: (Vrije Universiteit Brussel

Faculty of Science
Department of Computer science

Realizing a Query Pipeline and
Achieving Query Caching in the
Mobile Semantic Web

Graduation thesis submitted in partial fulfillment of the requirements for the degree of
Master in Applied Computer Science.

Stijn Vlaes

Promotor: Prof. Dr. Olga De Troyer

Advisor: William Van Woensel

Academic year 2010-2011

Acknowledgements

Using these acknowledgements | would like to thank everyone that helped me achieve thesis. First of
all I would like to thank my promoter, Prof. Olga De Troyer, for giving me the chance to realize this
thesis.

Secondly, | would like to express my deepest gratitude to my advisor, PhD student, William Van
Woensel. | am thankful for all the personal assistance, guidance, moral support and all the
knowledge that was shared with me.

| also want to thanks my classmate, Raf Walravens, for all the help he provided during the course of
this thesis.

| would also like to thank Tania Van Denhouwe, for her moral support and encouragement whenever
| needed it during the course of this thesis.

Finally | would like to thank my family for their love and support during my entire life and for
supporting me getting my master’s degree and achieving this thesis.

Abstract

Nowadays mobile devices (e.g. smart phone, PDA) have become part of everyday life. Not only do
they allow people to make phone calls or send text messages; they also allow people to access the
Web using a dedicated mobile browser. At the same time, the hardware limitations these devices
used to have are fading (e.g. faster processors, more memory and improved connectivity) and new
mobile-specific hardware capabilities are being added (e.g. GPS, RFID). This evolution allows mobile
developers to create bigger and better applications, which are able to map the user’s environment
(e.g. using RFID to detect nearby physical entities). When combining these improvements with access
to the Web, mobile applications can provide relevant information about the user’s surroundings,
retrieved from services and nearby objects. For instance, shops that are nearby that sell a certain
product the user needs, without the user having to browse the Web for this information. Moreover,
applications can automatically notify the user whenever something the user might be interested in is
around.

The SCOUT framework, which is currently being developed at the WISE lab of the VUB, supports the
development of context-aware mobile applications. These applications are able to offer relevant
information and services to the user, based on the user’s environment and needs at a given time and
place. The SCOUT framework achieves this by providing a conceptual and integrated view on the
environment called the Environment Model, which is comprised of metadata on the physical entities
found nearby the user, together with the user’s profile information. The SCOUT framework also
allows developers to provide feedback to a user whenever a new source (e.g. a shop) is detected that
provides something the user might be interested in (e.g. a shop which sells shoes the user
encountered in another store in the past week) by making use of the Notification Service.

Until now, whenever such notifications had to be checked, the Notification Service had to execute
the associated query on both the new source and the Environment Model, making this a costly
process. This thesis investigates how a Notification Query service can be managed more efficiently.
For this purpose, two mechanisms have been investigated and extensively tested.

First, we have investigated a query pipeline mechanism, which extracts two different parts from
given Notification Service queries (i.e. the part of the query that has to be executed on the new
source, and the part of the query that has to be executed on the Environment Model). To achieve
this, two strategies have been investigated which differ in the way the second part is constructed and
executed on the Environment Model.

Secondly, we have developed a query caching mechanism, which is able to store results for a given
query, which later on can be re-used if a similar query is executed on the Environment Model.
Allowing this system to not only be used by the Notification Service, but also by the Query Service.

Abstract (Dutch)

Tegenwoordig maken mobiele apparaten (vb. smart phone, PDA) deel uit van het dagelijkse leven.
Deze apparaten laten mensen niet alleen toe om te telefoneren of tekst berichten te versturen, ze
geven mensen ook toegang tot het Web door middel van een toegewijde mobiele browser.
Tegelijkertijd zijn de beperkingen op de hardware aan het verdwijnen (vb. snellere processors, meer
geheugen en verbeterde connectiviteit), alsook wordt mobiel-specifieke hardware toegevoegd (vb.
GPS, RFID). Deze evolutie laat mobile developers toe om grotere en betere applicaties te
ontwikkelen, die de gebruikersomgeving in kaart kunnen brengen (vb. RFID gebruiken om nabij
gelegen fysieke entiteiten te detecteren). Wanneer deze verbeteringen gecombineerd worden met
de toegang tot het Web, kunnen mobiele applicaties de relevante informatie over de
gebruikersomgeving verstrekken die ze verkregen van diensten en nabije objecten. Bijvoorbeeld,
informatie over nabij gelegen winkels die een bepaald product verkopen welke de gebruiker nodig
heeft, kan verschaft worden zonder dat de gebruiker op het Web moet surfen. Bovendien kunnen
deze applicaties de gebruiker automatisch verwittigen wanneer men iets belangrijk kan aantreffen in
de omgeving.

Het SCOUT framework, dat momenteel wordt ontwikkeld in het WISE lab van de VUB, ondersteunt
de ontwikkeling van context-aware mobiele applicaties. Deze applicaties laten toe om aan de
gebruiker relevante informatie en diensten aan te bieden die gebaseerd zijn op de
gebruikersomgeving en de behoeften op een bepaald moment en plaats. Het SCOUT framework
bereikt dit door een conceptuele en geintegreerde aanblik op de omgeving aan te bieden, namelijk
het Environment Model. Dit Model omvat metadata over de informatie in het profiel van de
gebruiker en de fysieke entiteiten die in de buurt van de gebruiker kunnen gevonden worden. Het
SCOUT framework laat ontwikkelaars ook toe om aan de hand van de Notification service, de
gebruiker feedback te geven wanneer een nieuwe bron (vb. een winkel) wordt ontdekt die iets
aanbiedt waar de gebruiker geinteresseerd in is (vb. een winkel waar schoenen worden verkocht die
de gebruiker de voorbije week in een andere winkel aantrof).

Tot nu toe moest de Notification Service, bij het controlleren van aankondigingen, de geassocieerde
guery uitvoeren op de nieuwe bron en het Environment Model, waardoor dit een duur proces was.
Deze thesis onderzoekt hoe een Notifications Query service meer efficiént kan bestuurd worden.
Hiervoor werden twee mechanismen onderzocht en uitgebreid getest.

Eerst werd een query pipeline mechanism onderzocht, die twee verschillende delen afleidt van
gegeven Notification Service Queries (i.e. het deel van de query dat moet uitgevoerd worden op de
nieuwe bron en het deel van de query dat moet uitgevoerd worden op het Environment Model). Om
dit te bereiken werden twee strategieén onderzocht die verschillen in de manier waarop de tweede
sub query word geconstrueerd en uitgevoerd.

Verder werd een query caching mechanisme ontwikkeld die resultaten voor een gegeven query kan
opslaan zodat deze resultaten later opnieuw kunnen gebruikt worden als een gelijkaardige query op
het Environmental Model wordt uitgevoerd, waardoor niet alleen de Notification Service deze
resultaten kan gebruiken, maar ook de Query service.

Table of Contents

Chapter 1. e} d oo [8T o1 4 o] o H TSP PPPPUPPRIN -1-
11 CONTEXE 1ottt e s e e e e e nraee -1-
1.2 Problem DESCIIPLIONcii ittt e s e e st e e s s erte e e e sbtaeeesnreeeesnes -1-
1.3 F Y] o] fo T o JES PR -2-
1.4 TRESIS SETUCTUIE ...ttt et b e bt st st e bt e b e e sbeesatesaneebeenneenes -2-

Chapter 2. 2 F 1ol =04 o U 1o o F U UUPRPRNE -3-
2.1 SCOUT framMEWOIK ...eeeviieiieeeiet ettt ettt ettt ettt e e st e st e e sate e sbe e e sabeesbeesneeesnenesareens -3-

2,11 INEFOAUCTION ...ttt ettt e s bt e e sab e sabeeesneeesbeeenes -3-
2.1.2 OVEBIVIBW ..ttt ettt e st e e s e e e s s are e e s s aree s -3-
2.1.3 DEtECLION LAY I oo -4 -
2.2 ANAFOI ittt ettt e b e s h e st st e b e b e he e eae e et e e beenbeenheesaneeas -7-
23 SEMANTIC WED ..ttt et sab e st e e s abe e sbeeesaree s -8-
2.3.1 The idea and purpose of the Semantic Weboccovviiiiiiii e -8-
2.3.2 The SemMantic Web Stackcocciiiiiiiiiieec et -9-
24 Resource Description FramMEWOIKcccviieiiiiieeeeciieeeccteee e et e e esire e e e rae e e eebae e e s aaeeeean -10-
24.1 WAL ettt b et sttt b e b e bttt et e nbe e saeesaneea -10-
2.4.2 REPrESENTAtioN ccccee e, -10-
25 RDF SCREMA ...ttt et et e sme e sme e e s -11-
2.6 WeDb ONtOIOZY LANGUAEE «....evveee ittt ettt ettt tre e e e bae e e e sbre e s e s bae e e e sabaeeeennreeas -12 -
2.7 SPARQL ..ttt st r e re e ae e aeeere s -13-
271 INEFOAUCTION ...t -13-
2.7.2 R0 1€ N -13-
2.8 Semantic Web Frameworks.........eo oo -16 -
2.9 L6720 o 11 V- PP -16 -
29.1 INEFOAUCTION ..ttt st sttt e sre e saee e -16-
29.2 FOr What dataccceeeeiieeee et s -16-
293 HOW 00ES It WOIK...eoutiieiieeiie ettt -17 -
29.4 (O U= VAot T o1 o =SSR -17 -

Chapter 3. 2] Y =T A1 Lo T o USSR -18-

3.1 The SCOUT frameWOrKcc.eeieerierieeieeieesiee sttt sttt sb e ne e -18-
3.1.1 Linking of physical entities to web presences.......cccvvvvecieeeccciee e -18-
3.1.2 Location specific data StOrageueuvieeiiecciiiieee et -19-
3.1.3 Integrated view of CONtEXE SOUICES......coeeiiiiiiee e -20-

3.14 Determining relevant sources for a Siven qQUErYccuvvvvciieeeeciiee e -21-

3.2 L@ TUT=T oV e ToT=] 11311 o= SRR -21-
3.3 (07T o110 Y = 0 T=Tol ¥ [0 1] . - SRR -22-
3.3.1 Client side caching Mechanismscceiiiiiii i -22-
3.3.2 CaChing QUEIY FESUIELS ..vviei ittt e e e e bee e s s sabee e e e sareeas -23-
333 Cache invalidation tEChNIQUES........ccooviiiii it -25-
334 Cache Replacement POIICIESccccuiii it -26-
Chapter 4. QUETY PIPEIINTING ... et eeare e e e rae e e e eabre e e e nareeas -28-
4.1 QUETY ANAIYSIS ...evvieeeeiiiie e ecieee et e et e e e tre e e e st e e e e ta e e e ssaaeeeeesstaeesassaeesannteeeeannseeeeennsenas -28-
411 AUtoMAtiC QUETY @NAIYSIS .oiiiiiiie ittt srre e s e sara e e e -29-
4.1.2 Query analysis using NAMed Braphscciiiciieiiriee e e -30-
4.2 CoNStrUCLING the QUEIIES c....veeeeeeee e s e e s -30-
4.2.1 JOIN SErateBY oo, -31-
4.2.2 INJECHION STFrAtEEY e ie e e e -31-
4.3 JOINING TNE FESUIES....eeiiieieee e ettt e e et ae e e e e bte e e e e bt e e e e enreeaeeanes -32-
Chapter 5. (67Tl o 1TSS -34-
5.1 (O TUTT Vo= o 11 V- P UPP -34-
5.2 O TUTT oV ={¢-To] o [ele] g 4 48 (ot o] o HS PP -34-
53 O TUT=T Vi ={¢-To] sl el ga]o L= £ o] o PSSR -35-
5.3.1 Graph TraVerSal.......cci o e et e e et e e e rae e e e ebre e e e areeas -36-
54 EVICHION STrategY oo -38-
54.1 Add an element to the cachecooeiiiiiiiiic e -39-
5.4.2 Update an element in the cachecooociiiiiiiii e -39-
543 Find an element in the Cachecooiiiiiiieiiinee e -40-
Chapter 6. Ty aY o] L= 0 V=Y o = 1 A o o ISR -41 -
6.1 OVEBIVIBW.....ciieeee ettt s et e s e e e st e e s a e e e s e e e e s mr e e e s e nreeesenrenessanrenes -41 -
6.1.1 Integration in the SCOUT frameWoOrk..........ooeeciiieeeciiiie e e -41 -
6.1.2 ENCOUNTEIING @ NEW SOUICE cciiieieieieeeieieieeeieeeeeeeeeeeeeeeee e e e e e eeee e e e e eeeeeeeeeeeeeeeseeasanasasenas -42 -
6.1.3 EXECULING @ QUETY oo e e e e e e e e e e e e e e e e e e eeeas -42 -
6.2 (O Uy Y T o =1 11 =S SSRROE -43 -
6.2.1 SPIEING UP the QUEIY ..t e e e e anarree e -43 -
6.2.2 Query Construction and eXeCULIONceeeiiiiiiiiiiiiee e e -45 -
6.2.3 JOINING ThE FESUIES ...t e e e aae e e s saaaeeeean -47 -
6.3 COMPATING QUETIES oeieieiiiiiiiiiiieieieeeeeeeeeeeeeeeeeee ittt eeeeeeeeeteeeeeeeeeeeeeeeeeseseeeseeeeeeeeeeeeeeeeeeeeeeeeeeeee -48 -

Vi

6.3.1 BUIAING QUETY BraphsS..ccceiiieiciiie ettt st e s e e st e e e ssnsae e e ssanaeeeeas -48 -
6.3.2 CompParing QUETY Sraphsuiii ettt et e e et e e e e rae e e e erre e e e eaneeas -52-
6.4 (07T o 11 Y= o = (=Y =4V PP -55-
6.4.1 Least RECENTIY USEA.....ccocuiiieiciieee ettt ettt e e s eare e e s naeeaean -57-
6.4.2 (0ol o LIV T T =Y SRR -58 -
Chapter 7. Y1 (U= 4o o PRSPPSO -59-
7.1 TeStiNG ENVIFONMENT L..eeiiiii e aaaaaaaaaees -59-
7.2 O TUTT VN e ToT=] [T Y= RSP -59-
7.2.1 TS CASES. .ttt -59-
7.2.2 Criterion 1: ANalySis tIME ..uiiii i e -67 -
7.2.3 Criterion 2: CoNStruCtion tiMe........ciiiiiiiei et -67-
7.2.4 Criterion 3: Sub query execution tiMeccccei e - 68 -
7.2.5 Criterion 4: JOIN TIME c..eeeiiiii e -69 -
7.2.6 Criterion 5: Execution time of the original query compared to the execution using the
(o LU =Y AV o110 1= 11 o =PSRN -70 -
7.2.7 Criterion 6: Execution time of the entire testcccccevvvriiriiiniencre e -70-
7.2.8 Criterion 7: Amount of results for each query using the two strategies................... -71-
7.2.9 CONCIUSTON <.ttt st st et e et et esbe e saeesabesbeebeennes -72-
7.3 (6 Vol o1 SO TPV PTOPPTRTROPRR -72-
7.3.1 L= o= LT OO OTT P OPPRON -72-
7.3.2 Criterion 1: Construction time.......ccccevviiiiiiiiiiiiii s -73-
7.3.3 Criterion 2: COMPAriSON TiMEivviiiiiiiiieee ettt e e s ssbrree e e e s s sssaebeneeeees -73-
7.3.4 Criterion 3: Execution time of the original QUEery......cccccevecii i, -74 -
7.35 Criterion 4: Execution time of the entire testccccoviiiiiriieniin e -75-
7.3.6 Criterion 5: Amount of time needed to add New SOUICeS.......c.ccveerieriiiiiierieenieene. -75-
7.3.7 CONCIUSION .ttt et s ne e e s bt e s sne e e sar e e sneeesaneeenns -76-
Chapter 8. (00T o [o] (V1] o TR0 USSP -77 -
8.1 1010010 11 T2 OSSO RTN -77 -
8.1.1 (O UT=Y QYA ST o<1 11 SR -77 -
8.1.2 (07 Yol a T 4 =] =T =4V -77 -
8.2 FUBUIE WOTK ...ttt ettt ettt st e st e e st e e sbee e sareesareesneeesneeeans -78-
8.2.1 QUETY PIPEIINE e e et e e e et e e e et e e e e s bae e e e sabtee e e areeas -78-
8.2.2 (@ UL o= o 11 Y= R -78-
Chapter 9. 23] o] Lo =4 =T o] o1V PSRN -80-

Vii

viii

List of charts

Chart 1. QUEryPart aNalys tIMEcecc et e e e e r e e e et ae e e enbaeeeenraaeeearenas -67 -
Chart 2. Querypart CoONSTrUCLION tiME ...ciiiiiiiieeiee e e bee e s e - 68 -
Chart 3. Sub qUEry EXECULION TIMEeiiiieiiei e s e s s e s ee e e sareeas - 69 -
Chart 4. SUD QUEIY JOIN TIMB..cii ettt e e e et e e e e et e e e e e abae e e enbeeeeennbeeeeennrenas -69 -
Chart 5. Execution time of original query (compared to pipeling)ccceeceeevieeecie e, -70-
Chart 6. Execution time of @aCh TStciiviiiiii e -71-
Chart 7. Amount of results using each pipeling strategycceecueeeieiieeeicieee e -71-
Chart 8. Time needed to construct @ qUErY graph ..cc.uueee it -73-
Chart 9. Time needed to compare qUErY raphsc.ueeeiiiiieeiccieee et e e bre e e e -74 -
Chart 10. Execution time of the original query using the different strategies.........ccccoceeeerveeeennen. -74 -
Chart 11. Execution time of @aCh teSt....cccuiiiiie e -75-
Chart 12. Time needed to add sources (and update the cache).ccccveeeciieiiciiie e, -76 -

Table of figures

Fig. 1. SCOUT archit@CtUIrE [QYEIS. ..uveiiiiiiie ittt ettt e e e s e e e e sbee e e s snbee e e s nreeas -4 -
Fig. 2. SIM in the Environment Layer[12]cccveiiioiieei et eritee st e e svee e e srre e e e e s sbee e e e -6-
Fig. 3. ANAroid DIagram [4]......ueeeiociee ettt et e e e te e e e e tee e e e eta e e e e abaee e esabeeeeennbaeeeeanbeeeeennrenas -7-
Fig. 4. The progress Of the WED. ... e -8-
Fig. 5. The Semantic Web STack[5]cccuiiiiieie ittt eettrte e e e e e e e e ttare e e e e e e e e naraaeeeeeeeeas -9-
Fig. 6. EXample RDF Graph [5] ..ccccciiiieiciiee ettt ettt ettee e e ette e e e et e e s e ata e e e sntaeessntaeeesnteeeeennes -11-
Fig. 7. Splitting Up the qQUEIY [22] c.eueiii ettt e e st e e e snraee s sanes -22-
Fig. 8. SEMANTIC MBZIONS .ottt ettt e e e sttt e e e e e s s abb et e e e e e e s e s snbeeeeeeeeesannraeeeaens -25-
Fig. 9. Negative Manhattan distance between semantic regions and a quUery.......ccccceceveeeecveeeeenne -27 -
Fig. 12. EXample qUErY Braph L. ..eeeiiiiiiiee ittt ettt s s e e st e e e s sbta e e s snta e e s sntaeessnraeesennes -35-
Fig. 13. Example of identical qUery graphs.........co ittt -36-
Fig. 10.Notification system of newly encountered SOUICES.ccuveeeeciieeeeciiiee e et et e e -42 -
Fig. 11. Simple Query EXecution EXamMPIEccuuiiiiiiiiee ettt e st e e st e e e snte e e e s -43 -
Fig. 14. Query Analysis Class DIQgram.cccccueeeeiciieeeeeiieeeeectteeeeectteeeesetteeeeebaeeessasteeeesantaeaeessteeaeennes -45 -
Fig. 15. QUEIY2 Class Diaglam. ...ccccueieeeciieeeecciieeeeciiee e e eette e e e e ctte e e e ebteeeesbtaeeesstaeessastaeessstaeaeeasteeasannes -46 -
Fig. 16. QueryJoinResUlt Class DIagram........ccueeiiicuiieeiiiieeeeeiieeesecireeeessitee e e s svteeesssveeeesssnteeeessnseeessnnes -48 -
Fig. 17. Graph Class DIQBIram.cccccuuiieeiciiieeccciieeeeetie e e e eettee e e e cttee e e ebteeeeeastaeeesbtaeeesastasessstaeaeesnteeasanes -49 -
Fig. 18. Graph Compare Class DIagram.cccueeeeiciieeeeeiiieeeeciieeeeeitteeeeeetteeeeectaeeesessteeessentaeaesssseeasennes -54 -
Fig. 19. Cache Class DIagram.ccccueieiiciiieeiiciieeeeeiieeeesetie e e s s tte e e e etteeeessataeeesseaeessstaeessstaeessssseeessne -56 -

List of RDF Data

RDF Data 1: Example of RDF Triple [6]

RDF Data 2. RDF Information in RDF/XML fOrmat [5].....cceeeeieiieiieeeeeeeeree e etee e eveseenveesvee e

RDF Data 3. RDF Information in Turtle format [6]
RDF Data 4. RDFS Schema Example[7]

Xi

List of SPARQL Queries

SPARQL Query 1. Simple SELECT QUETY. [11].uuiiiiieiiiieiieeiiieeiieeeieeesieesieeesineesveeesireestessvneesanee s -14 -
SPARQL Query 2. Simple CONSTRUCT QUETY. [11].iiiiuiiieiiiieieeiiieeeesirieeessreeesssereee s ssveee s ssareeesenaveeas -14 -
SPARQL Query 3. Simple ASK QUENY. [L1] cuuuiiiiiieiieiiiee ettt erree e esree e sree e e saree e s ssbeee s ssabeeessnnreeas -15-
SPARQL Query 4. Simple DESCRIBE QUETY. [11].cuiiiiiiieieeiiieenieesieeenieesieeenieeesreessineesssessssneesanees -15-
SPARQL Query 5. Example query for analysis. ...t -28-
SPARQL Query 6. Example query analysis: Trig8EIS. ... iiiiiriiieeerieee et e e e ree e e -29-
SPARQL Query 7. Example query analysis: qUery part L.......ccoccueeeeeiieeeeciieee e eeiree e eeveee e -29-
SPARQL Query 8. Example query analysis: qUErY Part 2coeevveeeiriieeeeriieeeeesieeeessieeeessveeesssaneeas -29-
SPARQL Query 9. Example query With Wrong Order.ccceeeeccieeeeecieee ettt et -29-
SPARQL Query 10. Example query using named graphs.ococcveeeeeiiieecccieee e e -30-
SPARQL Query 11. Example of query 1 after construction.ccceecveeeiriiiee e, -31-
SPARQL Query 12. Example of query 2 after Construction.cccceeciieieeiiiee e e -31-
SPARQL Query 13. Example of sub query 2 after injection.ccceeeecieee e, -32-
SPARQL QUErY 14. TeSt QUEIY 1@..ciiiiiiiiiiiiiiiiieeiieerereeeseseeeeeseeesesesesesesasenenes - 60 -
SPARQL QUErY 15. TEST QUETY 1. oottt e et e et re e e e saba e e e e nabe e e e enbeeeeeareeas -61-
SPARQL QUEIY 16. TEST QUEIY 2@..iiiiiiiiiiiiiiiieieieeseseeeeeseeeeeeeeeesseneeeeees -61-
SPARQL QUENY 17. TEST QUETY 2D, ceeiieiiiiieiiie ettt ettt ettt e st e s aee e et ee e s s sabae e s sabeeesenbeeeeenareeas -61-
SPARQL QUENY 18. TSt QUEIY 3@ . iiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeee e e eee e e e e e e ee e e e e eeeeee eeeeeeeeeeeaseeeees -62 -
SPARQL QUETY 19. TEST QUETY 3D, ceeieiiiieeeiiee ettt ettt e et e e e et e e e e e eabae e e e abaeeeenbeeeeennrenas -62-
SPARQL QUErY 20. TeST QUEIY 4. .ciiiiiiiiiiiiiiiiiiiieieeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeteeeeesesesesesesesesesesesesesesseeseseee -62 -
SPARQL QUErY 21. TEST QUETY 4D, ceoeeeeieeeeiiee ettt ettt e et e e e e e e e e ab e e e e e eabae e e eentaeeeenteeeeenrenas -63-
SPARQL QUENY 22. TS QUEIY 5@.iiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeee e e e ee e e e e e e eeeeeeeeeeeeeeeeeeeeeseeseeeeeeeeeeeseereensennees -63 -
SPARQL QuEry 23. TEST QUETY 5D, ceiiieiiiieciiee ettt ettt e e e tbre e e sabae e e e abeee e enbaeeeeareeas -63-
SPARQL QUENY 24. TSt QUEIY B@..ciiiiiiiiiiieiiiieeieeeeeeeeeeeeeeeee e e e e eeeeeeeeeeeeeeeeeeeeese e e e e s e eeeeseeeeeeeeeeeeeeseeaseneees -64 -
SPARQL QUErY 25. TEST QUETY BB, oottt et e ettt e e e et ae e e e aba e e e eabeee e e nreeas -64 -
SPARQL QUENY 26. TEST QUEIY 7@..ciiiiiiiiiiiiiiiiiiiiiieeeieeeeeteeeeeeeeeeeeeeeeeeeeeeeeeseessesesesesesesesesesesesesesereesseseee -64 -
SPARQL QUENY 27. TEST QUETY 7D, oottt ettt ettt e et e e ate e e e e tbe e e e eeabaeeeenbaeeeenbeeeeenrenas -64 -
SPARQL QUErY 28. TSt QUEIY Q. .ciiiiiiiiiiieiiiieeieeeeeeeeeeeeeeeeee e e e e eeeeeeeeeeeeeeeeeeee e e e e e e e eeseeseeeeeseeeeeeeereeaseeeee -65-
SPARQL QuEry 29. TeST QUETY 8D, ceeieeiiiieeiiieee ettt ettt ertee e et e e e tee e et re e e s sabae e s eabree s enbaeeeenrenas - 65 -
SPARQL QUErY 30. TSt QUEIY 9. . iiiiiieieiiiiiieeeeeeeeeeeeeeeeeeeeeee e e e e e e e e e e e e e e e e eeeeeeeeeeee e e e e eeee e s e e e e s e eseeeeeeeenneneens -65-
SPARQL QuEry 31. TeST QUETY 9D, weeieiiiieeciiee ettt e e re e e et e e e e saba e e e e abre e s eabaeeeeareeas - 66 -
SPARQL Query 32. Test QUEIY 10@...ccciiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeesseeeeeseseessessesesssesssesee - 66 -
SPARQL Query 33. TeSt qUEIY 10D ..ueiiiieiiiiiieee ettt e e e e e e e et bae e e e e e e e eransneeeeeaeeeennrnnns - 66 -
SPARQL QuUEry 34. Test QUEIY 11a...iiiiiiiiiiiiiiiiiiiiieiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeseeeseseeeseeeeessessesesssessessee - 66 -
SPARQL Query 35. TeSt QUETY 11D, c..uuiiiiiiiiieciee ettt e ree e et e e e e sabae e e e sabae e s eabeeeeeanaeas -67-

xii

List of tables

Table 1. Example output SPARQL QUEIY L1, ...oiiiiiiiiieieiieeeeeiiee e eciteee sttt e e s svee e e s sree e e s snaneessnreeessanes -32-
Table 2. Example output SPARQL QUENY 12.cciiiciiieiieiiieeeeiieeeseiteeeesetteeessveeeessreeeesssneneesssneeeessnnes -32-
Table 3. Example output SPARQL Query 11 and 12 after joiNiNg......ccccccvveeeecieee et -32-
Table 4. Example query result after joining with no shared variables.ccccccooviiiiiiiiiniiicinee. -33-

xiii

Chapter 1. Introduction
This chapter describes the context of this thesis, a description of the problem it attempts to solve,
the followed approach, and finally the structure of this thesis.

1.1 Context

Nowadays mobile devices (e.g. smart phone, PDA) have become part of everyday life, not only do
they allow people to make phone calls or send text messages; they also allow people to access the
Web using a dedicated mobile browser. At the same time, the hardware limitations these devices
used to have are fading (e.g. faster processors, more memory and improved connectivity). Although
this evolution is making the gap between mobile devices and desktop computers smaller, limitations
still exist (e.g. small screen, limited input capabilities), which sometimes hinder the use of the Web
on these devices. Next to this, users can not always spend time for looking up information, since
these devices are deployed in a mobile environment (e.g. while driving).

It is observed that mobile users are often interested in information related to their surroundings (e.g.
find a restaurant nearby where he can eat dish X) and personal preferences they might have (e.g.
find a restaurant nearby where he can find his favorite dish). Consequently, if applications are able to
automatically take into account the user’s environment and personal profile when providing data,
the user no longer has to manually look up this information, minimizing the limitations mentioned
before (e.g. less time, small screens). Technologies such as RFID and GPS can be employed to make
these applications aware of the user’s physical environment and the entities in it. When combining
this with the improved connectivity of mobile devices, mobile applications are able to access services
and information on the Web associated with these nearby objects.

The SCOUT framework, which is currently being developed at the WISE lab of the VUB, supports the
development of context-aware mobile applications. These applications are able to offer relevant
information and services to the user based on the user’s environment and needs at a given time and
place. The SCOUT framework achieves this by providing a conceptual and integrated view on the
environment called the Environment Model, which is comprised of metadata on the physical entities
found nearby the user, together with the user’s profile information. The SCOUT framework also
allows developers to provide feedback to a user whenever a new source (e.g. a shop) is detected that
provides something the user might be interested in (e.g. a shop which sells shoes the user
encountered in another store in the past week) by making use of the Notification Service.

1.2 Problem Description
Whenever a new source is detected, the Notification service will try to execute each query, used as a
trigger for a certain notification, at both the encountered source, as well as the Environment Model.

A drawback to this approach is that query is executed on the Environment Model, even though the
newly encountered source might not contain any information for the given Notification Service
Query. Executing queries on the Environment Model, as opposed to executing a query on a single
source, is costly. In order to avoid this cost, we first have to find out whether the query actually
yields any results on the newly encountered source, before the query should be executed on the
environment model.

This thesis also investigates how a query mechanism can be employed to reduce the amount of
bandwidth used when the same query is executed multiple times on the Environment Model.

1.3 Approach

In our approach we try to optimize this query mechanism by tackling the issues mentioned in the
previous section. For this purpose, we have developed two mechanisms. Firstly, a query pipeline
mechanism that is used to create sub queries based on information found in the original query,
which can then be executed separately on the newly encountered source, and the Environment
Model. Secondly, a cache mechanism which is able to store query results.

First, we extract the relevant sub queries out of the given query. The goal of extracting these sub
queries is to allow separate execution of the part of the query which is meant for the newly
encountered source only. Only in case the first sub query has retrieved relevant data from the newly
encountered source, is the second sub query executed on the Environment Model. Afterwards, these
results can be joined to form the actual results for the original query. Because of this extracting these
sub queries and constructing them afterwards has its challenges.

Secondly a query caching strategy is employed, which can be used to story query results. More
specifically, this query caching mechanism can be used to store the results of sub queries executed
on the Environment Model in the query pipeline. Moreover, this system can also be employed for
caching query results from Query Service queries. This cache should also take into consideration the
smaller memory and more limited performance of mobile devices.

For the query pipeline mechanism, two strategies have been developed, together with a single
strategy used for caching. These strategies have been validated and compared though extensive
experimentation.

1.4 Thesis Structure
The next chapter provides background information related to this thesis. Topics such as the SCOUT
framework, the Semantic Web, Android and caching are discussed.

The third chapter describes related work in the scope of this thesis (i.e. the SCOUT framework, query
pipelining and query caching strategies).

The fourth chapter explains the concept of the query pipeline, which is able to process a given query
and divide it into sub queries, which can be executed separately.

The fifth chapter explains the Cache that is used to store query results, in relation to the query
pipeline explained in chapter five.

The sixth chapter explains the implementation details of all the developed components.

The seventh chapter describes the evaluation of the query pipeline and query caching mechanism, by
presenting experiment results and discussing their outcome.

Chapter eight describes the conclusions of this thesis, regarding the use of both the query pipeline
and the query caching mechanism, and elaborates on future work.

Chapter 2. Background

This chapter will discuss all the background information required to understand the following
chapters. Employed technologies such as the Semantic Web, and Android will be discussed. The first
two topics are about the SCOUT framework which is extended in this thesis to support a query
pipeline and query caching, and Android, the platform for which this framework is developed.

2.1 SCOUT framework

This section describes the SCOUT framework. First, a small description of the framework is given,
together with its main characteristics. Subsequently, an overview of the layered structure of the
framework will be discussed, with detailed information about each layer.

2.1.1 Introduction

SCOUT, which is short for Semantic COntext-aware Ubiquitous scouT, is a mobile application
development framework which supports the development of context-aware mobile applications. It
supports applications which offer relevant information and services based on the mobile user’s
environment and needs at any given time and place. [1]

The entire framework is scalable, decentralized and distributed so that no centralized access point
for data is required and each identifiable entity (e.g. an RFID tag, a location) is responsible for
providing and managing its own data and services, by using Web presences which can range from a
simple Website/Web service to an online source providing structured information (e.g. RDF files).
Due to its open, decentralized and distributed nature (together with its ubiquitous availability), the
Web is the ideal platform for deploying these presences. Furthermore, it allows re-use of the wealth
of descriptive information already available online (e.g. existing Web pages, RDF information such as
FOAF profiles) as Web presences. The SCOUT framework allows a seamless integration and querying
of data from several entities, by making use of the Semantic Web standards and vocabularies to
describe Web presences (such as RDF data) in a uniform and expressive way. This provides mobile
applications with a richer and more complete view on the global environment. [1]

2.1.2 Overview

The framework itself uses a layered architecture, which clearly separates the different design
concerns, and to assure the independence between the underlying technologies. Figure 1 gives an
overview of the architecture and clearly shows the different layers used: the detection layer, the
location management layer, the environment layer and the application layer. [1]

I Personalized Access
1o Web Presences i

Applications |

I Relation ke
__History | \
. enveonment
Envionment Layer e

I xu-s;:s Notification /
[::S:QE‘;‘EE‘.:]
‘ ‘\
I ' Querying \
; Service \
| Emmwdd T Gy

! ./ [Environment | ™, i
i L7 O |
Relation -~ LManagement W Entity
| {management CEvemenioda> | Management

_{ Location Management Layer __ &
I Proximity Management /
I [Neamess Remoteness N
Strategies | < Strategies | ‘\
. detocted et &
_{DetectionLlayer Vi presences.

| UJ—SGTCUOO
I Techniques

Enabling Technologies
Mobsle devices &

Web hosing Network Technologies KonsBoation echniques

o il
Fig. 1. SCOUT architecture layers.

2.1.3 Detection Layer

The Detection Layer (i.e. the bottom layer) is responsible for detecting identifiable physical entities in
the vicinity of the user (e.g. based on coordinates from a gps) and subsequently obtains the
reference to the corresponding Web presence. This detection layer contains components that
encapsulate different detection techniques (e.g. RFID, NFC, Bluetooth, etc.), which can be used to
detect and extract references to Web presences for use by other layers. For example this could occur
when an RFID tag is detected in the area and information such as a URI is retrieved from it. This URI
contains the location of an RDF file (a Web Presence) containing more information about the object
where this RFID tag was located on. Because these detection techniques are encapsulated in a
separate layer, and have a uniform interface, the framework can transparently switch from one
technique to another (or using several of them in parallel), depending on the available detection
techniques and the techniques supported by nearby entities.[1]

2.1.3.1 Location Management Layer

The Location Management Layer is the second layer and is built on top of the Detection Layer. It is
responsible for determining which entities are nearby (or no longer nearby) the user. To achieve this
it constructs “positional” relationships between the various entities, which are used to express the
“nearness” of an entity. In order to determine these relationships it makes use of so-called
“nearness” and “remoteness” strategies, which collectively are called proximity strategies. For
example, a “nearness” strategy is used when walking past an object with an RFID attached to it.
When a short-range RFID reader is used in this example, it is easy to infer the nearness of this RFID
tag. [1]

2.1.3.2 Environment Layer

The Environment Layer stores and integrates data about the user and its current environment, and
provides services to obtain information from nearby Web presences in both a push- and pull-based
manner. The integration of the data is facilitated via the use of Semantic Web technology (RDF/S",
OWL), while the reasoning capabilities of the Semantic Web standards can be used to infer useful
additional data. [1] Semantic Web tools like Jena® and Androjena® are used to store the data.

Entity and Relational models are used to represent the metadata (or information) of a certain entity
(e.s. Web presences, user preferences and characteristics), together with the “positional”
relationships the entity has (had) with other environmental entities. Both of these models are
maintained and are accessible via a management component, which allows querying and

programmatic access to these models.

The core component of the Environment Layer is the Query Service. It allows client applications to
query the user’s Entity model, the Relational models and the models of Web presences of (nearby)
entities. These queries can range from simple queries retrieving metadata to queries containing
complex semantic conditions. [1]

The Notification Service allows applications to obtain references to Web presences of nearby entities
in a push-based manner, thus allowing them to become responsive to changes in the user’s
environment. An application is able to register itself with this service, allowing it to automatically
receive events when nearby entities are encountered or are no longer available. By default, the
application is notified of all nearby entities, but the application can specify a filter, after which it will
only be notified about the entities that meet the condition specified by the filter (which is encoded as
a SPARQL Query). [1]

The last component, the Environment Management component, is used to combine the metadata
from multiple Web presences linked via both past and current positional relations, and integrating it
with the metadata of the mobile user. This integrated view is called the Environment Model, and it
effectively allows the application developer to extensively query any piece of the user’s context and
environment. This way the developer is able to query different sources without having to specify
them all himself, since the environment manager will determine which sources are relevant and
which are not. [1]

An already existing way to optimize the execution of queries is the Source Index Manager, which
allows SCOUT to make an index (called the Source Index Model or SIM for short) for any given source
and stores metadata information. This information can be used later on to optimize the query
process. This optimization occurs because relevant sources for each query can be extracted out of
the SIM so that no unneeded sources have to be queried. The SIM is built and maintained in the
background during the indexing phase that is triggered whenever Detection Layer detects a physical
entity and its online reference has been passed to the Environment Layer. An example of this
process can be found in figure 2, if a new source is detected (a.1), it gets send to the Source Index

" http://www.w3.org/RDF/
? http://jena.sourceforge.net/
® http://code.google.com/p/androjena/

Manager. The Source Index Manager then extracts the required metadata and stores it (a.3). Next it
will store the data found in the source into a source cache (a.4). [12]

Environment Management

_Queryphase Souree 0EX Indexingphase
: | lode : i
I T |
I I
I Source Index | r‘*— —“" | |
: Matcher Access '|/,_—-h,\l1 I[I
| Data(vs) (| !
| Gel source] —_ | Store metadata |
| references (b.4) : | (a.3) |
I
| [
. pom—n | . :
| [
_____ 11 X Execute | Query | ! !
1 I
oy oy | oS Fauery 09 engine | | | |
: — e | : Source Index — — 1_5_ ______
| Manager ource
| Extract query Obtain sources | Source ! ¢ reference (a.1)
| Metadata (b.2) (b.B) | cache : I
| I L i
| I N]
| Query Source | | Store source, :
| Analyzer Manager | Gelsources| — _'“"4 ' (ad) i
[b7y o] i
[i T I
__ I
Get employed
ontologies (b.3) Download sources Extract source metadata
(b.B} {a.2)
r .
RDFS/OWL Online sources
\ ontologies
it] OWL /—_/\-——\

— !
[
Annotated Websites

(e.g., via RDFa, microformats)

Fig. 2. SIM in the Environment Layer[12]

2.1.3.3 Application Layer

The final layer is the Application Layer, which contains the applications built on top of SCOUT. These
applications have access to the services and models provided by the framework. Therefore, they can
take both the current and the previous user’s environment into consideration when providing
services and information to the user. [1]

2.2 Android

Android® is an open-source software stack consisting of different components including a Linux-
based operating system, various libraries, the android runtime which adds support for java, an

application framework and various applications running on top of it created for mobile phones and
other devices.[2][3]

Applications

f— — f— —
Contacts Phone Browser

Home

L
!

Application Framework
T Window T Content T View
Manager Providers System
- Package - ﬂep‘honr Resource ™ Location ™ Notification
Manager Manager Manager L ELETT-T Manager

1

Libraries Android Runtime

s
= =N N 3
=

Linux Kernel

- Display T camera WIFMGmory T Binder {IPC)
Driver Driver Driver Driver

T Keypad T Audio T Power
Driver Driver Management

Fig. 3. Android Diagram [4]

Since the SCOUT framework is a Java based framework, which is meant to run on mobile devices and
an Android system has all the necessary support for running advanced Java based applications, as

opposed to other mobile operating systems which only provide limited support, the Android OS is
used for running and testing the SCOUT framework on.

4 .
www.android.com

2.3 Semantic Web

As explained before, the SCOUT framework is a mobile application development framework which
supports the development of context-aware mobile applications. These applications offer relevant
information and services to the user, based on his environment and needs at any given time and
place. [1] To accomplish this, the SCOUT framework makes use of Semantic Web technologies such
as RDF and OWL, and Semantic Web tools such as Jena and Androjena. This section explains the
rationale and goals of the Semantic Web, as well as a layered conceptual model to show its
composition.

2.3.1 The idea and purpose of the Semantic Web

The Semantic Web, which is a crucial component of Web 3.0, is widely considered to be the future of
the World Wide Web. As we can see in figure 4, it extends Web 2.0 with explicit content semantics,
as Web 2.0 itself extended Web 1.0 with user produced content. More specifically, its purpose is to
add semantics (or meaning) to documents, services, and general data on the Web, enabling machines
to read and understand these services and information. As a result, machines can use all this
information to derive new facts, detect contradictions, and infer new relations and so on. Since
search engines are all about understanding the content on the web to improve their search results,
they are able to benefit from the Semantic Web to return more relevant results. An example of this is
Google Rich Snippets®, which makes use of snippets (e.g. RDFa), to know which type of data an
element represents (e.g. a location, a restaurant, an address) on a web page. Using these snippets
Google can provide more detailed search results, since it knows what each element contains.

As shown in the figure below, the Semantic Web adds extra information such as concepts and
relationships between resources to the already existing information found on the Web, thus
increasing the expressiveness of the information.

&)
Web 1.0 u 2 P
Producer _ Consumer
& s
/P c/p
Web 2.0 = ==
== - ==
-
@ C/P = Consumer /Producer
7~ NA o)
N TT— ..‘
c/P

The — W<k

Semantic e
Web \%

m

Fig. 4. The progress of the web.

> http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=99170

-8-

http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=99170

The relationships mentioned before, actually take up the primary role of the semantic web. Because
of these relationships we are able to form a Web of Data, instead of just a Web of Documents as the
World Wide Web used to be.

2.3.2 The Semantic Web Stack
The Semantic Web Stack, also known as the Semantic Web Cake, describes the layered architecture
of the Semantic Web. Figure 4, which can be found below, is a common figure to represent the

Semantic Web Stack and its 14 layers.

The URI/IRI layer uniquely identifies Semantic Web Resources.

The Unicode layer represents/manipulates text in different languages.

The XML layer is used as the main interchange structure of data over the Web.

The Namespaces layer uniquely qualifies the markup from various sources (integration).
XML Query (XQuery) queries collections of XML data.

XML Schema helps define the structure (grammar) of specific XML languages.

The RDF Model & Syntax layer defines RDF triples and represents resource information in a
graph structure. It also describes taxonomies based on RDF Schema (RDFS).

The ontology layer is used to define vocabularies, extending RDFS with more advanced
features (e.g. cardinality constraints) and enabling reasoning based on description logic (e.g.
OWL).

The Rules / Query layer describes additional rules via the Rule Interchange Format (RIF) and
query RDF (OWL) data based on the SPARQL query language.

The Logic layer is used for logical reasoning (infer new facts and check consistency).

The Proof layer explains logical reasoning steps.

The Trust layer is used for the authentication of sources and the trustworthiness of derived
facts.

The Signature can be used for validating the source of facts by digitally signing the RDF data.
The Encryption layer can be used to protect RDF data via encryption.

(5]

Proof

Logic
Rules / Query

Ontology

Signature
Encryption

RDF Model & Syntax

XML Query XML Schema

XML Namespaces

Fig. 5. The Semantic Web Stack|[5]

-9-

2.4 Resource Description Framework

In the previous sections, RDF (Resource Description Framework) was mentioned as either part of the
Semantic Web or because it was employed by SCOUT framework for data representation. This
section explains what RDF is and how it can be represented.

2.4.1 What

As mentioned before, RDF is an integral part of the Semantic Web, more specifically the RDF Model
& Syntax layer. RDF defines triples of data, representing resource information in a graph structure,
RDFS on the other hand describes taxonomies. RDF is responsible for providing a way to describe
data models in such a way that the sharing and interchange of data is facilitated.

2.4.2 Representation

RDF is represented by RDF statements (or triples). An RDF statement consists of a subject, a
predicate (property) and an object (value) and is represented in the following form “<subject>
<predicate> <object>". Such statements allow us to describe a resource, by providing property values
for that resource or other resources to which the given resource is related. Subjects, predicates and
objects are all resources, where a Resource itself is anything that can be uniquely identified by a URI
(a physical object, a digital content item, etc). There is also a special form of a Resource, which is
called a Literal. A Literal is used to represent data such as a String, an Integer ...

The subject of a triple is used to show which Resource we want to describe, the predicate is used for
defining a relation between the subject and the object, while the object is the value bound to the
subject for that specific relation. In the example below, the subject s
“http://www.example.org/index.html”; the predicates are
“http://purl.org/dc/elements/1.1/creator”, “http://www.example.org/terms/creation-date” and
“http://purl.org/dc/elements/1.1/language”; and the objects are
“http://www.example.org/staffed/85740”, which is a Resource, together with “August 16, 1999” and
“en”, which are both Literals.

<http://www.example.org/index.html> <http://purl.org/dc/elements/1.1/creator>
<http://www.example.org/staffid/85740> .

<http://www.example.org/index.html> <http://www.example.org/terms/creation-date> "August 16, 1999" .
<http://www.example.org/index.html> <http://purl.org/dc/elements/1.1/language> "en" .

RDF Data 1: Example of RDF Triple [6]

The data like the example above might not always be very readable. Therefore, this RDF information,
which is a directed labeled graph, is also commonly presented and visualized this way, which can be
seen in figure 5. The graph shows the collection of triples, with all of the unique URIs and Literals and
the relations between them.

-10 -

hitp:/www_example.orgfindex. html|

hitp:fiwww example, orgftermsh:reéy http:#ipurl.org/dc/elements/1. 1/creator

August 16, 1999 hittp:/hwww_example. erg/stafie/B5740

http:fipurl.org/dc/elementsi1_1/language

en

Fig. 6. Example RDF Graph [5]

Various RDF serializations have been created (e.g. RDF/XML, Turtle and RDF N3), because the data
might have to be exchanged between several applications and the graph structure, although very
powerful, is unsuitable for this exchange.

RDF/XML is the most common representation used for interchanging RDF data between applications,
since XML is one of the most commonly used data formats. XML is also one of the most difficult
formats to write RDF, compared to others like Turtle and N3 notation. These notations are simpler as
they focus are written in a more natural form for the user. The difference between XML and a
notation such as Turtle can be seen in the two examples below.

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:exterms="http://www.example.org/terms/"
xmins:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about="http://www.example.org/index.htm|">
<exterms:creation-date>August 16, 1999</exterms:creation-date>
<dc:creator rdf:resource="http://www.example.org/staffid/85740"/>
<dc:language>en</dc:language>

</rdf:Description>

</rdf:RDF>

RDF Data 2. RDF Information in RDF/XML format [5]

<http://www.example.org/index.html> <http://purl.org/dc/elements/1.1/creator>
<http://www.example.org/staffid/85740> .

<http://www.example.org/index.html> <http://www.example.org/terms/creation-date> "August 16, 1999" .
<http://www.example.org/index.html> <http://purl.org/dc/elements/1.1/language> "en" .

RDF Data 3. RDF Information in Turtle format [6]

2.5 RDF Schema

As mentioned before, RDF Schema is used to define grammars as opposed to RDF which describes
resources and the relations between those resources. RDFS is a vocabulary description language,
allowing developers to create vocabularies defining properties (or relations) and types (or classes),
which can be re-used in RDF statements. Furthermore, in RDFS subclass relations between classes
can be defined, as well as subproperty relations between properties, and the allowed types of
subjects (domains) and object (ranges) of a certain property can be specified.

Next to that it is used to provide the basic elements for the definitions of ontologies, which are
described in the next section. The example below shows the definition of two classes (“Resource”
and “Class”) together with one property (“type”) and is used to define a small part of the official
RDF/RDFS definition.

-11-

<rdf:RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmins:owl="http://www.w3.0rg/2002/07/owl#">

<owl:Ontology rdf:about="http://www.w3.0rg/2000/01/rdf-schemat"/>

<rdfs:Class rdf:about="http://www.w3.0rg/2000/01/rdf-schema#Resource">
<rdfs:isDefinedBy rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#"/>
<rdfs:label>Resource</rdfs:label>
<rdfs:comment>The class resource, everything.</rdfs:comment>
</rdfs:Class>

<rdf:Property rdf:about="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type">
<rdfs:isDefinedBy rdf:resource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"/>
<rdfs:label>type</rdfs:label>
<rdfs:comment>The subject is an instance of a class.</rdfs:comment>
<rdfs:range rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#Class"/>
<rdfs:domain rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#Resource"/>
</rdf:Property>

<rdfs:Class rdf:about="http://www.w3.0rg/2000/01/rdf-schema#Class">
<rdfs:isDefinedBy rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#"/>
<rdfs:label>Class</rdfs:label>
<rdfs:comment>The class of classes.</rdfs:comment>
<rdfs:subClassOf rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#Resource"/>
</rdfs:Class>

</rdf:RDF>

RDF Data 4. RDFS Schema Example[7]

2.6 Web Ontology Language

The Web Ontology Language, also known as OWL, is designed for use by applications that need to
process the content of information, and not for applications which just present information to
humans. OWL facilities a greater machine interpretability of Web content, then supported by only
XML, RDF, and RDF Schema, as OWL facilities provide an additional vocabulary along with a formal
semantics. To accomplish all of this, OWL provides three increasingly-expressive sublanguages: OWL
Lite, OWL DL and OWL Full. [8]

OWL Lite is the weakest of the 3 sublanguages, providing a classification hierarchy and some simple
constraints.

OWL DL provides a maximum of expressiveness, while still retaining computational decidability.

OWL Full also provides a maximum of expressiveness, but compared to OWL DL it provides no
computational guarantee.

A large number of existing and well-known ontologies already exist, allowing any RDF data provider
to extensively describe resources in a dataset. Some commonly used ones are Friend-Of-A-Friend®,
the Dublin Core Metadata Initiative’ and GeoRSS® ...

® http://www.foaf-project.org
7 http://dublincore.org
® http://www.georss.org/Main_Page

-12 -

2.7 SPARQL
SPARQL’ is a query language for RDF and is used extensively in this thesis. This section will explain
what it is, where it is used and what its syntax is.

2.7.1 Introduction

SPARQL, which is a recursive acronym that stands for SPARQL Protocol and RDF Query Language, is
an RDF query language. Although other query languages exist, SPARQL is standardized by the RDF
Data Access Working Group, which is part of the World Wide Web Consortium and is considered a
key Semantic Web technology. Currently it is also the only query language supported by the SCOUT
framework. [9]

The SPARQL standard also specifies how SPARQL clients can communicate with a SPARQL
endpoint/processing service (i.e. using WSDL 2.0'), together with how the query results should be
returned to the entity that requested them. [10]

2.7.2 Syntax

The SPARQL language specifies four different query forms (SELECT, CONSTRUCT, ASK and DESCRIBE).
Although the query language has similarities with SQL, it doesn’t support all of its query forms such
as CREATE, DELETE, INSERT, nor does it allow sub queries and aggregate functions. It also works
different internally since it is a graph pattern matching language built on top of RDF.

The SELECT query form is used to request RDF terms (blank nodes, URI’s, or Literals) from an
endpoint and bind them to variables, which are directly returned as simple bindings, that represent
pattern matches, just as they would in an SQL select. These bindings can be represented as a table,
where each column is a requested variable, and each row contains the bindings (values that matched
the entered pattern matches) for the selected variables. SPARQL Query 1 shows a select query which
will return the people who know each other, together with the nick of the second person if available,
which is represented by the OPTIONAL clause.

RDF Data:

@prefix foaf: <http://xmins.com/foaf/0.1/>.

a foaf:name "Alice".
a foaf:knows _:b.
a foaf:knows _:c.

:b foaf:name "Bob".

:c foaf:name "Clare".
:c foaf:nick "CT".

SPARQL Query:

PREFIX foaf: <http://xmlIns.com/foaf/0.1/>
SELECT ?nameX ?nameY ?nickY
WHERE
{ ?x foaf:knows ?y ;
foaf:name ?nameX .
?y foaf:name ?nameyY .

? http://www.w3.org/TR/rdf-sparql-query/
% http://www.w3.org/TR/wsdI20/

-13 -

OPTIONAL { ?y foaf:nick ?nickY }

}
Result:
nameX nameY nickY
“Alice” “Bob”
“Alice” “Clare” “cT”

SPARQL Query 1. Simple SELECT Query. [11]

The CONSTRUCT query form is used to create a single RDF graph specified by a graph template. Its
result is an RDF Graph formed by substituting each variable in the graph templates using the results
from the given query (which is similar to the SELECT query mentioned before), and combining the
newly formed triples by a set union into a single RDF graph. This is both a powerful and easy
mechanism which allows new data sources to be created from existing data. SPARQL Query 2 shows
a construct query which creates vCard™ properties from existing FOAF information. [11]

RDF Data:
@prefix foaf: <http://xmins.com/foaf/0.1/>.

_:a foafi:name "Alice".
_:a foaf:mbox <mailto:alice@example.org>.

SPARQL Query:

PREFIX foaf: <http://xmlIns.com/foaf/0.1/>

PREFIX vcard: <http://www.w3.0rg/2001/vcard-rdf/3.0#>
CONSTRUCT { <http://example.org/person#Alice> vcard:FN ?name }
WHERE { ?x foaf:name ?name }

Result:

@prefix vcard: <http://www.w3.0rg/2001/vcard-rdf/3.0#> .

<http://example.org/person#Alice> vcard:FN "Alice" .

SPARQL Query 2. Simple CONSTRUCT Query. [11]

The ASK query form can be used by applications to test if a certain query pattern has a solution.
Apart from whether or not solutions exist, no other information is returned about the possible query
solutions. SPARQL Query 3 is an ASK query which will check if a “person” with name “Alice” exists.

RDF Data:

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

_:a foaf:name "Alice".
_:a foaf:homepage <http://work.example.org/alice/> .

_:b foaf:name "Bob".
_:b foaf:mbox <mailto:bob@work.example> .

" http://en.wikipedia.org/wiki/VCard

-14 -

SPARQL Query:

PREFIX foaf: <http://xmlIns.com/foaf/0.1/>
ASK { ?x foaf:name "Alice" }

Result:

Yes

SPARQL Query 3. Simple ASK Query. [11]

The DESCRIBE query form is used to create a single result RDF graph containing RDF data about
resources. The data returned is not prescribed by the given SPARQL query, but by the SPARQL query
processor, which was used to execute the query with. The DESCRIBE query form takes each of the
resources identified in a solution, together with any resources directly named by a URI, and creates a
single RDF graph by taking a “description” which can come from any information available, including
the target RDF Dataset. [11]

SPARQL Query:

PREFIX ent: <http://org.example.com/employees#>
DESCRIBE ?x WHERE { ?x ent:employeeld "1234" }

Result:

@prefix foaf: <http://xmins.com/foaf/0.1/>.

@prefix vcard: <http://www.w3.0rg/2001/vcard-rdf/3.0> .
@prefix exOrg: <http://org.example.com/employees#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.0rg/2002/07/owl#>

_:a exOrg:employeeld "1234";

foaf:mbox_shalsum "ABCD1234";

vcard:N
[vcard:Family "Smith" ;
vcard:Given "John"].

foaf:mbox_shalsum rdf:type owl:InverseFunctionalProperty .

SPARQL Query 4. Simple DESCRIBE Query. [11]

To add some more expressiveness to the query, there are a couple of modifiers which can be used in
a query: REDUCED, DISTINCT, ORDER BY, OFFSET, LIMIT, FILTER, OPTIONAL, and UNION. Since these
are less important only a couple will be explained and for the others you can go to reference [11].

DISTINCT will make sure no duplicates are available in the result from the query, ORDER BY will make
sure the results are ordered, based on the order selection provided. A FILTER can be used to reduce
the amount of results returned by a query, by adding one or more conditions (restrictions) which
have to be met. For example, this could be a request for information about people in a golfclub
where only people older than 50 years old should be returned.

-15-

2.8 Semantic Web Frameworks

Semantic Web Frameworks have been created to provide abstractions for using parts of the
Semantic Web in different programming languages. These frameworks provide a programmatic
environment for use with various Semantic Web technologies, including RDF, RDFS, OWL, SPARQL
and more. One example of such a framework is Jena, which is a Semantic Web Framework for Java
which contains the following:

o ARDF API
e Reading and writing RDF in RDF/XML, N3 and N-Triples format
e An OWLAPI

e In-Memory and persistent storage (e.g. RDF)
e SPARQL Query Engine

Since the SCOUT Framework is meant to be used on Android devices, which don’t support all Java
language features (and also have resource restrictions), the Androjena® framework will be used
which is a port of Jena for use on Android.

2.9 Caching

Since caching is a major aspect of this thesis, this section will give a short introduction, followed by
why caching is needed and what kind of data we can cache.

2.9.1 Introduction

Caching is a mechanism for using a temporary storage of data to, for example, reduce bandwidth
usage, server load, ... In the case of mobile devices, this can be used to reduce costs and time for the
end user to find certain data, especially when the same data is requested multiple times. Apart from
speeding up the search process or reducing costs, such as internet costs, there are also some possible
downsides to caching. For example, the data might not always be up to date, or if you never look up
the same kind of data, the cache would actually be useless and only take up space on the device or
its memory. To prevent this from happening two important properties are used: temporal locality
and spatial locality, which both exploit the way data access works.

Temporal locality is the property that items that have been referenced recently are likely to be
referenced again in the near future. Examples of this are FIFO (First In, First Out), which will remove
the first element that got added to the cache, if space has to be made for newer elements, LRU
(Least Recently Used) where the least recently used cache units are considered to be the least useful
ones, and LFU (Least Frequently Used) in which the least frequently used units are considered to be
the least useful ones.

Spatial locality is the property that if an item has been referenced, other items that are physically
close to it are also likely to be referenced.

2.9.2 For what data
Caching can be used to store a lot of data types. In the case of the SCOUT framework it can be used
to store entire sources in RDF format, or just tuples retrieved from a source. This thesis handless the

2 http://jena.sourceforge.net
2 http://code.google.com/p/androjena

-16 -

caching of query results, which is an extension to the already available caching mechanisms available
in the SCOUT framework.

2.9.3 How does it work
To show how caching works, a simple example using a web cache (e.g. a browser cache) will be used.

A web cache is used to reduce the amount of requests done to one or more servers (web pages, css,
javascript,...). To achieve this goal, it stores the different types of data locally in its cache (after
retrieval from the server), so it can later on retrieve the data faster. However some complications
occur in a web cache: e.g. limited cache space, dynamic web pages which have to updated after a
specific time, ... Therefore, various caching mechanisms have been created to take into account such
issues. Some of these issues, together with solutions can be found in the next chapter.

In its simplest form, a cache works as follows: after a request is done, the cache will first check
whether it contains the required data. To achieve this it makes use of the following two commonly
used terms: cache hit and cache miss. A cache hit means that the required data is found in the cache
(and this data has not ‘expired’ yet). A cache miss means the data couldn’t be found (or the data has
‘expired’), so the request has to be sent to the server in order to obtain the required data.
Afterwards the data is added to the cache or the already existing (expired) data in the cache is
updated to the latest version. Since cache space might be limited, cache eviction strategies are
employed to remove the least useful data from the cache. Some examples of these strategies are
LRU, which will remove the data from the cache that hasn’t been accessed in the longest time, and
LFU (Least Frequently Used), which will remove the data from the cache that was used least
frequently.

2.9.4 Query caching
Since the goal of this thesis is to optimize the query execution by adding query caching, this
subsection explains what query caching is.

Compared to the previous subsection, query caching doesn’t store entire files (or sources), but
instead stores the results of each query, together with an index (i.e. the query associated with these
results) to check if the cached results might be a match to a (newly) given query. Using this
mechanism, only relevant data is stored in the cache, where file caching would always store all the
data, instead of only the data required.

-17 -

Chapter 3. Related Work

This chapter describes existing work related to the topics discussed in this thesis. Related work is split
up into different parts according to the handled topic, covering the SCOUT framework, query
pipelining, and caching mechanisms.

3.1 The SCOUT framework

As mentioned before, the SCOUT framework exists out of many parts (layers), each with their own
purpose. In the SCOUT framework the user’s environment consists of a number of physical entities,
each with associated Web Presences, which can then be used in queries to provide personalized
information. Each Web Presence stores information or services related to a physical entity (for
instance, a Website/service, (online) RDF data, ...). All this info can then be used so queries can
reference the metadata of any previously encountered entity. The metadata of all physical entities
mentioned before are then combined with the user’s profile. This user profile, which got build over
time, together with the metadata of all these physical entities is used to create the Environment
Model which applications can then use. The following subsections will go into some detail regarding
to related work of some of these mentioned parts.

3.1.1 Linking of physical entities to web presences

Several projects exists that focus on the linking of physical entities to digital information (such as
Web presences mentioned before). One of the first projects to focus on using this kind of linking is
the HP Cooltown project [1, 12]. The goal of the Cooltown project was to provide an infrastructure
for nomadic computing, in which “nomadic” refers to humans moving between places (e.g. home,
work) and “computing” refers to the services provided to these users. In particular, services
integrated with entities in the user’s environment. The Cooltown project has two objectives to
achieve: 1) each entity in the user’s environment needs to be associated to a web resource (also
called a Web Presence), these resources could go from simple web pages to web services. 2)
Achieving a high degree of interoperability for interactions with devices. For this second objective the
eSquirt protocol was developed to provide a high interoperability.[39] This project is similar to the
SCOUT framework as it tries to connect physical entities in the user’s environment to a Web
Presence. However, the Cooltown project only allows you to retrieve the information for this specific
physical entity, while the SCOUT framework not only allows you to retrieve information but also to
query for data related to this entity (if needed).

An example of a commercial application using this type of technology is Touchatag'’ from Alcatal-
Lucent Ventures, which makes use of RFID technology to connect objects to online applications. An
example of this is the Web Link Wheel application, in which you can store a series of URLs. After you
have stored them you can use an RFID tag to go through these links. Opening them one by one, till
you reach the end of the list, after which you can start again from the top of the list. In [13], an open
lookup framework is discussed which uses RFID tags to link objects to resource descriptions, thus
allowing users to retrieve information on specific tagged objects. The basic idea behind this approach
is the connection of pieces of digital information, to a specific latitude-longitude coordinate via a
mobile device. For example, an implementation of this is the GeoNote™ system which works in the
following way. First, a user has to enter some information for the note he wants to create: a title, a

" http://www.touchatag.com
™ http://www.ercim.eu/publication/Ercim_News/enw47/persson.html

-18 -

recipient [which is not required, but can be single individual or a group of people], a signature [used
for identification of the user] and a placement label in case of bad geographic location data (such as
faulty gps coordinates) or just to provide additional information. A person can access other people’s
notes “placed” nearby his personal location, filtering the available notes via personal preferences.
For this reason a pull and push based system is used. Another way to retrieve information is by using
notifications, which also make use of the pull and push based system mentioned before. These
notifications can be based on certain filter settings, which will alert the user if something is present
where he might be interested in, based on his personal preferences.

While most of the projects mentioned before focus on just retrieving data related to a physical entity
or only use one specific detection method (such as RFID or GPS), the SCOUT framework tries to find a
balance between all of it. The Detection layer is in charge of detecting the connections between a
physical entity and a Web presence, using a single detection method or using multiple detection
methods together. With the Environment layer the SCOUT framework integrates all data, so that
queries are able to refer to both the information found in the user model as well as the surrounding
entities. The Environment layer is also able to forward notifications when certain conditions are met
but those conditions are not limited to the notification system in the GeoNote project.

3.1.2 Location specific data storage

As mentioned in [1] many existing approaches focus on the location-specific retrieval of information
using a centralized Information System (IS). In these approaches an IS is used to store and maintain
all location-specific information. Some examples of this are mentioned in [14-16].

In [16] shopping is used as an example. In this example they want to know more about a certain
product, in that case it would work as follows: first the product identification from a certain product
is read, either via RFID or barcode scanner. Based on this product identification, a query is fired at a
Search Service (IS) which then queries the various resource repositories (IS, that is filled by vendors
and web crawler which tries to identify new sources that might be useful) for information about that
product and then returns the results back to the client.

Although this system seems to be good for simple data retrieval, it doesn’t provide any other
semantic information apart from the information specific to e.g. a single product. In our
aforementioned example, it is not able to search for related products or able to make connections to
products looked up before. This makes it clear that although the data search process is specific it isn’t
context aware. The SCOUT framework tries to accomplish this, not by providing only information
about a specific physical entity, but also by providing information about semantic relations for e.g.
that product if required. In the aforementioned example such a semantic relation could be the
retrieval of one or more related products based on the type of product.

Besides providing information about semantic relations, the SCOUT framework also use a
decentralized model, which re-uses existing online resources, that makes it easier for each client to
look up information. Therefore content providers are able to do with their data what they want, thus
increasing control over their own data and making it easier for more applications or services to use
their data. Because the SCOUT framework runs on the client there is also no single point-of-failure
(while the Search Service in the previously mentioned example is).

-19-

3.1.3 Integrated view of context sources

In contrast to the previous subsection, where location specific information is stored in one place,
other approaches exist that provide a centralized (or integrated) view over a set of distributed data
sources.

Such context-aware middleware approaches often rely on context providers for retrieving
information about the user’s environment [17-19]. These providers use both internal (e.g. sensors)
and external (e.g. a traffic service) sources to extract the required data, which then can be accessed
using a context-aware application. The difference with SCOUT is that these approaches usually are
not using existing online data sources, but use other approaches, such as directory-like services that
applications can use to find relevant sources to query themselves, or by providing a single unified
view on the user’s environment, which is done by integrating various context sources. [17-19].

An example of the integration of context sources is [29], which describes “nRQL”. “nRQL” uses a
Knowledge Base, much like the Environment Model in SCOUT, to provide answers to a given query. A
major difference to SCOUT is that “nRQL” only makes partial use of certain Semantic Web
Technologies, where SCOUT is trying to have full support for. Because of this “nRQL” uses its own
type of “concrete” states instead, representing individuals and their relationships (called ‘ABoxes’),
which is what RDF and OWL provide. OWL is supported by “nRQL” by converting the (required) data
to an ‘ABox’. Another major difference is that “nRQL” runs in a server environment, while the SCOUT
framework runs on mobile environments.

Another example of the integration of context sources is Haystack, an open-source RDF-based
information management environment [20]. It combines data found in RDF sources with metadata
created locally by the user, and represents this data to the user in a visual way. Next to this,
metadata from previously encountered sources is also stored, to create links between the data in
these sources and current sources.

Just as mentioned in the previous subsection, where a query is fired at an Integrated Search service,
which then returns the results, most of these approaches make use of an external service, that
handles the queries fired at certain data sources. The advantage of this is that the retrieval and
processing of the data is offloaded to the external service, thus providing an efficient and high-level
access to (dynamic) data. However, a drawback of such services, is that they are not very flexible or
scalable, since every query has to be handled by this service. Also these services are only able to
return results from sources explicitly pre-registered to them. Another downside is that these services
can only access other services which implement a supported interface to access their data, so it is not
possible to query single RDF files, which is something the SCOUT framework is able to do.

Since mobile devices are getting more powerful (for instance, regarding processing power and
memory capacity), the need to use these services is reduced, allowing the way for solutions, such as
the SCOUT framework, to provide a client side alternative to these otherwise server side services. For
this purpose, SCOUT constructs and maintains an integrated view, called the Environment Model, on
the mobile device itself. As mentioned before this makes it so that no single point-of-failure exists,
and also allows the SCOUT framework to be more flexible in what sources can be used.

-20-

3.1.4 Determining relevant sources for a given query

Various approaches exist which keep source indices in order to optimize the query retrieval process.
Most of these approaches focus on optimizing query distribution across query endpoints [23] or
keeping intensive instance information found on the data [24, 25].

A first example of such an indexing mechanism can be found in [21]. Which uses very specific data for
its index, such as a location (e.g. gps coordinates), to retrieve data from a Voronoi Diagram-based
index. This index records information about the closest regions corresponding to a set of geometric
point and thus only focuses on a single feature when indexing.

Another example is [22] that, given a query, tries to identify an appropriate set of information
sources and afterwards formulates and executes the appropriate sub queries based on which data
can be found in a certain index. To achieve this it looks up whether certain classes (requested in the
guery) can be found in an information source. If so, they are included in the query execution.

This last part is what the SCOUT framework tries to achieve, by storing metadata about encountered
sources in a balanced way between a minimal overhead and still guaranteeing a high selectivity. The
major difference is that the SCOUT framework provides multiples strategies for storing metadata, as
opposed to indices as mentioned in the previous examples. This metadata can contain information
about only classes or only relations while others use a combination of both. As a result, the indexing
in the SCOUT framework is flexible, compared to some of the work mentioned before.

3.2 Query Pipelining

To improve performance when querying multiple data sources, or retrieving different types of data
there exists multiple pipeline approaches such as mentioned in [21, 22]. These approaches execute
the retrieval process in multiple steps (or processing units). Such processing units can either be
executed one after the other, for example when the second unit needs to use the results from the
first unit, or executed simultaneously when no results between units are required.

In [21] an example of method 1 is mentioned. Whenever a client needs information, it submits a
query to a server and then waits for an answer. If the client arrives in a new cell before the result is
retrieved, which means the data it requested before it becomes invalid, a new query is executed
after the results have been returned from the server. This process is then repeated till a valid query
result is returned. In this example, each new query execution can be seen as a processing unit, which
keeps getting repeated until the answer is found.

An example of method 2 is [22] which, based on the given query, will detect the classes of the data
requested in the query. For each class (or type) it looks up the sources where data of this type can be
found. An example of this can be seen in figure 7, where the query has been split up into the various
classes (e.g. Port, Ship, Seaport) for which sources need to be looked up for. Then it executes the
queries for each source in parallel. Once all queries are executed the results are joined, providing a
result set.

-21-

max_draf Qip_type

Fig. 7. Splitting up the query [22]

The focus in this thesis will be on method 1, where a pipeline is created to execute different parts of
the query one after the other based on their results. In the SCOUT framework, so-called notification
qgueries mostly exist out of two parts. The first part always has to be executed (e.g. retrieve
information about my current location), while the second part (e.g. retrieve information about
products | encountered in previous locations if the current location is a store), should only be
executed if the previous part had any results. This way, when the first part returns no results,
unnecessary processing power can be spared, since the second part which has to be executed on the
environment model (e.g. multiple sources), is more costly then the first part. Moreover, only the
second part can be cached, which is based on already visited sources, since the first part always has
to be executed on the newly discovered source.

3.3 Caching mechanisms
Since part of this thesis investigates how caching can be improved within the SCOUT framework.
More specifically how (sub-) query results can be cached for re-use in other queries.

3.3.1 C(Client side caching mechanisms

As partially mentioned in the previous subsection there are various caching mechanisms available
already for client side caching. In [20] and [36] some of these caching mechanisms are mentioned
with the focus on explaining how Semantic caching works and how this is a possible improvement
over the already available mechanisms.

A first (and very basic) example of a caching mechanism is used in [20] for caching, where in the case
of read-only RDF files, the entire source file is downloaded and stored locally in the cache for later
reuse by the browser.

Another well-known mechanism is page caching [36], which is used for storing entire pages full of
tuples. These are the simplest to manage since they have a fixed size and are accessed in a nearly
identical way as a traditional page-based database buffer. For an index is kept, to look up results this
index has to be used to check if any pages contain the results the query is looking for. If no such
results are found, then a request has to be sent to the server for the required pages. The downside
to this mechanism is that there is a specific overhead of data available in the cache, so that less
operational memory is available for other work.

-22-

Another well-known mechanism is tuple caching [36], where individual tuples are cached instead of
pages of grouped tuples. This allows maximum flexibility in the tuning of cache contents to access
locality properties of applications. The downside to this mechanism is an increased overhead, since
for every missing tuple a request has to be send to the server to retrieve the missing information. A
solution for this is also mentioned [36], which first looks for all the missing tuples and then forms a
single request to the server for all missing tuples, instead of requesting tuple by tuple. Another
overhead issue that might arise is the fact that extra information has to be stored to know what each
tuple contains, compared to the mechanism mentioned in the previous paragraph.

The caching mechanism used in this thesis is Semantic caching (also called query caching) which, just
as page caching, provides a means for a cache manager to aggregate information about multiple
tuples. It does this by building up semantic regions, which, compared to page caching, can change
dynamically in size and shape. To retrieve data this caching mechanism makes use of two types of
queries. The first one is a probe query, which retrieves information in the cache related to the main
query, while the second query, the remainder query, will retrieve any missing information from the
server. Examples of this type of caching are given in the following subsection.

3.3.2 Caching query results

As mentioned in the previous subsection and [36], query caching makes use of two types of queries,
one being a probe query, which is able to retrieve data from the cache related to a given query, and
the second being a remainder query, which, based on the results returned using the probe query, will
create a new query which retrieves the results that were not found in the cache for the given query.
The following paragraphs will explain various forms of query caching as discussed in [21, 22, 26-32,
36-38].

The proposed mechanism in [21] uses a “simple” index based on the region (e.g. the location) the
current user is in. The region serves as a base to check if there is relevant information in the cache for
a given query. This is a simple process, since the queries only have to retrieve a limited amount of
data, based on the current region the user is in, which can easily be indexed to retrieve the required
information out of the cache.

In [22] query results are stored per source, taking into account information about the classes
available in the query results. For this it stores meta-information, about these classes, so that it can
easily detect which information is already available in the cache, and which needs to be requested
from other sources. Although this approach stores query results, the results of the full query are
never stored. Query results are only stored for the sub queries, which are generated based on classes
found in the main query. This makes it less complicated for knowing what is available in each cached
query result, because it does not have to take into account relationships between two classes and
the extracting of any data it might need out of the cache.

The mechanism proposed in [26] takes into account query patterns when looking up information in
the cache, while only storing the compound cache objects, related to these query patterns, in the
cache. Afterwards, based on the data provided in a query pattern, these compound objects can be
extracted and used wherever it is required. The cache makes use of an MD5 hash of each query for
easy comparison and retrieval of cached results, but is restricted to simple RDF and doesn’t take into
account any RDFS information (e.g. relations, subclasses, properties, inverse relations) during the
comparison of queries. Therefore, only identical queries can be compared and thus the comparison

-23-

doesn’t take into account queries which are semantically the same (i.e. contain the same constraints)
but might have been structured differently (e.g. different variable names, or different order of triple
patterns). As opposed to the mechanism in this thesis, where such syntactical variants will be taken
into account.

The proposed caching mechanism in [27] caches intermediate results of the query execution process.
This way, similar query parts that are re-used across queries are stored in the cache, allowing for
more fine-grained caching. It relies on using AET’s (short for Algebra Expression Tree) to achieve
normalization, allowing graphs to be compared in a less strict way than mentioned above. More
specifically, in case graphs are semantically equivalent (i.e. contain the same data constrains) but
have a different variable naming schema, AET normalization allows them to still be recognized as
being equivalent. AET normalization converts logically equal AET’s (obtained from a given query) to a
uniform AET. It does this by performing a pre-order traversal in which variables are labeled with
sequential integers. After this step, it is able to identify equivalent query execution plans with unique
query logic, without having to take into account specific variable naming.

In [28] a caching mechanism is proposed which can be used for DHT-based (Distributed Hash Table)
RDF databases, which are used to store RDF triples in a distributed manner. The main focus of such
databases is to distribute the storage as well as the query load over several nodes in a peer-to-peer
network to improve scalability. Their caching mechanism is comparable to the approach mentioned
in the previous paragraph, taking into account syntactic variants of semantically equivalent queries.
Each query is first converted to a graph structure, and specific variables names are converted such
that they can easily be compared. Next to comparing the structure of a graph, intermediate results
are hashed, which can later on be used to further improve the performance. This caching mechanism
also performs a bottom up search for intermediate results, to take into account subquery results of
previously executed queries so that, just as in the previous paragraph, (partial) results can be reused
instead of having to execute the entire query again. As a consequence, only data that was missing
has to be requested.

In [29] the mentioned “nRQL” engine can be advised to maintain a so-called query repository, which
caches the results of previously executed queries. This query allows cached results to be reused if the
same query is executed again.

In [31] a semantic caching approach is described which takes into account the relations of semantic
containment as well as intersections between a query and its corresponding cache items.

Both [30] and [36] describe Semantic caching, which is a synonym for query caching, by defining
semantic regions in the cache and defining relations between these regions. Each region contains a
constraint formula (which describes the available data), a set of tuples, a pointer to the list
containing these tuples and some extra information for the eviction strategy (e.g. a ‘score’). The
difference with the caching approaches mentioned before is that these semantic regions can
intersect so that less space is used because tuples aren’t stored more than once. Therefore, more
data can be cached in the same amount of space as one would be able to use the other mechanisms.
An example of this can be found in figure 8 in which can be sees that there is only 1 semantic region
Q1 after the first query. After the second query Q1 intersects with Q2 because of shared tuples and
the results in Q1 become fragmented, to avoid duplication of tuples between Q1 and Q2, and after

-24-

the third another intersect gets added between Q1 and Q3, which leads to more fragmentation of
results.

0] o5

2

Fig. 8. Semantic regions

In [32] various methods for query matching are described which can be used in Semantic caching to
determine which parts of which region are useful. This is done by storing semantic views, which
contain metadata, for each Semantic region which can then be used to compare with a new query.
The first method is the simplest one, only taking into account an exact match between an input
guery and the semantic view. The second method is used when no exact match can be found. In this
case, it looks for a match as close to the given query as possible (e.g. a view also containing some
extra answers). For this purpose, it makes use of various algorithms, such as “BestContainingMatch”,
which looks for a containing match from which extra answers can be filtered with minimal effort, and
“BestOverlappingMatch” which will look for a match that overlaps with most of the given query using
a simple heuristic. A third method is called knowledge-based matching, which, based on semantic
knowledge, tries to infer related data from existing data. And the fourth and last method, the
BestMatch algorithm, will try to combine all the previous methods to form its result.

In this thesis, the approach of query caching similar to the one discussed in [27] will be used. For
each given query a graph is constructed, corresponding to the graph pattern described in the query.
The major difference with [27] and most of the others mentioned before, is that not only existing
relations will be taken into account; extra information such as inverse relationships or subclasses and
sub properties (as defined in RDFS) is considered as well.

3.3.3 Cache invalidation techniques
Invalidation techniques are used to determine when certain data in a specific cache is deemed to be
invalid, and thus can’t be used anymore in specific situations.

In [34], various cache invalidation schemes are discussed which can be used for location dependent
updates. The idea behind it is to remove data from the cache that might not be needed anymore,
since the user is at a different location where this data has become useless. This makes it so that the
cache doesn’t have to worry about redundant information and thus can increase performance and
reduce memory usage.

The first method explained is BVC (Bit Vector with Compression). In this method the complete
validity information is attached to a data item value. This means that the complete set of cells
(locations) in which this data is valid is stored in the cache. The BV (bit vector) for a single item has
the same length as the amount of cells available in the cache. When the value for a single cell is “1”
this means that the data item is valid for that specific cell. The validity checking algorithm for this
works as follows: whenever the value of a data item is required for a location-dependent validation,
the client will listen to the broadcast for the current cells, which use an ID and CID (cell ID). If it finds
that the data is valid for the CIDth bit then the data can be used, otherwise the data is deemed

-25-

invalid. The downside to this method is that it can cause a lot of overhead when a lot of data is
present, since for each data element a new BV has to be created, which is as long as the amount of
cells available even if that data item would only be valid for a single cell.

The second method is called GBVC (Grouped Bit Vector with Compression), which is an extended
version of the first method to reduce the overhead. It does this by only keeping track of some of the
validity information for some of the adjacent cells. The reason for this is that a mobile client in most
cases will remain in the same cell (location) or the cells adjacent to it. And even if the client moves
away it will take some time, so that the data probably has been invalidated automatically already by
the server. Compared to the previous scheme, the GBVC scheme divides the whole geographic area
into disjoint districts and all the cells within a district form a group. Now a CID does not only consist
of a Cell ID, but also contains the Group ID this cell is part of. Therefore, information can now be
stored in a vector which combines a group, with a BV containing all the cells inside of that group. This
makes it so that the overhead for scope information is reduced compared to the BVC method. In this
case the validity can first compare the group ID with the one associated with the data cache, before
having to check specific data inside of the group. The downside to this method is that the group size
matters, if the group gets to big the overhead for maintaining validity information is still very
significant. While if it is too small, the chance of marking a valid data value as invalid is big, if it is
outside of its original group.

The third and final method is ISI (Implicit Scope Information). Compared to the previous two
methods which are both very simple, but might require a lot of bandwidth and cache memory to be
used to store this information and perform the required validity checks, ISI attempts to reduce the
size of the validity information, but also increases the complexity of the validation process. For this
method the server enumerates the scope distribution of all items and numbers them sequentially,
while the valid scopes within a scope distribution are also numbered sequentially. Now for each item
the Scope Distribution Number and Scope Number within this distribution is stored, so that the
information stored can be smaller than the previously mentioned methods, since only valid locations
are store, as compared to the previous where invalid locations are also stored.

3.3.4 Cache Replacement policies

Cache replacement policies base themselves on the associated location of data to determine the
least useful unit (a victim) in a cache, which can then be discarded when room has to be made for
new cache units. Two important examples of such locality are temporal locality and spatial locality.
Temporal locality is the property that items which have been referenced recently are likely to be
referenced again in the near future. Examples of this are LRU (Least Recently Used), where the least
recently used cache units are deemed to be the least useful ones, and MRU (Most Recently Used) in
which the most recently used units deemed to be the least useful ones. Spatial locality is the
property that if an item has been referenced, other items that are physically located nearby in
storage (or memory) are also likely to be referenced.

In [36] two cache replacement policies are described, where the first one’s replacement value is
based on the recency of use and in the second the replacement value is based on a distance function.
The first cache replacement policy allows already existing replacement policies such as LRU and MRU
to be used. To achieve this, when joining semantic regions, the region with the least value will have

-26 -

to shrink when joined together with another region, which can be seen in figure 8. The second
replacement policy uses a semantic distance, based on the Manhattan distance. The Manhattan
distance is the “block distance” between the “center of gravity” of a region and the “center of
gravity” of the most recent query, the lower the distance the closer the results of this region are
linked to the specified query (e.g. two queries which require information about the same location on
a map, these two queries would be linked closer to each other than two queries which are far apart).
Thus regions with a value close to 0 are most important and are thus less likely to be discarded when
free space is required. An example of this is figure 9, in which after executing the third query, Q2 has
the biggest negative value. This means that when executing the next query, this query result has the
most chance of getting removed (since it has the greatest distance to the most recently issued
query).

Fig. 9. Negative Manhattan distance between semantic regions and a query.

In this thesis the LRU policy is used, this is because of two reasons: 1) since results from queries
which were added the longest time ago are the least useful for the execution of newer queries, 2) for
simplicity.

-27 -

Chapter 4. Query Pipelining

The purpose of this thesis is to investigate how the query mechanism can be improved, for use in the
query service and the notification service. The first step in achieving this goal is to realize a query
pipeline, which takes advantage of the fact that a Notification Service query mostly exists out of two
sub queries that can be executed separately. The first being a query that always has to be executed
on a given source, the second being a query that has to be executed on all the sources encountered
before. This allows us to construct a mechanism that can take advantage of the fact that if the first
qguery has no results, the second query does not have to be executed. Additionally, the results of the
second query can be cached more effectively (query caching is elaborated in chapter 5). The general
flow for this query pipeline is as follows:

Construct Execute sub loin sub
— —
yes sub query 2 query 2 query results
e Analyze query and Construct Execute sub ,/fesult?“\ ' ‘\
| query ——> N e g o 10 { result)
A J extract sub queries sub query 1 query 1 \j\ound [e S
‘\-_//

This chapter explains how the query pipeline works. First we explain two mechanisms for
determining these two query parts. After that we explain two strategies which can be used to
construct these two new queries. Finally, we discuss a way to join these results, forming the same
result sets one would receive when executing the query as a whole.

4.1 Query analysis

As mentioned before a query can be split up into two smaller queries, each having their own
purpose. To form these two queries, the Notification Service query first needs to be analyzed in order
to distinguish the three main parts of the query. An example of such a query can be found below.
This query checks whether the newly encountered source contains information about a
“region:shop” and calls this the eventEntity, based on this eventEntity it wants to know about all the
sources it encountered before, which have something in common and that the user has visited in the
a certain time frame up till now. First it needs to know what the query triggers are (e.g. a SCOUT
eventEntity, a user), secondly it needs to know what the main parts for the first query are, and finally
it needs to know what the final query has to contain. Next to these parts we also need to know what
the shared variables are between the triple patterns. These shared variables can then be used for
integrating the results in the final step.

SELECT ?shop ?item

WHERE

{
?user rdf:type em:User .
?shop rdf:type scout:eventEntity .
?shop rdf:type region:shop
?shop shop:sells ?item .
?item shop:relatedTo ?concept .
?user scout:wasNearby ?prevEntity .
?prevEntity scout:nearbyFrom ?time .
FILTER ([now] - ?time < 172800)
?prevEntity shop:relatedTo ?concept .

SPARQL Query 5. Example query for analysis.
After performing the query analysis, we should be able to detect the following parts.

-28 -

?user rdf:type em:User .
?shop rdf:type scout:eventEntity .

SPARQL Query 6. Example query analysis: triggers

?shop rdf:type region:shop
?shop shop:sells ?item .
?item shop:relatedTo ?concept .

SPARQL Query 7. Example query analysis: query part 1

?user scout:wasNearby ?prevEntity .
?prevEntity scout:nearbyFrom ?time .
FILTER ([now] - ?time < 172800)
?prevEntity shop:relatedTo ?concept .

SPARQL Query 8. Example query analysis: query part 2

To achieve this, two analysis mechanisms were created. The first one is automatic, meant for queries
such as the one mentioned above; the second is a manual approach where hints have to be added to
a query.

4.1.1 Automatic query analysis

The main idea behind the automatic query analysis approach is really simple; first we detect which of
the query triple patterns belong to the trigger parts (see before). Once this is known, this information
can be used to detect the first query part. After the first part has been detected, we can detect the
second query part.

The automatic analysis assumes that the triple patterns present in the query are ordered in a certain
way. For instance, it is assumed that the first two triples constitute the trigger part. Any triple that is
linked to the resource of type “eventEntity” are considered to be part of the first query. Finally any
triple not part of the trigger or first query are considered to make up the second query part.
However, there are some issues that might arise, related to the ordering of the triples. If the triples
are organized such as in the query example above where each part is followed by the next part, no
problems exist. But there might be queries where the ordering of these parts is different, or triples
from the different parts are mixed. An example of this can be found in the following query, where
the ordering of the triples where the two query parts are mixed.

SELECT ?shop ?item

WHERE

{
?user rdf:type em:User .
?shop rdf:type scout:eventEntity .
?shop rdf:type region:shop
?item shop:relatedTo ?concept .
?prevEntity shop:relatedTo ?concept .
?shop shop:sells ?item .
?user scout:wasNearby ?prevEntity .
?prevEntity scout:nearbyFrom ?time .
FILTER ([now] - ?time < 172800)

}

SPARQL Query 9. Example query with wrong order.

Since this issue prevents a fully automated solution from being applied in practice, rules have to be
created which the query author must follow. This is discussed in the next subsection.

-29-

4.1.2 Query analysis using named graphs

As mentioned in the previous subsection, the author must follow some rules to make the query
analysis behave accurately in every situation. More specifically, the author is required to employ
named graphs in the query, in order to manually designate the different parts. Named Graphs is the
idea that having multiple RDF graphs in a single document/repository and naming them with URIs
provides useful additional functionality build on top of RDF. In our case it is used to specify which
parts of the query belong to the triggers, which parts of the query belong to the first query part and
which belong to the second query part. The following query is the same query as SPARQL Query 5,
but wuses named graphs. In this example, three named graphs are used
(“http://wise.vub.ac.be/querypart/triggers/”, “http://wise.vub.ac.be/querypart/part1/” and
“http://wise.vub.ac.be/querypart/part2/”), each denoting the different query parts.

SELECT ?shop ?item
FROM NAMED <http://wise.vub.ac.be/querypart/triggers/>
FROM NAMED <http://wise.vub.ac.be/querypart/partl/>
FROM NAMED <http://wise.vub.ac.be/querypart/part2/>
WHERE
{
GRAPH <http://wise.vub.ac.be/querypart/triggers/>
{
?user rdf:type em:User .
?shop rdf:type scout:eventEntity .
}
GRAPH <http://wise.vub.ac.be/querypart/part1/>
{
?shop rdf:type region:shop .
?shop shop:sells ?item .
?item shop:relatedTo ?concept .
}
GRAPH <http://wise.vub.ac.be/querypart/part2/>
{
?user scout:wasNearby ?prevEntity .
?prevEntity scout:nearbyFrom ?time .
FILTER ([now] - ?time < 172800)
?prevEntity shop:relatedTo ?concept .

SPARQL Query 10. Example query using named graphs.

It can be noted that this notation makes the query larger and more cumbersome to write; we could
just as well rely on the author the order the triples in such a way that no problems arise. However,
we feel this designation of triple patterns to query parts is more useful, as it makes the assignment
more explicit, thus reducing the chance for errors.

4.2 Constructing the queries

Once the relevant parts of query are extracted (by means of the query analysis mentioned before),
we need a way to create the two distinct queries, the first being the query that has to be executed on
the encountered source (corresponding to the first query part), the second being the query that has
to be executed on Environment Model (corresponding to the second query part).

To achieve this, two strategies (i.e. join and injection) are investigated, each with their own
advantages and disadvantages.

-30-

4.2.1 Join strategy
The join strategy is the simpler of the two strategies. It constructs the two queries “as is”, not taking
into account the results of the other query. The two queries below are an example of this strategy.

SELECT ?shop ?item
WHERE
{
?user rdf:type em:User .
?shop rdf:type scout:eventEntity .
?shop rdf:type region:shop
?shop shop:sells ?item .
?item shop:relatedTo ?concept .

}

SPARQL Query 11. Example of query 1 after construction.

SELECT ?shop ?item

WHERE

{
?user rdf:type em:User .
?prevEntity shop:relatedTo ?concept .
?user scout:wasNearby ?prevEntity .
?prevEntity scout:nearbyFrom ?time .
FILTER ([now] - ?time < 172800)

K

SPARQL Query 12. Example of query 2 after construction.

The advantage of this is that the second query, which is executed on the Environment Model,
contains all the results related to this query, and not only the ones related to the results of the first
query. This can be useful for caching, since the more general result can be reused for more queries,
this is discussed in the next chapter. But the downside is that the results of both queries need to be
combined afterwards, and more resources have to be used in the execution of the query. The extra
resource usage comes from the extra results that have to be checked and combines, which requires
more cpu usage and memory.

4.2.2 Injection strategy

Since the previous strategy might be inefficient, a second strategy has been investigated which takes
advantage of the fact that the first query is always executed first. Consequently its results will be
available by the time the second query has to be executed. More specifically, a filter, based on the
shared variables in both sub queries, is added to the second sub query, so only results relevant to the
results found for the first query are returned. This should reduce resource usage in the query
execution (in case the number of results for the first query is limited), and avoids having to combine
the results of both parts afterwards (or at least reduce the time and memory needed to combine
these results). However, a major downside to this approach is that it reduces the amount of other
gueries where this result can be used in, making it so that results can be reused in fewer situations if
caching gets introduced. An example of the second sub query in this case can be found below
(SPARQL Query 13; the first sub query remains the same as before). Generally, it looks the same as
the query shown in SPARQL Query 12; apart from an extra filter, which takes into account the results
from the first sub query.

-31-

SELECT ?entity ?item

WHERE

{
?user rdf:type em:User .
?prevEntity shop:relatedTo ?concept .
?user scout:wasNearby ?prevEntity .
?prevEntity scout:nearbyFrom ?time .
FILTER ([now] - ?time < 172800)
FILTER((regex(str(?concept) , “*http://example.com/concept1S$”)) | | (regex(str(?concept),
“Ahttp://example.com/concept2S”)))

}

SPARQL Query 13. Example of sub query 2 after injection.

4.3 Joining the results

The final method used in the query pipeline is the one used to join results from both queries. This
method is simple and falls back into two cases. The first case occurs when the two queries have
shared variables, the second when they have no shared variables. Since a given query might not
always contain the shared variables in its SELECT variables, all variables are added to the SELECT
clause in the two generated queries. This is done to enable the joining of the results on the values of
the shared variables afterwards, and to allow more queries to be able to reuse the results when
caching gets introduced in the next chapter.

In the first case, every row from the first result needs to be joined with every row from the second
result, based on the values of the shared variables. An example of this can be found in result Table 3,
where the results found in Table 1 and Table 2 are joined. As can be seen in the example, since the
“http://example.com/concept2” value of the “?concept” shared variable in the first query result is
not contained in the second result, this concept does not appear in the final result.

?shop ?item ?concept ?user
http://example.com/shopl http://example.com/item1 http://example.com/conceptl Scout:user
http://example.com/shopl http://example.com/item2 http://example.com/conceptZ Scout:user
http://example.com/shopl http://example.com/item2 http://example.com/conceptl Scout:user
http://example.com/shopl http://example.com/item3 http://example.com/concept3 Scout:user
http://example.com/shopl http://example.com/item3 http://example.com/conceptl Scout:user
Table 1. Example output SPARQL Query 11.

?concept ?prevEntity ?user ?time
http://example.com/conceptl http://example.com/item22 Scout:user 500
http://example.com/concept3 http://example.com/item33 Scout:user 550

Table 2. Example output SPARQL Query 12.

?shop ?item ?concept ?prevEntity ?user ?time
http://example.com/shopl http://example.com/item1 http://example.com/conceptl http://example.com/item22 Scout:user 500
http://example.com/shopl http://example.com/item2 http://example.com/conceptl http://example.com/item22 Scout:user 500
http://example.com/shopl http://example.com/item3 http://example.com/conceptl http://example.com/item33 Scout:user 500
http://example.com/shopl http://example.com/item3 http://example.com/concept3 http://example.com/item33 Scout:user 550

Table 3. Example output SPARQL Query 11 and 12 after joining.

The second case is simpler, and occurs where there are no shared variables between the two query
results. This means that every result row from the first query needs to be combined with every
results row from the second query (resulting in a Cartesian product). An example of these results,
when not taking into account that “?concept” and “?user” are shared variables, can be seen in Table
4,

-32-

?shop

?item

?concept

?prevEntity

?user

?time

http://example.com/shopl

http://example.com/item1

http://example.com/conceptl

http://example.com/item22

Scout:user

500

http://example.com/shopl

http://example.com/item2

http://example.com/concept2

http://example.com/item22

Scout:user

500

http://example.com/shopl

http://example.com/item2

http://example.com/conceptl

http://example.com/item22

Scout:user

500

http://example.com/shopl

http://example.com/item3

http://example.com/concept3

http://example.com/item22

Scout:user

500

http://example.com/shopl

http://example.com/item3

http://example.com/conceptl

http://example.com/item22

Scout:user

500

http://example.com/shopl

http://example.com/item1

http://example.com/conceptl

http://example.com/item33

Scout:user

550

http://example.com/shopl

http://example.com/item2

http://example.com/concept2

http://example.com/item33

Scout:user

550

http://example.com/shopl

http://example.com/item2

http://example.com/conceptl

http://example.com/item33

Scout:user

550

http://example.com/shop1

http://example.com/item3

http://example.com/concept3

http://example.com/item33

Scout:user

550

http://example.com/shopl

http://example.com/item3

http://example.com/conceptl

http://example.com/item33

Scout:user

550

Table 4. Example query result after joining with no shared variables.

-33-

Chapter 5. Cache

As mentioned before, one of the purposes of this thesis is to investigate how the query mechanism,
which is used in the Query Service and Notification Service, can be improved. Chapter 4 discussed the
first step in achieving this goal, by introducing a query pipeline for Notification Service queries and
explaining how it can improve the query execution performance for that. This chapter explains the
second step, namely query caching. The caching of Notification Service query results is made possible
by caching only the second part of the query (which is executed on the Environment Model, i.e.
previously encountered sources). Because of this, these results have a high chance of being used
across multiple queries. In contrast caching the results of a full query would have no use, since the
first part has to be executed on the newly encountered source so that the query would have to be
executed again completely (i.e. part 1 and part 2) and would nullify the use of the cache. The general
flow for the query execution mechanism:

Execute

No———»
query

Ay
~ ~Query Retrieve —_—
/ \ Construct C h with ™ \
\ query /»—» uzir“ r:a h ex?sr:::areut::ie;:iir::e :che — match >——VYes—» results from 3 “(result \
ke et o “found?” the cache - ~
o

First, query caching is explained, what it does and how it can help. Secondly, a graph construction
mechanism is explained, after which a way to compare two graphs from different queries will be
discussed. Finally, we elaborate on the employed caching eviction strategy.

5.1 Query caching

As mentioned before in section 3.3.1, there are four main caching strategies that can be used on
mobile devices. The first being source caching, followed by page caching, tuple caching and query
caching (Semantic caching). This section will explain what these four caching strategies do and how
guery caching can be used to improve performance.

In this thesis we only discuss query caching, which will be used on the sub queries created by the
pipeline in the previous chapter. Since the results of these sub queries have higher chance of being
reused in other queries, then the results of a full query. Currently, some of the more advanced
features (i.e. retrieving the remaining results for a given sub query) are not needed yet, leaving these
open for future work, which is discussed in chapter 8. The following sections will discuss our
implementation of this query caching, starting with the construction of query graphs, how to
compare them and finally how the actual caching strategy is formed.

5.2 Query graph construction

In order to reuse query results from previous queries, we need to know whether the current query
corresponds to the one of the caches queries. A first step in this mechanism is to create a high-level
representation of the query in the form of a graph. Such a query graph encodes the underlying graph
structure of the SPARQL query, and allows us to deal with so-called syntactic variants of queries (e.g.
queries that are structurally the same but use different variables names, or use a different ordering
for the triple patters).

-34-

Since the underlying structure of a SPARQL query already is a graph structure, converting such a
query to a graph that can be used programmatically is fairly simple. For each unique subject and
object available in a query, a node is created together with some meta-information (such as a name
and a type), and the predicates found in the query are used as edges between these nodes.

This thesis also investigates semantic relations, such as inverse relations (since a query using inverse
relations could end up returning the same results as a query using normal relationships), in order to
improve the graph comparison process. This allows us to deal with queries that use different
predicates denoting the same concept (for instance, predicates that are the inverse of eachother),
and therefore yield the same results. In order to deal with inverse relations, we decided to create a
graph that, apart from the “regular” predicates between a node A and a node B, also contains the
corresponding inverse predicates between node B and node A. This way a query can be compared to
both a query using the same relations and a query using inverse relations, which are retrieved from a
helper class (currently only inverse relationships which are added manually can be used, but future
work can extend this class to allow automatic retrieval using the RDFS definition of these relations).
An example of such a query graph can be seen in figure 12, which is a graph representation for
SPARQL Query 11. The black edges represent the edges which are defined in the query, while the
orange edges are the inverse edges which have been added for better comparison.

df:type
scout;eventEntity
rdf:typeOf

shop:soldBy

hop:sells

5
5 5
u 2
Fuser o o
< &
o m
“ 0 S
-5 region:shop £ o
o
- [¢
= =
2 7
= r
fI © Pconcept

em:User

0

Fig. 10. Example query graph 1.

5.3 Query graph comparison

To know whether a cached query result can be re-used for a given query, the query graph associated
with the cached result and the given query graph need to be compared. In case there is an exact
match between the two query graphs, or the given query is a subgraph of the cached query graph,
the cached query result may be re-used. This section states the conditions or rules to which both
query results must adhere, before the cached query results can be re-used to answer the given query
(graph A represents the new query being executed, and graph B is the query stored in the cache):

e The two graphs need to contain the same amount of nodes and edges. If graph B would
contain more nodes or edges, this would mean that there are more restrictions in place, and
the result set would be smaller than the one otherwise generated by graph A. On the other
hand, if graph B would contain less nodes or edges, this would mean that there are less

-35-

restrictions, causing the result set to be bigger than the one otherwise created by graph A.
Although a result that is bigger might contain the results for graph A, which can be filtered
out, not enough information is stored in graph B to allow this filtering to occur. Future work
can be used to improve this and is discussed in chapter 8.

For every node in graph A, there has to be a node available in graph B that has the same
relationships (or predicates). If a node cannot be found in graph B that is a proper match for
a node in graph A, this means that there is at least one node that contains more restrictions.
Because of the previous rule this is not allowed, so that the two graphs are not the same.
While the number of nodes and edges of graph A and B need to be the same, graph A is still
allowed to be a (query) subgraph of graph B. This can for instance occur when graph A
contains a node A1, which is for instance a Literal (type), and graph B contains node B1 but is
a variable (type), while both node Al and B1 are in the same relative “position” and contain
the same inbound and outbound edges. In this case the results for query graph A are
contained within the results of B. At the same time, the required information is present in
the results of B to filter out the results in order to obtain the results for A; since the node B1
is a variable, it will most certainly include the Literal which is represented by node Al. A
downside to this, which can be grounds for future work, is that there might be too many
results available in B, making the filtering process expensive. Note that B may not be a
subgraph of A (i.e. the other way around); because of the extra restrictions in graph B some
of the results for query graph A would be discarded. This also applies to subclasses and sub
properties, which might be part of graph A, which can be retrieved from the same helper
class mentioned in section 5.2, the same can be said for edges, which might also be variables
in some queries.

In case a cached query graph B and a given query graph A comply with the above rules, the cached
query results can be reused to serve the given query. In figure 13, an example of two such graphs can
be found, the one on the left is the same as seen in figure 12, which is based on SPARQL Query 11.
On the right we see the same graph, where one of the triples has been altered (“?shop shop:sells

?item .” was replaced by “?item shop:soldBy ?shop .”)

df:type shop:soldBy df:type hop:soldBy-
scout:eventEntity ?shop Titem scout:eventEntity ?shop titem
rdf:typeOf hop:sells: rdf:typeOf: shop:sells
;
region:shop

4p.

«—adA)

em:User em:User

Of

rdf:type

3P4
$pd

doys
doys

df:type
adhy
df type
adAy

region:shop

(=9
T
=
=z
=1
?concept rI

f

(o]
-4—shop:relatedT
olpaiejas

rdf:type

«—shop:relatedT
olpaiejal

?concept

J

Fig. 11. Example of identical query graphs.

Apart from triples which form the basis for the comparison mentioned above, there are also
advanced forms of nodes, such as the FILTER clause available in many SPARQL Queries. These
advanced forms aren’t discussed in this thesis, and are further explained in chapter 8 (Future Work).

5.3.1 Graph traversal
This section will describe the graph traversal algorithm used to compare two graphs. First pseudo

code is given, which is explained afterwards in the following paragraphs.

-36 -

O Jo Ul WwN

AT T RO UGS B®DSDDDELAENEDNEDNWWWWWWWWWWWNNNNROMNOMNNONNNNR R PP R R R R PR
WNFRPOOWDAINTNEWNRFRFOWOWOJANTBEWNHOWOOJdJANTNWNROWW-JNUB®WNROW®-JoN U™ WN R O

FOR all nodes NA in graph A

IF CALL findPathFromNode with NA == false THEN
RETURN -1
END
ENDFOR
RETURN 0

findPathFromNode: (IN: node NA; OUT: true or false)
IF NA is already mapped to a node in graph B THEN
RETURN true

ELSE
FOR all nodes NB in graph B
IF CALL traverse with NA, NB == true THEN
RETURN true
END
ENDFOR
RETURN false
END

traverse: (IN: node NA, NB, PNA, PNB; OUT: true or false)
IF NA == PNA THEN
IF NB == PNB THEN
RETURN true
ELSE
RETURN false
END
END
IF NA already found, but not processed THEN
RETURN true

END
IF NA is already mapped to a node in graph B THEN
IF this node == NB THEN
RETURN true
ELSE
RETURN false
END
END
IF #edges (NA) == #edges (NB) THEN
IF NB not mapped to a node in graph A THEN
IF NA similar to NB THEN
IF CALL compare edges with edges(NA), edges(NB), NA,
NB == true THEN
MAP NA to NB
RETURN true
END
END
END
END

RETURN false

compare edges: (IN: edges(NA), edges(NB), NA, NB; OUT: true or false)
FOR all edges EA in edges (NA)
FOR all edges EB in edges (NB)
IF EA is similar to NB THEN
IF CALL traverse with to node from EA, to node from
EB, NA, NB == true)
RETURN true
END
END
ENDFOR
ENDFOR
RETURN false

The comparison of two query graphs happens as follows. For two graphs A and B, we check whether

A is the same graph as B or A is a sub graph of B. This is done by trying to map every node in A to a

-37 -

node in B. First some checks are done to see if graph B is bigger or smaller than graph A (i.e. does not
have the same amount of nodes or edges); if it does the comparison stops right away, since the rules
mentioned before say that this is not allowed; if it does not we continue with the algorithm
mentioned in the pseudo code above.

First, we start by traversing every node (NA) in graph A. For each of these nodes we try to find a node
(NB) in graph B, by calling the findPathFromNode procedure. This procedure will first check if we
have not found a mapping for this node yet, while we were checking a previous node; if there is a
mapping already, we can stop right away and continue with the next node in A; if there is no
mapping yet we continue by traversing over every node (NB) in graph B. For each of these nodes, we
call traverse, which takes a source node and a target node and compares these with each other. In
this procedure, we first check if there is no self-loop, by checking if the current node NA is not the
same as the previous NA node called PNA,; if it is, we compare NB with its previous node PNB. If this
also contains a self-loop then we found our node, otherwise we did not find a match. If NA is not the
same as PNA we continue by checking if we are already processing node NA, to prevent loops from
occurring. If we are already processing this node, we stop and return true. If we are not, we continue
by checking if NA is already mapped to a node in graph B. If NA is mapped to a node in graph B, we
check if this node is NB and return true in case they are the same, otherwise we return false and
continue by checking the next node in B.

Once we know that NA is not being processed yet and that it has no existing mapping to a node in B,
we continue by checking if NA and NB have the same amount of edges. If they do not we return false
and continue with the next node available in B. If they do we continue by checking of NB is not
mapped to a node in A yet. If it is we return false and continue with the next node in B. If it is not, we
check if NA and NB are similar (e.g. NA and NB are both variables, NA is a literal and NB is a variable,
NA and NB are both literals and have the same contents). If they are not similar we return false and
continue with the next node in graph B. If they are similar we continue by comparing their edges in
the procedure compare_edges. Compare_edges will try to match each edge starting from node NA to
an edge starting from node NB and does this by checking if the two edges are similar, after which it
continues by comparing the two “to nodes” using the traverse procedure again. If compare_edges
returns true, we have found a match after which we map NB to NA and return true, thus saying we
have found a match for this node.

Once we have found a match for each node in graph A to a node in graph B, we can say that these
two graphs are similar.

5.4 Eviction Strategy

The previous sections discussed which type of data is cached, and how queries can be compared.
This section discusses the eviction strategy chosen to decide what elements are allowed to remain in
the cache and which should be removed when extra space is required. A couple of existing, and
commonly used, eviction strategies were previously mentioned in chapter 2. These eviction
strategies where First In First Out (FIFO), Least Recently Used (LRU) and Least Frequently Used (LFU),
and the use of any of these three depends on the expected access pattern.

Since the order queries are executed in the SCOUT framework is not predetermined, but queries can
be executed in any given order, based on the information the user needs and at any given tim, when
the user needs certain information. The First In First Out eviction strategy can be ruled out being a

-38 -

suitable strategy, since whenever room is needed the “oldest” query result (i.e. the first one to be
executed) would be removed, even if this query might be executed more than any of the other
queries.

Both Least Recently Used (LRU) and Least Frequently Used (LFU) could be suitable approaches.
However, since LFU requires a certain overhead to store the amount of times a certain query has
been used, LRU which has a minimal overhead and is a fast algorithm, is used. Another reason for
this choice is that there already exists an implementation of this strategy in the SCOUT framework.

To prevent unused data from using up memory, the SCOUT framework LRU implementation is
optimized to remove cache elements that have not been used for a certain amount of time. So cache
elements which are out of date, are already removed before new elements get added, allowing the
search process to be improved, since there are less elements available in the cache. To achieve this, a
timestamp is stored for each element containing the time the element was last accessed in the
cache.

The following subsections explain the various operations that have to be performed by the cache,
such as adding an element, updating an existing element and requesting an element from the cache.
Since our cache contains query results, and we want to be able to compare the query associated with
every query result to a given query, this query is used as key for its associated query result.

5.4.1 Add an element to the cache

In order to free up space before trying to add an element to the cache, the optimization mentioned
before, which uses a timestamp for each elements, will remove any elements out of the cache which
have expired (meaning they have not been used in a certain time), which speeds up the lookup
process when an element has to be found, since fewer queries have to be compared.

Before an element can be added to the cache, three conditions are checked. The first condition
checks whether the cache already contains this key, by using graph comparison; if it does the update
method is called instead to prevent adding the same element multiple times. Afterwards, the second
condition will check if the element fits into the cache to prevent removing (useful) information when
it is not needed (since the new element will not fit in the cache even after removing elements). And
finally, the third condition checks whether there is enough room available in the cache for the new
element; if there is not enough room, our eviction strategy is used to evict the Least Recently Used
elements. Once enough space is made available the element is added to the cache, and receives a
timestamp.

5.4.2 Update an element in the cache

Whenever a new source is detected, the Source Index Model will be used to check whether this
source contains relevant information for any of the queries available in the cache. If it does, the
entire query will be executed again on the Environment Model (i.e. all relevant encountered sources)
and the result in will be updated in the cache using the workflow mentioned in the following
paragraph.

The workflow of updating an element in the cache is similar to the one mentioned in the previous
subsection (i.e. when adding elements to the cache). First, the optimization mentioned before will
remove any elements from of the cache which have not been used for a long time. Note that it is
possible that, during this process, the element, that was about to be updated, is removed. In that

-39-

case, the element will not be re-added to the cache, since as mentioned before, the timestamp on an
element is only updated when adding it to the cache, or when an element is requested.

Before we can update an element in the cache, the three conditions mentioned above are checked.
The first condition, which checks whether an element is still available in the cache, is used to
determine if the element is still available to be updated. The second condition is used to check
whether the element is larger than the allowed cache size; if not, the existing element is updated,;
else, the element is removed from the cache, since its new size would exceed the max cache size.
And finally, the third condition checks whether there is enough room left in the cache, and otherwise
uses our eviction strategy to remove less Least Recently Used element(s). Because of this, it might
happen that there still is not enough room available for this element to be updated.

5.4.3 Find an element in the cache

As opposed to the previously mentioned operations, our optimization of removing “unused” data is
not performed when looking for an element in the cache. This step is not done, because the content
of the cache is not changed during this operation and no room has to be made for adding or updating
an element. This allows the search process to be optimized, at the cost of the add and update
operations being slower. If the element is found, then its timestamp is updated to make it the most
recently used element.

-40-

Chapter 6. Implementation

Two mechanisms are developed: 1) a query pipeline mechanism, and 2) a query caching mechanism
to optimize the query resolving, and reduce the amount of information that has to be downloaded
when queries are posed to the Environment Model.

This chapter explains the concrete implementation of these mechanisms in detail. First, an overall
view of the implementation is given describing how these two mechanisms can be used in
combination to achieve efficient query resolving in the Query and Notification Service. Next, the rest
of the sections describe each component in detail. Section 6.2 discusses query pipelining using the
two methods mentioned before, namely the join and injection strategy. Section 6.3 discusses how
queries are compared, while section 6.4 discusses how the caching mechanism works.

6.1 Overview

Previously, whenever the Notification Service had to execute a query after encountering a new
source, this query had to be executed as a whole on both the encountered source as well as the
Environment Model. This thesis investigates how notification service queries can be constructed and
executed in such a way that the execution performance is increased and results can be cached more
efficiently. Furthermore, the efficient caching of the results of pattern-matching queries (e.g. such as
SPARQL) is investigated.

The first step of the proposed approach is splitting up Notification Service queries into two sub
gueries which can be fired separately on either the encountered source or the Environment Model.
One of those sub queries is the part specific for the given source, the other sub query is the part
which has to be executed on previously encountered sources (or Environment Model). The purpose
of this is adding support for the caching of the second query part, since this sub query has more
chance of being reused in other queries, or being executed multiple times in a short period of time.
Whenever the first sub query has no results, the second (more expensive query) does not have to be
executed anymore, making sure no valuable resources are spent.

As a second step, an efficient query caching technique is proposed in which SPARQL query results
from the Environment Model (which runs the query on previously encountered sources) can be
stored and possibly updated if new sources are encountered.

When taking into account the layered architecture of the SCOUT framework, this thesis mainly
focuses on the Environment Layer, more specifically the Query and Notification Service components.

The following subsections explains how these two mechanisms can be integrated into the SCOUT
framework and how they can work together to improve performance.

6.1.1 Integration in the SCOUT framework

As mentioned before, the Environment layer stores and integrates data about the user and his
current environment and provides services to obtain information from nearby Web presences. The
two major contributors to this are the query service and the notification service which provides the
applications a way to 1) query for information about the user and his environment and 2) receive
notifications about certain events based conditions encapsulated as queries. Since both of these
services thus heavily rely on queries to be executed, improving this system to use cached query
results, where possible, can lead to an improved performance of the system.

-41 -

In most cases, queries executed by the Notification Service, consist of two parts. The first part has to
be executed on the encountered source every time, while the second part has to be executed on
previously encountered sources. Therefore, a system can be created which identifies these parts and
then executes them using a query pipeline. This means that we can first execute the first part on the
encountered source and if this provides results, execute the second part (e.g. by injecting results
from the first part into the query for the second). To further improve the performance of this system,
the results of the second sub query can be cached using the aforementioned caching mechanism,
which must then be kept up to date when new sources are encountered.

6.1.2 Encountering a new source

In a mobile environment, which the SCOUT framework was created for, the context and environment
are constantly changing, encountering new sources which can be used to provide more information
about the environment to applications running on top of the framework.

When encountering a new source, RDF information is provided to both the Environment Model and
the Relation Model. The Environment Model then sends a notification to the Source Index Model,
which is used to extract information about the resources available in a source and builds an index.
Later on this index can be used to determine which sources provide relevant information for a given
query, its cache and the Query Result Cache, that together with the help of the Source Index Model
updates the results in the cache if this new sources provides relevant information. An example of this
can be seen in figure 10.

Provides RDF information

Newly encountered - Main Entity

SOUFCe

RN
™
™,

e
Motifies a new source is encountered

“\

Y
/ A
Y

Emvironment Model

Relation Madel

P
e \
- -,
P
- \\\
d .
// Natifies a new sources is \\
S encountered \\
",
P
// \\\
P -,
// \\
F 3 ¥ Y
Source Index Model SIM cache Ouery Result Cache

Fig. 12.Notification system of newly encountered sources.

6.1.3 Executing a query

Whenever a query has to be executed by the Notification Service, the system checks whether it can
detect the two query parts. If both query parts are detected the Notification Service executes the
first part of the query; subsequently, it can either retrieve results for the second part out of the

-42 -

cache, or it executes the second part on the Environment Model (and then adds this result to the
cache). A simple example of this can be seen in figure 11.

Execute gueny Execute Query

Query Service Motification Service

Y
F Y

Input Cuery

Retrieve relevant p v Retrieve cached result
SOWRCES o
/‘{/
e
-
.
-
510 Ouery Result Cache

Fig. 13. Simple Query Execution Example

6.2 Query Pipeline

A first step to optimize query execution in the Notification Service is to provide a query pipeline
mechanism, which is able to extract distinct sub queries out of a given query. These sub queries can
then be executed separately, reducing resource usage where possible. In a second step, they allow
the introduction of the second query optimization in the Notification Service, namely the query
caching mechanism (see section 6.4).

More specifically, this pipelining mechanism allows us to discard the execution of the second sub
query if the first one did not provide any results, and so reducing the amount of information that has
to be downloaded. Chapter 4 explained the concept of this query pipeline, first by explaining two
strategies used for analyzing a query and extracting the relevant information, after which two query
construction strategies were discussed. The first strategy, being the join strategy, executes both sub
queries as they were found in the original query, and the second strategy, being the injection
strategy, adds a filter to the second sub query based on the results from the first. At the end a
strategy was discussed, which is used to combine the results from the two sub queries, forming the
actual result of the original query. The following subsections discuss each of these mechanisms
separately, explaining how each strategy was implemented.

6.2.1 Splitting up the query

This section discusses the query analyzing mechanism used to extract the required query parts for
later query execution. Since the automatic query analysis strategy had some problems (as mentioned
in section 4.1.1.), only the implementation of the manual query analysis strategy is explained here.

The query analysis mechanism is a strategy that generates a QueryPartData model. This model can
then be used later on (see the next subsection) for constructing the two queries. To create this
QueryPartData model, a QueryPartComposer is employed which uses 1) the SPARQLParser class to
parse the query into an AST', and 2) an implementation of a query Visitor class, called the
QueryPartVisitor, to visit the construct AST and extract the required data from the query. Both of

'® Abstract Syntax Tree

-43-

these are classes from the SPARQL Engine for Java'’. The employed query analysis technique
depends on the concrete QueryPartVisitor subclass used by the QueryPartComposer. For instance,
the aforementioned manual query analysis strategy is implemented by the QueryPartVisitor2 class.
Figure 14 shows the class diagram for these components.

The QueryPartModel has seven methods which can be used to retrieve the relevant query
information.

e getSelectionVars: returns all the selections variables which are used in the given query.

e getTriggers: returns list of triggers (triple patterns) extracted from the given query.

e getPartl: returns a list of all elements available for use in the first sub query.

e getPart2: returns a list of all elements (e.g. triple patters, union clauses, filters) available for
use in the second sub query.

e getNameSpaces: returns a HashTable containing all the namespaces used in original query.

e getShared: returns a list of shared variables between the first and second sub query.

e isValid: returns whether or not the different query parts could be extracted from the given
query.

The QueryPartComposer has one method:

e getManual: based on a given query, this method applies the QueryPartVisitor2 associated
with the second query analysis strategy (i.e. the manual strategy).

The QueryPartVisitor is actually a subclass of the PrefixQueryVisitor class which is used to extract the
namespaces from the query and itself implements the basic Visitor class from the SPARQL Engine
library (this class was already available in the SCOUT framework). The QueryPartVisitor class inherits
all methods from this superclass, and additionally contains the same seven methods available in the
QueryPartData model, which are used by the QueryPartComposer to populate the QueryPartData
model (see QueryPartModel for more information).

Since a QueryPartVisitor contains various functions that are not used by our strategy, only the ones
implemented for use by our employed query analysis strategy (QueryPartVisitor2) are explained
here.

e visit(ASTFilterConstraint): extracts a FILTER node from the given query.

e visit(ASTTripleSet): extracts the triple patterns present in a query.

e visit(ASTGraph): determines which part the following nodes (i.e. visited after this method
invocations) belong to, based on the named graph visited in this method.

e visit(ASTUnionConstraint): detects UNION graphs in the query, and extracts the relevant
elements inside these unions. Note, although there is a visit method for triples, we can only
extract these here, since the triple pattern visit method is executed before this one, meaning
there is no way to link these triples to this UNION node.

Next to the methods inherited from the QueryPartVisitor, the following two methods are also
availabe:

Y http://sparql.sourceforge.net

-44 -

e AddNode: adds the node (i.e. triple pattern, FILTER, UNION clause) to the correct query part
(trigger, partl or part 2), based on the information provided by the named graph visited

before.

e ProcessNode: based on the given unboundStatement, extracts the object and subject data,

which are then stored, to be able to detect which of these variables are shared between the

two query parts.

SPARQLParser Query

== |nterface>
SPARQLParserVisitor

M
i
Fouse =
i

]
QueryPartComposear
-query | Query

Prefix QueryVisitor

-data2 | QueryPartData
+getManual() | QueryParData

QueryPartData
-selection_vars : List
-triggers : List
-part1_elements : List
-part2_elements : List
-shared_wars : List
-namespaces | Hashtable<String, String>
-isValid : boolean
+isValid() : boclean
+getSelectionVars() : List
+getTriggers() : List
+getParti{): List
+getPart2() List
+getNamespaces() : Hashtable<String, String=
+getShared|) : List

Fig. 14. Query Analysis Class Diagram.

Ja)

Default scouwisitnrﬁ

QueryPartVisitor

-selection : List
-triggers : List

-internal : List

-external : List

-isValid : boclean = true

+getSelectionVvars() : List
+getTriggers() : List
+getPart1(}: List
+getPart2(): List

+getShared() : List

+is\alid() | boclean

+getNamesSpaces() : Hashtable<String, String=

wisitinode : ASTSelectquery) : void

7

QueryPartVisitor

e S

6.2.2 Query Construction and execution
This subsection explains the two strategies used to create the new queries after the relevant parts

QueryPartVisitor2

4prefix_ud : String
#rigger_url : String
#part]_ud : String
4part?_ud : String

-part :int=0

-inUnion : boolean = false
-part1 : List

-part2 : List

-sharedlist ;| ArrayList

-addMode(node : Object) : void

+visit(nede : ASTFilterConstraint) : woid
-ProcessNode(node : Object, unboundStatement : String...
+visit(node : AST Triple Set) | woid

wvisit(node : ASTGraph): void

+visit{node : ASTUnionConstraint) : wid

have been extracted during the query analysis. Since the Query class available in SCOUT did not have

support for generating WHERE clauses, a small modification to this class was made. Furthermore, a

subclass of the Query class (called Query2) was added, to add support for adding separate query

elements, such as triple patters, UNION clauses, to a query. Another reason for this was the

dependency on the SPARQL Engine Library to be able to process these query elements, which is not

-45 -

needed for regular queries (i.e. using the Query class). Figure 15 shows the class diagram for this new
class.

The Query class now has one extra method:

o generateWhereClause: returns the WHERE clause for the query, which can be extended by
subclasses to generate their own WHERE clause.

The Query2 class keeps one field:

e nodes: a list containing the elements (generated by the Visitor from the SPARQL Engine
library) required to build the WHERE clause in this query.

Next to the methods inherited from the Query class, the following methods are provided:

e AddNodes: adds the elements found in a list (e.g. the list containing elements for part 1) to
the nodes list for later use in the query.

e AddNode: adds a single element to the query.

e generateStringForType: based on the type of element (triple pattern, UNION, ...), creates a
string representation for use in the WHERE clause.

Query Default class in SCOUT [N
#generateWhereClause() | String Only additions
I\
||
Query2
-nasdes ¢ List
m+addNodes(nodes : List) : void E

+addMode{node | Object) : void
+generatestring ForType(n | Object) | String

Fig. 15. Query2 Class Diagram.

6.2.2.1 Join Strategy

The join strategy makes use of two steps to construct and execute the required queries. Firstly, the
first sub query is constructed by creating an instance of Query2, providing it with the associated
namespaces, triggers and partl elements. After finishing the first sub query, the query is executed;
depending on the results of this query, the entire query process is stopped (no results found), or the
next step of the query pipeline is executed. This second step involves creating a second instance of
Query2, again providing it with the associated namespaces, triggers and part2 elements. Then the
second sub query is executed after which the results are joined (as explained in section 6.2.3). Note

-46-

that parallel execution of both queries is not supported. This is because, in our setting, we need to
avoid the execution of the second query as much as possible, depending on whether or not the first
query has any results (see section 6.1).

6.2.2.2 Injection Strategy

The injection strategy is fairly similar to the join strategy mentioned in the previous subsection.
Firstly, it creates the first sub query in the same way and executes it. Depending on whether the
results are available, the pipeline either stops or continues. The difference with the join strategy is
that the second query receives an extra element, namely a FILTER node, which is created based on
the values of the shared variables from the results of the first query. Then, the sub query is executed
and the results can be joined using the method described in subsection 6.2.3 to add the extra values
which might be returned in the first query, but are not part of the shared variables added to the
FILTER clause.

6.2.3 Joining the results

After having executed both sub queries, the results have to be joined together (see section 4.3). To
achieve this QueryloinResult was implemented, which specializes the SimpleQueryResult class.
Figure 16 shows the class diagram for this class.

QueryloinResult adds three methods to the ones inherited from SimpleQueryResult:

e Combine: used internally as a more optimized solution to combine the result sets of two
queries if no shared variables are present.

e Join: responsible for the combining of results in case shared variables are present. This
combining is based on the Hashloin algorithm. This algorithm uses the following steps to join
results: first, a HashMap is created for the smallest result set, which indexes on shared
variable values and keeps as values the lists sharing the same variable values. Secondly, the
largest result set is traversed, creating a hash based on the shared variable values and
checking whether this hash can be found in the HashMap. If a match is found, the results are
combined into one or more new result rows (implemented by QueryloinResult instances),
depending on the amount of rows found in the HashMap value list for that specific key.

o AddValueToRow: used internally to add the results to a result row, taking into account the
order of the selection variables found in the original query.

-47 -

<< Interface=>
QueryResult

DeﬁuﬁcﬁssesinSCOUiﬁW
SimpleQueryResult -

QueryJoinRes ult

-index : Hashtable<String, Integer=

-Combine(res1 ' QueryResult, res? ' QueryResult) : woid
+Joinfres1 : QueryResult, res2 | QueryResult, sharedIndexes : List, selectionvars : List, mapping : HashMap=5String, String~) : void
+AddValueToRow(bindingNr : int, name : String, value @ String, type @ int) : void

Fig. 16. QueryloinResult Class Diagram

6.3 Comparing queries

A second step to optimize query execution is the use of a query cache. However, before such a cache
can be employed, we must be able to compare the currently executing query to the cached queries
in the cache. This section explains how queries can be compared. The first subsection explains how
queries are first transformed into a graph. Afterwards, the second subsection explains how two of
these graphs are compared.

6.3.1 Building query graphs

While section 5.2 explains the concept behind this query graph building, this section explains how
the process is actually implemented. Firstly, one of the methods from the GraphBuilder class will be
called, depending on the kind of graph you want to build (i.e. a graph with or without inverse edges).
This method instantiates a specific implementation of the Visitor class (from the SPARQL Engine for
Java), which then builds the requested type of graph. The following subsections explain each of these
implementation steps. First the basic building blocks of the implementation are discussed, and then
the implementation of the graph structure is elaborated. Afterwards, the different visitor subclasses
are discussed, and finally we elaborate on the GraphBuilder class implementation. Figure 17 shows
the class diagram for all of these components.

-48 -

<aponydess ‘Bung-depyseH | sapou o) SBWUEL-
==abpqydeig=1sn sebaju=depysey : sabipa-

Jui : safipapouu-

<BPONUIEIS) =151 | 5100

<BpoNYdEID=IS | SBpOU-|

ydeig

aponydess) : (JapanaLiabs
apoNudeID) © (JapoNweldabe

apoNydess) : apoNa}-

Zydeig

piow : {Buwg © Apadoiguaed ‘Bumsg : Auadogqns) Apadai4gnsppes

= plon : (Buwg : ssepuaed ‘Buys | sSENS)SSEIANSPRE+

plon ; (Buws ; assaau ‘Bums ; senBajasianuppes

Bus © (saddapop adh 'Bunsg e nBal)esianue B+

ueajooq | (<buug ‘Buus>depysey (isixpeys ‘Buls 1 zns ‘Buug | Las)oangst
ueajooq : (Buug : zAuadoud 'Bums © | Auadosd)jnAuadoidanssi

vesjooq : (Bumsg : zssep 'Buug | | sSER)IOSSEIOgNSSH

JadpHuoneRy (eourisupabs

=Bums ‘Bung=deyusey : sapadaidgns-
<Bug ‘Buwgsdepysey : sassengns-|
<Buwg ‘Bungsdepusey : sesaul-|

18|89 HUONERY : 8IUBIEUl-

1ad |gHuoieey

Ziousipepngydes

il «

apoNydeIg) | BpoNwWay-
afip3ydeig

N

|
= BEN

Wi : (Jydeigupaquinyabs
sadf | apon : (JedAjebs
Bumg :{Jmuepnebs

U1 YdelsyupsaquInu-, |
sadh)apoy : adhig
Bus : aweuy

ploa | (JUIBISUOQUOILN LSY | BpouisiAe

(yueAsuoDIaNI4 1Sy | BpoulusiAe
<BPON YDBID=]151T | (JUSUDSIE)S PUNGUN | JUSUBIE)S U SLISIE]S PUNCqUN Ssaa ds
pion : (g edu] 1Sy : apoujusine

(FeIS] [JRenDIQUIeIDpaiaIpuTpIn G

ydessy) : (Jydeisyabis

ydeig| : (Jengyoudeigpings

- S |
3
7
v

apopydelg

0=l puoun-je - — — 4 - 18p|ngydelg

ydeisy| : ydebg el

|
|
|
WAL NOINM HYA TWHILT= Wnus : sadh [apoN- |
I
|
|
i

Joys| Aepiingydelg

V

pion : (Buo| : awnjew) | uoyniaxgies+

Bugy : (Jown | uonnoaxg1ebs

- (sadd | epop adA) ‘Buns : slempaud ‘aponydeis | o] apou ‘aponydels) | woidapou)abpappes
proa : {aponydels) | apou ooy aania:

aponydess ; (sadh | apon : adf) ‘Bus ; sweu)s poNlERIUOPULE
=abpaydeio=isn (aponydeis apou)sabpiabs

i : (aponydess : apousabpaycuniebe

un: {Jsabpyoiniebs

i (Jeagsiooyebe

Wi (Jaagsaponiabs

<apoNydesg=isn : ()sioeyas

<aponydeigyzisi : (jseponjebs

ydeig)
<<BIBLAN| 55

10JSIA INO DS Hneleq

T
|
I
|
|
|
<< B8N 2
|
|
I

Y

185,84 10UV dS

10)i5| AKenD xyaId

101 S|IA95I8d TOHY IS
<<BIBLBIU| >

Fig. 17. Graph Class Diagram.

-49-

6.3.1.1 Basic building blocks
In this subsection, the two basic building blocks of the graph structure are discussed: the GraphNode
class and the GraphEdge class, which respectively represent nodes and edges for use in the graphs.

Since the GraphEdge and GraphNode classes are similar, the GraphEdge class inherits from the
GraphNode class, allowing access to all its methodes. Therefore, we first dicuss the GraphNode class
implementation, and then elaborate on the GraphEdge class and its extra methods.

The GraphNode class implements three methods:

e getName: returns the (variable or literal) name of this node

e getType: returns an enum type of LITERAL, VAR, UNION or FILTER, representing the
respective node’s type.

e getNumberinGraph: returns a unique number used in the graph implementation mentioned
in the next subsection.

On top of these three methods inherited from the GraphCode class, the GraphEdge class provides
two extra methods:

e getFromNode: returns the source GraphNode of this edge.
e getToNode: returns the destination GraphNode of this edge.

6.3.1.2 Graph structure

This subsection discusses the graph structure used in our implementation. Firstly, we discuss a basic
interface, called IGraph, which forms the basis for our two implemented graph structures (together
with any future graph structure). Afterwards, the two graph implementations (Graph and Graph2)
are discussed.

The IGraph interface has the following methods:

e getNodes: returns a list containing all the GraphNodes available in this graph.

e getRoots: returns a list containing the root GraphNodes available in this graph (if there are
any).

e getNodesSize: returns the amount of nodes available in this graph.

e getRootsSize: returns the amount of roots available in this graph.

o getNrOfEdges: returns the total amount of edges available in this graph, if a GraphNode is
given, returns the amount of edges starting from this GraphNode.

e GetEdges: returns the edges for a given GraphNode.

o findOrCreateNode: based on a given name and type, this method first tries to find an existing
GraphNode which matches these conditions. If none is found, a new GraphNode is created.
Afterwards, the found or newly created GraphNode is returned. This method is used by the
Visitor implementations mentioned in section 6.3.1.3.

e RemoveRoot: removes the “root status” of a GraphNode. This method is used internally and
by the Visitor implementations mentioned in section 6.3.1.3.

e addEdge: creates a GraphEdge between two GraphNodes and stores it in the graph.

e getExecutionTime: returns the time needed to build the graph.

-50-

e setExecutionTime: sets the time needed to build the graph and is used by the Visitor
implementations mentioned in section 6.3.1.3.

The first concrete implementation of this interface is the Graph class, which is used to represent a
SPARQL query’s underlying graph structure. It creates a node for each of the subjects and objects
found in the query, and creates edges between them based on the specified predicates. This
implementation is based on the Adjacency Lists representation found in [40].

The Graph class keeps five fields:

e nodes: the list containing all the GraphNodes.

e roots: the list containing all the roots.

e nrOfEdges: the amount of edges that can be found in this graph.

e edges: a hashmap containing a list with GraphEdges for each of the GraphNodes available,
using the GraphNodes as keys.

e names_to_nodes: a hashmap containing a simple mapping from name to GraphNode; this
method is used by the findOrCreateNode method mentioned above.

The second concrete implementation is the Graph2 class, which further extends the Graph class. This
class is used to construct a graph which, in addition to the regular edges, contains the inverse edges
between the nodes. There is only one difference with the Graph class mentioned before; the
addEdge method also adds the inverse edges between node B and A using the RelationHelper class,
that currently can be populated manually (future work could provide a way to do this automatically
based on one or more ontologies).

The RelationHelper class is a singleton class and contains three fields:

e inverses: a hashmap containing all the inverse relationships, using the regular relationship as
key.

e subclasses: a hashmap containing all subclasses using the subclass as key.

e subproperties: a hashmap containing all subproperties using the subproperty as key

And has the following methods:

e isSubClassOf: checks whether the first class is a subclass of the second

e isSubPropertyOf: checks whether the first property is a subproperty of the second

e isSubOf: internal helper procedure, which checks if the value associated with a given key in a
given hashmap is the same as a given value.

e getlnverse: returns the inverse of a given relation, or the same if no inverse was found

e addlnverse: adds the inverse relationship between two relations

e addSubClass: adds the relationship between a subclass and its parentclass

e addSubProperty: adds the relationship between a subproperty and its parent property

6.3.1.3 Visitor classes

This subsection discusses the Visitor class implementations used to build the graphs mentioned in
the previous subsection. For each of the graph classes Graph and Graph2, a Visitor subclass (more
specifically, a PrefixQueryVisitor subclass) has been implemented.

-51-

The first implementation is the GraphBuilderVisitor, which inherits from the PrefixQueryVisitor (an
already existing Visitor implementation in the SCOUT framework) and is used to create instances of
the Graph class. GraphBuilderVisitor implements the following methods:

e visit(ASTTripleSet): detects triple patterns, and adds their subjects and objects as nodes to
the graph, and the specified predicate as an edge between these two nodes.

e visit(ASTFilterConstraint) : detects filters and adds them as nodes to the graph.

e visit(ASTUnionConstraint): detects UNION clauses and adds them to the graph as a node of
type UNION. Afterwards the triples found in these unions are processed and edges between
the nodes created by these triples and the UNION node are created.

The GraphBuilderVisitor contains the following fields:

e graph: a specific IGraph implementation.
e unionid: used to create unique ids for each union node.

The GraphBuilderVisitor also contains the following extra methods:

e getGraph: returns the created IGraph instance.
e processUnboundStatement: a helper method for adding triples to the graph.

The second implementation GraphBuilderVisitor2 inherits from GraphBuilderVisitor, only changing
the type of graph returned (i.e. Graph2 instead of Graphl). Note that the Graph2 implementation
itself is responsible for adding the inverse edges to the graph in the addEdge method (see previous
subsection).

6.3.1.4 GraphBuilder

This subsection discusses the GraphBuilder implementation, which contains methods to create a
specific Graph (subclass) instance corresponding to a given query. It does this by using the
SPARQLParser found in the SPARQL Engine for Java to parse the query into an AST and then uses a
specific GraphBuilderVisitor implementation to visit the constructed AST and extract the required
data from the query.

The GraphBuilder implements two methods:

o buildGraphOfQuery: which builds a Graph instance using GraphBuilderVisitor.
e buildUndirectedGraphOfQuery: which builds a Graph2 instance using GraphBuilderVisitor2.

6.3.2 Comparing query graphs

This subsection describes the implementation of the graph comparison algorithm, following the rules
describes in section 5.3. To allow for other implementations to be added in the future, we first
introduced an abstract class called AbstractGraphCompare. The concrete implementation of this
class is the GraphCompare class. GraphCompare also makes use of the RelationHelper class
mentioned before. Figure 18 shows the class diagram for these components.

The AbstractGraphCompare implementation consists of the following fields:

e comp_map: a comparison map containing the nodes found in the target graph, binding them
to the nodes in the source graph.

-52-

e source: the source graph used in the comparison.
e target: the target graph used in the comparison.

The class provides the following three methods:

o getComparisonMap: returns the comp_map.

e compare: compares the source and target graph, and returns a number representing the
outcome: 0 when the two graphs are equal, -1 when the graphs are not equal, 1 if the source
graph is part of the target graph (but is still smaller).

e SameType: compares two nodes (or edges, since GraphEdge is a subclass of GraphNode), and
checks whether they are the same, based on type of the node (or edge) and existing sub class
and sub property relations. To achieve this, this method contacts the RelationHelper class.

The GraphCompare implementation, which inherits from AbstractGraphCompare, contains the
following fields:

e visitedNodes: a stack containing all the nodes visited at a certain time, which prevents loops
from occurring, when traversing the graph.

e foundNodes: contains a list of nodes in the target graph, that do not have to be traversed
anymore.

Next to these fields, GraphCompare also implements the following methods:

e findPathFromNode: for a given node found in the source graph, this method tries to find a
path in the target graph that is similar (e.g. the same or containing
subclasses/subproperties).

e compareEdges: compares all the edges between two given nodes.

e Traverse: continues following the current path until either the entire path is found, or a part
of the path cannot be found anymore.

See section 5.3.1 for more information.

-53-

pioa :(Bung : Ausdoiduased ‘Bumg : Auadodgns)iuada4ansppes

piow : (Buns : ssepualed ‘Buws | SE|2qNS)SSEIDNSPRE

plon : (Bums © asseam ‘Buus senbBasjasianu|ppe+

Buws : (sedd epoy : adhy 'Buns ; senbBasjesianu)ebs

ueajooq : (<Bumg ‘Guug=deyjysey : jsyoays ‘Buus : zis Buug : |As)oangs
ueaiooq : (Bumg : ziuadoud ‘Bung : |Auadoud)jnipadoldangsie

ueaeaq : (Buws : zssep ‘Bums ;| sSER)OSSENANSS

JadpHuoneay : (Jeouesuabs

<fug ‘Bumgsdepysey : sapadudgns-|
<Bus ‘Bunssdepysey : sassE2qns-|
<Bug ‘Bumssdepusey ; sasianul-
[BHUCHERY : BIUEISU-|

lad |aHuope|ey

ueaooq : (aponydess ; apoujabue) snojwasd ‘apopydels) ; apou—aonos snowad 'aponydess ; apoulebie) ‘apoNydeIs) | BpoUT aUN0S |aSIaNE-
UES0C] : (apoNydess ; epoulebie; snowasd ‘spoNydels ; epoueounos snowaid '<ebipudeinsisn : sebpejebie; '<ebpaydeigs)s ; sebpe acunos)sabipe "aedwoo-

ueajood : (apoNydels) | apou 83unos JapoNLW ol B Ul

<BPONYdBID =JS | SIPONPUND)-
<BpONYIRID =YIBIS | SApoUPS)SI

aedwonydesg
[l T T T T T T T T TS T ST T ST TS m s e -
| | 5851
apanydei9 :(JeponoLiebs | |
aponydeiD : (Japonwaldiatie | | -
SpONYdEIS) : 3pONo)- £l _ oo
apopydeID) | Bponual- _
abp3ydein |
|
N !
Y
01 (JydeigupoqunyaBs <apopyde) ‘Bungsdepyysey : sepouT o] SBWEU-

sadd | apop : (JadA et
Buis : (Jawenabs

U YdBISyu)saquny-|
sadh) apop @ adfig
Buus : aweug

<<dfpgudeiasisn sebasdepysey : safipa-
Jur : sabp30u-|
<@PONUdEIS)»1ST : Sjoal|

ydeig

AL NOINM YA TVHI LN = wnua | sadh] apoN-

aponydeig

A
sasn |
|

pio : {Buo| : awnjaw) | uonoexa1es+
Bugy : {)Jaun | vognaaxaiabs

sadd | apoN : adA) ‘Bums : sledpad ‘aponydels | o apou ‘aponydels) | wold apoujabpappes

pow ; {aponydels) ; apoujiooyanowals

apoyydess) : (sadd | apop : add) ‘Buulg : sweu)apoNBIEBIIQPUL
<afipgudeinsisn : (aponydes : apou)sabipaiebe

Wi+ (apenydels) | apou)sabpajoiniab
Jsabpaioinets
pzgsic0oye by

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<BpoNydeID=1S] | Sapou- _
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

YV

Ueaooq : {aponNydess) | zapou ‘apoNydels | apou)adh | e+
<aponydels) ‘aponydeicdewysey | | Jdepuosuedwona s

Wi (Jezgsapopebe
<apoNydesgsisn : {jsieoyiebs
<apoNydeIs>Is : {)saponjebs

ydeig)
<cBIEUAU| =

jun: (Jasedwody

ydeisy| : jabie)

ydeisy| : aninos-|

=aponydels) ‘aponydels»dewysey | dew dwoo-|
asedwonydeinoensay

Fig. 18. Graph Compare Class Diagram.

-54-

6.4 Caching strategy

This section covers the implementation of the cache component, which realizes the second step in
the query optimization process. This component is responsible for storing cache elements and
deciding which have to be removed, using a specific eviction strategy, whenever room is required.
Below the abstract ICache interface is discussed. The next subsections will describe our
implementation of the LRU eviction strategy. Finally, the CacheManager is described, which handles
retrieving cached results based on a given query.

ICache is implemented as an interface, which currently only has one implementation: CachelLRU.
CachelRU is a cache implementation that uses Least Recently Used (LRU) as an eviction strategy, and
is based on the already existing CacheLRU implementation in the SCOUT framework (used for caching
sources). For more information on LRU we refer to section 5.4.

The elements stored in the cache are represented by the abstract CacheElement class. As discussed
in section 6.1, for the purpose of this thesis, query results will be stored. Because of this, we mention
only one concrete implementation of CacheElement called QueryCacheElement, which is used to
store query results. Every implementation of a cache element must provide access to its value and
size, which is calculated in bytes. Figure 19 shows the class diagram for these components.

The ICache interface provides ten methods:

e add: adds a cache element to the cache.

e update: updates the cache element for a particular key.

e isUsed: updates the timestamp for a given key.

e contains: checks whether a certain key is available in the cache.

e remove: used to remove cache elements from the cache.

o getKeys: returns a list containing all keys available in the cache.

e getCacheElement: returns the CacheElement instance bound to a specific key.

e getAmountOfHits: the amount of times cache elements were retrieved from the cache.

e getAmountOfEvits: the amount of times cache elements have been removed during the life
time of the cache.

e getSize: returns the current amount of bytes used in the cache.

-55-

.:E____________________________

o BN

0 = Sy Jo junowey

myeyoey -

Juswe|3deporur]
]

PloA ;| JUBB[T)SES TR AT
pioA ; (jsuswa|gpe Byarowals

Buoj : abywew-

Guoy : saguaunog
Gugy ; eagaUDEDKEW-
U1 SN |0 JUNOCWEY

583N (ynsaylian | nsalnsayes+
ynsaylian [jnsayie s

Insaydany ; jnsa-
Juawageyseafienp

Jnsayhiann

<<BIEPAU| > [Monsap+

1N0ODS Ul sassep nesd

aedwonydelg

deyy : pasnysejau-

dEppaYUr | SUTBIHE
||||||||||| ..w_v 83[E| = UER|00] ; pahousap-

i
i
_ MY 19Y2EJEqsqY

deppayul]

v

ssedwosydeigioensgy

Bugy : (Jeagets

i {)sipmjouncawryjats

i {JsHiojunowsyje By

s ayzes ; { Bus Aayuewag aypenabs
<palgg=1eg : (Jshaypabs

pion ; (Bus ; Aay)janowale

uea|oog : (Buws | AeyISUIBUOD+

UEB|00] ; () pRADA S5 H
Bugy :(Jazgiebs

JuBWajFaLyIeD

ueajooq : (Bumg : Aeypasnsi
UES0oq | (Juswagaunes ; |3 paepdn ‘Guws ; Aeyjeepdne
Uea|oog ; (uawaE@ayses [Jayses ‘Buns ; Asyippes

ayaes|
BB =5

Bugy : (Jezgiebs

i {)siniounouye B

i (syHoiunowyate

nsayflant ; {fsenp Aenb)eegpayseiabs

<fung ‘Bumssdepyysey : (JBuddepypajesauacseqia b
pioa : (Bums : Aayjenowals

UBsjoog | (JuswsJauter) [Fpalepdn ‘Guws feyjerepdns
UEa|oog ; (JuawaFayse’ ; [Feytes ‘Bung ; Aeyippe+
<fannslsn | (sauanyabe

<Buyg ‘Bug =depysey : Buiddew-
BUYIET| : BYIED-

labBeueyayaen

Fig. 19. Cache Class Diagram.

-56 -

6.4.1 LeastRecently Used

This subsection explains the implementation details of CacheLRU as created for the purpose of this
thesis. First, the abstract class AbstractCachelLRU is discussed, which is based on the already existing
implementation of LRU in SCOUT. This abstract class implements the ICache interface mentioned
above. Secondly the specific implementation of this class, called CachelLRU, for use in this thesis is
elaborated.

AbstractCachelLRU has six fields:

e (Cache: a data structure (LinkedMap, already available in SCOUT), which stores both an
ordered and a linked list of elements, so that less recent elements can be found faster.

e timelastUsed: a HashMap containing the timestamps for each cache element.

e amount_of evicts: keeps the amount of evictions that occurred in the cache (not present in
the original implementation).

e maxCacheSize: keeps the maximum amount of bytes the cache is allowed to contain.

e currentSize: keeps the current amount of bytes the cache contains.

e maxAge: the maximum amount of time a cache element is allowed to remain in the cache in
milliseconds.

AbstractCachelLRU provides a basic implementation for the following methods of the ICache

infertace:
e add
e update
e isUsed
e contains
e remove

AbstractCachelLRU provides the following extra methods:

o getSize(key, CacheElement): returns the size in bytes for a specific cache element (used
internally).

e removeleastElement: removes the element out of the cache that was the most recently used
one.

e removeAgedElements: removes all elements out of the cache that have expired timestamps.
CachelRU adds one additional field:

e amount_of_hits: stores the amount of successful retrievals of cached elements.
CachelRU also provides an implementation for the following methods from the ICache interface:

o getKeys

e getCacheElement
e getAmountOfHits

o getAmountOfEvicts
o getSize

-57-

6.4.2 Cache Manager

This subsection describes the implementation of the Cache manager, which is a layer built on top of
the cache strategy mentioned in the previous subsection. The Cache manager is used to retrieve
information about queries available in the cache, and to retrieve query results from the cache based
on a given query. Since queries might use different variable naming schemes, this class constructs a
mapping for these variables (e.g. used to translate variable names from graph B to the variable
names used in graph A) that can be used by whichever class is accessing the cache.

The CacheManager has two fields:

e cache: contains the employed caching strategy (in the case of this thesis CacheLRU).
e mapping: a hashmap containing a one on one mapping between the variables found in the
last successful query result retrieval from the cache.

The CacheManager provides the following methods:

e getQueries: returns a list of queries that can be found in the cache.

e add: adds a query to the underlying caching layer (i.e. caching strategy).

e update: updates a query in the underlying caching layer.

e remove: removes a query from the underlying caching layer.

e getlastgeneratedMapping: returns the mapping of variables.

e getCachedData: checks whether the given query is available in the underlying cache. If so,
this method retrieves the corresponding cache element, after which the query results are
returned and a variable mapping is built.

o getAmountOfHits: returns the amount of hits found in the underlying cache layer.

o getAmountOfEvicts: returns the amount of evictions found in the underlying cache layer.

e getSize: returns the current memory size of the underlying cache layer.

-58 -

Chapter 7. Evaluation

This thesis investigated how the query mechanism, used by the Query and Notification Service, can
be optimized. To fulfill this purpose, we have investigated two query pipeline strategies for use by
Notification Service queries. Secondly we have investigated a query caching strategy, which can be
used to cache the results of the queries posed to the query mechanism.

This chapter is dedicated to the evaluation of the two developed mechanisms. The first section
describes the overall test environment. The next two sections present and evaluate the test results of
each mechanism.

7.1 Testing environment

The test environment consists of a client part (i.e. the SCOUT framework, extended with the
strategies presented in this thesis), which is run on a Samsung Galaxy Apollo (15800). The device has a
667MHz CPU, 246MB RAM and runs the Android 2.2 operating system.

Every test case is executed 10 times spread over several days (ideally, each test should have been
executed more, but due to a lack of time this was not possible). All the results mentioned in this
chapter are averaged over these 10 runs. The test cases use sixty-six RDF sources spread over three
locations. The distribution of these sources is as follows: 23 sources on www.snakesvx.net, 14
sources on tania.snakesvx.net and 29 sources on wilma.vub.ac.be (www.snakesvx.net and
tania.snakesvx.net are deployed on the same server).

7.2 Query Pipeline

This section evaluates the three in the query pipeline process, together with the associated strategies
in each step. This evaluation takes into account the following criteria: time needed to execute the
original query; time needed to analyze a given query; time needed to construct the sub queries;
execution time of the generated sub queries; execution time to join the results generated by the sub
queries; time needed to execute the entire test; amount of results for each query using the two
strategies (i.e. join strategy vs. injection strategy, see subsection 7.2.8).

Since the analysis and joining of the sub query results is all done using a single strategy (i.e. manual
query analysis, see subsection 7.2.2), the main focus is put on the difference between the two sub
qguery construction strategies. In the first construction strategy (join strategy) the sub queries are
directly extracted from the original query. In the second construction strategy (injection strategy),
the second sub query receives an additional FILTER element, that limits the results requested in the
second query, based on the values for the shared variables found in the results of the first sub query.
In addition, we consider a worst-case strategy (BasicTest), where the query pipeline is not used and
the original query is executed on both the new source as well as the existing sources found in the
Environment Model.

7.2.1 Testcases

In order to evaluate the query pipeline, four test cases are used, numbered from 1 — 4. Test case 1
(BasicTest) is used for timing the execution of each query and obtaining the total time required to
execute the entire test. Test cases 2 through 4 are used to measure the construction time for each of
the construction strategies. Test case 2 is used to determine the time required to analyze a given
query. Test cases 3 and 4 are used to measure the time required to execute each sub query, and to

-59-

join the sub query results. These test cases are also used the measure the execution time of each
query (and the entire test) and the amount of query results returned by each construction strategy.

Each test case performs the same basics steps, allowing relevant data (e.g. query construction time,
qguery execution time) for each mechanism to be extracted. Each test therefore starts by adding 29
sources to the Source Index Model (SIM, see section 2.1.3.2) used in our tests, after which every
query is executed once on the query-relevant sources, as determined by the SIM. After having done
this warm up phase, 14 new sources are added to the SIM after which each query is executed again.
Subsequently, another 8 sources are added, and the queries are executed again. Finally, 15 more
sources are added after which queries are executed again. This strategy is used to compare the
execution times using each of the queries in different situations, starting from a basic environment
which is expanded over time. Adding a different amount of sources every time, allows us to
determine the effect these sources have on the overall execution time.

7.2.1.1 Test queries

This subsection describes the “given” queries used in all of the test cases. These queries are used to
simulate a series of queries stored in the Notification Service, awaiting execution on a newly
discovered source. Note that the complexity of these queries varies from low to medium. This allows
us to observe possible differences in execution performance between queries of varying complexity.
Each query has two versions; query a is used for the regular tests, while query b is used for tests
involving the query pipeline (and thus written using named graphs, since there is a high chance that
gueries added by a single application will be similar, we decided to create queries which emulate a
possible scenario where this occurs).

The first query retrieves all products sold by the shop found in the newly discovered source, which
have the same type as any product you have encountered before.

PREFIX region: <http://wise.vub.ac.be/region/>
PREFIX sumo: <http://www.ontologyportal.org/SUMO.owl#>

SELECT ?shop ?item

WHERE

{
?shop a sumo:RetailStore
?shop region:sells ?item
?item a sumo:Product
?item a ?type
?shop2 a sumo:RetailStore
?shop2 region:sells ?item2
?item2 a sumo:Product
?item2 a ?type

}

SPARQL Query 14. Test query 1a.

PREFIX region: <http://wise.vub.ac.be/region/>
PREFIX sumo: <http://www.ontologyportal.org/SUMO.owl#>

SELECT ?shop ?item

WHERE

{

GRAPH <http://wise.vub.ac.be/querypart/partl/> ({

?shop a sumo:RetailStore
?shop region:sells ?item .
?item a sumo:Product
?item a ?type

-60 -

GRAPH <http://wise.vub.ac.be/querypart/part2/> {
?shop2 a sumo:RetailStore
?shop2 region:sells ?item2
?item2 a sumo:Product
?item2 a ?type

}

SPARQL Query 15. Test query 1b.

The second query is a variation of the previous one, where the order of the triples in the query has
been changed, together with one of the variable names.

PREFIX region: <http://wise.vub.ac.be/region/>
PREFIX sumo: <http://www.ontologyportal.org/SUMO.owl#>

SELECT ?s ?item

WHERE

{
?shop2 a sumo:RetailStore
?shop2 region:sells ?item?2
?item2 a sumo:Product
?item2 a ?type
?s a sumo:RetailStore
?s region:sells ?item
?item a sumo:Product
?item a ?type

}

SPARQL Query 16. Test query 2a.

PREFIX region: <http://wise.vub.ac.be/region/>
PREFIX sumo: <http://www.ontologyportal.org/SUMO.owl#>

SELECT ?s ?item
WHERE
{
GRAPH <http://wise.vub.ac.be/querypart/part2/> {
?shop2 a sumo:RetailStore
?shop?2 region:sells ?item2
?item2 a sumo:Product
?item2 a ?type
}
GRAPH <http://wise.vub.ac.be/querypart/partl/> {
?s a sumo:RetailStore
?s region:sells ?item
?item a sumo:Product
?item a ?type

}

SPARQL Query 17. Test query 2b.

The third query is a bit more specific then the first two. This query retrieves encountered items with
the same type as the beds sold at the newly encountered store, together with the shop selling those

encountered items.

PREFIX region: <http://wise.vub.ac.be/region/>
PREFIX sumo: <http://www.ontologyportal.org/SUMO.owl#>

SELECT ?shop2 ?item2

WHERE

{
?item a sumo:Bed
?item dc:title ?title
?item a ?type
?item2 a sumo:Product
?item2 a ?type

-61-

?shop2 a sumo:RetailStore
?shop2 region:sells ?item?2

}

SPARQL Query 18. Test query 3a.

PREFIX region: <http://wise.vub.ac.be/region/>
PREFIX sumo: <http://www.ontologyportal.org/SUMO.owl#>

SELECT ?shop2 ?item2
WHERE
{
GRAPH <http://wise.vub.ac.be/querypart/partl/> {
?item a sumo:Bed
?item dc:title ?title
?item a ?type
}
GRAPH <http://wise.vub.ac.be/querypart/part2/> {
?item2 a sumo:Product
?item2 a ?type
?shop2 a sumo:RetailStore
?shop?2 region:sells ?item2

}

SPARQL Query 19. Test query 3b.

The fourth query, another variation of the first query, retrieves the name of the encountered shop
together with the name of the sold products, which are related to products of the same type
encountered in the past. The name of the shops and the products encountered in the past are also
requested.

PREFIX region: <http://wise.vub.ac.be/region/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX sumo: <http://www.ontologyportal.org/SUMO.owl#>

SELECT ?shoptitle ?title ?shop2 ?item2

WHERE

{
?shop a sumo:RetailStore
?shop region:sells ?item
?shop dc:title ?shoptitle
?item a sumo:Product
?item dc:title ?title
?item a ?type
?shop2 a sumo:RetailStore
?shop2 region:sells ?item?2
?item2 a sumo:Product
?item2 a ?type

}

SPARQL Query 20. Test query 4a.

PREFIX region: <http://wise.vub.ac.be/region/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX sumo: <http://www.ontologyportal.org/SUMO.owl#>

SELECT ?shoptitle ?title ?shop2 ?item2

WHERE

{

GRAPH <http://wise.vub.ac.be/querypart/partl/> {

?shop a sumo:RetailStore
?shop region:sells ?item
?shop dc:title ?shoptitle
?item a sumo:Product
?item dc:title ?title

-62 -

?item a ?type
}
GRAPH <http://wise.vub.ac.be/querypart/part2/> {
?shop?2 a sumo:RetailStore
?shop2 region:sells ?item2
?item2 a sumo:Product
?item2 a ?type

}

SPARQL Query 21. Test query 4b.

The fifth retrieves the restaurant and the cuisine found in the new source, where the cuisine is
related to a cuisine encountered in previous restaurants.

PREFIX region: <http://wise.vub.ac.be/region/>
PREFIX rest: <http://gaia.fdi.ucm.es/ontologies/restaurant.owl#>

SELECT ?restaurant ?cuisine

WHERE

{
?restaurant a region:Restaurant
?restaurant rest:typeOfCuisine ?cuisine
?cuisine a ?type
?restaurant?2 a region:Restaurant
?restaurant?2 rest:typeOfCuisine ?cuisine2
?cuisine2 a ?type

}

SPARQL Query 22. Test query 5a.

PREFIX region: <http://wise.vub.ac.be/region/>
PREFIX rest: <http://gaia.fdi.ucm.es/ontologies/restaurant.owl#>

SELECT ?restaurant ?cuisine
WHERE
{
GRAPH <http://wise.vub.ac.be/querypart/partl/> {
?restaurant a region:Restaurant
?restaurant rest:typeOfCuisine ?cuisine
?cuisine a ?type
}
GRAPH <http://wise.vub.ac.be/querypart/part2/> {
?restaurant2 a region:Restaurant
?restaurant2 rest:typeOfCuisine ?cuisine2
?cuisine2 a ?type

}

SPARQL Query 23. Test query 5b.

The sixth query retrieves previously encountered persons, who have the same gender and at least
one interest in common with the person currently encountered.

PREFIX foaf: <http://xmlns.com/foaf/spec/>

SELECT ?person2 ?gender ?topic

WHERE

{
?person a foaf:Person
?person foaf:gender ?gender
?person foaf:interest ?interest
?interest foaf:topic ?topic
?person2 a foaf:Person
?person?2 foaf:gender ?gender
?person2 foaf:interest ?interest2
?interest2 foaf:topic ?topic

-63 -

SPARQL Query 24. Test query 6a.

PREFIX foaf: <http://xmlns.com/foaf/spec/>

SELECT ?person2 ?gender ?topic
WHERE
{
GRAPH <http://wise.vub.ac.be/querypart/partl/> {
?person a foaf:Person
?person foaf:gender ?gender
?person foaf:interest ?interest
?interest foaf:topic ?topic
}
GRAPH <http://wise.vub.ac.be/querypart/part2/> {
?person?2 a foaf:Person
?person?2 foaf:gender ?gender
?person?2 foaf:interest ?interest?2
?interest2 foaf:topic ?topic

}

SPARQL Query 25. Test query 6b.

The seventh query is a variation of the previous one, with the difference that the persons being
compared do not need to have the same gender. Apart from this, the query also uses different
names for some of its variables.

PREFIX foaf: <http://xmlns.com/foaf/spec/>

SELECT ?p2 ?gdr ?tpc
WHERE
{
?person a foaf:Person
?person foaf:interest ?interest
?interest foaf:topic ?tpc
?p2 a foaf:Person
?p2 foaf:gender ?gdr
?p2 foaf:interest ?interest2
?interest2 foaf:topic ?tpc

}

SPARQL Query 26. Test query 7a.

PREFIX foaf: <http://xmlns.com/foaf/spec/>

SELECT ?p2 ?gdr ?tpc
WHERE
{
GRAPH <http://wise.vub.ac.be/querypart/partl/> {
?person a foaf:Person
?person foaf:interest ?interest
?interest foaf:topic ?tpc
}
GRAPH <http://wise.vub.ac.be/querypart/part2/> {
?p2 a foaf:Person
?p2 foaf:gender ?gdr
?p2 foaf:interest ?interest2
?interest2 foaf:topic ?tpc

}

SPARQL Query 27. Test query 7b.

-64 -

The eight query is another variation of test query 6. This time only one constraint is removed, namely
that persons need to share atleast one interest.

PREFIX foaf: <http://xmlns.com/foaf/spec/>

SELECT ?person2 ?gender ?topic

WHERE

{
?person a foaf:Person
?person foaf:gender ?gender
?person2 a foaf:Person
?person2 foaf:gender ?gender
?person?2 foaf:interest ?interest2
?interest2 foaf:topic ?topic

}

SPARQL Query 28. Test query 8a.

PREFIX foaf: <http://xmlns.com/foaf/spec/>

SELECT ?person2 ?gender ?topic
WHERE
{
GRAPH <http://wise.vub.ac.be/querypart/partl/> {
?person a foaf:Person
?person foaf:gender ?gender
}
GRAPH <http://wise.vub.ac.be/querypart/part2/> {
?person2 a foaf:Person
?person?2 foaf:gender ?gender
?person?2 foaf:interest ?interest2
?interest2 foaf:topic ?topic

}

SPARQL Query 29. Test query 8b.

The ninth query finds out whether the current resource contains a Sports Accommodation. If so,
retrieves the data about all the Sports Accommodations encountered before, that have at least one
sport in common.

PREFIX region: <http://wise.vub.ac.be/region/>

SELECT ?sports acc ?sports acc 2 ?sport

WHERE

{
?sports_acc a region:SportsAccommodation
?sports acc region:accommodatesSport ?sport
?sports_acc 2 a region:SportsAccommodation
?sports _acc 2 region:accommodatesSport ?sport

}

SPARQL Query 30. Test query 9a.

PREFIX region: <http://wise.vub.ac.be/region/>

SELECT ?sports_acc ?sports acc 2 ?sport
WHERE
{
GRAPH <http://wise.vub.ac.be/querypart/partl/> {
?sports_acc a region:SportsAccommodation
?sports_acc region:accommodatesSport ?sport
}
GRAPH <http://wise.vub.ac.be/querypart/part2/> {
?sports _acc 2 a region:SportsAccommodation
?sports_acc 2 region:accommodatesSport ?sport

- 65 -

SPARQL Query 31. Test query 9b.

The next query retrieves all previously encountered Points of Interest, together with information
about the currently encountered Statue.

PREFIX region: <http://wise.vub.ac.be/region/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?locationl ?location2

WHERE

{
?locationl a region:Statue
?locationl dc:title ?title
?location?2 a region:PointOfInterest
?location2 dc:title ?title2

}

SPARQL Query 32. Test query 10a.

PREFIX region: <http://wise.vub.ac.be/region/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?locationl ?location2
WHERE
{
GRAPH <http://wise.vub.ac.be/querypart/partl/> {
?locationl a region:Statue
?locationl dc:title ?title
}
GRAPH <http://wise.vub.ac.be/querypart/part2/> {
?location?2 a region:PointOflInterest
?location2 dc:title ?title2

}

SPARQL Query 33. Test query 10b.

The final query is a variation of the previous one, where the query retrieves information about
previously encountered Points of Interest, together with information about the currently
encountered Area.

PREFIX region: <http://wise.vub.ac.be/region/>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?locationl ?location2

WHERE

{
?locationl a region:Area
?locationl rdfs:label ?label
?location?2 a region:PointOfInterest
?location2 dc:title ?title2

}

SPARQL Query 34. Test query 11a.

PREFIX region: <http://wise.vub.ac.be/region/>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?locationl ?location2
WHERE
{
GRAPH <http://wise.vub.ac.be/querypart/partl/> {
?locationl a region:Area
?locationl rdfs:label ?label

- 66 -

}
GRAPH <http://wise.vub.ac.be/querypart/part2/> {
?location2 a region:PointOflInterest .
?location2 dc:title ?title2
}
}

SPARQL Query 35. Test query 11b.

7.2.2 Criterion 1: Analysis time

This section measures the time needed to extract the two different parts from each of the queries
mentioned before. Chart 1 shows the test results for the eleven queries. The horizontal axis
represents the query number, while the vertical axis represents the time necessary to extract the
different parts in milliseconds.

Analysis

180
160
140 -
120 -
100 -
80 -
60 - B Analysis
40 -
20 -~

o
|

Chart 1. Querypart analys time

We can see that depending on the size of the query the time required to analyze the query increases.
This is expected since there are more nodes (in our case triple patterns) that have to be checked and
added to the correct query part. Since the times are very small compared to the costs of some of the
other criterions (see next subsections), we can conclude that the time required to extract the
relevant query information has a negligible impact on the entire query process.

7.2.3 Criterion 2: Construction time

This section measures the time needed to construct the various sub queries for each of the queries.
For the second sub query, the necessary time is compared when using the JoinStrategy and the
InjectionStrategy. Since the construction of the first sub query occurs the same way in both
strategies, the necessary construction time is the same. Chart 2 shows the test results for the eleven
queries. The horizontal axis represents the query number, while the vertical axis represents the time
necessary to construct the relevant sub queries in milliseconds.

-67 -

16

14

12

10

8 W Partl

6 H Join

a4 Injection

Chart 2. Querypart construction time

As expected, the time required to generate the second sub query takes longer to generate (or the
difference is negligible) when using the Injection strategy. This is normal, since both strategies use
the same basic mechanism, but the Injection strategy has to generate an extra filter based on results
from the first sub query.

Again, when comparing this constructing time to general query execution time, the time is negligible
and thus has no effect on the general execution of the query. Note: the peek noticed for query 8, was
caused by a single run, in which the construction time took about forty times longer (122ms
compared to 3ms).

7.2.4 Criterion 3: Sub query execution time

This section compares the time required to perform each of the sub queries. For the second sub
query, the necessary time is compared when using the JoinStrategy and the InjectionStrategy. Since
the first sub query is the same in both strategies, only the second sub query will be compared. Chart
2 shows the test results for the eleven queries. The horizontal axis represents the query number,
while the vertical axis represents the time necessary to execute the relevant sub queries in
milliseconds.

-68 -

12000

10000

8000

6000 M Partl

B Part 2 using Join
4000

= Part2 using Injection
2000

Chart 3. Sub query execution time

As expected, the time required to execute the second sub query takes less time (or the difference is
negligible) when using the Injection strategy. This is normal, since both strategies use the same basic
mechanism, but the Injection strategy is able to be more restrictive due to the added filter.

7.2.5 Criterion 4: Join time

This section compares the time required to join results for each query based for each of the query
pipeline strategies. This test is performed for each of the queries mentioned before. Chart 4 shows
the results for each test with on the horizontal axis the query number and on the vertical axis the
time required to join the results in milliseconds.

3000

2500

2000

1500
M Join

1000 M Injection

500 -

Chart 4. Sub query join time

As expected, since the Injection strategy might return less results, in most cases the time required to
join the results using the Injection strategy is either a little faster or about the same as when using
the Join strategy. When comparing the data, the time difference measured is only a small

-69-

percentage, so that using either strategy is useful. The reason for this time difference is that the
second sub query, when using the join strategy, returns more results. This causes the time to
combine these results to be higher since more results have to be compared (or copied).

7.2.6 Criterion 5: Execution time of the original query compared to the execution using
the query pipeline

This section compares the execution time of the original query on various new sources together with

the Environment Model. This test is performed for each of the queries mentioned before and

compares the execution time of the original system, to the two query pipeline strategies created in

this thesis. Chart 5 shows the results for each test with on the horizontal axis the query number, and

on the vertical axis the time required to execute each query in milliseconds.

35000
30000
25000
20000

M Basic Test

15000
10000

M Pipeline using Join

Pipeline using Injection
5000

0
QueryQueryQueryQuery Query Query Query Query Query Query Query
1 2 3 4 5 6 7 8 9 10 11

Chart 5. Execution time of original query (compared to pipeline)

When comparing the results of the BasicTest with the two pipeline strategies, we can conclude that
for almost all queries, the time required to execute the two strategies is smaller than the standard
provided by this test. There are some exceptions though (namely query 5 and 9), in cases where
there are not a lot of previously encountered sources, the two pipeline strategies perform a little
worse, which is probably caused by the overhead (although very little) during analyses of the original
query. This might have an effect in environments where the amount of encountered sources is low
(e.g. when starting to use the SCOUT framework), but over time when more and more sources are
encountered, the query pipeline can cause a significant performance boost for most queries.

7.2.7 Criterion 6: Execution time of the entire test

This section compares the total execution time of the various tests. More specifically, we compare
the time required to execute queries with a query pipeline (using one of the construction strategies),
and without (BasicTest). Chart 6 shows the results for these three tests with on the vertical axis the
execution time in milliseconds, and on the right which test is represented using which color.

-70 -

Execution time for entire test (ms)
1200000
1000000 -
800000 -
M Basic Test
600000 - M Pipeline using Join
I Pipeline using Injection
400000 -
200000 -
O .

Chart 6. Execution time of each test

From the previous section, we know that in general the execution time of each query is shorter (or
has a negligible difference) when using the two pipeline strategies compared to the BasicTest.
Between the two strategies, we know that the difference in execution time is very little.

Because of these, it is logical that the execution time for the two pipeline strategy test is closely
related to each other, while both of these have a much smaller execution time than the BasicTest
(851532ms compared to 1124270ms).

7.2.8 Criterion 7: Amount of results for each query using the two strategies

This section compares the amount of results returned by the two pipeline strategies. This is done to
determine whether there is any difference between the two strategies. Chart 7 shows the results of
these two tests, on the horizontal axis the query number is shown, while on the vertical axis the
amount of results for each query is shown.

200
180
160
140
120
100

80 -
60 - M Pipeline using Injection

B Pipeline using Join

40 -~
20 ~

Chart 7. Amount of results using each pipeline strategy

-71-

Since both pipeline strategies are fairly similar to each other, we expected that these two strategies
would return (almost) the same amount of results for each query after having combined the two sub
query results.

When comparing the results, we can notice that in most cases the amount of results returned by
both strategies are either the same or close to each other. For some queries the JoinStrategy
returned some more results, while for others the InjectionStrategy returned some more. From this
we can conclude that there is a small margin of error that has to be taken into account when using
both strategies. Since the chart above doesn’t show all of the results clearly, below a table is shown
with of the concrete figures.

Pipeline using

Query Results (phase 1) Pipeline using Join Injection

Query 1 94 94
Query 2 115 115
Query 3 23 23
Query 4 181 181
Query 5 1 1
Query 6 6 0
Query 7 13 15
Query 8 9 0
Query 9 4 3
Query 10 5 5
Query 11 5 5

7.2.9 Conclusion

From the first two (test) sections, we have learned that the time required to analyze the given query
and constructing the two sub queries has almost no impact on the overall time required to execute a
given query. From (test) section 5 and 6, we have learned that the time required for execution using
both query pipeline strategies is smaller in most cases, except in cases where the execution time of
the given query was already fairly small. From (test) section 7, we learned that there is small margin
of error in the amount of results returned by using both strategies.

7.3 Cache

This section evaluates the two steps from the realized query caching mechanism. This evaluation
takes into account the following criteria: query graph construction time; query graph comparison
time; execution time of the original query; execution time of the total query set; execution time for
adding new sources;

7.3.1 Testcases

In order to evaluate the query caching mechanism, especially in relation with the query pipeline
mentioned in the previous section, six test cases are used, numbered 1 - 6. The first three test cases
are used to measure the execution time for each of the queries, the entire test (and the time needed
to add sources to the SIM), the other three focus on caching behavior in particular. Test case 7 is
used test graph construction and comparison time. Test cases 5 and 6 are used to test all of the
aforementioned criteria, except graph construction and comparison times.

-72 -

Test case 7 will create a graph for each query and then compare this query to all queries. Test cases 1
through 5 perform the same basics steps, allowing relevant data for each mechanism to be extracted.
Each test therefore starts by adding 29 sources to the Source Index Model used in our tests, after
which every query is executed once on some of the default sources. After having done this warm up
phase, 14 new sources are added to the SIM after which each query is executed again. After this,
another 8 sources are added, and the queries are executed again. Finally, 15 more sources are added
after which queries get executed again.

7.3.1.1 Test queries
The same queries as mentioned in section 8.2.1.1 are used for these tests.

7.3.2 Criterion 1: Construction time

This section determines how much time is required to construct the graph and to determine the
impact this construction has on the overall execution. Chart 8 shows the results for this test, on the
horizontal axis the query number is shown, while on the vertical axis the time required for each of
the queries is shown in milliseconds.

Construction

200
180
160 -
140 -
120 +
100 -
80 -
60 -
40 -
20 ~

| Construction

Chart 8. Time needed to construct a query graph

As seen in the chart, the time required in general is very little and will thus not affect performance in
a noticeably way. There is a spike in the chart for the first query, but this is caused by a spike during a
single run which would have balanced out if more than ten runs might have been done.

7.3.3 Criterion 2: Comparison time

This section is used to determine how much time is required to compare two graphs and to
determine the impact this comparison might have on the overall execution. Chart 9 shows the results
for this test, on the horizontal axis the query number is shown, while on the vertical axis the time
required to compare each of the queries to each other is shown in milliseconds.

-73 -

Comparison
2,5
2
1,5
1 - .
B Comparison

0,5 -
O_

N v > ™ \e) © A b) Q N

N U N N N N SN S, g
F o F F o F F F F &

Chart 9. Time needed to compare query graphs

As seen in this chart, the time required to compare two graphs has no noticeable impact on the

overall query execution. Even when taking into account the spike noticed for query 9, there is still no

noticeable impact.

7.3.4 Criterion 3: Execution time of the original query

This section compares the execution time of the original query on various new sources, together with
the Environment Model. This test is performed for each of the queries mentioned before and
compares the execution time of the original system, the two query pipeline strategies, and the query
caching using the two query pipeline strategies. Chart 10 shows the results for each test with on the
horizontal axis the query number, and on the vertical axis the time required to execute each query in

milliseconds.
35000
30000 |
25000
M Basic Test
20000
M Pipeline using Join
15000
B Pipeline using Injection
10000 L
M Cache test using join pipeline
2000 m Cache test using injection pipeline
0
o

Chart 10. Execution time of the original query using the different strategies.

-74 -

From section 8.2.6 we already knew that the two query pipeline strategies are better in performance
then the BasicTest. When adding the query caching mechanism we can notice that the query
execution for each of these tests is even shorter.

When comparing the two query pipeline strategies without vs. with caching, we can notice that the
results are improved. Since we know that the query pipeline will always execute the first query on
the new source, we can see why caching has a smaller impact on performance.

7.3.5 Criterion 4: Execution time of the entire test

This section compares the total execution time of the various tests. More specifically, we compare
the time required to execute queries with a query pipeline, comparing both construction strategies
without vs. with caching, and without query pipeline (BasicTest). Chart 11 shows the results for these
six tests with on the vertical axis the execution time in milliseconds, and on the right which test is
represented using which color.

Execution time for entire test (ms)

1200000
M Basic Test
1000000 -

H Pipeline using Join

800000 -
600000 - Pipeline using Injection
400000 - B Cache test using join pipeline
200000 -~ H Cache test using injection
pipelin
0 .

Chart 11. Execution time of each test

From the previous section, we know that in general the execution time of each query is shorter or
similar when using the two pipeline strategies compared to the BasicTest and that it is even shorter
when using query caching with the query pipeline. Between the two pipeline strategies we know that
the difference in execution time is very little.

The difference with the previous section is that the total execution time is considered here (also
including updating the cache), and that overall, the difference between the query pipeline without
vs. with caching is very little. The reason for this, which is shown in the next section, lies with the
updating of the cache whenever a new source is detected.

7.3.6 Criterion 5: Amount of time needed to add new sources

This section compares the total amount of time required to add new sources (and update the cache
contents) for each of the tests. Since the BasicTest and the two query pipeline strategies do not use
guery caching, these are mentioned as a baseline for comparison (only showing the time required to
update the SIM). Chart 12 shows the results for each of the tests with on the vertical axis the

-75-

execution time in milliseconds, and on the horizontal axis which group of sources was added and on
the right, which test is represented using which color.

250000
200000
M Basic Test
150000 B Pipeline using Join
M Pipeline using Injection
100000
B Cache test using join pipeline
50000 W Cache test using injection pipeline
O .

Sources 1 Sources 2 Sources 3 Sources 4

Chart 12. Time needed to add sources (and update the cache).

In the previous section we noticed that the query pipeline together with query caching had the best
overall performance, even though the difference with the non-caching pipeline was less than
expected. This is because every time a new source is added the cache (i.e. all queries which can
retrieve relevant data from this source) has to be updated, reducing the performance gained by using
query caching. From this we can learn that in situations where lots of new sources are encountered
and not a lot of queries are executed, the caching mechanism can actually use up more resources
then needed. A possible solution for this is that for every client, a different timing can be used as
lifetime for the cache elements. This is something that can be investigated further in future work.

7.3.7 Conclusion

From the previous section, we already knew that the query pipeline increased performance in most
cases. When adding query caching to this, we can notice a smaller increase in performance. Reasons
for this are the very small overhead required to compare graphs in the cache to find a possible
suitable match and the updating of the cache that happens in the background whenever a new
source is encountered. If we would apply this query caching mechanism to the original system, the
performance is actually worse, since the cache has to be updated every time a new source is
encountered, defeating the use of the cache.

-76 -

Chapter 8. Conclusion

This thesis has shown how a query pipeline, together with a query caching mechanism, can be used
to reduce the time required to execute a query for use with the Notification Server. Experiments
were conducted, as explained in chapter 7, to validate these two mechanisms, and to compare
several variants with each other. This chapter summarizes the benefits and drawbacks of the
developed mechanisms, together with future work that can be done in this area.

8.1 Summary

8.1.1 Query Pipeline

The first mechanism responsible for optimizing the query process allows us to construct sub queries
which can be executed separately. This enables us to determine whether or not the second sub
qguery should still be executed based on the results of the first sub query. Originally a strategy was
created for analyzing queries and extracting the relevant sub queries, which was able to be used on
any query. After some problems occurred regarding the ordering op triples, a new strategy was
implemented using named graphs, which was able to tackle these problems. Two query pipeline
mechanisms where discussed, which differ in the way the second sub query is constructed.

The first mechanism reuses the parts found in the original query for constructing the second sub
query . Therefore, its results can be more effectively cached.

The second mechanism also reuses the parts found in the original query, but adds a filter to the
second sub query based on the results of the first. This makes it that these results are more specific
and thus takes less time to join together and form the actual results.

Our experimental validation shows us that the section pipeline is preferable to the first strategy
when no caching for the second sub query is used.

8.1.2 Cache strategy
The second mechanism responsible for optimizing the query process is the use of query caching. This
mechanism keeps query results locally, to avoid having to execute the same query multiple times.

We have implemented a query caching mechanism, which is structured into three different
components: 1) a mechanism to form a graph structure for a given query which can be
programmatically accessed, 2) a mechanism to compare two query graphs, 3) a single eviction
strategy.

This query caching mechanism was tested on the two pipeline strategies mentioned in the previous
section. When using the cache on regular queries, the performance actually decreases, since the
cache has to be updated every time a new source is added, defeating the purpose of this cache.

When performing this caching on the second sub query of each of the query pipeline mechanisms,
the results improved. The reason for this is that the chances of a similar sub query being executed
again are higher than the chances for a full query, while the time required to update the cache for a
given query might be high whenever a new source is added. On the other hand, when it comes to the
amount of data that has to be stored, and reusability of each cached result, the first query pipeline
mechanism is better, since it provides a more general query to be executed and then stored in the
cache. This would not be possible using the second query pipeline mechanism. The use of the first

-77 -

pipeline mechanism also reduces the overhead that is caused by the second pipeline mechanism,
since chances are smaller that duplicate results are stored.

As a result, we can conclude that the query caching strategy is best to be used with one of the query
pipeline mechanisms. The recommended mechanism in this case is the first one, for the reasons
mentioned before.

8.2 Future work
This section describes future work that can be done in the area of this thesis for both the query
pipeline as well as the query caching mechanism.

8.2.1 Query pipeline

We have implemented a query analysis strategy, together with two query pipeline construction
strategies and a single strategy to join them. These mechanisms had to be as simple and efficient as
possible. Several improvements and extensions can be made to improve these mechanisms or
provide new ways for them to be managed.

First, the query analysis strategy could be extended by providing support for more of the types and
clauses found in a SPARQL query. At the moment only the basic structure elements, such as triple
patterns, union and filter are supported. Next to this, new strategies could be investigated which try
to fully automate the analysis, compared to the current system using named graphs.

Secondly, since the query analysis only has basic support for SPARQL queries, the two construction
strategies, also only provide basic support. Both of the query construction strategies can be extended
to provide support for the rest of the elements found in SPARQL queries.

Thirdly, there is only one strategy currently provided for joining results. Extra strategies could be
constructed which provide more efficient ways to join two results together, more specifically based
on the construction strategy developed for query construction. The current solution is more used as
a solution that works for all, instead of being optimized for various query construction strategies.

8.2.2 Query caching

As was the case before, the query graph building mechanism is only able to take into account the
SPARQL basics, such as triple patterns, unions and filters. Currently when a filter is present, the
information provided by this filter is not used. This prevents more complex queries from being
compared with each other. The current mechanism could be extended to provide support for all the
other structures, including better support for filters, available in a SPARQL query, allowing support
for more advanced queries. Next to this, the RelationHelper mentioned in section 6.3 can be
extended to allow automatic retrieval of (existing) ontologies (i.e. to retrieve information about
inverse relationships, subclasses and subproperties).

The query comparison mechanism can be said to have the same limitations. At the moment, it is able
to compare any query based on the rules mentioned in section 6.1. This comparison strategy can be
extended to add support for structures such as the filter to allow more accurate comparisons to be
made. Next to just being able to compare two graphs, this strategy could also be extended to check
whether a certain query contains part of the results for the new query. This would allow remainder
queries to be formed, as mentioned in section 3.3.2; these allow one part of the query result to be
retrieved from the cache, and the other part by executing the portion of the query referencing the

-78 -

missing cache data. This would result in better cache utilization and performance, as only a small part
of the query needs to be re-executed.

Replacement eviction strategies could be created better suited to the person’s situation. The
currently implemented LRU eviction strategy is only useful in some situations (e.g. only the most
recently used information is used often), whereas other eviction strategies can be useful for other
situations. For example the second eviction strategy mentioned in section 3.3.4, which is based on
the Manhattan distance between two semantic regions. Based on this distance the relevance of the
query results available in the cache is determined based on the last executed query. Since our
expectations are that a user always wants to know more about the result he is currently querying,
this mechanism would remove irrelevant results from the cache (when needed), even when they are
more recent then the relevant information stored in the cache .Adding new eviction strategies gives
developers the choice to choose which they find the most appropriate, or allow an eviction strategy
to be chosen automatically based on the situation a client is in. Next to the eviction strategy, the
storage of the cache can also be improved. At the moment, the cache is only stored in volatile
memory, making the amount of data that can be cached limited. Adding support for a caching
strategy which (at least partially) stores this data in permanent memory (e.g. an SD card) would
significantly increase the number of elements that can be stored.

-79 -

Chapter 9. Bibliography

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

William Van Woensel , Sven Casteleyn, Olga De Troyer, A Framework for Decentralized,
Context-Aware Mobile Applications Using Semantic Web technology, 2009.

(2011, April) http://source.android.com. [Online]
http://source.android.com/about/index.html

(2011, April) http://en.wikipedia.org/. [Online] http://en.wikipedia.org/wiki/Google_Android
(2009, March) http://en.wikipedia.org/. [Online]
http://en.wikipedia.org/wiki/File:Diagram_android.png

Beat Signer. (2010, Nov.) Web Information Systems: The Semantic Web.

(February, 2004) http://www.w3.org/. [Online] http://www.w3.0rg/TR/2004/REC-rdf-primer-
20040210/

(February, 2004) http://www.w3.org/. [Online] http://www.w3.0org/TR/rdf-schema/
(February, 2004) http://www.w3.org/. [Online] http://www.w3.0org/TR/owl-features/

(2011) http://en.wikipedia.org. [Online] http://en.wikipedia.org/wiki/SPARQL

(January, 2008) http://www.w3.org/. [Online] http://www.w3.org/TR/rdf-sparql-protocol/
(January, 2008) http://www.w3.org/. [Online] http://www.w3.org/TR/rdf-spargl-query/
William Van Woensel, Sven Casteleyn, Elien Paret, Olga De Troyer, Exploiting Existing Online
Semantic Web Data and Techologies to Develop Context-Aware, Mobile Applications, 2010 of
2011.

Espinoza F., Persson P., Sandin A., Nystrom H, Cacciatore E., Bylund M., GeoNotes: Social and
Navigational Aspects of Location-Based Information Systems, 2001.

Lépez-de-Ipifia, D., Vazquez, J.1., Abaitua, J.: A Context-aware Mobile Mash-up Platform For
Ubiquitous Web. In: 3rd IET International Conference on Intelligent Environments, pp. 116--
123, IEEE, Ulm, Germany (2007).

Challiol, C., Rossi, G., Gordillo, S., De Cristéfolo, V.: Designing and Implementing Physical
Hypermedia applications. In: ICCSA 2006, UWSI 2006, pp. 148--157, Springer Berlin /
Heidelberg (2006).

Roduner, C., Langheinrich, M.: Publishing and Discovering Information and Services for
Tagged Products. In: 19th International Conference on Advanced Information Systems
Engineering, pp.501--515, Springer Berlin / Heidelberg, Trondheim, Norway (2007).

Judd, G., and Steenkiste, P. Providing contextual information to pervasive computing
applications. In Proceedings of the First IEEE International Conference on Pervasive
Computing and Communication. IEEE, 2003, 133-142.

Gu, T., Pung, H.K., and Zhang, D.Q. A middleware for building context-aware mobile services.
In Proceedings of IEEE Vehicular Technology Conference. IEEE, 2004, 2656-2660.

Euzenat, J., Pierson, J., and Ramparany, F. Dynamic context management for pervasive
applications. Knowledge Engineering 23, 1, 2008, 21-49.

Dennis Quan, David R. Karger, How To Make a Semantic Web Browser, 2004.

Baihua Zheng, Wang-Chien Lee, Dik Lun Lee, On Semantic Caching and Query Scheduling for
Mobile Nearest-Neighbor Search, 2004.

Yigal Arens, Graig A. Knoblock, Intelligent Caching: Selecting, Representing, and Reusing Data
in an Information Server, 1994.

Stuckenschmidt, H., Vdovjak, R., Houben, G.J., Broekstra, J. Towards Distributed Processing of
RDF Path Queries. International Journal of Web Engineering and Technology, 2, 2/3, 2005,
207-230.

-80-

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

Quilitz, B., and Leser, U. Querying Distributed RDF Datasources with SPARQL. In Proceedings
of the 5th European Semantic Web Conference. Springer, 2008, 524-538.

Kaoudi, Z., Kyzirakos, K., and Koubarakis, M. SPARQL Query Optimization on Top of DHTs. In
Proceedings of 9th International Semantic Web Conference. Springer, 2010, 418-435.
Michael Martin, Jérg Unbehauen, Séren Auer, Improving the Performance of Semantic Web
Applications with SPARQL Query Caching.

Mengdoing Yang, Gang Wu, Caching Intermediate Results of SPARQL Queries, 2011.
Dominic Battré, Caching of intermediate results in DHT-based RDF stores, 2008.

Michael Wessel, Ralf Moéller, A High Performance Semantic Web Query Answering Engine.
S. Kami Makki, Xunhang Zhou, Novel Cache Management Strategy for Semantic Caching in
Mobile Environment, 2008.

Boris Chidlovskii, Uwe M. Borghoff, Semantic caching of Web queries, 2000.

Dongwon Lee, Wesly W. Chu, Semantic Caching via Query Matching for Web Sources, 1999.
Renu Tewari, Harrick M. Vis, Asit Dan, Dinkar Sitaram, Resource-based Caching for Web
Servers.

Jianlian Xu, Xuejan Tang, Dik Lun Lee, Performance Analysis of Location-Dependent Cache
Invalidation Schemes for Mobile Environments, 2003.

Bjorn DAr Jonsson, Maria Arinbjarnar, Bjarnsteinn Dérsson, Performance and Overhead of
Semantic Cache management, 2006.

Shaul Dar, Michael J. Franklin, Bjorn T. Jénsson, Divesh Srivastava, Michael Tan, Semantic
Data Caching and Replacement, 1996.

Parke Godfrey, Jarek Gryz, Semantic Query Caching for Heterogeneous Databases, 1997.
Heiner Stuckenschmidt, Similarity-Based Query Caching, 2004.

(June, 2011) http://champignon.net/. [Online] http://champignon.net/cooltown.php
Wolfgang De Meuter. (2010, Mar.) Algoritmen en Datastructuren 2.

-81-

