (e.g. Float, String) that
do need a definition. Composed types are data types created by a user for
which the runtime environment needs an explicit definition. As explained in
the following sections, composed types can be created and used in multiple
layers of the framework. A composed type has a name and an ordered set
of attributes. An attribute has a name and a data type which can again
be a primitive type or a composed type. The only restriction when creating

Custom Types 36

composed types is that a name for an attribute can only occur once in the
same composed type. Figure 4.3 shows the composed types Located and
Location as they are presented by one of the tools of the framework. Both
composed types have two attributes. To be as generic as possible, primitive
data types are not hard coded in the framework and have to be specified.

4.1.2 Type Compatibility

When combining information items in the modelling process, the data types
of these items need to have a degree of compatibility. As we will explain in the
following sections, to create a context model a user needs to select context
information items and use them as input for processing steps. Whether a
context information item can be applied or not as input depends on its data
type. The data type of the context information item has to be compatible
with the input data type for this processing step. This is our definition of
type compatibility:

A data type is compatible with a second data type if its set of
attributes is a superset of the set of attributes of the second data

type.

Remark that this relation is not symmetric. Since attributes have a name
and a data type, this definition implies that in order for a first data type
to be compatible with a second data type, for every attribute of this second
data type the first data type needs to have an attribute with the same name
and data type. Figure 4.1 illustrates type compatibility. On the left it shows
two data types Located and MeetingRoom with their attributes. On the right
it shows two data types that can be used as input type for a processing step.
The arrows show the type compatibility relation. Remark that the Located
data type is not compatible with the second input data type, since it does
not have an attribute with name Name and type String.

By defining type compatibility in terms of attributes rather than simply
requiring the types to be equal, the framework is more flexible. Information
items with multiple types can be applied as input to the same processing
step. When defining the processing steps, users do not have to be aware
of the actual data types for the input events, they only have to specify the
attributes relevant for the processing step. In the following sections, we will
refer to a processing step as a template and an input data type as the type
of an wnput connector.

37 CHAPTER 4. The Context Modeller Framework

Located Input Data Type 1
Attribute Name Attribute Type

Attribute Name Attribute Type

Has Location Location) .
Has Location Location
Indentifier String
MeetingRoom
Attribute Name Attribute Type
Has Location Location Input Data Type 2
Attribute Name Attribute Type
Name String Has Location Location
Capacity Integer Name String

Figure 4.1: Type compatibility

4.2 Layers of Abstraction

In previous chapters we argued that end users need to be involved in the
creation of context models. Since end users can not be expected to have
programming skills, the creation of these context models needs to be handled
by a tool that offers users a straightforward and understandable interface. At
the same time, we do not want to restrict the expressibility of the framework.
To cope with the dilemma of usability versus expressive power, we have
created a framework that consists of three layers of abstraction. Figure 4.2
shows these layers. FEvery layer covers a part of the modelling activities,
produces different deliverables and requires users with different profiles. In
the following sections, we describe these layers in detail.

4.2.1 The Plug-in Layer

In order to create a context model for a context-aware application, design-
ers need to be aware of context information the application has access to.
In our framework, the acquisition of context information is handled in the
Plug-in layer. A plug-in is a module that detects a specific type of context-
information. It connects to data sources (e.g. sensors, databases, external
services) and retrieves information that it transfers to the runtime environ-
ment of the framework as plain data objects with a custom defined type.
Information items delivered by a plug-in at runtime are referred to as dy-

Layers of Abstraction 38

Context Modelling Framework : Layers

I3

Q Context Orchestration (4 » User Defined Events @

5

O 'y

End User

c

S

S

a’ P Templates < User Defined Types

kS

8 4 Template Modeller

=

a Sensors @

Dynamic Events - Drivers
E ySlatiIc De\x/ta Conditions Acqllj\i/silion
Distribution
Plug-in Developer
Figure 4.2: Layers of abstraction

iL::ucated Close i iL-::u-::atmn Close |
Has Location Location ! iX Coordinate Float :
Identifier String ! Y Coordinate Float !
RSy — [P, (- ——— | S S FE S R —

Figure 4.3: Composed data types used by the Locator plug-in as visualised
in the framework

namic events. We illustrate the concept of a plug-in with the example of the
Locator plug-in. This plug-in can detect persons at a specific location. When
the plug-in detects a person at a specific location, it creates a dynamic event
with data type Located. The data type Located has an attribute with data
type String to identify the detected person and an attribute with data type
Location to indicate the location at which the person was detected. The
data type Location has two attributes of type Float to represent its Carte-
sian coordinates. Figure 4.3 shows the data types Located and Location as
they are presented by one the tools of the framework. In our example we con-
sider the data type Float to be a primitive type of the runtime environment.

Next to the implementation of the data detection modules, the plug-in
developer has to provide definitions for all dynamic events including their
data types. Other data that can be included in the specification of a plug-in
is a set of pre-defined objects that can be used in context models. For the
example of the Locator plug-in, a useful set of pre-defined objects would be

39 CHAPTER 4. The Context Modeller Framework

a list of places of interest with their location (e.g. the study room, the living
room, various meeting rooms at the office). Pre-defined objects are referred
to as static data: they are loaded in the runtime environment at start up
and cannot be modified.

Another responsibility of the plug-in developer is the definition and im-
plementation of conditions. A condition is a boolean function that takes a
list of attributes as input. Conditions provide a mechanism to implement
reasoning on the attributes of context information items. In the example
of the Locator plug-in a condition inRange is provided, that takes two at-
tributes of type Location as input. It calculates the Cartesian distance and
returns true is this distance is below a specific threshold value.

To specify dynamic events, static data and conditions, a plug-in developer
needs to create files in JSON format. To implement conditions, a developer
needs to provide the code required for their runtime evaluation. As these
task are handled by developers with programming skills, no supporting tools
are provided.

4.2.2 The Configuration Layer

The second layer provides a mechanism to raise the level of abstraction of
context information called templates. These templates combine the context
information items provided by the plug-in layer to create higher level con-
text information items. Context information items that are combined in a
template are referred to as the input events of the template. A template can
apply conditions to these input events and generate an output event. When
the runtime environment of the framework detects that all input events are
present such that the attributes of these input events make the conditions
evaluate to true, it generates the appropriate higher level output event. We
explain the three parts of a template more in detail:

e Input events: There are two categories of input events. It can either
be an information item provided by a plug-in such as a dynamic event
or a static data object, or a more generic place holder. A place holder
is simply a custom data type. If the input event of the template is a
place holder, every context information item with a data type that is
compatible (as defined in section 4.1.2) with the data type of the place
holder can be applied to it.

e Conditions: Conditions are provided by plug-ins. A condition can
be added to a template, by linking its attributes to the attributes of
the input events. These linked attributes will be used to evaluate the
condition of the template at runtime.

Layers of Abstraction 40

e Output event: A template has a single output event. This output
event can be specified in two ways. It can either be defined in the
template by specifying its list of attributes. In this case every attribute
of the output event needs to be explicitly linked to an attribute of one
of the input events. Another possibility to specify the output event
of a template is not including its structure in the definition of the
template. In that case the structure of the output event is derived
automatically from the applied input events. This is useful in case
place holders are used for input events, since the structure of the input
event is not defined yet in the template. When the output event is
derived automatically, it will copy all attributes from all input events
to the output events with the restriction that an attribute name can
only be used once. If the same attribute name is used in multiple
input events, only the first encountered attribute will be copied to the
output event. The first possibility to specify output events offers more
control to the template developer, the second possibility provides more
flexibility, since the structure of the output event is not fixed in the
definition of the template.

As part of our POC we implemented the template illustrated in Figure 4.4.
This template has two input events. Both input events are place holders with
only a single attribute for a location. This implies that all information items
that have this attribute can be applied to this template. The template applies
the inRange condition to the location of its input events. The output event
was not explicitly defined, implying that this template can generate output
events with different types, depending on the actual input information items.
The template is applied to the dynamic event MyLocation and the static data
object MyStudy, as illustrated in Figure 4.5. The template generates an event
with name inStudyRoom, that inherits the Has Location attribute from the
first input event, and the Has Name attribute from the second input event.
Note that the Has Location attribute from the second input event is not
transferred to the output event since an attribute with that name already
exists in the output event.

The definition of templates is handled by expert users that have a good
understanding of the framework. They need to be aware of the dynamic
events a plug-in provides and the conditions that can be applied to their
attributes. Expert users need to have an idea of the context data items an
end user is interested in and how end users want to combine these items. The
framework provides expert users with a tool for the creation of templates:
the FExpertUser Tool. Since this tool has a graphical interface, expert users
do not need programming skills.

41 CHAPTER 4. The Context Modeller Framework

Template
Input Event 1
Name : Has Location
Type : Location
»> Location
Output
Condition InRange Evepm

Input Event 2 L Location

Name : Has Location
Type : Location

Figure 4.4: Template Nearby

Input Event 1
MyLocation
Output
Name : Has Location Event
Type : Location
InStudyRoom
Name : Has Location
Type : Location
MyStudy Input Event 2

Figure 4.5: Template Nearby applied to myLocation and MyStudy

Context Evaluation 42

7 Context Creator | | B]

File Edit Help

Step 1 Step 2 Step 3 Stepd
¥ Combiners

- Basic
AtSame Time

¥ Documents
while accessing doct

¥ Location

¥ Objects g -

¥ Documents Nearby inStudyRoom | |
Thesis Documents -
Personal Docume... AtSameTime | personalWork
* Location
S -
persanalWork
¥ My Contexts At Same Time

personalWark =
paperWriting |
inStudyRoom .

thesisWriting

¥/ show all

Figure 4.6: EndUser Tool with orchestration to derive the context Working
on Thesis

4.2.3 The Context Layer

The creation of a context model is managed in the context layer. This is the
layer for end users. They combine the templates created in the configuration
layer to create orchestrations. An orchestration specifies how the combination
of several context information items derives a high level context that has
meaning for the end user. Since templates are used, the expressibility of
these orchestrations is restricted to what the templates provide. Therefore,
it is important that the template developers have an understanding of end
users needs, and that templates are defined as generic as possible. Figure 4.6
shows the EndUser Tool with an orchestration created in the workbench. We
will explain the EndUser Tool more in detail in section 4.4.2.

4.3 Context Evaluation

The actual evaluation of context at runtime is implemented with a rule en-
gine. A rule engine has a knowledge base that consists of a set of rules and
facts. The framework translates a created orchestration to a specification
in a declarative language that is loaded into the knowledge base. In this
declarative specification every template in an orchestration is translated into

43 CHAPTER 4. The Context Modeller Framework

a declarative rule. Below code snippet shows the result of this generation on
the Nearby template illustrated in 4.5:

package office

rule "rl inStudyRoom"

when

$1 : MyLocation ()

$2 : MyStudy (inRange($1.HasLocation , $2.HasLocation))
then

inStudyRoom output = new inStudyRoom{) ;
output.setHasLocation ($1.getHasLocation ());

output .setHasName ($2.getHasName()) ;

insert (output);

end

Static data objects are loaded as facts in the knowledge base at start up
of the runtime environment. The runtime components of connected plug-
ins deliver dynamic events to the rule engine. These dynamic events are
also added as facts to the knowledge base. Every time the knowledge base
is modified, the rule engine evaluates its rules and executes the rules that
are satisfied. For the rules generated by our framework, execution of a rule
means that the user defined output event is generated and added as a fact
to the rule engine.

4.4 Working with the Tools

In this section, we explain the use of the tools created as part of the framework
to create templates and orchestrations. We have provided the ExpertUser
Tool for the creation of templates, and the EndUser Tool for the creation of
orchestrations.

4.4.1 The ExpertUser Tool

Based on the dynamic events, conditions and static data objects provided
by the plug-in specifications, an expert user can create templates using the
ExpertUser Tool. This Tool consists of a central workbench area and four
lists: Templates and Compositions at the left side of the workbench, and
Conditions and Built in Types at the right side of the workbench. When the
tool is initially launched only the two lists at the right side are populated.
These two lists are populated with information from plug-in specifications.
Items from these lists can be used but not modified by the expert user. The
Conditions list shows an entry for every condition defined in the plug-in. The
Built in Types list contains three types of data:

1. composed data types of the dynamic events that a plug-in can deliver

Working with the Tools 44

7 ContextModeller (=R N
File Edit Hel
i e i Template
Templates = Conditions
Location Based Activity Save | Close -
Calendar Based Occ o inRange
Location Based Act QEqhet iy i el X isMember
Noise & Activity laString String Role : Detected Person i HasMName String stringDiff
i Stri ,-
Combiner g i Has Name String stringEquals
inRange o1 Located X 2 i
et Explicitly Specified
[First Location Loca iD‘“‘ Role : Detected Location Qutput Event
Conditions Second Loc.. Location \ Has Location Lacation
isMember X Has Name String
Name St MestingRoom X
Members Stringlist Az Kole: Roon nput Events
Has LocationLocation
Create i
i i Has Name String y
Aftribute Links e s e
Compositions Activity Location List X f Built In Types
Sound & Activity ?\oue] Activity Room List String
InMeeting Location M... StringList Float
ProjectMeeting Activity Na... String StringList
Calendar Data Drag new Condition Dra-g-Tg;pe pulE-ven-r Drag Type to set Output Event Location
Cccupation Located
Activity Lacation Lis Calendarlterm
Person : 10 Close SoundLevel
Derived Activity Deried Activlty S| Close ‘ é"ai Location Location MeetingRoom
7 Strin ; {Has Nam St
SoundLevel List Hig Hamiie = % : L i Project
- e Drag Type to add Attribute BroficGroup
Create Aftribute Built In Type
Composition (User
Defined Type)

Figure 4.7: ExpertUser Tool with a template, a user defined type and a
built-in type in the workbench

2. primitive data types supported by the runtime environment of the
framework (e.g. Float, String)

3. static data objects delivered as part of a plug-in specification

The two lists at the left side are populated by the expert user using the
ExpertUser Tool. The Compositions list contains user defined data types
that can be used to create place holders as input events, or to explicitly
define the structure of the output event of a template. These user defined
data types have a name and a set of attributes. Every attribute has a name
that can be entered as text and a data type that can be selected from the
Compositions list, or from the Built in Types list.

The most important list is the Templates list which shows all user cre-
ated templates. The user can create Templates and Compositions by clicking
the Create button below the appropriate list, and dragging the mouse to a
position in the workbench. The user can update existing Templates and
Compositions by dragging the entry from the appropriate list to the work-
bench. Remark that entries from the Built In Types list can also be dragged

45 CHAPTER 4. The Context Modeller Framework

to the workbench, but they cannot be modified. Figure 4.7 shows the work-
bench with a template, a composite type Derived Activity, and a built in
type Located (as a read only object). Remark that this template explicitly
defines its output event with a single attribute Has Name.

As mentioned in Section 4.2.2, a template combines input events with
conditions to generate an output event. Every attribute from every condition
needs to be linked to an attribute from one of the input events. Linking
attributes is done by dragging the connectors (green circles in Figure 4.7)
from the conditions to the connectors (grey circles in Figure 4.7) of the
attributes of the input events. A link is shown as a straight line from one
connector to another. Links can only be created between attributes of the
same type. In case of an explicitly set output event (as in the template shown
in Figure 4.7) the linking of its attributes is done in a similar way.

When all templates are created, the expert user can save his work in a
package file. This file can be opened again in The ExpertUser Tool for further
modifications, or can be used as an input package for the EndUser Tool as
explained in the next section.

4.4.2 The EndUser Tool

In the EndUser Tool, a user can create orchestrations by graphically combin-
ing objects in a central workbench. Figure 4.8 shows the EndUser Tool with
a single template in the workbench. At the left side of this workbench, the
tool has four boxes to present the objects that can be used in the workbench
for the modelling task :

1. Templates: Defined in the ExpertUser Tool, templates provide a mech-
anism to generate user defined events based on input events.

2. Static Data Objects: Information about the world that the framework
knows about (e.g. persons, rooms).

3. Dynamic Events: Information about the world that the plug-ins can
detect.

4. User Defined Events: Starting from a template, users can define the
events that they consider relevant.

These four boxes have a different colour. Objects in the workbench have the
same colour as the box where they originated from. The EndUser Tool relies
on packages created in the ExpertUser Tool. The information from these
packages is presented in the first three boxes. These boxes present a list of

Working with the Tools

46

File Edit Help

T = Step 1 Step 2
——Templates
i Lines For Dropping
Packages Templates in WorkBench

‘ ——Static Data Objects

Template

P

i

Connected Objects ™
\ Nearby

—Dynamic Events

ser Defined Events

Input Connectors

_-Filter Option : Show all objects in
/abwe lists or only objects compatible
[] Showall with last selected Input Connector

Figure 4.8: EndUser Tool

47 CHAPTER 4. The Context Modeller Framework

loaded packages, where every package in the list can be expanded to show
the objects in the package. The fourth box User Defined Events is populated
during the creation of an orchestration: when a user sets the name of the
output event in a template, this name is added to the list of User Defined
Events.

When a user selects the 'new’ item in the menu, the application loads all
package files it can find at a specified location. When the orchestration is
created, it can be saved as a file, or compiled into a set of declarative rules
that can be loaded in the rule engine. It is also possible to load previously
saved orchestration files again in the EndUser Tool for further modification.

An orchestration consists of sequences of templates. As explained earlier,
an input event of a template can be fixed in the definition of the template (if
a detected event or static data object is used in the template), or can be a
place holder that can later be applied to any compatible context information
item. In the EndUser Tool, a template is presented with an input connector
for every input event defined as place holder. Setting the actual input event
is done by dragging a compatible object to an input connector. Input events
that are not set as place holders in the definition of the template are not
visible in the EndUser Tool.

A user also has to specify the name of the output event generated by
the template. When a name is set for the output event, it occurs in the
list of User Defined Events, where it can be used as input event for other
templates. Remark that the template hides a lot of information for the end
user: conditions, input events not based on place holders, and all attributes
and bindings. When using templates in the EndUser Tool, a user is only
aware of:

e The name of the template. This is not modifiable and used to identify
the template.

e Input connectors for input events defined as a place holder. Every input
connector consists of a set of attributes. This set is not permanently
visible to end users, but can be revealed to the user as a tool-tip when
the user hovers over the input connector.

To add a template to an orchestration, the user selects a template from
the list and drags it into the workbench of the application. The template
can be dropped at one of the vertical lines in the workbench. After dropping
the template in the workbench the user can link compatible objects to its
input connectors by selecting entries from the Static Objects list, the Dynamic
Events list, or the User Defined Events list. Every input connector will check
the object for compatibility. When the application is in filter mode (i.e. the

Summary 48

Show All check box is not selected), only objects that are compatible with the
last selected input connector are shown. As an alternative way to connect a
user defined event to an input connector, a user can select a template from the
list and drag it immediately to the output connector of an existing template
in workbench. This results in the new template being graphically attached to
the output connector of the previous template, suggesting a sequential flow.

To improve the quality of the visual representation of orchestrations, the
workbench enforces certain constraints. Events in the workbench are always
linked to a connector of a generator module, they cannot be dropped just
anywhere. Templates can only be dropped at the vertical lines in the work-
bench, constraining the horizontal position of templates in the workbench.
After dropping the template, its horizontal position is fixed. The vertical
position of elements in the workbench is not fixed, by selecting an element in
the header position, it can be moved up or down. In such case, all elements
linked to each other move as a single group. Templates can be removed from
the workbench by a right click on them. The template will only be removed
if no other template is directly connected to its output connector. When
a template is removed, objects connected to its input connectors are also
removed.

4.5 Summary

In this chapter we have presented our Context Modelling Framework. The
framework is designed to enable end users to define their own context. In
order to be user friendly, expressive and extensible we have created three
layers: the plug-in layer, the configuration layer and the context layer. The
plug-in layer provides extensibility through the use of plug-ins that acquire
external context information. The configuration layer provides expressibility
through the use of templates, and the context layer provides an easy to use
modelling interface for end users. We discussed how a user defined context is
translated in a declarative specification that can be loaded in a rule engine
for runtime evaluation. We have introduced the ExpertUser Tool and the
EndUser Tool and explained how to use them.

Implementation

This chapter covers the implementation details of the ExpertUser Tool and
EndUser Tool, and the integration with the Drools runtime environment. We
discuss the main classes and how they cooperate.

5.1 Technologies and Libraries

The framework is written in Java 1.8. All graphical elements are based on
JavaFX, the current standard GUI library for Java. JavaFX is included in the
JDK as from version 7. The design of most graphical elements was prepared
with the JavaFX scene builder. This tool allows designers to compose a
scene by dragging graphical elements to their desired location. It generates
an fxml file which is an xml dialect for JavaFX that can be opened by a
JavaFX application to set an initial scene. When the ExpertUser Tool and
EndUser Tool initially open they present an empty scene that was designed
with JavaFX scene builder. Other graphical elements such as objects in the
workbench are added by calling constructors at runtime.

For the persistence of objects, json-io version 2.5.1 is used!. This library
provides a straightforward way to persist an object in a file, and initialise an
object by reading it from file. The files have a JSON format.

thttps://github.com /jdereg/json-io

Application Structure 50

5.2 Application Structure

5.2.1 Graphical Elements

This section describes the general structure of the two JavaFX applications
ExpertUser Tool and EndUser Tool. The main class for a JavaFX applica-
tion has to extend the javafr.application. Application class, and overwrite a
method start that is called when the application is started. This method
first creates the initial view from an fxml file. It then instantiates the ap-
propriate controller object (ExpertApplicationController for the ExpertUser
Tool and UserApplicationController for the EndUser Tool) and immediately
passes control to it. The controller is the central class in both applications.
It implements all actions initiated in the menu items, controls the workbench
and all graphical object lists used by the applications. Controlling these ob-
jects is done by implementing listeners that respond to events (e.g. on drag
detected, on drag dropped, etc.).

Objects in the workbench are added as children of the AnchorPane object
that implements the workbench. These objects also create listeners that re-
spond to relevant events (e.g. an on drag dropped event on an input connector
of a template). To move objects in the workbench, both applications have
implemented a MakeContentDraggable class that calculates the new position
of dragged objects.

5.2.2 Extensible Types

As already mentioned in section 4.1.1, the framework does not predefine data
types for any context information item. Since it is designed to be as flexible
as possible it supports extensible data types. These data types can be defined
by a plug-in developer (to create dynamic events or static data objects) or
by an expert user (to create place holders for input events in templates, or
explicitly specify output events in templates). The framework uses a number
of classes to implement these types. Figure 5.1 gives an overview of these
classes. In its most general form, a data type is an object with a name and a
set of named attributes. The class Type is an abstract class that implements
these basic properties. The abstract class can be implemented by one these
three classes:

e Fwvent: An event represents an object that can be loaded as a fact in
the rule engine. An event can be defined by an end user as output of a
template (indicated as a UserDefined event in Figure 5.1), or it can be
defined by the plug-in developer as something that can be detected by a
plug-in (indicated as DynamicEvent in Figure 5.1)(e.g. a person enters

51 CHAPTER 5. Implementation

Managed in ExpertGui
Managed in UserGui

Provided by Plugin & Framework

Condition

-Name

Type -AttributeList
-Name -Code
-AttributeList

Template

-Name 1
-InputConnectorList
-ConditionList]
* -InputConnector ~ [FOUtPUtAttributeList
-BindingList |

Primitive Event -InputEvent TemplateType| * *

Rule

[-Output
StaticDataObj DynamicEvent UserDefined -OutputEvent -Template
-InputList

*

-InputConnector
*

-InputConnector

Figure 5.1: Classes that use and implement event types

The ExpertUser Tool 52

K—Fackag ~N —WorkBench ~

Package File Conditions

Events
R > TemplateTypeView |
Templatetypes

|
Templates < =I TemplateView |

Figure 5.2: Objects managed by the Expert ApplicationController class

a location). Static data objects are also implemented by the event class
since they represent data that can be loaded as facts in the rule engine.
For every defined event the framework will create a declarative type
definition as part of the declarative specification of an orchestration.

e Primitive: A primitive is a type that is known by the rule engine used
in the runtime environment of the framework (e.g. integer, string, etc.).
Primitive types have to be provided to the ExpertUser Tool and the
EndUser Tool as a list. The framework will not create declarative type
definitions for primitive types.

o TemplateType: A TemplateType is not used by the runtime environ-
ment. It is only used in the definition of templates. The framework
will not create a declarative type definition TemplateTypes, since in an
orchestration they are replaced with events.

5.3 The ExpertUser Tool

Figure 5.2 shows the most important components of the ExpertUser Tool.
The state of the application is maintained in a singleton object from class
Package. A Package contains lists for following objects :

e (Conditions: The state contains a definition of every condition. This
is essentially a description for the signature of the boolean function
that implements the condition. To describe the signature we keep a
list of its input attributes. The actual implementation of the boolean
function is not kept here.

e Fuvents: The state contains the definition of every dynamic event the

53 CHAPTER 5. Implementation

plug-in can detect. Information about static data objects (e.g. rooms,
documents, etc.) is also kept in the events list.

o TemplateTypes: User defined types that can be used when constructing
templates. These types are not used by the plug-in or the runtime
evaluation process.

e Templates: A template combines input elements with conditions and
can specify an output type. Defined in the ExpertUser Tool.

At start up, the application needs information about primitive types and
information to instantiate its package object. The primitive types are passed
to the controller as a list. A package object is usually instantiated in the
controller by reading it from a package file in JSON format. However, it is
also possible to create the package object explicitly using a constructor in
an initialisation method and pass this object to the controller. The latter
is useful when a new package is created and a file is not yet available for
this package. In such case an initialisation method can create the conditions,
static data objects and dynamic events and add them to the package object.
Using an initialisation method avoids having to create the package file in
JSON format manually, which is a time consuming and error-prone task.
Remark that a new package does not contain Templates or Template Types
yet, these are added by the expert user.

When the expert user starts using the tool, all Template Types or Tem-
plates created by the expert user are added to the main package object. The
package object can be saved to a package file using the json io library. This
library is also used to load a package file and instantiate a package object in
the ExpertUser Tool.

When a new package object is created or a saved package is loaded, the
four lists at the left and right side of the central workbench are populated
but the workbench remains empty. To create a graphical object in the work-
bench, a user has to complete a drag and drop operation from one of these
lists to the workbench. Every graphical object in the workbench is linked to
an object that belongs to the package object (e.g a graphical TemplateView
object has a reference to a Template object which belongs to a package), but
exists as a separate entity as illustrated in Figure 5.2. The same Template
can be dragged multiple times to the workbench. This will instantiate mul-
tiple new graphical objects all linked to the same template object. When
an expert user manipulates a template in the workbench, only the manip-
ulated graphical object (i.e. TemplateView) is updated. The user has to
click the ’save’ button in the graphical object to synchronise this graphical

The EndUser Tool 54

object to its linked package object. Objects in the workbench are consid-
ered temporary objects that are lost when the application is closed. Only
by synchronising them to the linked package object and saving that to file,
changes can be persisted. Graphical objects in the workbench are composed
as a hierarchy of other graphical objects. The graphical position of child ele-
ments in the AnchorPane that implements the workbench are relative to the
parent element, so that the entire object can be moved around as a single en-
tity. Figure 5.3 shows the structure of the TemplateView class. It basically
consists of a header, a central component for the conditions, input events
and the output event, and a component for the three areas where objects
can be dragged to. The TemplateConditionView, TemplateInputView and
Template Output View classes shown at the bottom of Figure 5.3 again have a
similar tree structure. The TemplateInputView for example contains a set of
TemplateInputAttribute View objects to represent the attributes of an input
event. Every element of an object tree contains a pointer to its parent, all
the way up to the controller object. This enables every part of a graphical
element to retrieve data from any other object.

5.4 The EndUser Tool

The implementation of the EndUser Tool follows a similar approach as the
ExpertUser Tool, but is more complicated. The EndUser Tool loads multiple
package files and accumulates this information in a model object, as illus-
trated in Figure 5.4. This model object can be used to create orchestration
objects. When a new orchestration object is created from a model object, the
lists in the application that present package information are populated, but
the workbench is empty. Same as with the ExpertUser Tool, the workbench
can be populated by completing a drag and drop operation from an object
of the appropriate list to the workbench. Unlike the situation with the Ex-
pertUser Tool however, objects in the workbench of the EndUser Tool are
not considered temporary objects that are always lost when the application
is closed. They are permanent elements of the orchestration and are saved
to file when the orchestration is saved. The orchestration object contains all
necessary information about objects in the workbench. Orchestration objects
can be written to file and loaded from file. When an orchestration object
is initialised by loading it from file, the workbench is immediately shown
in the same state as it was when the orchestration file was saved, with all
graphical elements in the workbench at the same location. However, be-
cause the json-io library can not serialise the JavaFX objects (extensions of
VBox, HBox etc.) that implement the graphical objects in the workbench,

CHAPTER 5. Implementation

AnchorPane WorkBench

1
TemplateView
1
1
VBox 1
1
1
1 1 1
Header Content DragZones
HBox 1 HBox HBox 1
1 1
1 1, 1
1 1 1 1 1 1
TextField Button Button Label Label Label
Conditions InputEvents OutputEvent
1 1 1
|
VBox VBox VBox
1 1 1
* * 1
TemplateConditionView TemplatelnputView TemplateOutputView
Conditions InputEvents OutputEvent

Figure 5.3: Structure of the TemplateView class

Rule Generation 56

UserTool

Package Files

@ L —

User Defined Events

Orchestration File

A,

DRL
Files

Drools Runtime

Figure 5.4: High Level Overview of the EndUser Tool

an orchestration object is created as POJO for every graphical object. These
orchestration objects contain all data necessary to instantiate its correspond-
ing graphical object. As illustrated in Figure 5.5, an Orchestration consists
of a list of groups called RuleSequence. Every group contains a series of Rule
objects. Rule objects correspond to templates in the workbench. A template
in the workbench is implemented by the RuleView class.

5.5 Rule Generation

The EndUser Tool provides a function to translate an orchestration object in
a declarative language. This translation results in a set of rule files and type
definition files, that can be loaded in a Drools rule engine. The translation
process first generates the type definition files. For every defined event, a drl
file is created that defines its data type. As explained before in this chapter
an event is either a dynamic event, a user defined event or a semi static
object. Type definition files are generated in order of dependency : if a data
type Room has an attribute of data type Location, the drl file for Location is
generated before the drl file for data type Room. This dependency enables
incremental loading of data types and rules in the rule engine. Incremental
loading makes it possible to design an engine to which small changes in the
context model can be pushed without restarting the engine. As a result, the
tool can be used in complex systems which can’t be restarted for every small

57 CHAPTER 5. Implementation

Orchestration Objects

Orchestration WorkBench

Graphical Objects

Package Objects 1 i

RuleSequence 1 RuleView * 1 Template

1 1

Rule 1 ConnectorView

0.1

Node

%

RuleView EventView 1 Event

Figure 5.5: Objects in an Orchestration and their corresponding graphical
objects

change (e.g. home automation). After generation of the data types, a drl file
for every rule object is created (see Figure 5.6). To generate a drl file for a
rule, the process follows these steps:

e [t first reads the conditions of the associated template. For every con-
dition it prepares a clause to be added to the when clause of the rule.

e Next, the input events are read from the template. For the input events
defined with place holders, the actual linked event is retrieved from the
orchestration.

e Every input event generates a conditional element in the when clause.
The condition clauses prepared in the first step are added to these
conditional elements.

e The then part of the rule is created. This consists of a statement to
create an object of the output type, statements to set the attributes
of this object to the attribute values of the corresponding input event,
and a statement inserting the new object in the rule engine.

The Rule Engine 58

PAERRgERERIEE Implementation of Condition

rule "rl thesisWriting”

when

£1 : paperWriting()

Conditional E|ement5<-$2 : DocumentlAccessing ()
£3 : ThesisDocuments (contains (£2.DocumentName , £3.Members))

then

Create OLItlet E.,v,entd_____r—t'nesisWrit.ing output = new thesisWritingl():
l-output.setHasLocation (§1.getHasLocation ()) ;

_ L Loutput.setHasHame (£1.getHasName ()) 2

Set Attributes é-output . setDocumentName (£2 . getDocumentName ()) ;
ocutput.setMembers (£3.getMembers ()) ;

Add to Knowledge rinsert (output) ;

Base end Than

hen Pa

o

Figure 5.6: A generated Rule

5.6 The Rule Engine

We have used Drools 2 as a rule engine. Drools is provided by the Jboss
Community and is available as an open source project. The current version
of the Drools rule engine is built around the Phreak algorithm, based on Leaps
and Rete/UL [32]. We did not integrate the rule engine with real sensors,
but simulated a set of dynamic events and added these to the rule-engine to
validate correctness of the generated rule sets.

We used version 6.0.0 of the Drools rule engine to validate the generated
drl code. This was done by loading all drl files to a knowledge base, and have
a Java program add facts to the knowledge base to trigger the appropriate
rules. To have a Java program add a fact to the knowledge base, first the
data type of the fact needs to be declared by reading in a type description
from the knowledge base. Then the Java program instantiates an object of
this data type and sets its attributes to the desired values. These objects can
then be added to the knowledge base, after which the Java program requests
the engine to fire its rules.

Remark that we do not have to share libraries or other compiled objects
between the rule engine and other components of the framework. The rule
engine only needs the drl files generated by the EndUser Tool, and the drl
files that implement the conditions used in the templates. The drl files for
these conditions need to be provided by the plug-in developer, who needs to
implement the conditions as boolean functions in a format that is compatible
with the rule engine.

The runtime environment of the plug-ins acquires context information.
This can be implemented by connecting the plug-in to a sensor or any other

https:/ /www.jboss.org/drools/

59 CHAPTER 5. Implementation

data source. When a context information item is detected by the plug-in, it
creates an event that is added as a fact to the rule engine. The rule engine
is then asked to evaluate and trigger its rules.

5.7 Summary

In this chapter we have explained how the framework was implemented.
The ExpertUser Tool and the EndUser Tool are created with JavaFX. We
explained how these applications are organised and how they create their de-
liverables. The ExpertUser Tool creates packages, the EndUser Tool creates
orchestrations. The runtime environment is a Drools rule engine. Orchestra-
tions are translated in declarative specifications that are loaded in this rule
engine. When a plug-in detects a dynamic event, it is added as a fact to the
rule engine.

Summary

60

A Use Case in PIM

This chapters presents a use case that applies our framework to a context-
aware desktop application. This context-aware desktop application was de-
veloped as a tool for the organisation and retrieval of personal information
items. We start with an overview of Personal Information Management.
We then point out the significance of context for this domain, and use our
framework to model a context related to this domain. Finally we integrate
the context-aware desktop application with the runtime environment of our
framework and apply it to the created context model.

6.1 Personal Information Management

The interaction between people and their information items is being investi-
gated in the Personal Information Management (PIM) research field. PIM
includes both descriptive research regarding human information behaviour
and the design of systems that support people in personal information related
activities. PIM interacts with various research domains including cognitive
psychology, human-computer interaction, artificial intelligence, information
and knowledge management, information retrieval and information science.
A general accepted formal definition of PIM is the one given by Jones [40]:

"Personal information management or PIM is both the practice

Personal Information Management 62

Figure 6.1: Public and Private Information Space

and the study of the activities people perform to acquire, organ-
1se, maintain, retrieve, use, and control the distribution of infor-
mation items such as documents (paper- based and digital), Web
pages, and email messages for everyday use to complete tasks
(work related and not) and to fulfil a person’s various roles (as
parent, employee, friend or member of a community)."

People keep information items when they satisfy a current or future infor-
mation need. Storing items for future use implies that we need to be able
to re-find items in the personal information space. In order to efficiently
re-find previously stored items, these need to be organised in a proper way.
It is generally accepted that keeping, organising and re-finding are the three
main activities of PIM. They are presented by Jones [41] in the Keeping,
Organising and Re-finding theory.

Keeping When people encounter information items in the public in-
formation space, they assess its value for personal use. Information that
has sufficient value is added to the personal information space (see Fig 6.1).
Remark that information spaces contain both digital as physical information.

Organising Information items that we decide to keep need to be stored.
In order to efficiently re-find these stored items they need to be organised.
Users organise information by applying multiple strategies. Malone was one
of the first researchers who addressed the topic of organising information
items in physical workplaces. In his work, he identified two strategies namely
piling and filing [48|. Filing is a strategy where items need to be labelled and
added to an ordered storage container. These files can again be integrated
in larger files. People have applied filing strategies for centuries (e.g. a file-
cabinet). The filing activity is far from trivial. To ease later retrieval, users
will typically include as much information as possible in the labels. This
behaviour leads to unclear and fuzzy labels. This problem is referred to as
the classification problem. Secondly, the items have to be included in the

63 CHAPTER 6. A Use Case in PIM

appropriate ordered structure (e.g. a physician adds a patient’s file in a file-
cabinet, alphabetically ordered by name). Since the filing activity requires
time and effort, users will only spend this effort if the benefit justifies this
investment [25]. Malone’s research covers only the physical information space
but his findings are later integrated in research on the organisation of the
digital information space as well |66, 14].

Re-finding Re-finding information items applies to information items
that have previously been kept and organised by the same user. The re-
finding activity occurs in a user’s personal information space, as opposed to
the finding activity which applies to public information spaces. Whereas a
search engine is generally used for finding activities, it is not the preferred tool
for the re-finding activity. Bergman even indicates that search engines are
only used as a last resort, when the location of a file is forgotten [12]. Teevan
introduces another re-find strategy named orienteering [55]. Orienteering
implies that people start a search at a certain point in the organisational
structure and navigate step by step through the structure until the item is
found. Barreau [8] and Bergman [12] have also indicated orienteering as the
main strategy for re-finding of information. A possible explanation for the
popularity of orienteering is the preference of recognition over recall. A search
engine requires formulating one or several keywords that need to be recalled
from the semantic memory. The orienteering strategy uses only recall by
selecting one of several options when taking the next step in the navigation
process. Another advantage of orienteering is that the folder hierarchy can
contain additional context information which helps the user in the re-finding
process.

6.2 The Human Memory

In order to address the relevance of context for PIM, we first need to explain
some concepts about human memory. It is commonly accepted that the
human memory does not work as a single solid system but consists of several
subsystems. Atkinson and Shiffrin introduced a psychological model that
consists of three interdependent layers namely the sensory memory, short-
term memory and long-term memory [3]. The sensory memory is directly
related to the human input channels (i.e. sight, hearing, touch, smell, taste
and balance) and acts as a buffer between these senses and the rest of our
cognitive system. Most of the information gathered by our senses is not
considered and therefore quickly lost. An example can be a situation where
person is talking to a second person who is not actually listening. The person

The Human Memory 64

spoken to is not able to repeat any of the words. By paying attention to one of
the stimuli, information is transferred from the sensory memory to the short-
term memory. In our example this would mean that the second person starts
to listen actively. In short-term memory, the information items are stored
for an average of about 30 seconds, unless they are consciously repeated.
By explicitly processing (i.e. encoding) the information, it is transferred to
the long-term memory where it becomes available for retrieval. Squire [52]
extended the previous cognitive model by partitioning the long term memory
in two subsystems namely the declarative memory and the non-declarative
memory. The non-declarative memory manages among others procedural
memory (e.g. riding a bike) and associative learning (e.g. conditioning). The
declarative memory system is responsible for the storage and processing of
events and facts.

Tulving [59] further divides the declarative memory system in the episodic
and semantic memory. The episodic memory receives and stores personal
experiences. It can be pictured as a sequential list of events. Every time
a person perceives something, an event is added to this list. The episodic
memory stores the perceptible attributes of events and their temporal-spatial
relations. Events are always stored in terms of their autobiographical refer-
ences to the already existing events in episodic memory, and to the previous
event. The episodic memory has a very high transformation speed since ev-
ery experience adds a new event. Even a retrieval action from episodic or
semantic memory creates an event that will be added to the episodic memory.
On the other hand, the semantic memory consists of facts and concepts that
we have learned. Instead of the sequential structure from the episodic mem-
ory, it can be pictured as a semantic graph of concepts that are connected
through associative links. The semantic memory can be updated by receiving
new input (e.g. learning new concepts by reading a book) or by reasoning on
the existing semantic graph (e.g. deducing new concepts from existing ones).
Compared to the episodic memory, the semantic memory transforms slower
but it is much more complex from structure.

For most cognitive actions, both episodic and semantic memory systems
are involved. Let us illustrate this interplay of both systems by an example
of a student attending a course (illustrated by event E2 in Figure 6.2). The
course takes place at 09:00 am on a Monday morning in classroom 10F720.
Furthermore, the lecturer’s topic concerns multi-modal interaction. This
event will be stored in the student’s episodic memory together with the per-
ceptible attributes such as the classroom, time, other students present and
even the fact that the student is hungry since there was no time for breakfast.
This event will have an auto-biographical reference to the event of having a

65 CHAPTER 6. A Use Case in PIM

Creation of concept C1

? Creation of concept C2 @O
E1 E2 E3 E4 Semantic L;&i i
UUAutohwographica\ references

Episodic Memory Semantic Memory

Figure 6.2: Interaction between episodic and semantic memory systems

conversation with other students just before class (illustrated by event E1 in
Figure 6.2). The learned concepts on multi-modal interaction gained in the
lecture will be stored in the semantic memory (concepts C1 and C2 in Figure
6.2). When studying the material (concepts C1 and C2 in Figure 6.2) for
the exam later (event E4 in Figure 6.2), the student will recall the event of
attending the class where this material was explained. As illustrated by this
example, semantic and episodic memories are interdependent. A retrieval
from the semantic memory updates the episodic memory. Even the encoding
of perceptual events in episodic memory can be influenced by concepts in
semantic memory. The interaction between semantic and episodic memory
receives a lot of attention in the research field of cognitive psychology [16].

The structure of these memory systems has major consequences for the
retrieval of information. For information to be retrieved, it needs to be
accessed by following the available references and associative links. The
auto-biographical references in the episodic memory play an important role
in retrieval actions. Together with the perceptible properties of events, these
references are used to answer queries like

e what did I do at 10:00 am this morning

e what did I do next

e what activities are related to this location

e what are the items on my shopping list
The information provided by auto-biographical links and perceptible proper-
ties of events stored in episodic memory is additional information to an event.

Applying our definition of context given at section 2.1, we can conclude that
this information is indeed context of an event.

Context applied to PIM 66

6.3 Context applied to PIM

Time cues, spatial cues and contextual cues are important for the re-finding
activity. Since semantic memory stores perceptible attributes of events in-
cluding time, location and context, it is natural human behaviour to use these
cues. The use of cues in different organising strategies has been investigated
in a survey by Trullemans and Signer [57]. As shown in Table 6.1 contextual
cues are used for all identified strategies both in physical as in digital in-
formation spaces. The importance of context for the keeping and re-finding
activities for digital file-systems had also been addressed by Barreau [8].

Context cue | Spatial cue | Time cue
Physical space Piling v v
Mixing v v
Filing v v v
Digital space Piling v
Mixing v v
Filing v

Table 6.1: Cues supporting the re-finding activity [57]

Though contextual cues are important, existing organisational strategies
do not directly support context. Lack of support for context is one of the
main problems in current information management systems. According to
research done by Malone [48] the classification problem originates from the
difficulty of setting up an efficient organisation structure. Providing the item
with appropriate labels causes again a cognitive overload [42]. The root cause
of these issues is the fact that most organisation structures supported by cur-
rent information systems are fundamentally different from the structure of
human memory. This applies to information systems both in the physical
space as in the digital space. As already mentioned by Bush [20] in 1945 in
his paper As We May Think, the human mind does not organise information
according to hierarchical structures (as in digital or physical file-systems),
but it links information items using associations. This vision corresponds
with the structure of semantic memory introduced in the previous section.
However, it doesn’t recognise the important role of context in re-finding ac-
tivities. User activities occur in a context, meaning that the activity contains
contextual factors. For example, a meeting takes place in the context of a
project. Information items related to this activity (e.g. the meeting min-
utes) refer to the same context. If a user decides to keep an information
item, this keeping activity takes place in a context (e.g. the project). When

67 CHAPTER 6. A Use Case in PIM

storing the information item, a user typically tries to include context infor-
mation (e.g. the project). When filing strategies are applied, the context
information can be encoded in the file hierarchy by using dedicated folders
(e.g. named after the project). The re-finding activity also takes place in the
context (e.g. the user might search in folders that are named according to the
project). In this case, next to the project context factor, additional context
information can be used, such as the date of the meeting.

To model the role of context in retrieval from human memory, Trullemans
and Signer [58] proposes a conceptual human memory model consisting of
three layers (shown in Figure 6.3):

e The object level : Objects are real world elements, either from the phys-
ical or the digital world. They can refer to information items or parts
of information items. Objects can be connected through navigational
(e.g. hyper-links) or structural (indicating composition) links.

e The concept level : concepts are general ideas, that only exist in the
mind. They abstract the complexity of the world. A concept can for
example be the label a user gives to a folder. Concepts can have as-
sociative links, as explained in Quillian theory of semantic memory.
Objects and concepts can be related by extent links, indicating a cat-
egorical relationship between object and concept

e The contextual level : a context is a composition of contextual factors.
In accordance with the definition of context given by Dervin [Dervin,
1997|, contextual factors are conditions or observations that make ob-
jects or concepts more understandable. A context can have links to
objects, concepts, and their links. These links can have individual
weights, indicating the relevance of the object or concept for a context.

The selection of a context element will activate linked elements at object and
concept level. Activated elements can in turn activate other linked elements
until a certain depth, resulting in the selection of a sub-graph of objects and
concepts. This sub-graph contains the items relevant in a given context. By
explicitly modelling contextual links, this model directly supports re-finding
based on context cues.

A good PIM system should allow users to retrieve information in a similar
way as how they retrieve information from their own memory. Since PIM
activities depend on context, we believe that a PIM system should include
direct support for context. Instead of being stuck with existing organisational
strategies such as Filing, new context based strategies can be developed.

A User-defined Context for Information Items 68

Contextual level

r—-—- ‘{ Context 1 Context 2 % == 29
T

\ / Concept level

associative link
Concept 2 Concept 3

Object level
&,
%
&,
/‘//.

4

navigational link
Objectl [me— = = === =:—:—1 Object 3
I
. | structural link K | 3
L_I_I __________ —ObjeClZ ————

|
1
1
|
|
1
1
1
|
|
1
1
|
1
I
1
1
|
|
1
1
1
|
|
=

Figure 6.3: Conceptual Model for the role of context [58]

6.4 A User-defined Context for Information Items

6.4.1 A Context Example

As mentioned in above section, information items are related to a context,
and a good PIM system should be able to keep this context information
when storing the information item. As discussed in section 2.2 the user
should be involved in the definition of these contexts. To illustrate this idea
we will now use our modelling framework to define a context for personal
information items. As a running example in this section we use the Working
on my Thesis context that applies to all information items used to compose
this thesis. In this example we use the following types of atomic context
information to derive higher level context information:

e My calendar and agenda : the current agenda can indicate a timeslot
as being working time, free time or in meeting.

My location

My activity: T can be browsing for information (physical or digital),
typing or talking.

The information item a I am accessing

69 CHAPTER 6. A Use Case in PIM

Calendar says Petocted

| am detected at Location L1 is my that | am noyt | am Typing at | am accessing a D1 s related to Events

a location L1 StudyRoom working my laptop document D1 my thesis
Static Data

Objects

. | am writing a Derived

I am in my 0 aﬂ::(f);l:mmg but document, not Accessing thesis events

StudyRoom d y "l related to my related document
company company

Current Context :
» writing for my
Thesis

Figure 6.4: Sample derivation for working on my thesis context

Suppose that the application has also access to a set of static data objects
such as relevant places with their location (e.g. the study room or meeting
rooms in an office), and knows what information items related to certain
domains. We then define the context Working on my thesis as shown in
Figure 6.4: T am working on my thesis if I am in my study room while not
during working hours (to exclude the possibility that I would be working for
my company), typing on my laptop and accessing documents the systems
knows to be related to my thesis. Remark that this scenario is only one
way to define the working on my thesis context, it can co-exist with other
scenarios that together define this context.

6.4.2 Creating Templates

We now explain how this example can be implemented in our modelling
framework. For the four types of atomic context information, plug-ins would
have to be created. These plug-ins need to have a specification that can be
used by the modelling tools and a runtime component that can deliver the
detected events as facts to the rule-engine. For every plug-in we have created
a specification in a package :

e Calendar: A package that can access a users calendar and the status
of the current timeslot. In our implementation it only differentiates
between working hours and non working hours but various other
types could be defined (e.g. holiday, in meeting, non working hours
etc.). When the calendar status changes it creates a dynamic event.

A User-defined Context for Information Items 70

e Location: A package that tracks a users location. When a user is
tracked at a new location it creates a dynamic event. It also has static
information about rooms and places. The package includes a condition
inRange that checks whether two locations are within a certain range
from each other.

e Activity: A package that tracks a users current activity. When it de-
tects a new activity it creates a dynamic event.

e Documents: A package that tracks a recently accessed information
items. When it detects an item being accessed it creates a dynamic
event. The packages has static data about sets of items that are rel-
evant for a domain. The package has a condition isMember to check
whether a value of String belongs to a list of values of type String.

When the Documents and Location packages are loaded in the Expert Tool
we can create the required templates. Since this tool can only work on one
package at the same time this is done in separate steps. For the Documents
package we add a template Wile Accessing Document of. Figure 6.5 shows
the workbench of the ExpertUser Tool while creating this template. The
template has three input events:

1. An empty place holder to which anything can be applied. Templates
raise the level of abstraction by combining information. The While
Accessing Document of template combines any generic information
item with the fact that at the same time a document is being accessed.
This place holder is used to represent this generic information item. A
user defined type empty was created for this place holder. This type
has no attributes. Since an empty set is a subset of any set, every data
type is compatible with this place holder in the sense of the definition
given in section 4.1.1.

2. The dynamic input event Document Accessing that the plug-in can
detect.

3. A place holder for an information item with a data type that has at
least an attribute with name Members and type List. This place holder
can be used to specify a list of documents known to be relevant for a
domain. A user defined type hasList was created for this place holder.
This type has a single attribute with name Members an type List.

The condition isMember is used in this template to validate that the informa-
tion item detected by the plug-in belongs to the list of items applied to the

71 CHAPTER 6. A Use Case in PIM

While Accessing Document of Save Close
isMember X | empty X | ———Place Holder
: | : e —
Name String | Role activity = for Input Event
Members b A\ Document Accessing b 4
ﬁo,e . e Input Event
Document ... String
hasList X
\F\me . __———+—Place Holder
: ist =
: i for Input Event
Members List i
Drag new Condition Drag Type to add Input Event Drag Type to set Output Event
Document Accessing Close { Dynamic Event
{Document Name String
empty Save Close

Drag Type to add Attribute

User Defined Types

hasList Save Close

Members List X

Drag Type to add Attribute

Figure 6.5: Workbench with the While Accessing Document of template

last place holder. The template does not define the structure of the output
event. This implies that all attributes from the information item applied to
the first place holder are automatically copied to the output event. If this
information item does not have an attribute with name Document Name yet,
the name of the actual document detected by the plug-in is also copied to
the output event. Finally, all attributes from the information item applied to
the last place holder are copied to the output event, as long as an attribute
with that name was not yet added. By defining the template like this, we
can summarise that it enriches any activity with information about a doc-
ument that is accessed during this activity. The activity is enriched with
information about an accessed document.

In the Location package a template Nearby is created. This template
has two place holders for input information items with a location. For these
place holders a user defined data type hasLoc was created. This data type
has a single attribute with name Has Location and type Location. Any
information item that has such an attribute can be applied to the place
holders. The template applies the inRange condition to the locations of
these two information items. Same as with the While Accessing Document
of template, the structure of the output event is not defined in the template.
Figure 6.6 shows the workbench of the ExpertUser Tool while creating this
template.

A User-defined Context for Information Items 72

Mearby Save Close
inRange X hasLoc X -——___h
A i sl
First Location Location \;\Roie item 1 with Loc ~_——=Place Holder for Input
Second Loc... Location \ IS8 Has LocationLocation d__f,-f“f" Event
: e
hasLoc el
ole item 2 with Loc
Has Locationlocation

Drag new Condition Drag Type to add Input Event Drag Type to set Output Event

hasloc Save Close User Defined Data
. Type
Has Location Location 4 p
Drag Type to add Attribute

Figure 6.6: Workbench with the Nearby template

Finally a generic template At Same Time is created with two place holders
and no conditions. For the place holders a user defined data type empty is
used that has no attributes. The template does not define the structure of the
output event. This template is a generic: it combines any two information
items and copies the attributes of the first information item to the output
event. Attributes of the second information item are also copied to the
output event as long as their attribute names did not occur yet in the first
information item. For this generic template a new package Basic was created.
This package is not related to any plug-in, it only provides this template.

6.4.3 Creating the Orchestration

With the templates added to the packages, we can create the orchestration
that implements the scenario Working on my Thesis introduced in Section
6.4.1. The package files for the four packages are placed on the package
directory of the EndUser Tool. When menu item 'new’ is selected in the
EndUser Tool it reads the information from these package files and populates
the lists for templates, static data objects and dynamic events.

To implement the first step of he derivation illustrated in Figure 6.4 we
need to verify if my location is the same location as the studyRoom. This
is done by applying the Nearby template to the dynamic event MyLocation
and the static data object MyStudy. These were are provided as part of
the Location package. We first have to drag the Nearby template to the
workbench, dropping it on the first vertical line, then drag the selected infor-
mation items to the input place holders. The name of the output event is set
to inStudyRoom, after which it appears in the list of user defined contexts.
The result of these actions is shown in figure 6.7. The curved lines indicate

73 CHAPTER 6. A Use Case in PIM

File Edit Help

Step 1 Step 2
¥ Combiners

¥ Activity Tracking

P Basic 1. Drag template to workbench
(! :

Dcufnems 2 Drag item to first input place
¥ Location holder

MNearby

3. Drag item to second input place
holder

4. Set name for output event
inStudyRaor / 5 Qutput event appears in list

¥ Objects
¥ Documents

P Domains
| ¥ Location
| MyOffice
MyStudy

¥ My Contexts.

Figure 6.7: First step to derive the Working on Thesis context

a drag and drop action from an object in a list to the workbench.

To implement the second step of he derivation illustrated in Figure 6.4
we need to add the information that the users calendar indicates the current
timeslot as Not Working Time. This information is provided as a dynamic
event in the Calendar package. We build further on the previous step by
dragging the At Same Time template to the workbench. The template is
dropped on the inStudyRoom output event from the previous step, automat-
ically assigning this output event to the first compatible input place holder
of the At Same Time template. The dynamic event Not Working Time is
dragged to the second input place holder. The name of the output event is
set to personalWork. The result of these actions is shown in figure 6.8.

To implement the third step of he derivation illustrated in Figure 6.4 we
need to add the information that the user is Typing. This information is
provided as a dynamic event in the Activity Tracking package. We build
further on the previous step by dragging the At same time’ template to
the workbench. We could have dropped this template on the personalWork
output event from the second template. This would result in three templates
being graphically connected. Instead we dropped the template on a free
location at the first vertical line. This means that we have to set the user
defined event personalWork manually to the first input place holder. The
dynamic event Typing is set to the second input place holder. The name

A User-defined Context for Information Items 74

5 Context Creatar T i FEMWm T e

j File Edit Help

Step 1 Step 2
¥ Combiners

» Activity Tracking
E| ¥ Basic

E AtSame Time
1

¥ Documents

] Location

¥ Objects

¥ Documents

S = K
H‘\‘\\W, Drag template to workbench,

drop it an output event from

»
Domains previous template

9 ¥ Location
MyOffice
MyStudy

2_Drag item to second input
ark \ place holder
3. Set name for output event

4 Output event appears in list

¥ My Contexts
personaliiork
inStudyRoom

Figure 6.8: Second step to derive the Working on Thesis context

of the output event is set to paperWriting. This step is shown in figure
6.9. Remark that the paperWriting output event already combines the
information that a user is located in the StudyRoom, at a timeslot in the
calendar set as Not Working Time while the activity tracking plug-in detects
a Typing activity.

To implement the last step of he derivation illustrated in Figure 6.4 we
need add the information that the user is accessing a document related to
the thesis. The template While Accessing Document of shown in figure
6.5 was created to add this type of information to any possible information
item. We now apply this template to the paperWriting output event. Af-
ter dropping the template on the paperWriting output event and selecting
the second place holder, the EndUser Tool looks as in figure 6.10. Since the
"Show all’ checkbox is not set, the lists for static data objects, dynamic events
and user defined contexts only show items compatible with the selected in-
put place holder. The only compatible items are the three shown static data
objects in the Documents package. From these objects, we select the Thesis
Documents item and drag it to the last input place holder. We then specify
the name for the output event as thesisWriting. This concludes the mod-
elling activities. The final orchestration is shown in figure 6.11. The EndUser
Tool can now translate the orchestration in a declarative specification.

75 CHAPTER 6. A Use Case in PIM

Comecow I ARWET W T wc w EETTEEWES

File Edit Help

. Step 1 Step 2
¥ Combiners

» Activity Tracking
¥ Basic
At Same Time

¥ Documents

¥ Location

1. Drag template to workbench

2. Drag item fo first
input place holder

At Same Time 3. Drag input to second
input place holder

At Same Time ‘4 Set name for
output event

5. Output event appears
in list

Figure 6.9: Third step to derive the Working on Thesis context

Wi ContextCreator W W W@ W - - e = " wEeoTT0O0N P == %
File Edit Help
= Step Step 2 Step 3 Step 4
¥ Combiners. B
» Activity Tracking
¥ Basic
At Same Time

¥ Documents

While Accessing Doc..|
] 2

<

Fremete - :

Bl o
While Accessing

i Document of |

[Showall

Figure 6.10: Last template added to derive the "Working on Thesis’ context

The Context-aware Desktop 76

7 Context Creator L FEW F ||)

Nearby instudyRoom | |

AtSemeTime | personaiWork

At Same Time

Figure 6.11: Completed orchestration for the Working on Thesis context

6.5 The Context-aware Desktop

In [56] Trullemans presents a context-aware desktop application, that shows
users a different desktop depending on the current context. Every context
contains its own personal information items. These desktops allow the cre-
ation of piles, and support labels and annotations that can be used in retrieval
activities. In the original implementation, the current context is set man-
ually by the user. We have integrated this context-aware desktop with the
runtime environment of our framework. We added a DroolsIntegration
component, that starts up the Drools rule engine and manages its knowledge
base. The component loads the elements of translated orchestrations together
with static data objects in the knowledge base, and integrates listeners for
plug-ins. The component acts as a controller between plug-in devices, the
rule-engine and the context-aware desktop as illustrated in figure 6.12.

As a proof of concept, we have applied this integration to the Working
on Thesis scenario that was introduced in section 6.4.1. In the previous
section we created an orchestration for this context and generated a declar-
ative specification. We now load this specification in the knowledge base
of the Drools rule engine. We added the required static data objects with
information about rooms and document lists. We simulated the dynamic
events MyLocation, Not Working Time and Typing. We have implemented
a listener for the Document plug-in that listens to dynamic events being

77 CHAPTER 6. A Use Case in PIM

PimApp

Drools Rule Engine

Figure 6.12: Context-Aware Desktop Integration

Exit
DeveloperUl

Mew Context

@ Thesis

test
G 1540

Figure 6.13: Context-Aware Desktop set to Thesis context

detected by a Document Accessing Detection module and creates fact for
these events that it adds to the knowledge base. We simulated this Document
Accessing Detection module to provide the required input events.

Upon detection of the user defined context Working on Thesis, the
DroolsIntegration component activates the Thesis context in the context-
aware desktop. Figure 6.13 shows the activated context in the context-aware
desktop application.

Summary 78

6.6 Summary

In this chapter we presented a proof of concept for our framework related
to the domain of PIM. We introduced the PIM domain and argued why
context is a relevant factor in this domain, starting from human memory
models. We then created a sample user defined context. We explained how
plug-ins should be created to deliver the context information required in this
sample context. We then explained what templates are required and how
they can be combined to create an orchestration that models this sample
context. The orchestration was translated in a declarative specification. We
integrated the 'Context-Aware Desktop’ with the runtime environment of
our framework and loaded the generated declarative specification. We then
simulated the plug-ins to deliver the atomic context information required to
derive the sample context. Upon detection of the user defined sample context,
this context is activated in the Context-Aware Desktop application.

Conclusions and Future Work

7.1 Discussion

Context-aware computing becomes increasingly important. Many frame-
works already exist to support the development of context-aware applica-
tions. However, as Belloti and Edwards [9] point out, most of these frame-
works do not provide sufficient user control or intelligibility. This is even
more important for applications that use complex human related context.
For such applications, the processing of context information cannot be de-
terministically modelled by a designer. The user needs to be involved in the
processing of context information. User control can be provided in many
ways, varying from simple personalisation (e.g. setting a specific ring-tone
in a mobile phone) to complex end user programming. In order to build
context-aware applications that support all forms of context while providing
sufficient user control and intelligibility, end users should be able to control
context models in the most generic way.

We have created a modelling framework that allows end users to define
their own context models. To maximise both expressive power and end user
usability, the modelling task is spread over three layers targeted to differ-
ent roles: a plug-in developer, an expert user and an end user. Each step
produces output deliverables that are needed in the next steps. These deliv-
erables are implemented as configuration files that can easily be distributed

Future Work 80

and installed. This allows end users for example to quickly pick up new
relevant templates created by various expert users working on a compatible
plug-in. Changing plug-ins or templates in the Expert Tool or EndUser Tool
is as simple as opening a new model or orchestration file and does not even
require restarting the Tools. The framework applies rule-based reasoning,
but does not impose any other constraint on what can be configured. Even
the primitive data types of the runtime evaluating environment are not hard
coded in the modelling tools. The templates are capable of implementing
business logic without exposing too much technical details to the end users.
At the same time, the templates are generic in the sense that they can be
applied to different events. The output events that are generated by applying
templates, are not defined inside the template but by the input events an end
user selects. The same template can be used to generate completely different
output events. As a proof of concept we have integrated the runtime environ-
ment of our framework with a context-aware desktop application. We used
the modelling tools to create a user defined context. This context was trans-
lated in a declarative specification and loaded in the runtime environment.
We then simulated the context data to trigger the user defined context.

7.2 Future Work

Business logic is currently modelled with conditions. These are boolean func-
tions that are evaluated by the rule engine at runtime. If these conditions
evaluate to true, derived events are generated. If more general functions
would be allowed, a rules could generate events containing data not explic-
itly present in the input events. By enabling remote function calls, the eval-
uation of functions can be handled outside of the rule engine. Various Al
based classifiers deployed outside the framework could become accessible for
the framework. Another extension could be to explicitly support the con-
cept of probability in the modelling process (e.g. if this event occurs with
probability x, create a derived event).

The framework is able to generate the executable rules in an incremental
manner, in the sense that adding or changing a part of an existing orchestra-
tion will only modify the impacted part of the generated rule sets. However,
in our proof of concept set-up loading these rule sets in the runtime environ-
ment of the rule engine is not yet an incremental process. All types and rules
are loaded at launch of the evaluation process, after which detected events
can be added to trigger activation of the rules. Changing rules at runtime
is not implemented, though the Drools rule engine theoretically supports it.
By enabling the modification of loaded rules without restarting the engine

81 CHAPTER 7. Conclusions and Future Work

(and loosing previously detected and added facts), a user can be given more
control over the process: the modelling and evaluation activities can be in-
tertwined. The integration of external data sources or sensors was simulated
in a straight forward manner. In order for the runtime environment to keep
an accurate state of the environment, it should not only insert facts, but also
remove or update previously inserted facts. The integration of external data
sources with the runtime environment should be investigated further; with
possible implications for the modelling process (e.g. options for a user to
specify how recent an event should be).

Our current implementation provides only limited feedback during the
evaluation process. The intelligibility could be improved by providing graph-
ical feedback using the end user modelling tool. For example, templates can
change colour when a related rule is triggered in the rule engine. Various
types of feedback could be investigated to improve intelligibility.

Future Work

82

1]

2]

13l

4]

5]

6]

17l

Bibliography

Gregory D Abowd, Christopher G Atkeson, Jason Hong, Sue Long, Rob
Kooper, and Mike Pinkerton. Cyberguide: A Mobile Context-Aware
Tour Guide. Wireless Networks, 3(5):421-433, 1997.

Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies, Mark
Smith, and Pete Steggles. Towards a Better Understanding of Con-
text and Context-Awareness. In Proceedings of HUC 99, 1st Interna-

tional Symposium on Handheld and Ubiquitous Computing, pages 304—
307, Karlsruhe, Germany, September 1999.

Richard Atkinson and Richard Shiffrin. Human Memory: A Proposed
System and its Control Processes. Psychology of Learning and Motiva-
tion, 2(1):89-105, 1968.

Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A sur-
vey on context-aware systems. International Journal of Ad Hoc and
Ubiquitous Computing, 2(4):263-277, 2007.

David Bannach, Paul Lukowicz, and Oliver Amft. Rapid Prototyping of
Activity Recognition applications. IEEE Pervasive Computing, 7(2):22—
31, 2008.

Jakob E Bardram. The Java Context Awareness Framework (JCAF)
- A Service Infrastructure and Programming Framework for Context-
Aware Applications. In Proceedings of Pervasive 2005, Third Inter-

national Conference on Pervasive Computing, pages 98-115, Munich,
Germany, May 2005.

Louise Barkhuus and Anind Dey. Is Context-Aware Computing Taking
Control Away from the User? Three Levels of Interactivity Examined.
In Proceedings of UbiComp 2003, 5th International Conference on Ubig-
uitous Computing, pages 149-156, Seattle, USA, 2003.

BIBLIOGRAPHY 84

18]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Deborah Barreau. Context as a Factor in Personal Information Man-
agement. Journal of the American Society for Information Science,
46(5):327-339, 1995.

Victoria Bellotti and Keith Edwards. Intelligibility and Accountability:
Human Considerations in Context-Aware Systems. Human-Computer
Interaction, 16(2-4):193-212, 2001.

Victoria Bellotti and Abigail Sellen. Design for privacy in ubiquitous
computing environments. In Proceedings of ECSCW 93, European Con-
ference on Computer Supported Cooperative Work, Milan, Ttaly, Septem-
ber 1993.

Massimo Benerecetti, Paolo Bouquet, and Chiara Ghidini. On the Di-
mensions of Context Dependence: Partiality, Approximation, and Per-
spective. In Modeling and Using Context, pages 59-72. Springer, 2001.

Ofer Bergman, Ruth Beyth-Marom, Rafi Nachmias, Noa Gradovitch,
and Steve Whittaker. Improved Search Engines and Navigation Prefer-
ence in Personal Information Management. Transactions on Information
Systems, 26(4):20, 2008.

Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jadwiga Indulska,
Daniela Nicklas, Anand Ranganathan, and Daniele Riboni. A Survey
of Context Modelling and Reasoning Techniques. Pervasive and Mobile
Computing, 6(2):161-180, 2010.

Richard Boardmann and Angela Sasse. "Stuff Goes Into the Computer
and Doesn’t Come Out": A Cross-Tool Study of Personal Information
Management. In Proceedings of CHI 2004, ACM Conference on Human
Factors in Computing Systems, pages 583-590, Vienna, Austria, April
2004.

Nicholas Andrew Bradley. A User-centred Design Framework for
Context-aware Computing. PhD thesis, University of Strathclyde, 2005.

Nick Braisby and Angus Gellatly. Cognitive Psychology. Oxford Univer-
sity Press, 2012.

Peter J Brown. The Stick-e Document: a Framework for Creating
Context-Aware Applications. In Proceedings of EP ’96, Electronic Pub-
lishing, pages 182—-196, Palo Alto, USA, 1996.

85

BIBLIOGRAPHY

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

27]

28]

Peter J Brown, John D Bovey, and Xian Chen. Context-aware applica-
tions: from the laboratory to the marketplace. Personal Communica-
tions, IEEE, 4(5):58-64, 1997.

Jay Budzik and Kristian J Hammond. User Interactions with Everyday
Applications as Context for Just-in-time Information Access. In Pro-
ceedings of IUI 2000, 5th International Conference on Intelligent User
Interfaces, pages 44-51, New Orleans, USA, January 2000.

Vannevar Bush. As We May Think. Atlantic Monthly, 176(1):101-108,
1945.

Guanling Chen and David Kotz. A Survey of Context-Aware Mobile
Computing Research. Technical Report TR2000-381, Dept. of Computer
Science, Dartmouth College, Hanover, USA, 2000.

Guanling Chen and David Kotz. Context Aggregation and Dissemina-
tion in Ubiquitous Computing Systems. In Proceedings WMCSA 2002,
the Fourth IEEE Workshop on Mobile Computing Systems and Applica-
tions, pages 105-114, Callicoon, USA, June 2002.

Harry Lik Chen. An Intelligent Broker Architecture for Pervasive
Context-Aware Systems. PhD thesis, University of Maryland, 2004.

Herbert H Clark and Susan E Brennan. Grounding in Communication.
Perspectives on Socially Shared Cognition, pages 127-149, 1991.

Ian Cole. Human Aspects of Office Filing: Implications for the Electronic
Office. In Proceedings of HFES 1982, Human Factors and Ergonomics
Society Annual Meeting, volume 26, pages 59—63, Seattle, Washington,
USA, October 1982.

Graham M Davies and Donald M Thomson. Memory in context: Context
in memory. John Wiley & Sons, 1988.

Brenda Dervin. Given a Context by Any Other Name: Methodologi-
cal Tools for Taming the Unruly Beast. In P. Vakkari, R. Savolainen,
and B. Dervin, editors, Proceedings of ISIC 1996, International Confer-
ence on Research in Information Needs, Seeking and Use in Different
Conterts, pages 13-38, Tampere, Finland, 1997. Taylor Graham.

Anind K Dey. Context-Aware Computing: The CyberDesk project. In
Proceedings of AAAI 1998, Spring Symposium on Intelligent Environ-
ments, pages 51-54, Palo Alto, USA, March 1998.

BIBLIOGRAPHY 86

29]

[30]

[31]

32]

33]

[34]

[35]

[36]

37]

[38]

Anind K Dey. Modeling and Intelligibility in Ambient Environments.
Journal of Ambient Intelligence and Smart Environments, 1(1):57-62,
2009.

Anind K Dey, Gregory D Abowd, and Daniel Salber. A Conceptual
Framework and a Toolkit for Supporting the Rapid Prototyping of
Context-Aware Applications. Human-Computer Interaction, 16(2):97—
166, 2001.

Anind K Dey and Alan Newberger. Support for Context-Aware Intelli-
gibility and Control. In Proceedings of CHI 2009, ACM Conference on
Human Factors in Computing Systems, pages 859-868, Boston, USA,
2009.

Robert B Doorenbos. Production Matching for Large Learning Systems.
PhD thesis, Carnegie Mellon University, Pittsburgh, USA, 1995.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach
Solan, Gadi Wolfman, and Eytan Ruppin. Placing Search in Context:
The Concept Revisited. In Proceedings of WWW 01, 10th Interna-
tional Conference on World Wide Web, pages 406-414, Hong Kong,
Hong Kong, May 2001.

Jason B Forsyth and Thomas L. Martin. Tools for Interdisciplinary De-
sign of Pervasive Computing. International Journal of Pervasive Com-
puting and Communications, 8(2):112-132, 2012.

David Franklin and Joshua Flaschbart. All gadget and no represen-
tation makes Jack a dull environment. In Proceedings of AAAI 1998,
Spring Symposium on Intelligent Environments, pages 155-160, Palo
Alto, USA, March 1998.

Bob Hardian, Jadwiga Indulska, and Karen Henricksen. Balancing Au-
tonomy and User Control in Context-Aware Systems - a Survey. In Pro-
ceedings of PerCom 2006, Fourth Annual IEEE International Confer-
ence on Pervasive Computing and Communications, pages 51-56, Pisa,
Italy, March 2006.

Karen Henricksen. A Framework for Context-Aware Pervasive Comput-
ing Applications. PhD thesis, University of Queensland, 2003.

Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Leonharts-
berger, Josef Altmann, and Werner Retschitzegger. Context-Awareness
on Mobile Devices - the Hydrogen Approach. In Proceedings of HICSS

87

BIBLIOGRAPHY

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

2003, 36th Annual Hawai International Conference on System Sciences,
Hawaii, USA, January 2003.

Jan Humble, Andy Crabtree, Terry Hemmings, Karl-Petter Akesson,
Boriana Koleva, Tom Rodden, and Par Hansson. "Playing with the
Bits" User-configuration of Ubiquitous Domestic Environments. In Pro-
ceedings of UbiComp 2003, 5th International Conference on Ubiquitous
Computing, pages 256-263, Seattle, USA, October 2003.

William Jones and Jaime Teevan. Personal Information Management.
University of Washington Press, 2007.

William P. Jones. Keeping Found Things Found the Study and Practice
of Personal Information Management. Morgan Kaufmann Publishers,
2008.

David Kirsh. A Few Thoughts on Cognitive Overload. Intellectica,
30(1):19-51, 2000.

Andrew J Ko and Brad A Myers. Finding Causes of Program Output
with the Java Whyline. In Proceedings of CHI 2009, ACM Conference
on Human Factors in Computing Systems, pages 1569-1578, Boston,
USA, April 2009.

Todd Kulesza, Weng-Keen Wong, Simone Stumpf, Stephen Perona,
Rachel White, Margaret M Burnett, Ian Oberst, and Andrew J Ko.
Fixing the Program My Computer Learned: Barriers for End Users,
Challenges for the Machine. In Proceedings of IUI 2009, ACM Interna-
tional Conference on Intelligent User Interfaces, pages 187-196, Sanibel
Island, USA, February 2009.

Brian Y Lim and Anind K Dey. Assessing Demand for Intelligibility
in Context-Aware Applications. In Proceedings of UbiComp 2009, 11th
International Conference on Ubiquitous Computing, pages 195-204, Or-
lando, USA, 2009.

Brian Y Lim and Anind K Dey. Toolkit to Support Intelligibility in
Context-Aware Applications. In Proceedings of UbiComp 2010, 12th
ACM International Conference on Ubiquitous Computing, pages 13-22,
Copenhagen, Denmark, September 2010.

Brian Y Lim and Anind K Dey. Design of an Intelligible Mobile Context-
Aware Application. In Proceedings of MobileHCI 2011, 13th Interna-

tional Conference on Human Computer Interaction with Mobile Devices
and Services, pages 157-166, Stockholm, Sweden, August 2011.

BIBLIOGRAPHY 88

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Thomas W. Malone. How People Organize Their Desks? Implications
for the Design of Office Information Systems. ACM Transactions on
Office Information Systems (TOIS), 1(1):99-112, 1983.

Daniel Salber, Anind K Dey, and Gregory D Abowd. The Context
Toolkit: Aiding the Development of Context-Enabled Applications. In
Proceedings of CHI ’99, ACM Conference on Human Factors in Com-
puting Systems, pages 434-441, Pittsburgh, USA, May 1999.

Bill Schilit, Norman Adams, and Roy Want. Context-Aware Comput-
ing Applications. In Proceedings of WMCSA 199/, First Workshop on

Mobile Computing Systems and Applications, pages 85-90, Santa Cruz,
USA, December 1994.

Bill N Schilit and Marvin M Theimer. Disseminating Active Map Infor-
mation to Mobile Hosts. Network, IEEE, 8(5):22-32, 1994.

Larry Squire. Memory Systems of the Brain: A Brief History and Cur-
rent Perspective. Neurobiology of Learning and Memory, 82:171-177,
2004.

Thomas Strang and Claudia Linnhoff-Popien. A Context Modeling Sur-
vey. In Proceedings of UbiComp 2004, Sixth International Conference
on Ubiquitous Computing, Workshop on Advanced Context Modelling,
Reasoning and Management, Nottingham, UK, September 2004.

Yasuyuki Sumi, Tameyuki Etani, Sidney Fels, Nicolas Simonet, Kaoru
Kobayashi, and Kenji Mase. C-MAP: Building a Context-Aware Mobile
Assistant for Exhibition Tours. In Community Computing and Support
Systems, volume 1519 of Lecture Notes in Computer Science, pages 137—
154. Springer, 1998.

Jaime Teevan, Christine Alvarado, Mark S. Ackerman, and David
Karger. The Perfect Search Engine is Not Enough: A Study of Orien-
teering Behavior in Directed Search. In Proceedings of CHI 2004, ACM
Conference on Human Factors in Computing Systems, pages 415422,
Vienna, Austria, April 2004.

Sandra Trullemans. Personal Cross Media Information Management.
Master’s thesis, Vrije Universiteit Brussel, 2013.

Sandra Trullemans and Beat Signer. From User Needs to Opportuni-
ties in Personal Information Management: A Case Study on Organisa-
tional Strategies in Cross-Media Information Spaces. In Proceedings of

89

BIBLIOGRAPHY

[58]

[59]

[60]

[61]

62]

[63]

[64]

[65]

[66]

67]

DL 2014, International Conference on Digital Libraries, London, UK,
September 2014.

Sandra Trullemans and Beat Signer. Towards a Conceptual Framework
and Metamodel for Context-Aware Personal Cross-Media Information
Management Systems. In Proceedings of ER 2014, 35rd International
Conference on Conceptual Modelling, Atlanta, USA, October 2014.

Endel T. Tulving and Wayne Donaldson. Organization of Memory. Aca-
demic Press, 1972.

Hans van der Heijden. Ubiquitous Computing, User Control, and User
Performance: Conceptual Model and Preliminary Experimental Design.
September 2003.

Geert Vanderhulst, Kris Luyten, and Karin Coninx. ReWiRe: Creating
Interactive Pervasive Systems that cope with Changing Environments
by Rewiring. In Proceedings of 2008 IET, jth International Conference
on Intelligent Environments, pages 1-8, Seattle, USA, July 2008.

Jo Vermeulen. Improving Intelligibility and Control in Ubicomp. In Pro-
ceedings of UbiComp 2010, 12th ACM International Conference on Ubig-
uitous Computing - Adjunct, pages 485-488, Copenhagen, Denmark,
September 2010.

Roy Want, Andy Hopper, Veronica Falcao, and Jonathan Gibbons. The
Active Badge Location System. ACM Transactions on Information Sys-
tems (TOIS), 10(1):91-102, 1992.

Andy Ward, Alan Jones, and Andy Hopper. A New Location Tech-
nique for the Active Office. Personal Communications, IEEE, 4(5):42—
47, 1997.

Mark Weiser. The Computer for the 21st Century. Scientific American,
265(3):94-104, 1991.

Steve Whittaker and Candace Sidner. Email Overload: Exploring Per-
sonal Information Management of Email. In Proceedings of CHI 1996,
ACM Conference on Human Factors in Computing Systems, pages 276
283, Vancouver, Canada, April 1996.

Terry Winograd. Architectures for Context. Human-Computer Interac-
tion, 16(2):401-419, 2001.

BIBLIOGRAPHY 90

[68] G Michael Youngblood, Diane J Cook, and Lawrence B Holder. A Learn-
ing Architecture for Automating the Intelligent Environment. In Pro-
ceedings of IAAI’05, 17th Conference on Innovative Applications of Ar-
tificial Intelligence, volume 3, pages 15761581, Pittsburgh, USA, 2005.

