
Conceptual Modeling of Complex
Objects for Virtual Environments

A Formal Approach

Wesley Bille

Academiejaar: 2006 - 2007

Promotor: Prof. Dr. Olga De Troyer

Proefschrift ingediend met het oog op het behalen van de graad van Doctor in de Wetenschappen

Departement Computer Wetenschappen
Web & Information Systems Engineering

FACULTEIT VAN DE WETENSCHAPPEN

ii

ii

Samenvatting

Virtuele Realiteit (VR) wordt gebruikt in verschillende domeinen en voor
verschillende doeleinden. De technologie heeft de laatste jaren enorm aan
populariteit gewonnen. Door de groeiende interesse in VR werden een groot
aantal tools voor het bouwen van VR applicaties ontwikkeld. Ondanks de
aanwezigheid van deze tools blijkt een grote achtergrondkennis omtrent VR
technologie nog steeds noodzakelijk om de gewenste virtuele omgeving te
bouwen. Momenteel laat geen enkele tool de ontwerper toe om de virtuele
omgeving te specificeren in termen van domeinconcepten. Bij de creatie van
een VR applicatie moeten bijvoorbeeld de objecten van het probleemdomein
eerst vertaald worden in VR primitieven. Dit is één van de redenen waarom
het ontwikkelen van een VR applicatie zo complex, tijdrovend en duur is.

Om deze problemen op te vangen heeft de onderzoeksgroep WISE van de
Vrije Universiteit Brussel de VR-WISE benadering ontwikkeld. Deze nieuwe
benadering voor het ontwikkelen van virtuele omgevingen introduceert een
expliciete conceptuele modelleerfase in het ontwikkelingsproces van een VR
applicatie. Conceptueel modelleren biedt een mechanisme om te abstra-
heren van het implementatieniveau. Dit reduceert de complexiteit bij het
ontwikkelen van een VR applicatie. Bovendien kan zo’n abstractielaag het
specifieke VR vakjargon verbergen zodat op deze manier geen specifieke
VR kennis nodig is om het conceptueel model te creëren. Hierdoor kun-
nen mensen zonder technische kennis (zoals de klant of de eindgebruiker)
betrokken worden in de ontwikkeling. Dit komt de communicatie tussen de
ontwikkelaars en de andere deelnemers binnen het project ten goede. Do-
ordat de klant dichter bij de ontwikkeling van de VR applicatie betrokken
wordt is het mogelijk om misverstanden en onjuistheden vroeger te ont-
dekken.

In deze thesis wordt dieper ingegaan op het conceptueel modelleren van
complexe objecten. Complexe objecten zijn een belangrijk onderdeel van
een VR applicatie. Objecten in de reële wereld bestaan vaak uit verschil-
lende onderdelen. De manier waarop deze onderdelen aan elkaar vasthangen

iii

iv Samenvatting

bepaalt eveneens hoe deze objecten kunnen bewegen ten opzichte van elkaar.
Daarom wordt in deze thesis een verzameling van hoog-niveau modelleer-
concepten voor het modelleren van complexe objecten in de context van
de VR-WISE benadering voorgesteld. Deze modelleerconcepten bieden een
abstractieniveau bovenop bestaande VR primitieven voor connecties tussen
onderdelen. Voor alle modelleerconcepten die gëıntroduceerd worden in deze
thesis werd een grafische notatie ontwikkeld alsook een formele definitie van
zowel syntax als semantiek. De grafische notatie helpt in het vormen van een
mentaal model van het conceptueel model en vergemakkelijkt ook de speci-
ficatie van het conceptueel model. De formele definities leggen de semantiek
van de verschillende modelleerconcepten ondubbelzinnig vast en laten toe
om ondubbelzinnige conceptuele specificaties te bouwen. Bovendien biedt
de formalizatie het voordeel dat ze aangewend kan worden om te redeneren
over de virtuele omgeving. Eveneens kunnen tools ontwikkeld worden die de
stappen beginnend bij de conceptuele specificatie tot de corresponderende
virtuele omgeving, ondersteunen. Een dergelijke prototype implementatie
werd ontwikkeld om de haalbaarheid van de benadering aan te tonen.

iv

Abstract

Virtual Reality (VR) is used in lots of different domains for different pur-
poses. The technology has gained a lot of popularity during the last decen-
nia. Together with the growing interest in VR, a lot of different software
tools were developed which allow building VR applications. However, most
tools available nowadays require considerable background knowledge about
VR technology in order to create the desired virtual environment. It is im-
possible for a developer to specify the virtual environment immediately in
terms of domain concepts, i.e. when creating a VR application the objects
from the problem domain have to be translated into VR building blocks.
This is one of the reasons why developing a VR application is complex,
time-consuming and expensive.

To cope with these problems, the research group WISE at the Vrije Uni-
versiteit Brussel has developed the VR-WISE approach. This new approach
for developing virtual environments introduces an explicit conceptual de-
sign phase in the development of a VR-application. As conceptual modeling
introduces a mechanism to abstract from implementation details, it will
reduce the complexity of developing a VR application. In addition, such
an abstraction layer can also hide the specific jargon used in VR and then
no special VR knowledge will be needed for making the conceptual design.
Therefore, also non-technical people (like the customer or the end-user) can
be involved in the development and this will improve the communication
between the developers and the other stakeholders. In addition, by involv-
ing the customer more closely in the design process of the VR application,
earlier detection of design flaws is possible. All this could help in realizing
VR applications in a shorter time.

In this dissertation, we have focused on the conceptual modeling of com-
plex objects. Complex objects are an important issue in VR applications.
Like in the real world, objects are often composed of different parts, and
the way the parts are connected influences the way the complex objects
can behave. Therefore, in this dissertation we propose a set of high-level

v

vi Abstract

conceptual modeling concepts for specifying complex objects in the context
of the VR-WISE approach. The modeling concepts proposed provide an
abstraction layer on top of existing VR-primitives for connections. For all
modeling concepts introduced, a graphical notation has been developed and
a formal specification is defined for the syntax as well as for the semantics.
The graphical notation helps in quickly building a mental model of a spec-
ified conceptual model and eases the specification of the conceptual model
itself. The formal specification unambiguously defines the semantics of the
different modeling concepts and therefore allows building unambiguous con-
ceptual specifications. Furthermore, it has the advantage that it provides
the basis for doing intelligent reasoning over the virtual environment. In
addition, tools can be developed to assist in the translation from the con-
ceptual specifications towards a working virtual environment. A prototype
has been implemented to show the feasibility of this translation.

vi

Acknowledgement

First of all, I would like to thank my promotor Prof. Dr. Olga De Troyer.
I would like to thank her for her believe in me and the support she gave
me when producing this dissertation. In spite of her time-consuming task
of managing the Web and Information Systems Engineering lab she still re-
served some of her rare time to proofread my chapters and to give me very
useful comments and advises. She also gave me the right motivation in order
to complete this PhD.

Secondly I would like to thank the members of my jury, Prof. Dr. Stefano
Spaccapietra, Dr. Clive Fencott, Prof. Dr. Robert Meersman, Prof. Dr.
Dirk Vermeir and Dr. Frederic Kleinermann, for being part of my jury.
They all provided me very useful comments and suggestions in order to im-
prove my work.

Next I also want to thank my collegues and ex-collegues at WISE: Sven
Casteleyn, Peter Plessers, Raul Romero and Abed Mushtaha. Special thanks
goes out to my collegues Bram Pellens and Dr. Frederic Kleinermann for
the excellent cooperation and the interesting discussions and nice times we
had.

Furthermore, I also would like to thank my family and friends for their sup-
port during this hard time.

The last word of thanks is reserved to two special people in my life, my
girlfriend and my daughter. I want to thank my girlfriend, Linsday Decoop-
man, for enduring me during my moments of bad mood and for giving me
the necessary motivation. Although she’s might not yet be conscious of it,
thanks goes to my daughter Febe, who was born on the 14th of February
2007, for giving me the strength to continu. Thank you Lindsay and Febe!

vii

viii Acknowledgement

viii

Contents

Samenvatting iii

Abstract v

Acknowledgement vii

I Introduction, Background and Informal Description 1

1 Introduction 3
1.1 Research Context . 4
1.2 Problem Statement . 5
1.3 Goal . 7
1.4 Approach . 7
1.5 Contributions . 9
1.6 Outline . 11

2 Background and Related Work 15
2.1 Virtual Reality . 15

2.1.1 A short history of Virtual Reality 16
2.1.2 Different types of VR-applications 17

2.2 Conceptual Modeling . 19
2.2.1 UML . 20
2.2.2 ER . 21
2.2.3 ORM . 21
2.2.4 Discussion . 22

2.3 Academic modeling approaches 26
2.3.1 The CODY Virtual Constructor 27
2.3.2 The Open Assembly Model 29
2.3.3 Virtual Assembly Design Environment 32

ix

x CONTENTS

2.3.4 Multi-user Intuitive Virtual Environment 33
2.4 X3D . 33
2.5 Commercial modeling approaches 35

2.5.1 SimMechanics . 35
2.5.2 MotionWorks For SolidWorks 39
2.5.3 3D Studio Max . 41

2.6 Summary . 42

3 Overview of the VR-WISE approach 43
3.1 Introduction . 43
3.2 The three steps of the VR-WISE approach 45

3.2.1 The specification step 46
3.2.2 The mapping step . 47
3.2.3 The generation step 48

3.3 High-level modeling concepts 49
3.3.1 Modeling concepts for simple objects 49
3.3.2 Modeling concepts for behavior 57

3.4 Use of the VR-WISE approach 58
3.5 Conclusion . 59

4 Modeling Concepts for Complex Objects 61
4.1 Introduction . 61
4.2 Specifying connections between objects 66

4.2.1 The Connection Point Relation 66
4.2.2 The Connection Axis Relation 70
4.2.3 The Connection Surface Relation 76

4.3 Constraints on connections 81
4.3.1 The Hinge Constraint 81
4.3.2 The Slider Constraint 85
4.3.3 The Joystick Constraint 88

4.4 Position and Orientation of complex objects 93
4.5 Nesting Complex Objects . 93
4.6 Roles . 95
4.7 Instantiating Complex Objects 97
4.8 Specifying and constraining connectionless groups of objects . 98

4.8.1 The Fixed Relative Position Constraint 98
4.8.2 The Fixed Relative Orientation Constraint 99
4.8.3 The Positioning Constraint 100

4.9 Specifying complex shapes . 104
4.9.1 The Union Relation 105

x

CONTENTS xi

4.9.2 The Intersection Relation 105
4.9.3 The Difference Relation 106
4.9.4 Modeling CSG Trees 107
4.9.5 Orientation and position of subparts in CSG 108

II Formal Definitions 109

5 Introduction to F-Logic 113
5.1 F-Logic by example . 113

5.1.1 Signatures . 113
5.1.2 Class membership . 115
5.1.3 Method signatures and deductive rules 115
5.1.4 Subclass relationship 117
5.1.5 Function symbols . 117
5.1.6 Predicates . 118
5.1.7 Queries . 118

5.2 Syntax . 119
5.2.1 The alphabet of an F-Logic language 119
5.2.2 Molecular formulas . 119
5.2.3 Complex Formulas . 121

5.3 Path expressions . 121
5.4 Semantics . 122
5.5 Why F-Logic? . 124
5.6 Conclusion . 126

6 Fundamentals 127
6.1 Point . 127
6.2 Orientation . 127
6.3 Rotations . 128
6.4 Other fundamentals . 131

7 Formalizing Static World Modeling Concepts 133
7.1 Concepts . 133
7.2 Instances . 135
7.3 Complex Concepts and Instances of Complex Concepts 136
7.4 Roles . 142
7.5 Spatial Relations . 143

7.5.1 Example . 148
7.6 Orientation Relations . 151

xi

xii CONTENTS

7.6.1 Relative orientation relations 151
7.6.2 Orientation by angle relations 156

8 Formalizing Connection Relations 159
8.1 Formalization of the connection axis relation 159
8.2 Formalization of the connection point relation 180
8.3 Formalization of the connection surface relation 184

9 Formalizing Constraints 195
9.1 Slider constraint . 195
9.2 Hinge constraint . 197
9.3 Joystick constraint . 201
9.4 Fixed Relative Position Constraint 207
9.5 Fixed Relative Orientation Constraint 208
9.6 Positioning Constraint . 210

10 Formalizing CSG Relations 215
10.1 Union Relation . 215
10.2 Intersection relation . 216
10.3 Difference relation . 217

11 Applications of the formalization 219
11.1 Reasoning . 219
11.2 Consistency checking . 221

III Implementation, Use Case and Conclusions 223

12 Implementation 225
12.1 General Overview . 226
12.2 Diagram Editor . 226
12.3 Physics Generator Component 229
12.4 Integration with OntoWorld 233

13 Case Study 235
13.1 Subject . 236
13.2 Conceptual design . 236

13.2.1 Base - Rail connection 237
13.2.2 LowerArm - Base connection 238
13.2.3 UpperArm - LowerArm connection 239
13.2.4 WeldingHead - UpperArm connection 241

xii

CONTENTS xiii

13.2.5 The overall conceptual model 242
13.3 Generation of the virtual world 245

13.3.1 Mapping . 245
13.3.2 Instantiation . 245
13.3.3 Generation . 246

13.4 Limitations . 246

14 Conclusions 249
14.1 Summary . 249
14.2 Contributions . 252

14.2.1 Contributions in relation to the problems and goals . . 252
14.2.2 Contributions to the VR-WISE approach 254

14.3 Limitations . 256
14.4 Future Work . 257

xiii

xiv CONTENTS

xiv

List of Figures

2.1 Example of an ER model . 21
2.2 Example of an ORM diagram 22
2.3 Example of the modeling of a connection between two objects

using ORM. 23
2.4 Example of the modeling of a connection between two objects

using UML. 24
2.5 User Interface of the CODY Virtual Constructor [33] 28
2.6 Partial class diagram of the Open Assembly Model 30
2.7 Example assembly consisting of a shaft and a piston 31
2.8 Instance diagram of an example assembly in OAM 31
2.9 Graphical representation of a rigid body in SimMechanics . . 36
2.10 Example of the use of a revolute joint in SimMechanics . . . 38
2.11 GUI for the creation of a revolution joint in MotionWorks . . 40

3.1 Overview of the VR-WISE approach 46
3.2 Graphical notation for the modeling concept Concept 50
3.3 Graphical notation for the modeling concept Instance 51
3.4 Graphical notation for the spatial relation 51
3.5 Example of the use of spatial relations 52
3.6 (a) default orientation; (b) internal orientation 45 degrees

counterclockwise around the front axis 53
3.7 (a) default orientation; (b) external orientation 45 degrees

counterclockwise around the front axis 54
3.8 Graphical notation for the orientation by side relation 55
3.9 Example of the use of the orientation by side relation 55
3.10 Graphical notation for the orientation by angle relation . . . 56
3.11 Example of the use of the orientation by angle example . . . 56
3.12 Behavior Definition Diagram example 58
3.13 Behavior Invocation Diagram example 58

xv

xvi LIST OF FIGURES

4.1 Graphical notation for the conceptual model of a Complex
Concept . 63

4.2 Refering to a complex concept by means of its label 63
4.3 Graphical notation for an instance of a complex concept . . . 63
4.4 Graphical notation for the Connection Point Relation 68
4.5 Expanded graphical notation for the Connection Point Relation 68
4.6 connection point relation example 70
4.7 illustration of the connection point definition for the joystick

base . 70
4.8 (a) the horizontal plane; (b) the vertical plane; (c) the per-

pendicular plane . 71
4.9 translation of the translation point on a connection axis relation 72
4.10 Graphical notation for the Connection Axis Relation 73
4.11 Expanded graphical notation for the Connection Axis Relation 73
4.12 connection axis relation example 75
4.13 Illustration of the connection axis specification for the door

object . 76
4.14 degrees of freedom for the connection surface relation 77
4.15 translating the translation point in a connection surface relation 78
4.16 graphical notation for the connection surface relation 78
4.17 Extended graphical notation for the Connection Surface Re-

lation . 79
4.18 connection surface relation example 79
4.19 ship moving over a water surface 80
4.20 possible viewpoint on the connection axis for the specification

of a hinge constraint . 83
4.21 looking along an axis from the viewpoint 84
4.22 Clockwise and counterclockwise as seen from the viewpoint . 84
4.23 graphical notation for the hinge constraint 84
4.24 expanded graphical notation for the Hinge Constraint 85
4.25 The connection axis for a door in a virtual environment . . . 85
4.26 hinge constraint example . 86
4.27 Example of a robot arm moving along a rail 86
4.28 graphical notation for the slider constraint 87
4.29 expanded graphical notation for the slider constraint 87
4.30 slider constraint example . 88
4.31 The joystick constraint [55] 89
4.32 a joystick makes use of the joystick constraint 89
4.33 possible axes for the joystick constraint 90
4.34 graphical notation for the joystick constraint 91

xvi

LIST OF FIGURES xvii

4.35 expanded graphical notation for the joystick constraint 91
4.36 joystick constraint example 92
4.37 allowed movement of the handle in the joystick example . . . 92
4.38 Connecting two complex objects 94
4.39 Connecting two complex objects by means of their parts . . . 94
4.40 Referring to parts of complex objects for connection 94
4.41 Possible conceptual model for the concept Car 95
4.42 Graphical notation for the modeling concept Role 96
4.43 Conceptual model for the concept Car using roles 96
4.44 SmallCar instantiated from the Car concept 97
4.45 graphical notation of the fixed relative position constraint . . 99
4.46 graphical notation of the fixed relative position constraint

without explicit spatial relation 99
4.47 graphical notation of the fixed relative orientation constraint 100
4.48 graphical notation of the fixed relative orientation constraint

without explicit orientation relation 101
4.49 graphical icons for (a) the binding area; (b) the anchor area . 102
4.50 Expanded notation for (a) binding area and (b) anchor area . 102
4.51 specification of the binding area on the Desk concept 103
4.52 specification of the anchor area on the Book concept 103
4.53 Two initial objects used in CSG operations 104
4.54 CSG operations: (a) union; (b) intersection and (c) difference 105
4.55 Graphical notation of the Union Relation 105
4.56 Graphical notation of the Intersection Relation 106
4.57 Graphical notation of the Difference Relation 107
4.58 An example of a CSG tree . 107
4.59 CSG tree as represented in the VR-WISE approach 108

5.1 Three levels of formalization 125

6.1 Default orientation of a concept in the VR-WISE approach . 128

7.1 Distances in separate directions calculated from a combined
direction . 146

7.2 A spatial relation between two concepts 148
7.3 Example of a relative orientation relation between concepts . 152
7.4 Default orientation of two objects 152
7.5 Example of an orientation by angle relation 157

8.1 Connection axis is the intersection of two planes 160
8.2 Rotation of the vertical plane around the top-to-bottom axis 161

xvii

xviii LIST OF FIGURES

8.3 Connection axes for source and target may not fall together . 162
8.4 Connection axes for source and target are parallel 164
8.5 Orthogonal projection of source and target position on their

connection axes . 164
8.6 Orthogonal projection of a point on a line 165
8.7 Calculation of the translation of the source object 166
8.8 Result after the calculation of the connection axis relation . . 166
8.9 Translation of the translation point for the source object . . . 167
8.10 Rotation of the connection planes 185

9.1 Semantics of the hinge constraint 198
9.2 Example of a joystick constraint 202
9.3 Example of a cone opening towards the z-direction 203
9.4 Calculation of the cone . 203

12.1 General overview of the implementation 226
12.2 Diagram Editor overview . 227
12.3 Visio stencil for complex object modeling concepts 227
12.4 Screenshot from the graphical editor 228
12.5 Concept/instance mapping window 231
12.6 Attribute mapping window 232
12.7 Code generation in the Physics Generator Component 232
12.8 Generated virtual environment 233
12.9 Generation process of the OntoWorld application 234

13.1 The virtual mechanical welding robot 236
13.2 Connections between parts of the welding robot. 238
13.3 Ilustration of the specification of the connection axis on the

Rail concept. 239
13.4 Conceptual specification for the Base to Rail connection. . . . 240
13.5 Connection between LowerArm and Base without translation

point specification. 240
13.6 Conceptual specification for the LowerArm to Base connection.241
13.7 Conceptual specification for the UpperArm to LowerArm con-

nection. 242
13.8 Conceptual specification for the WeldingHead to UpperArm

connection. 243
13.9 Complete conceptual specification for the welding robot . . . 244
13.10Representation in the virtual environment of (a) the Lower-

Arm; (b) the UpperArm; and (c) the WeldingHead. 245

xviii

LIST OF FIGURES xix

13.11An example instance of the complex concept Welding Robot. 247

14.1 VR-WISE research results . 254

xix

xx LIST OF FIGURES

xx

List of Tables

2.1 Usability of conceptual modeling languages for VR modeling 25
2.2 Joint primitives in SimMechanics 37
2.3 Joint composites in SimMechanics 38
2.4 Example permanent joints in MotionWorks 40

4.1 Connection mechanisms in existing VR modeling tools 64

13.1 Different concepts of the welding robot 237

xxi

xxii LIST OF TABLES

xxii

Part I

Introduction, Background
and Informal Description

1

Chapter 1

Introduction

Virtual Reality (VR) is a technology allowing users to interact with a computer-
simulated environment. Nowadays, VR is used in lots of different domains
and for different purposes. VR can be used to simulate an environment very
close to the real world, as it is the case for flight simulators, or building
prototypes in industry. But VR can also be used to simulate artificial world
environments. This kind of environments is often found in computer games.
In any case, the use of VR has gained a lot of popularity during the last
decennia.

A number of software tools are available today to assist in the develop-
ment of VR applications. However, no matter how powerful these applica-
tions are, they require a considerable VR background knowledge. This way,
the development of VR applications is still a specialized and tedious task,
which hinders the application of VR in areas and domains that could also
benefit from its use (like e.g., e-commerce and e-learning). Also, the design
phase in the development of a VR application is usually a very informal
activity. This often results in mismatches between the expectations of the
customer and the actual VR application delivered. For these reasons, this
dissertation is concerned with the problem of modeling virtual environments
on a high level of abstraction. More in particular, we are focusing on model-
ing complex objects for virtual environments. Note that the term modeling
used in this dissertation refers to the activity performed during the design
phase of software development. We will also use the term specifying (re-
spectively specification) as a synonym for modeling (respectively model), as
the term modeling is also used in the VR community to denote the process
of shaping objects.

3

4 Introduction

1.1 Research Context

Virtual Environments can be seen as computer-generated environments that
create the effect of an interactive three-dimensional world in which objects
have a sense of spatial and physical presence and can be manipulated by the
user as such. The user can pick up objects, turn or move them, etc. Virtual
environments can range from low-end virtual environments like web-based
X3D models [1] to high-end virtual environments like fully immersive envi-
ronments such as a CAVE [16]. The type of VR we are targeting in this
dissertation can be categorized as desktop-based VR. Desktop-based VR are
virtual environments displayed on a normal computer screen and manipu-
lated by means of classic input devices like a keyboard or mouse. Note that
nowadays also some more sophisticated input devices are used for desktop
VR. Some examples are a 3D mouse or a glove.

A number of techniques and tools are available today that can be used
for developing VR applications. These tools can be categorized in two cat-
egories. The first category consists of so called toolkits (like ODE [55],
Havok1, Ogre3D2). These toolkits are programming libraries that provide
a set of functions that can be used by a skilled programmer to create VR
applications. The second category are the authoring tools (like 3D Studio
Max [41]). These are complete software environments with graphical user
interfaces for building virtual environments without the need for detailed
programming. Current practice for developing a VR application is that first
an authoring tool is used to create the 3D content for the virtual environ-
ment and afterwards this content is imported in a toolkit where the code for
behavior is added. Note that some of the recent authoring tools also pro-
vide a simple scripting language which makes it possible to develop simple
behaviors for the 3D content.
However, although the development of a VR application is supported by
a number of powerful tools, it remains a specialized and tedious task to
develop a VR application. A number of problems arise when using the
currently available tools:

• When using the available tools, a considerable background knowledge
about VR technology is required.

• None of the available development tools allow the developer to specify
the virtual environment in terms of domain concepts.

1http://www.havok.com, accessed 6th of June 2007
2http://www.ogre3d.org, accessed 6th of June 2007

4

Problem Statement 5

We will discuss these problems in more detail in section 1.2.

In order to give an answer to these problems the research group WISE at
the Vrije Universiteit Brussel has developed a new approach for developing
virtual environments, called the VR-WISE approach. This approach intro-
duces an explicit conceptual design phase in the development process of a
VR-application. It provides a set of high-level modeling concepts to allow
modeling a VR application using knowledge from the application domain.
When developing this set of high-level modeling concepts to support the
design process a number of requirements have been taken into account:

1. Intuitiveness: The set of high-level modeling concepts needs to be
intuitive to a non-VR expert.

2. Expressive power: The modeling concepts provided by the approach
must be expressive enough to allow deriving an implementation from
the conceptual design. So the expressive power of the modeling con-
cepts needs to be high enough to be able to serve as input for the
implementation process, which we call the code generation.

3. Unambiguousness: First of all, the modeling concepts must be un-
ambiguous from the perspective of the designer. For the designer it is
important that he understands the semantics of a conceptual model.
Next, unambiguousness is also needed from the perspective of the code
generation; otherwise it would not be possible to automatically gener-
ate code.

To ease the use of the modeling concepts and to enhance the communica-
tion between designers, programmers and other stakeholders in a project, a
graphical notation for the modeling concepts has also been developed.

The work performed for this dissertation was done in the context of VR-
WISE. The focus of the research is on complex objects. Complex objects are
objects composed of two or more components (like most real-world objects).
Most of the objects in a virtual environment are also complex. Therefore, a
set of high-level modeling concepts that can be used for modeling complex
objects inside the context of the VR-WISE approach was needed.

1.2 Problem Statement

Although the creation of VR applications is supported by a number of soft-
ware tools (see section 1.1), the development stays a specialized and tedious

5

6 Introduction

task. These tools are very powerful but they cause a number of problems.
This dissertation does not claim to present a complete solution to all prob-
lems related to the development of virtual environments. Since most real
world objects are composed of several components and this often needs to
be reflected in the VR application, the modeling of complex objects is an
important issue when developing a VR application. Therefore, in this disser-
tation we focus on modeling complex objects in the context of the VR-WISE
approach. Hence, we will propose an answer to the following problems from
the viewpoint of complex objects.

• Problem 1:
The available tools for developing VR applications require a consider-
able knowledge about VR technology. Current practice when develop-
ing a VR application is that first the static part is created by means
of an authoring tool. Next, the outcome of the static part modeling is
imported in a toolkit where the code for behavior is added. Toolkits
require detailed programming and thus require a considerable pro-
gramming background while authoring tools make use of a typical VR
vocabulary which is only familiar to VR specialists.
In addition, the translation of the domain objects needed in the virtual
environment (for example a car) into a combination of VR primitives
(such as boxes, cylinders, . . .) and constraints (like the type of connec-
tion needed between several primitives) is not an easy task. Take for
example two objects in the domain that are connected over a center of
motion. In some toolkits this type of connection must be translated as
a spherical joint type. None of the current VR development tools give
the developer support for this task or allow him to specify the content
of a virtual environment in terms of domain concepts. To illustrate
this, take VRML [29] or X3D [1]. Although VRML and X3D allow the
creation of 3D content without having to deal with low-level details
of the platform or rendering process, the developer still has to specify
the concepts using low-level primitives.

• Problem 2:
The design phase in the development process of a VR application is
usually a very informal activity. Developers usually start with the so-
called back-of-the-envelope approach. First they do some brainstorm
sessions, then they sketch some general shapes to get a clearer idea
of what is being created, then they create some early prototypes in
a CAD-environment. Few formal techniques in the context of VR

6

Goal 7

exist to support the design phase effectively (like UML [21] in the
context of classical software engineering). A fully developed systematic
approach that uses the output of the design phase as the input for the
implementation phase does not exist.

• Problem 3:
There does not exist a formal basis for discussing the design of a Vir-
tual Environment between the different stakeholders of a project. As
we already discussed in problem 2, based on some brainstorm sessions,
notes and sketches are made. However, natural language and sketches
are informal, ambiguous and often incomplete. The consequence is
that this easily leads to misunderstandings. Because of these misun-
derstandings, part of the VR application might need to be remodeled
or even rebuild.

1.3 Goal

In this dissertation we aim to develop an approach for modeling complex
objects and shapes for virtual environments that:

• requires little VR background knowledge from the user.

• can serve as a communication basis between designers, programmers
and other stakeholders of the project.

• has a formal foundation that unambiguously defines the modeling con-
cepts and allows building unambiguous conceptual specifications.

• provides the possibility to do some intelligent reasoning over the virtual
environment.

1.4 Approach

The approach taken in this dissertation to tackle the problems described
above is to introduce a set of high-level modeling concepts for specifying
complex objects for virtual environments. The proposed set of modeling
concepts fits in the general VR-WISE approach.
The use of high-level modeling concepts that allow specifying complex ob-
jects and shapes in term of domain concepts instead of low level VR primi-
tives must ensure that also domain experts can be involved in the develop-
ment. To reach the other goals formulated in section 1.3, we also took into

7

8 Introduction

account their expressive power, intuitiveness and unambiguousness when we
developed this set of modeling concepts.
The VR-WISE approach distinguishes two levels. On one hand we have the
conceptual domain specification describing the concepts of the application
domain. On the other hand we have the conceptual world specification con-
taining the actual conceptual description of the virtual environment that
needs to be build. The conceptual world specification actually contains in-
stances of the concepts described in the conceptual domain specification.
Since we follow the VR-WISE approach, the approach for modeling complex
objects for virtual environments introduced in this dissertation also follows
this two-level approach. In the conceptual domain specification, we describe
which concepts from the application domain are complex and how they are
connected to each other and how they are constrained. Next, at the concep-
tual world specification, we specify the instances of the complex concepts
described in the conceptual domain specification.

The set of modeling concepts for modeling complex objects has been
divided in several categories. The first category contains the so-called con-
nection relations. This category contains relations that can be used to phys-
ically connect two objects to each other and also limit the degrees of freedom
for the movement of the connected objects with respect to each other. We
have identified three connections relations: the connection point relation,
the connection axis relation and the connection surface relation. These re-
lations respectively specify a connection over a ’center of motion’, an ’axis
of motion’ and a ’surface of motion’.
The second category of modeling concepts are the so-called contraints. These
constraints allow further restriction of the position and orientation of con-
nected objects with respect to each other. All the constraints are modeled
on top of a connection relation between two objects. We introduce the hinge
constraint, the joystick constraint and the slider constraint. The names of
the constraints are metaphor-based which should enhance the intuitiveness
of the modeling concepts for non-technical persons.

In the case of complex objects, all the components connected together
keep their own identity and can all be manipulated individually in the virtual
environment as far as their connections and constraints allow. However, we
can think of cases where the different components may be melted together
and thus loose their identity. The result of melting objects together to form
one whole is called a complex shape. Actually, when modeling complex ob-
jects we are concerned with the physical structure of the complex object.

8

Contributions 9

When modeling complex shapes we are concerned with the representation of
the complex shape in the virtual environment. For this category of modeling
concepts we have based our approach on the relations provided in the do-
main of Constructive Solid Geometry (CSG) [52]. CSG is a technique used
for solid modeling (a solid model is just another name for what we call an
object). This technique uses a set of boolean operators to create complex
shapes. The CSG technique allows creating very complicated geometries
with a number of very simple operators. Therefore in our approach we also
introduced the intersection relation, the union relation and the difference
relation.

Next to complex objects and complex shapes it is also possible that a
number of objects are constrained with respect to each other without being
physically connected. We call such a group of objects a connectionless group
of objects. Some examples in the real world are a magnetic field between
two objects, or a coffee cup that can only be positioned on a saucer. There-
fore we also introduced a number of constraints which can be used for this
purpose.

Following the general VR-WISE approach we also developed a graphical
notation for the modeling concepts we introduce in this dissertation. The
graphical notation follows the graphical notation of the general VR-WISE
approach being an icon-based graphical representation. The relations are
graphically represented in the same way but with a unique icon to identify
the type of the relation and to make it easier to recognize the different rela-
tions inside a conceptual model.

When modeling concepts are not formally defined, they can be inter-
preted in different ways leading to ambiguity. Therefore a formal foundation
has been defined for the work described in this dissertation. Such formaliza-
tion introduces a number of new opportunities and advantages. One of the
new opportunities is that it allows reasoning over the virtual environment.
Our formalization has been defined using F-Logic which is a full-fledged logic
following the object-oriented paradigm.

1.5 Contributions

With the work presented in this dissertation we have made a number of
contributions. The main contributions follow from the research which has

9

10 Introduction

been done specifically in the context of this dissertation 3.

• We present a set of high-level modeling concepts that can be used to
specify complex objects for a virtual environment. These modeling
concepts can be divided into several categories. The first category is
the one of connection relations that allow to specify how two objects
are connected to each other and how they are allowed to behave with
respect to each other. The second category contains modeling concepts
that allow further constraining the behavior of two connected objects.
Next we also introduce a number of constraints that can be used to
constrain the position and orientation of unconnected groups of objects
relative to each other.

• Our research also presents a number of high-level modeling concepts to
specify complex shapes. Complex shapes are formed by combining a
number of simple and/or complex shapes together to form one object
(in contrast to complex objects where each component can still be
manipulated individually).

• For all the presented modeling concepts in this dissertation we also
define a graphical notation which is consistent with the graphical no-
tation used in the rest of our VR-WISE approach.

• To unambiguously specify the modeling concepts we also present a for-
malization. This allows building conceptual specifications of virtual
environments that are unambiguous. Therefore, first the VR-WISE
approach, which is used as a framework for the work in this disser-
tation, has been formalized. Next the modeling concepts supporting
the specification of complex objects and complex shapes have been
formally defined.

• The formal foundation allows us to do some intelligent reasoning. The
conceptual level can serve as a semantic annotation of the virtual envi-
ronment while the formalization mechanism can be used for querying
it.

• Finally we have developed a prototype tool. This tool serves as a
proof-of-concept for the ideas presented in this dissertation. We de-
veloped an extension to Microsoft Visio that can be used to draw the

3The research in the context of this dissertation was mainly funded by the Fund for
Scientific Research - Flanders (FWO).

10

Outline 11

graphical representation of the conceptual specifications. Next we also
implemented a tool that takes care of code generation for the complex
objects. This has been integrated into the overall tool taking care of
the complete process of translating the conceptual specification into a
working virtual environment.

1.6 Outline

This dissertation is structured in three parts.

Part I: Introduction, Background and Informal Description

Chapter 2 contains background and related work. It gives a general in-
troduction to Virtual Reality and also to conceptual modeling. A number
of existing conceptual modeling languages are discussed. Advantages and
disadvantages of their use for modeling virtual environments are discussed.
For the related work an overview of state-of-the-art modeling approaches
for virtual environments is given. The described approaches can be divided
in two main categories, namely academic approaches and commercial ap-
proaches.

Chapter 3 gives an informal description of the VR-WISE conceptual mod-
eling approach. The VR-WISE approach introduces an explicit conceptual
design phase inside the development process of a VR-application. The re-
search proposed in this dissertation is part of this approach. First, a general
overview of the approach is given. Next, an overview of existing model-
ing concepts that can be used inside the approach for modeling simple
objects on a higher level of abstraction are discussed. Some attention is
also paid to high-level modeling concepts for modeling behavior inside the
VR-WISE approach. However, behavior modeling is the topic of another
PhD-dissertation.

Chapter 4 introduces a set of high-level modeling concepts that can be
used to specify complex objects and complex shapes at the conceptual level
in the context of the VR-WISE approach. Most real-world objects are as-
sembled of several components. Components connected to each other form
a complex object. Usually, all of these components keep their own identity
and hence it should be possible to manipulate them individually in the vir-
tual environment as long as their connections and constraints allow this. In
this chapter attention is paid to several categories of modeling concepts for

11

12 Introduction

complex objects: connection relations, constraints on connection relations
and constraints for connectionless groups of objects. We also introduce a set
of high-level modeling concepts that can be used to specify complex shapes.
The components of complex shapes, in contrast to the components of com-
plex objects, are melted together to form one object.

Part II: Formal Definitions

Chapter 5 gives an introduction to F-logic. F-logic is a full-fledged logic
that will be used in this dissertation to give a formal specification of the
modeling concepts developed for modeling simple as well as complex ob-
jects. First F-Logic is described by means of some examples. Next, the
formal syntax is introduced. Finally, we give a clarification why F-Logic has
been chosen for the formalization.

Chapter 6 gives the formalization for a number of fundamentals which are
needed in the rest of our formalization. This chapter formalizes concepts as
point, rotation, . . .

Chapter 7 formalizes the modeling concepts for modeling simple objects.
The basic modeling concepts from the VR-WISE approach such as concept,
instance, spatial relations and orientation relations are formally defined.

Chapter 8 gives the formal definition for the connection relations which
were introduced in chapter 4. The connection point relation, connection
axis relation and connection surface relation are formalized.

Chapter 9 gives a formalization for the following constraints: the slider
constraint, hinge constraint, joystick constraint, fixed relative position con-
straint, fixed relative orientation constraint and positioning constraint are
formalized.

Chapter 10 gives the formal definition of the modeling concepts that can
be used to model complex shapes.

Chapter 11 finally gives some examples of possible applications of the for-
malization. Reasoning over the conceptual model and consistency checking
are illustrated.

12

Outline 13

Part III: Implementation, Use Case and Conclusions

Chapter 12 describes the prototype tool that has been developed. This
tool serves as a proof of concept for the ideas and results presented in this
dissertation.

Chapter 13 give a use case of the material introduced in this dissertation.
The use case illustrate the possibilities of the modeling concepts introduced
for modeling complex objects and shapes for virtual environments. This is
done by means of an elaborated example, namely the modeling of a mechan-
ical welding robot.

Chapter 14 provides a summary of the results presented in this disserta-
tion. Limitations of the presented approach are discussed and an overview
of the achievements is given. Also possible future work and extensions to
the presented approach are discussed.

13

14 Introduction

14

Chapter 2

Background and Related
Work

In the previous chapter we have introduced this dissertation. We have given
the research context in which this dissertation is situated. We have pre-
sented a number of problems and identified the goals of this dissertation.
Next we have briefly introduced the approach we have chosen in order to
reach these goals. Finally we have outlined the advantages of this approach
and we have listed the contributions of this dissertation to the research field.
In this chapter, we present the necessary background knowledge and related
work which are both required to place this dissertation in a broader perspec-
tive. In section 2.1 we give a brief introduction to Virtual Reality. Next in
section 2.2 we discuss the domain of conceptual modeling. A short overview
of existing conceptual modeling languages in the domains of software engi-
neering and information systems is given. Next a discussion follows about
the usability of these languages for modeling VR. As related work to this
dissertation, state-of-the-art modeling approaches for VR are discussed. In
section 2.3 we outline a number of academic modeling approaches. In section
2.5 we discuss a number of commercial modeling approaches. All these ap-
proaches are discussed in the context of modeling complex objects. Finally
section 2.6 concludes this chapter with a short summary.

2.1 Virtual Reality

The term Virtual Reality (VR) covers a broad range of applications and
technologies going from low-end VR like web-based X3D models [1] to high-
end VR like fully immersive environments such as a CAVE [16]. Virtual

15

16 Background and Related Work

Reality, Virtual Environments, Virtual Worlds, . . . these are all terms used to
denote more or less the same thing in many different contexts. Most of these
terms correspond to each other but there may be some small differences. In
this dissertation we will use the term virtual reality environments or simply
virtual environments.

Essentially, VR is about the navigation and manipulation of 3D computer-
generated environments [65]. John Vince states the following general ac-
cepted statement about VR: VR is about creating acceptable substitutes for
real objects or environments and is not really about constructing imaginary
worlds that are indistinguishable from the real world.
During the last decennia people came with different definitions for VR. How-
ever, all of these definitions must be seen in the context of the research in
which they are stated. Some definitions talk about the sensorial modalities
such as tactile, smell and taste [12]. This more sophisticated kind of VR is
not the one we are targeting in this thesis. The description of VR that fits
most the type of VR we are targeting in our research is the one coming from
Aukstakalnis and Blatner [4]:

Virtual reality can be used to fly through three-dimensional environments
that represent extremely complex data, reach out and manipulate these rep-
resentations with your hand, or experience visiting a world that would be
physically impossible in our own reality.

We see Virtual Environments as computer-generated environments that cre-
ate the effect of an interactive three-dimensional world in which objects have
a sense of spatial and physical presence and can be manipulated by the user
as such. The user can pick up objects, turn or move them, etc.

2.1.1 A short history of Virtual Reality

The origin of the term Virtual Reality is unsure. In several books, Morton
Heilig is called the father of Virtual Reality. In the 1950s Heilig believed
that by expanding a cinema to involve not only sight and sound, but also
taste, touch and smell, the viewer could be drawn into the onscreen activity.
He called this idea the experience theatre. In 1962 he build a prototype
machine called Sensorama together with a number of films that could be
displayed while stimulating multiple senses of the viewer. The Sensorama
simulator included motion, color, stereo sound, wind effects and a vibrating
seat.
In 1968, Ivan Sutherland created with the help of his student Bob Sproull

16

Virtual Reality 17

what is widely considered as the first virtual reality head-mounted display
(HMD) [58]. This device was very primitive in terms of user interface as
well as in terms of realism. The graphics were just wireframes. The HMD
was attached to a mechanical arm suspending from the ceiling in order to
be able to track the head movements and to cope with the weight of the
HMD. The name of the device was inspired by its appearance, namely the
Sword of Damocles.
Mid-1970s Myron Krueger came with VideoPlace. With VideoPlace the
computer responded to the gestures of the users by interpreting their actions.
The movements of the users were recorded by means of video cameras and
transferred to the silhouette representations of the users in the Artificial
Reality environment.
However, Jaron Lanier claims that he coined the term Virtual Reality in
the early 1980s. It was also at that time that he founded VPL Research
which was the first company to sell VR products. In 1987 VPL came with
DataGlove [69] which is know as the first commercial version of gloves used
to interact with computers.
In 1992 Sense8 Co. developed WorldToolKit which is a library consisting
of C-functions written for VR applications and still existing today. Also
in 1992, researchers from the University of Illinois at Chicago presented
the first CAVE, a VR theatre with walls onto which images are projected
surrounding the users with sights and sounds. Users can walk freely in the
room and interact with and manipulate 3D virtual objects.
In the early 1990s a lot of VR companies were founded but by mid-1990s VR
reached a critical point. However, late 1990s it came to a rebirth of Virtual
Reality thanks to tremendous improvements in PC hardware. Nowadays,
there are a lot of commercial VR hardware devices and VR software going
from development tools to end-user applications.

2.1.2 Different types of VR-applications

Two main characteristics of VR applications are the interactivity and the
immersion experienced by the user. Note that Burdea [12] also takes imag-
ination as a characteristic of a VR application. However, we will not take
this into account. Immersion and interactivity can reach different levels ac-
cording to the variety in technologies and hardware used. Using a regular
screen gives another level of immersion than when using a cave. Based on
these characteristics different types of VR applications can be distinguished.
We will only list the most known and most important types here.

• Desktop VR: This is the use of animated interactive 3D graphics to

17

18 Background and Related Work

build Virtual Worlds with desktop displays [50]. In this type of VR
the user explores an interactive, real-time virtual environment on a
conventional display. Examples of desktop VR are computer-games
and VRML or X3D worlds on the Web

• Immersive VR: CAVE environments or head-mounted displays are
often used for immersive VR systems. Using these technologies, the
level of immersion is much higher than for example with desktop VR.

• Augmented Reality (AR): In [5] Azuma defines Augmented Reality
(AR) as follows. While immersed in Virtual Environments, the user
cannot see the real world around him. When using AR, the user can
see virtual objects placed inside the real world. AR can be seen as a
supplement of reality rather than replacing it, which is the case with
the other types of Virtual Environments. According to Azuma, AR
has three characteristics. It combines objects, real as well as virtual,
in a real environment. It is interactive in real-time. And finally it
aligns the real and virtual objects with each other.

As already stated before, in this dissertation we are targeting desktop VR.

18

Conceptual Modeling 19

2.2 Conceptual Modeling

Conceptual modeling can be defined as the activity of building a model of
the Universe of Discourse (UoD) in terms of concepts that are familiar to
domain experts and free from any implementation details. The Universe
of Discourse is the part of the world under consideration. In other words,
conceptual modeling can be seen as modeling a human’s conceptualization
of some UoD.

Conceptual models are mostly built early in the development stages of
a system before the system design and implementation phases. Conceptual
models can be used for several purposes and advantages:

• Improve the understanding of the concepts in the domain of discourse
and produce information models that are clear to designers, program-
mers, customers, etc.

• Extracting parts of the domain under consideration wich are of impor-
tance to the project.

• Provide a communication platform between the various stakehold-
ers (such as users, developers, customers, programmers, etc.) in the
project.

• Detecting misunderstandings, errors and missing information early in
the system development.

Conceptual modeling is gaining importance since software systems be-
come more complex and the problem domains are sometimes far away from
the background knowledge of the developers. The term conceptual modeling
originally emerged from the domain of databases. In the field of database
systems, conceptual database design is the process of constructing a model of
the information used in an enterprise, independent from all physical consid-
erations [15]. This means that a conceptual data model is created containing
the part of the enterprise information that is of interest for the system to
be build. The data model is built using the information from the require-
ments analysis and throughout the process of developing the conceptual
data model, the model is continually validated against the information from
the requirements analysis. Following the domain of databases, conceptual
models also became popular in the domains of software engineering and
knowledge engineering.

Conceptual modeling requires notations, tools and techniques for repre-
senting information and processes about a domain of interest. In the follow-
ing subsections we will look to some popular conceptual modeling languages

19

20 Background and Related Work

developed in the domains of software engineering and information systems.
After introducing these languages we will discuss their usability for building
conceptual models for virtual reality applications.

2.2.1 UML

The Unified Modeling Language (UML) [21] can be seen as a conceptual
modeling approach that provides a set of notations that facilitates the de-
velopment of a software project and makes it easier for the various stake-
holders in a project to communicate about the project. It actually organizes
the design process in a way that analysts, clients, programmers and others
involved in system development can understand and agree on. UML uses a
combination of different diagrams in order to model all the different aspects
of a software application. The main diagram notations of UML are:

• Class diagrams: A class diagram describes the type of objects in the
system and the various kinds of static relationships that exist among
them. Actually, a class diagram is a graphic view of the static structure
of a system. Note that occasionally object diagrams are used to show
individual objects and their relationships. These object diagrams are
sometimes used for documenting test cases.

• Interaction diagrams: Interaction diagrams are models describing
the behavior of a system in terms of the interactions between objects.
There are two kinds of interaction diagrams: sequence diagrams and
communication diagrams 1. Both diagrams can be used to show the in-
teraction flow through the use of messages between objects. Sequence
diagrams focus on the order of the messages as they show the inter-
actions in a sequential order. Collaboration diagrams more focus on
showing the collaboration between objects rather than on showing the
time sequence of the interactions.

• Behavior diagrams: Behavior diagrams describe the behavior of a
system in terms of its state changing during execution. State machine
diagrams 2 are an example of behavior diagrams. A state machine
diagram describes all the possible states an object may be in and how
the object’s state changes by means of translations.

1For UML versions earlier than UML 2.0 communication diagrams were called collab-
oration diagrams.

2State machine diagrams were previously called state diagrams.

20

Conceptual Modeling 21

2.2.2 ER

Entity-Relationship (ER) [13] modeling has been designed to facilitate database
design by developing a high-level, conceptual data model. The main purpose
of a conceptual data model is to support the user’s perception of the data
model and to conceal the more technical aspects associated with database
design. The basic concepts of the Entity-Relationship model include entity
types, relationship types and attributes. This way, an ER model is expressed
in terms of entities having attributes and participating in relationships. The
fact that a Car is manufactured by a Manufacturer is modeled as shown in
the ER model in figure 2.1.

Figure 2.1: Example of an ER model

Car and Manufacturer are entity types. Entity types are concepts which
are identified in the problem domain as having an independent existence.
IsBuildBy is called a relationship type. A relationship type is a meaningful
association among entity types. Next, Car and Manufacturer have one
attribute each, which is their Name. At the same time, these attributes are
the primary keys for their entity types. This is indicated by underlining
the name of the attribute. This means that the Name uniquely identifies
individual occurences of the entity type.

2.2.3 ORM

Object-Role Modeling (ORM) [27, 28] is a semantic modeling approach
which views the world as objects playing roles. ORM uses natural lan-
guage and intuitive diagrams for data modeling. Unlike ER, ORM includes
a step-by-step design procedure. This procedure starts with specific exam-
ples of information related to the application domain. These information
examples are expressed in terms of elementary facts. Elementary facts are
simple sentences noting what kind of objects are present, how they are iden-
tified and what roles they play. Afterwards, these facts are diagrammed.

21

22 Background and Related Work

An example of such an elementary fact is the following sentence:

The Car golf is build by the Manufacturer Volkswagen.

The diagram derived from the above fact is shown in figure 2.2. The arrow
on the first part of the binary predicate between Car and Manufacturer
indicates that a Car can have at most one Manufacturer. The dot on the
Car entity type indicates that each Car has a Manufacturer.

Figure 2.2: Example of an ORM diagram

2.2.4 Discussion

As stated in [22], a VR application can often be decomposed into four mod-
ules. The first module is called form. This module describes the appear-
ance of virtual objects, their structure, their relation with other objects and
other physical properties like mass. The second module is called function.
Function refers to primitive actions required for virtual objects to carry out
high-level behaviors. The third module is the behavior module. This mod-
ule describes how a virtual object dynamically changes over some period of
time. The last module is the interaction module defining the interaction
between virtual objects as well as between the user and the virtual objects.
So the form module describes the static part of a VR application while the
behavior, function and interaction modules describe the dynamic part.

ORM and ER more or less have the capability to model the form module
of a VR application. However, ORM is lacking modeling concepts in terms
of expressiveness towards VR modeling. We illustrate this by means of an
example. Figure 2.3 illustrates the modeling of a connection between a base
concept and a handle concept.

When we look to the ORM model in figure 2.3, we can see that the fact
that a handle is connected to a base is expressed by a binary relation between
a Handle entity type and a Base entity type. These entity types represent

22

Conceptual Modeling 23

Figure 2.3: Example of the modeling of a connection between two objects
using ORM.

the domain concepts for the virtual environment that needs to be modeled.
To express the exact semantics of the relation between the handle and the
base, the grey part of figure 2.3 is used. We can see that the connection rela-
tion has one connection point definition for the handle (called HandleCPDef)
and one connection point definition for the base (called BaseCPDef). Each
of these connection point definitions has a direction and a distance. Note
that we will not explain here the meaning of such a connection point defini-
tion as this returns later in this dissertation.
This example illustrates a number of problems. First of all, everything is
represented in the same way. Domain concepts such as Handle and Base
are represented in the same way (using entity types) as for example the
more abstract concept connection point definition. In this way, it is diffi-
cult to recognize in the model the domain concepts. Next, the semantics of

23

24 Background and Related Work

the connection relation between the Base and Handle entity type is actually
given in the grey part of the figure. However, when connecting two other do-
main concepts in the same way, this semantics needs to be expressed again.
In order to solve this neatly we would need to extend ORM on the meta-
level with a new type of relation and the necessary semantics. Therefore,
plain ORM is not appropriate for modelling these issues. The case for ER
is similar.
Furthermore, since the VR-WISE approach is targeting the modeling of form
as well as behavior, ORM and ER are not suited without extensions. Note
that various extensions have been proposed for ORM for object-oriented
and dynamic modeling [7, 60]. Nevertheless, the focus of ORM is on data
modeling.

From this viewpoint, UML is more expressive than standard ORM and ER
since it offers a number of diagrams to model the system dynamics. Again,
although UML can be used to model a VR application from a software
engineering point of view, it is also lacking in terms of expressiveness and
intuitiveness towards VR modeling for domain experts. Figure 2.4 shows
the same example of modeling a connection between two concepts.

Figure 2.4: Example of the modeling of a connection between two objects
using UML.

Again, from the UML model represented in figure 2.4 a number of problems
can be identified. As was the case for ORM, all types of information are
represented in the same way. Concepts are represented as classes and so is
the connection. Next, in the grey part of the figure, the semantics of the
connection relation is defined. Again, if we need to model a similar connec-
tion between two elements, similar semantics need to be defined.

24

Conceptual Modeling 25

Table 2.1: Usability of conceptual modeling languages for VR modeling

Form Function Behavior Interaction
UML +/- +/- +/- +/-
ER +/- - - -
ORM +/- - - -

In contrast to ORM and ER, UML contains the concept of stereotypes. A
stereotype is a new type of modeling element that extends the semantics
of the metamodel. Stereotypes must be based on certain existing types or
classes in the metamodel. So stereotypes allow you to extend the vocabulary
of UML so that you can create new model elements derived from existing
ones and which are suitable for the problem domain. Extensions made by
means of stereotypes appear as basic building blocks in UML. So actually
they can be seen as first class citizens to UML. In principle, we could use
these stereotypes to define new modeling elements needed for VR. However,
these stereotypes also have some disadvantages. As stated in [8], stereotypes
increase the complexity of the base language (in this case UML). In addition
it is not clear if the concept of stereotypes will be powerful enough to define
all the modeling concepts needed. On the other hand, UML also contains
much more core concepts than needed for our purpose.

As mentioned in [44], table 2.1 summarizes the possibilities of UML,
ER and ORM for modeling VR from the perspective of a non-VR specialist.
’+/-’ means that the modeling language can partially model the module (al-
though it may lack expressiveness and/or intuitiveness) while ’-’ indicates
that the conceptual modeling language is not suited at all for modeling the
module.

Since none of the above conceptual modeling languages are really suffi-
cient for modeling VR at a high-level we decided to go for a new conceptual
modeling approach (VR-WISE, which we will discuss in chapter 3) in order
to make the design of a VR application more accessible for a non-VR special-
ist. This conceptual modeling approach has been designed with high-level
modeling of VR in mind. However, as we will see throughout this disserta-
tion, some modeling concepts from the above languages also appear more
or less with the same meaning in our approach. Some examples of this are

25

26 Background and Related Work

concept (representing a class), instance and role (as a concept or instance
playing a certain role in a certain context). But the approach also contains a
complete set of new modeling concepts specifically tailored towards VR such
as connection relations to model physical connections between two objects.

2.3 Academic modeling approaches

Very little research on conceptual modeling for VR has been done. Care
should be taken with the terms modeling and high-level in the context of
VR. In the domain of VR, modeling is often used to indicate the process
of shaping objects for virtual environments while high-level is often used to
refer to the possibility to focus on what to render instead of how to render
it. The term conceptual modeling as used in this dissertation denotes the
modeling activity as described in section 2.2. With the term high-level we
mean a high-level of abstraction from the implementation technology.

[22] states that the complexity of creating virtual environments rises from
the fact that four modules need to be designed. As already indicated, these
modules are form, function, behavior and interaction. In the context of this
dissertation we are mainly concerned with form. In order to cope with the
complexity [22] proposes a structural approach to developing VR applica-
tions called ASADAL/PROTO. Inside ASADAL/PROTO form is described
using the Visual Object Specification (VOS). The primary purpose of VOS
is to describe physical properties and configuration of physical entities. Spa-
tial constraints can be used to define a structure that is similar to a scene
graph (note that in VR a scene graph organizes a composite object by means
of a tree). When a motion is applied to the parent, all the children are af-
fected as well. However, there is no support in VOS to describe physical
connections and constraints between different objects.

The lack of high-level design methodologies for VR was also addressed in
[59] with the presentation of Virtual Reality Interface Design (VRID). In-
side VRID, four key components are identified for designing VR interfaces.
These are object graphics, objects behaviors, object interactions and ob-
ject communications. VRID divides the design process into a high-level
and a low-level design phase. The goal of the high-level design phase is to
specify a design solution at a high level of abstraction. The output of the
high-level design phase is a high-level representation of data elements and
objects in the interface. The goal of the low-level design phase is to provide

26

Academic modeling approaches 27

fine-grained details of the high-level representations and to provide details
as to how objects will be represented. However, VRID does not provide a
modeling language to support the high-level nor the low-level design phase.

Another research project which has similar goals as our approach is Ossa
[56]. Ossa is a conceptual modeling system for virtual realities that uses
conceptual graphs for representing knowledge and a production system to
represent the world dynamics. However, no conceptual modeling constructs
for modeling complex objects are present in Ossa.

More closely related work in the context of this dissertation can be found
in the domain of (virtual) assembly modeling. Assembly modeling is a term
used in Computer-Aided Design (CAD) to assemble several components to-
gether. Assembly modeling is an important part of product design since
most products are assembled of several parts. Virtual assembly is based on
the idea of performing the assembly operations in a virtual environment by
directly manipulating parts.

We will now discuss a number of approaches inside the domain of assem-
bly modeling which are related to the work in this dissertation.

2.3.1 The CODY Virtual Constructor

The CODY Virtual Constructor [66, 33, 34] is a system which enables an in-
teractive simulation of assembly processes with construction kits in a virtual
environment. The interaction during the assembly process happens either
by means of direct manipulation or by means of natural language. In fig-
ure 2.5 the user interface of the CODY Virtual Constructor is illustrated.
The example inside this figure is using a construction kit containing bolts,
screws, . . . in order to assemble a toy airplane.
Connections happen by means of predefined points on the graphical objects.
These predefined points are called connection ports. When a moved object
is in a position so that one of its connection ports is close enough to the
connection port of another object, a snapping mechanism will fit the objects
together.
The core of the CODY architecture is based on a knowledge processing com-
ponent that maintains two levels of knowledge, namely a geometric level and
a conceptual level.

27

28 Background and Related Work

Figure 2.5: User Interface of the CODY Virtual Constructor [33]

• Conceptual level: The conceptual level contains conceptual knowl-
edge about the mechanical objects of the construction kit used, such
as their connection ports. Next to this static knowledge there is also a
dynamically updated conceptual representation describing the current
situation in the virtual environment.

• Geometric level: The geometric level contains generic knowledge
about the mechanical objects’ geometric properties such as the ob-
jects’ wire frame, bounding box and center of gravity. The geometric
level also contains some dynamic knowledge such as the current object
positions and orientations.

For the representation of the knowledge inside the knowledge bases a frame-
based representation language COAR (Concepts for Objects, Assemblies
and Roles) has been developed. The following part of COAR language is
an example of the specification for an Undercarriage assembly consisting of
three parts, namely two HALFAXLESYSTEM objects and one UNDER-
CARRIAGEBLOCK.

Long-Term Concept: UNDERCARRIAGE
is-a: ASSEMBLYGROUP
part has-left-halfaxlesys #1: HALFAXLESYSTEM
part has-right-halfaxlesys #1: HALFAXLESYSTEM
part has-block #1: UNDERCARRIAGEBLOCK
pp-constraint connection 〈has-block〉 〈has-left-halfaxlesys〉
pp-constraint connection 〈has-block〉 〈has-right-halfaxlesys〉

28

Academic modeling approaches 29

Discussion

Although the use of a virtual environment to perform the assembly pro-
cess offers a more intuitive interaction, as does the possibility to perform
the assembly process using natural language, the CODY Virtual Construc-
tor approach has some disadvantages:

• The use of natural language offers a very intuitive way of describing an
assembly. However, natural language is often ambiguous and incom-
plete. This means that the outcome of some natural language assembly
modeling might not be what the designer wants which results often in
a number of iterations before the desired result is reached.

• The COAR language was developed as an underlying representation
mechanism for the knowledge bases. Hence the COAR language must
be machine readable to allow the knowledge processing component of
the virtual constructor to calculate some inferences. However, this
conceptualization is not intuitive for non-VR or non-engineering peo-
ple, as we have seen in the example.

• The CODY Virtual Constructor uses predefined points on the ob-
jects’ geometry between which connections can be made. The use of
these so-called connection ports has some disadvantages. Firstly the
number of possibilities to make connections is limited. This way it
offers less flexibility to the designer. The second disadvantage is that
these connection ports must be defined in advance for the objects in
a construction kit. A third disadvantage might occur with very large
assemblies where it can be difficult for the designer to find his way
through all the connection ports.

2.3.2 The Open Assembly Model

The aim of the Open Assembly Model (OAM) [49] is to provide a standard
representation and exchange protocol for assembly information. In fact it is
defined as an extension to the NIST Core Product Model (CPM) which was
presented in [20] to which we refer the interested reader. Figure 2.6 shows
the main schema of a part of the Open Assembly Model. The complete class
diagram can be found in [49].

The class Artifact (which comes from the CPM) refers to a product or
one of its components. It has two subclasses, namely Assembly and Part.

29

30 Background and Related Work

Figure 2.6: Partial class diagram of the Open Assembly Model

An Assembly is a composition of its subassemblies or parts. The class As-
semblyAssociation contains information about assembly relationships. It
is the aggregation of one or more ArtifactAssociation which is specialized
into three other classes: PositionOrientation, Connection and RelativeMo-
tion. PositionOrientation represents the relative position and orientation
between two or more artifacts that are not physically connected. Relative-
Motion represents the relative motions between two or more artifacts that
are not physically connected. Connection represents a connection between
artifacts. It is specialized into three classes: FixedConnection, MovableCon-
nection and IntermittentConnection. Now, in order to illustrate the use of
the Open Assembly Model we will look to a small example.

Example
Take for example a piston which needs to be placed inside a shaft. The
piston can move inside the shaft. This example is illustrated in figure 2.7.

The instance diagram for the assembly relationships is presented in fig-
ure 2.8. We have an instance of Assembly called ’example’. Inside this
assembly, there are two Part instances called ’piston’ and ’shaft’, connected
to each other by means of a MoveableConnection. Note that the right side
of the instance diagram was not discussed in figure 2.6. However, this repre-
sents an assembly feature association containing the information about the
physics connection by means of a kinematic pair. This kinematic pair for
the example is an instance of RevolutePair representing the information for

30

Academic modeling approaches 31

Figure 2.7: Example assembly consisting of a shaft and a piston

a revolute joint between the shaft and the piston.

Figure 2.8: Instance diagram of an example assembly in OAM

Discussion

OAM has been designed to represent information used or generated in-
side CAD3-like tools. This way of representing the data can for example
be used for transmitting the data between different development activities.

3Computer-Aided Design (CAD) uses computer-based tools that help engineers and
other design professionals in their design activity.

31

32 Background and Related Work

This enhances the product development across different companies or even
within one company. However, OAM is not targeting the modeling of as-
semblies on a conceptual level. It is targeting an underlying representation
of assemblies inside the domain of engineering. Hence, it is note very usable
as a conceptual modeling language for non-VR or non-engineering experts.
This can be illustrated by means of the definition of kinematic constraints be-
tween two artifacts as we have seen in the example. In fact, these constraints
come from the STEP standard (Standard for the Exchange of Product Model
Data). STEP was designed to describe the physical and functional features
of industrial product. STEP is only used late in the product development
while OAM is claimed to be usable for representing information produced
during the development process. The STEP representation for product data
is very low-level and thus certainly not usable for non-engineering people.
We refer the interested reader to [18] for more information on the STEP
standard.
Now we get back to OAM. As already said, OAM uses the kinematic struc-
ture schema from part 105 (ISO 10303-105) of the STEP specification for
representing kinematic constraints. This part defines the kinematic struc-
ture. Because of the high level of detail of kinematic constraints in the
engineering domain, it is very hard to use. Since OAM makes use of this
STEP part, this representation of kinematic constraints is not usable in a
high-level representation of connections between parts. So in general we can
conclude that OAM is not suitable for domain experts for modeling complex
objects for a virtual environment on a high-level of description.

2.3.3 Virtual Assembly Design Environment

The Virtual Assembly Design Environment (VADE) [31, 32] is a VR-based
engineering application that allows engineers to evaluate, analyze, and plan
the assembly of mechanical systems. VADE has been developed at the
Washington State University in collaboration with the National Institute
for Standards and Technology (NIST).
The system utilizes an immersive virtual environment coupled with com-
mercial CAD systems. VADE translates data from the CAD system to the
virtual environment. Once the designer has designed the system inside a
CAD system, VADE automatically exports the data into the virtual envi-
ronment. Then, the VR user can perform the assembly. During the assembly
process the virtual environment keeps a link with the CAD system. At the
end of a VADE session, the design information from the virtual environment
is made available in the CAD system.

32

X3D 33

Inside the virtual environment, designers can change some parameters using
a 3D interface. The user can for example change the size of a part. Changes
of parameter values are sent to the CAD system which can then regenerate
the part.

However, the VADE system is intended for engineers and far from high-
level. For example, kinematic motions during the assembly design are cre-
ated from information coming from the CAD system. CAD systems are
only accessible to experts in CAD modeling. VADE is therefore not us-
able as a high-level modeling environment for complex objects in a virtual
environment.

2.3.4 Multi-user Intuitive Virtual Environment

The Multi-user Intuitive Virtual Environment (MIVE) [54, 24, 57] provides
a simple way for objects to constrain to each other without having to use a
complete constraint solver, as is usually the case for constraint-based mod-
eling. Inside MIVE, there are a number of interesting constraint ideas. First
there are the virtual constraints. Each object in the scene is given predefined
constraint areas. These areas can then be used to define so-called offer areas
and binding areas. Offer areas define locations on an object where other ob-
jects may reside while binding areas define locations on an object that can
be positioned inside certain offer areas. Note that in this dissertation we
will also introduce a high-level modeling concept to allow modeling this kind
of constraint. This modeling concept was inspired by the work presented in
MIVE. Next to virtual constraints, MIVE also contains so-called negative
constraints which can be used for preventing certain objects to reside in
certain spaces of the virtual environment. This constraint can for example
be used to prevent that objects larger than a door of a room are placed in
front of that door.

However, one major disadvantage of the MIVE approach is that for ex-
ample for the virtual constraints each object in the scene needs predefined
areas. Therefore it is difficult to reuse existing virtual objects without adapt-
ing them to the MIVE approach.

2.4 X3D

X3D [1] (eXtensible 3D) is the ISO standard for real-time 3D computer
graphics that can be seen as the successor of VRML. Although it is not a

33

34 Background and Related Work

real academic approach it is also not commercial. It is a royalty-free open
standard file format. Therefore we introduce it here. X3D makes use of
a scene graph structure containing all the objects in the system and their
relationships by means of nodes. Such a scene graph is encoded in X3D using
an XML-syntax. The interpretation, execution and presentation of such
X3D-files is done by a browser. Recently, a revision of the X3D architecture
and base components specification includes a rigid body physics component
(clause 37 of part 1 of the X3D specification). This part describes how
to model rigid bodies and their interactions by means of applying basic
physics principles to effect motion. It offers various forms of joints that can
be used to connect bodies together and allow one body’s motion to effect
another. Examples of joints offered are BallJoint, SingleAxisHingeJoint,
SliderJoint or UniversalJoint. All these joints are offered as an X3D node
that can be used in the specification of the scene graph. We will now look to
the SingeAxisHingeJoint node representing a joint with a singe axis around
which the connected bodies may rotate:

SingleAxisHingeJoint : X3DRigidJointNode {
SFVec3f [in,out] anchorPoint 0 0 0
SFVec3f [in,out] axis 0 0 0
SFNode [in,out] body1 NULL [RigidBody]
SFNode [in,out] body2 NULL [RigidBody]
SFFloat [in,out] maxAngle π
SFNode [in,out] metadata NULL [X3DMetadataObject]
SFFloat [in,out] minAngle -π
MFString [in,out] mustOutput "NONE" ["ALL","NONE",...]
SFFloat [in,out] stopBounce 0 [0,1]
SFFloat [in,out] stopErrorCorrection 0.8 [0,1]
SFFloat [out] angle
SFFloat [out] angleRate
SFVec3f [out] body1AnchorPoint
SFVec3f [out] body2AnchorPoint

}

The minAngle and maxAngle fields can be used to specify the angles which
the connected objects are allowed to rotate around the axis specified by
means of the anchorPoint and axis fields. The body1 and body2 fields
specify the bodies that are connected by means of the joint. These are all
examples of input fields which specify properties of the joint node. The an-
gle field is an example of an output field reporting the current relative angle
between the two connected bodies.

34

Commercial modeling approaches 35

Discussion
First note that X3D is sometimes entitled as being high-level. However,
high-level in the context of X3D means that the focus lies of what to render in
a scene instead of how to render the scene. Although recently the possibility
to specify complex objects by means of different joint types connecting two
bodies has been added, the way to specify these constraints is far from high-
level. As we illustrated this with the SingeAxisHingeJoint. It is not intuitive
for a non-VR expert to specify a hinge constraint by means of points and
vectors. Furthermore, reasing over X3D specifications is far from easy.

2.5 Commercial modeling approaches

2.5.1 SimMechanics

SimMechanics is a set of block libraries and special simulation features to
be used in the Simulink environment4. Simulink is a platform for simulation
in different domains and model-based design for dynamic systems. Simulink
provides an interactive graphical environment that can be used for building
models. These models are build by drag-and-drop of blocks coming from a
customizable set of block libraries.

The SimMechanics block libraries contain the elements for modeling me-
chanical systems consisting of a number of rigid bodies connected by means
of joints representing the translational and rotational degrees of freedom of
the bodies relative to one another. The libraries of SimMechanics which are
closely related to the research described in this dissertation are the Bodies
Library and the Joints Library.

Bodies library

The Bodies library provides the Body block for representing user-defined
bodies by their mass properties, their positions and orientations and their
attached Body coordinate systems. Body coordinate systems (CS) are fixed
in the body and move with it. Each body has at least one CS, namely at
it’s center of gravity. Additional CSs can be specified for connecting joints
as we will see later. Figure 2.9 shows the graphical representation of a body
in SimMechanics. As we can see, there is one additional CS defined for this
body, namely CS1, which will be used for connecting a joint.

4http://www.mathworks.com/products/simulink

35

36 Background and Related Work

Figure 2.9: Graphical representation of a rigid body in SimMechanics

SimMechanics has two different tools for visualizing bodies. The first tool is
a Matlab Handle Graphics-based visualization tool built into SimMechan-
ics. The second tool is an optional visualization tool based on the Virtual
Reality Toolbox5. However, both tools represent the bodies in an abstract
simplified form, namely by means of convex hulls or as equivalent ellipsoids.

Joints library

Next, the Joints library provides the blocks to represent the relative motions
between bodies. Note that SimMechanics bodies unlike physical bodies do
not have degrees of freedom (DoF). A joint in SimMechanics represents the
DoFs that one body (called the follower) has relative to another body (called
the base). Therefore SimMechanic joints only add degrees of freedom to a
body unlike physical joints which may both add or remove DoFs to a body.

SimMechanics provides a Joints library that can be used for modeling
various types of joints. Each joint block represents one or more joint primi-
tives that together specify the degrees of freedom that a follower has relative
to the base. An overview of the joint primitives is given in table 2.2.

Next, composite joints are blocks containing a combination of joint primi-
tives which enable the user to specify multiple rotational and translational
degrees of freedom of one body relative to another. Table 2.3 gives a couple
of examples of composite joint blocks offered in SimMechanics.
So relative motion of bodies with respect to one another is represented by
connecting their body blocks with a joint block. A joint block is always
connected to a specific point on a body. This specific point is specified
by means of a body coordinate system. An example of a revolute joint
connecting two bodies is shown in figure 2.10. In this example, the revolute

5http://www.mathworks.com/products/virtualreality

36

Commercial modeling approaches 37

Table 2.2: Joint primitives in SimMechanics

Joint name Notation Description

prismatic A prismatic joint block represents
a singe translational DoF along
a specified degree of translational
freedom (thus along a specific axis
between two bodies).

revolute A revolute joint block represents a
single rotational DoF around a spec-
ified axis between two bodies.

spherical A spherical joint block represents
three rotational DoFs at a singe
pivot point. This type of joint is also
known as a ball-in-socket joint.

weld A weld joint block represents a joint
with no DoFs. Two bodies con-
nected by means of a weld joint have
no possible relative motion.

37

38 Background and Related Work

Table 2.3: Joint composites in SimMechanics

Joint name Notation Description

Six-DoF A Six-DoF joint block represents a
composite joint with three trans-
lational DoFs (as three prismatic
primitives) and three rotational
DoFs (as one spherical primitive).

Universal A universal joint block represents a
composite joint with two rotational
degrees of freedom (as two revolute
primitives).

In-plane An in-plane joint block represents
a composite joint with two trans-
lational degrees of freedom (as two
prismatic primitives).

joint connects two bodies. Inside the revolute joint block a B and F indicate
which body is the base and which body is the follower. The joint is connected
to a specific point on both bodies defined as CS1 for each body. This CS1 is
a body coordinate system. The axis for the revolute joint is mathematically
defined inside a graphical user interface offered for specifying the details of
the revolute joint.

Figure 2.10: Example of the use of a revolute joint in SimMechanics

Discussion

Although SimMechanics is already on a higher-level of abstraction (than for
example physics engine programming), it is still too low-level to be general

38

Commercial modeling approaches 39

usable for domain experts from different domains. After all, SimMechanics
has been developed to model mechanical systems. One example of something
which may not be very intuitive to some domain experts is the fact that bod-
ies do not have any degrees of freedom in contrast to physical objects which
have six degrees of freedom. For real-world physical objects adding joints
means restricting the object’s degrees of freedom while in SimMechanics
adding a joint means adding degrees of freedom to a body. Another exam-
ple is that the details of a joint block need to be specified in a mathematical
way. Another disadvantage of the approach is that there is no possibility to
do some intelligent reasoning.

2.5.2 MotionWorks For SolidWorks

SolidWorks6 is a 3D computer-aided design (CAD) program in which 3D
parts can be created. These 3D parts are made by using several features.
Features can be for example shapes and operations like chamfers or fillets.
Most of the features are created from a 2D sketch. This is a cut-through of
the object which can for example be extruded for creating the shape feature.

MotionWorks makes it possible to define mechanical joints between the
parts of an assembly inside SolidWorks. It is fully integrated into Solid-
Works. MotionWorks also offers the possibility to simulate the dynamic
behavior of a model, analyze the results and refine the design. To simulate
the dynamic motion in an assembly, mechanical joints need to be defined
between the parts of the assembly. In MotionWorks this can be done by
selecting the required joint type from a list. MotionWorks contains differ-
ent families of joints. The type of joints which are closely related to the
work presented in this dissertation are the permanent joints. These joints
are based on different combinations of rotating and translating degrees of
freedom. Some examples of these permanent joints are given in table 2.4.
In this table their name as well as their representation in the graphical user
interface is given. A complete overview of all permanent joints can be found
in [2].

When creating a joint between two parts, the user can choose for the ’in
place’ or the ’out of place’ option. ’In place’ means that the parts are already
in the desired orientation while ’out of place’ means that the parts to connect
by means of the joint are not in the desired orientation. Note that, as we
will see later, in the approach proposed in this dissertation, orientations are

6http://www.solidworks.com

39

40 Background and Related Work

Table 2.4: Example permanent joints in MotionWorks

Joint name Representation

Prismatic

Revolution

Spherical

Planar

automatically calculated according to the type of connection between two
parts. When defining joints, MotionWorks automatically creates coordinate
frames on each part. However the alignment of the z-axis is important since
this is the primary axis about which a translation or rotation will happen.
Figure 2.11 illustrates the graphical user interface for creating a revolution
joint between two parts.

Figure 2.11: GUI for the creation of a revolution joint in MotionWorks

Next to creating the joint between two parts, all parameters like initial
position, torques, friction, bounds, . . . need to be defined.

40

Commercial modeling approaches 41

Discussion

SolidWorks (and thus also MotionWorks) is a pure CAD modeling tool.
These kinds of tools are targeting design professionals such as engineers or
architects. SolidWorks is very powerful in modeling mechanical systems
while MotionWorks is the solution for kinematic and dynamic simulation
of moving assemblies. Nevertheless, they are not suited for non-experts in
the domain of CAD. This is illustrated by means of the vocabulary they are
using to specify certain parameters of parts or joints.

2.5.3 3D Studio Max

3D Studio Max (3ds max) is a 3D modeling software in the category of au-
thoring tools. Note that there are other tools available which are more or
less similar to 3ds max. Some examples are Blender[51], Maya[61], . . . Also
note that this kind of tools is using a low-level VR approach to modeling vir-
tual environments. However, since they also offer a number of possibilities
to model complex objects, we will discuss 3ds max here for the completeness
of this related work overview.

3ds max provides grouping features which enable the user to organize
all the objects with which he is dealing. This makes it easier to select the
grouped objects or to transform them. Groups can also be grouped creating
nested groups.
3ds max provides also another way of organizing objects, namely by building
a linked hierarchy. A child object is an object that is linked to and controlled
by a parent. Once two objects are linked all transformations applied to the
parent are equally applied to its children. Next 3ds max provides a number
of constraints that can be used to force objects to stay attached to another
object. Actually the designer can use these constraints to restrict the motion
of an object. 3ds max provides the following constraints: Attachement,
Surface, Path, Position, Link, LookAt and Orientation. The Attachement
constraint can for example be used to determine an object’s position by
attaching it to the face of another object. Another example is the LookAt
constraint that can be used to force an object so that it is always oriented
towards a target object. All these constraints are explained in more detail
in [41]

41

42 Background and Related Work

Discussion

Although authoring tools are intended to create virtual environments with-
out the need for detailed programing one needs to be an expert in the domain
of VR to be able to use an authoring tool like 3ds max. The vocabulary
used in the menus and dialogs of such an authoring system is very domain
specific. Terms like NURBS, splines or morph are more or less meaningless
for a native user. There is no way to describe the virtual environment using
the terminology of the application domain.

2.6 Summary

In this chapter we have given an overview of the relevant background and
related work. We gave a brief introduction to Virtual Reality. Next we also
discussed conceptual modeling and reviewed three well-known conceptual
modeling languages and we discussed their usability for high-level modeling
in the domain of VR.
We discussed two groups of related work. First we discussed the academic
approaches. More specifically we discussed some approaches from the do-
main of (virtual) assembly modeling. Next we discussed a number of well-
known commercial tools.

42

Chapter 3

Overview of the VR-WISE
approach

In this chapter an overview of the VR-WISE approach will be given. The
research described in this dissertation is performed in the context of this
approach. This chapter is structured as follows. First we will give a general
introduction to the VR-WISE approach (section 3.1). Next the different
steps of the VR-WISE approach are discussed in section 3.2. Finally we
will discuss the high-level modeling concepts used within the VR-WISE
approach. Subsection 3.3.1 gives an overview of the modeling concepts in-
troduced for modeling simple objects while subsection 3.3.2 briefly discusses
the modeling of behavior inside the VR-WISE approach. We will finish this
chapter with some conclusions.

3.1 Introduction

The goal of the VR-WISE approach is to facilitate and shorten the devel-
opment process of Virtual Environments (VE) by introducing an explicit
conceptual design phase in the development life cycle of a VR-application.
During this conceptual design phase conceptual specifications (also called
conceptual models) are created. Such a conceptual specification is a high-
level representation of the objects inside the VE, the relations that hold
between these objects and how these objects behave and interact with each
other and with the user. A conceptual specification is free from any imple-
mentation details. The VR-WISE approach offers a set of intuitive modeling
concepts in order to build these conceptual specifications.

43

44 Overview of the VR-WISE approach

The conceptual specifications are internally represented by means of ontolo-
gies. In its most simple form, an ontology can be seen as an abstraction of
a computer-based lexicon, thesaurus, glossary or some other type of struc-
tured vocabulary, suitably extended with knowledge about a given domain
[26][25]. Using ontologies as the underlying representation formalism for
the conceptual specifications means that the modeling concepts and all the
information collected during the design phase are maintained in ontologies.
The use of ontologies offers some advantages, e.g., they can be used for intel-
ligent reasoning, as we will see later on. However, it is not necessary to rely
on ontologies as the underlying representation formalism for the concep-
tual specifications. In principle other representation formalisms may also
be suitable. One example of another possible representation formalism is
Frame-Logic (F-Logic). As we will see in part II of this dissertation, we can
formalize the VR-WISE modeling concepts presented in this dissertation by
means of F-Logic

The use of a conceptual level will improve reusability, extensibility and mod-
ularity of the design. Other advantages of the VR-WISE approach are:

• The VR-WISE approach enhances the participation of domain experts
into the development of a VR-application. The fact that the design of
the virtual environment is expressed in terms of the domain, for which
the virtual environment is created (application domain), makes the
design more intuitive for a domain expert. For instance, specifying a
car design in terms of wheels, a hood, a trunk, . . . can be more intuitive
to a domain expert than having to deal with VR primitives such as
boxes and cylinders.

• The VR-WISE approach offers a (semi-)automatic generation of the
virtual environment. The conceptual specifications provide a consid-
erable amount of information which allows an easier (semi-) automatic
generation of the VR application. A proof-of-concept implementation
(see chapter 12) shows that it is possible to transform most, if not all,
high-level modeling concepts into low-level implementation details for
the actual virtual environment.

• The conceptual specifications can be used as a basis for discussing the
design of a virtual environment among the different stakeholders of a
project. Current practice when designing a VR application are brain-
storm sessions, which are held with the different stakeholders in the

44

The three steps of the VR-WISE approach 45

project. Based on these meetings, notes and sketches are made. How-
ever, natural language and sketches are informal, ambiguous and very
often incomplete. Mistakes can be made because words can be in-
terpreted in a variety of ways. The consequence of such misunder-
standings is that (a part of) the VR application may not satisfy the
expectations of the stakeholders and adaptations or even rebuilding
the application may be needed. Another disadvantage of natural lan-
guage and sketches is that they cannot be processed easily automati-
cally in order to generate the source code for the VR application. The
conceptual specifications created using the VR-WISE approach can
serve as a formal communication basis between the domain experts,
the VR-experts and other stakeholders in the project.

• The VR-WISE approach allows intelligent reasoning. Starting from a
scene graph or APIs such as Java3D [11] it is not easy to perform some
intelligent reasoning. However, intelligent reasoning becomes easier
when using mechanisms such as ontologies or F-Logic as the underlying
formalism for the specifications. For example when using F-Logic as
the underlying representation mechanism we can use reasoning tools
such as Flora-2 [68] or OntoBroker [23] to derive extra information
about the virtual environment.

Note that the VR-WISE approach is a general approach for VR develop-
ment. The approach is not especially dedicated to a particular application
domain. However the models used inside the VR-WISE approach can be
seen as abstract prototypes that could be refined later on for specific do-
mains.

It is also possible to further refine the general approach of VR-WISE towards
specific application domains. We have experimented by customizing the
VR-WISE approach for the development of VR-shops. This means that we
have pre-defined a number of object types and behaviors and provision for
plugging-in shopping functionality (such as buying or reserving products).
More details about this experiment can be found in [63].

3.2 The three steps of the VR-WISE approach

The design process used in the VR-WISE approach is divided into three
steps. These steps are mainly sequentially. Figure 3.1 illustrates these steps
which are the specification step, the mapping step and the generation step.

45

46 Overview of the VR-WISE approach

Figure 3.1: Overview of the VR-WISE approach

3.2.1 The specification step

During the specification step the designer can specify the virtual environ-
ment at a high-level using the intuitive modeling concepts offered by the
VR-WISE approach. The specification has two levels since the VR-WISE
approach follows to some degree the object-oriented paradigm [30]. The
first level is the domain specification. The domain specification describes
the concepts of the application domain (comparable to object types in OO-
design methods). It also describes possible relations that may hold between
these concepts. In the domain of vehicles for example, the domain specifi-
cation could contain concepts such as car, bike, wheel or boat and relations
such as ”a bike has two wheels”. The second level of the specification is the
world specification. The world specification contains the actual conceptual
description of the virtual environment to be built. This level of specification

46

The three steps of the VR-WISE approach 47

is created by instantiating the concepts specified in the domain specification.
These instances actually represent the objects that will populate the virtual
environment. In the vehicle example, there can be multiple car-instances,
multiple bike-instances and multiple boat-instances. Next to concept- and
instance specific information (attributes), such as size, color and location,
semantic information which will not directly be represented in the Virtual
Environment can be modeled. In the vehicle example this could be the price
of a specific car- or boat-instance. To specify information about concepts
and instances, their properties and relationships, a number of high-level
modeling concepts are provided.
Note that in the rest of this dissertation we will use the following convention
for the use of the terms concept, instance, and object:

• Modeling concept: We will use the term ”modeling concept” when
we mean a high-level modeling concept provided by the VR-WISE
approach to create the conceptual specifications. A spatial relation
(which we will see later) is an example of a modeling concepts.

• Concept: ”Concept” is the term that will be used when we mean a
concept in the conceptual domain specification. We could for example
model the concept car.

• Instance: The term ”instance” will be used for instances of concepts
which appear in the conceptual world specification. An instance of the
concept car could be the instance Mercedes-A.

• Object: We will use the term ”object” for a concept as well as for an
instance and when it is not necessary to make the distinction.

• VR object: Finally the term ”VR object” will be used when we want
to refer to the actual 3D object in the virtual environment.

3.2.2 The mapping step

During the mapping step the conceptual specifications are mapped onto the
implementation level. Similar as for the specification step, we have two
levels. On the first level we have the mappings from the concepts in the
domain specification towards VR objects. The purpose of these mappings
is to specify defaults for the representation of instances of concepts in the
virtual environment. For our example domain, the domain of vehicles, we
could map the concept wheel to a VR object cylinder. Note that this is a
very simple and easy one-to-one mapping. However, more complex mappings

47

48 Overview of the VR-WISE approach

are possible as well. Although there may be several instances of the same
concept, they may in some cases require a different representation in the
virtual environment. Therefore on the second level we have the mappings
from the instances in the world specification onto VR objects. This level
of mapping allows the designer to override the default mappings specified
for the concepts in the domain specification. For example, there may be an
instance of a wheel that need to be represented as a sphere instead of the
default cylinder representation.

3.2.3 The generation step

The last step is the generation step. During this step the actual source code
for the virtual environment, which was specified in the domain and world
specification, is generated. This means that the conceptual specifications
are converted into a working application by means of the mappings given
during the mapping step. In principle, different VR languages can be sup-
ported. We will discuss this further when we discuss the implementation of
the VR-WISE approach in chapter 12.

This section has presented the general structure of the VR-WISE approach.
In the next section we will present the high-level modeling concepts provided
by the VR-WISE approach.

48

High-level modeling concepts 49

3.3 High-level modeling concepts

In this section we will give an overview of the high-level modeling concepts
that can be used inside the VR-WISE approach in order to build the concep-
tual specifications. For each high-level modeling concept we will provide an
informal definition and a graphical notation. Formal definitions will be given
in chapter 7. We can categorize the modeling concepts in three categories.
The first category contains the modeling concepts for modeling simple VR
objects. The second category contains the modeling concepts for specifying
complex VR objects, which are assemblies of simple and/or complex objects.
This category is the subject of this dissertation. Therefore in chapter 4, we
will discuss these modeling concepts into more detail. The third category of
modeling concepts consists of those that can be used to model the behavior
of VR objects. This category is outside the scope of this thesis and will be
the subject of another PhD-thesis. Hence we will only briefly introduce this
category of modeling concepts here.

3.3.1 Modeling concepts for simple objects

Concepts

Object types are represented as concepts in the VR-WISE approach. A
concept is comparable to a class in object-oriented design [30]. Concepts are
used in the domain specification. They can have two types of properties:
visual properties and non-visual properties.

• Visual properties
Visual properties will be reflected in the Virtual World. Examples of
visual properties are color, width, depth, height, etc.

• Non-visual properties
Non-visual properties are not reflected in the Virtual World, such as
mass, name, price, etc. This type of properties can also be used to
represent some semantic information (real world information) about
the object. Suppose we are modeling a virtual shop, this type of
properties can be used to model the price of a product, its availability,
its delivery cost, etc.

Definition 3.3.1 gives an informal definition of the modeling concept ”con-
cept”.

49

50 Overview of the VR-WISE approach

Definition 3.3.1 (Concept)
A concept represents an object type from the application domain which is
relevant for the VR-application. A concept can have a number of visual as
well as non-visual properties.

Graphical notation

A concept is represented as a rectangle containing the name of the concept.
This graphical notation is illustrated in figure 3.2.

Figure 3.2: Graphical notation for the modeling concept Concept

Using the graphical development environment developed for VR-WISE, prop-
erties for concepts, visual as well as non-visual can be specified. Also default
values can be specified for the properties

Instances

Concepts are specified at the domain specification level. Next the designer
needs to instantiate these concepts in order to populate the virtual envi-
ronment. An instance of a concept inherits all properties; visual as well as
non-visual, from the concept it is an instance of. However, all these proper-
ties’ values can be overwritten at the instance level. Instances are specified
in the world specification. Definition 3.3.2 gives an informal definition of
the modeling concept ”instance”.

Definition 3.3.2 (Instance)
An instance is an instantiation of a concept. It inherits all properties of the
concept it is a instance of. An instance represents an actual VR object that
will populate the VE.

Graphical notation

An instance is graphically represented as an ellipse. Inside the ellipse, a tag
indicates the instance name and the name of the concept it is an instance
of. The tag is constructed as ConceptName:InstanceName. The graphical
notation for instances is illustrated in figure 3.3.

50

High-level modeling concepts 51

Figure 3.3: Graphical notation for the modeling concept Instance

Spatial Relations

Spatial relations allow the designer to position instances in the virtual world
in an intuitive way. Spatial relations can be used to position instances
relative to other instances. Instead of having to position each instance at
concrete coordinates in the virtual world, the designer can, for example,
specify that a specific instance is positioned at a certain distance left of
another instance. Spatial relations can be used in the domain specification
as well as in the world specification. Therefore, we will use the term object
when dealing with spatial relations. In the domain specification, the spatial
relations are used to specify default positions for the instances of a concept.
Definition 3.3.3 gives the informal definition of a spatial relation.

Definition 3.3.3 (Spatial relation)
A spatial relation specifies the position of an object relative to some other
object in terms of a direction and distance.

Graphical notation

A spatial relation is graphically represented by a rounded rectangle (the
symbol for a relation) containing an icon indicating that the relation is a
spatial one. Below this icon the actual information for the spatial rela-
tion is specified: the direction and the distance. The graphical notation is
illustrated in figure 3.4.

Figure 3.4: Graphical notation for the spatial relation

51

52 Overview of the VR-WISE approach

For specifying the spatial relation the following directions may be used:
left, right, front, back, top and bottom. These directions may be combined.
However, not all combinations make sense. Take A, B and C to be sets of
simple directions defined as follows:

A = {left, right}
B = {front, back}
C = {top, bottom}

A combined direction exists of minimal two and maximal three simple di-
rections. However, there may be only one direction of each of the sets A, B
and C in the combined direction. For example, we may use the combined
direction ”left top” but we may not use ”left right” since left and right be-
long to the same set.

Example

Suppose we have two instances, myCar and myHouse, which are instances
of the concepts Car and House respectively. Suppose we want specify that
myCar is 3 meters in front of myHouse. This can be specified as illustrated
in figure 3.5.

Figure 3.5: Example of the use of spatial relations

Note that the spatial relation symbol is connected to both objects by means
of an arrow. In this case, the direction of the arrow indicates that the
instance myCar is in front of the instance myHouse and not vice versa. The
direction of the arrow actually indicates the reading direction: myCar is in
front of myHouse.

Orientation Relations

In VE’s it is also necessary to orient objects. Inside VR-WISE, objects have
two types of orientations. An object has an internal orientation and an

52

High-level modeling concepts 53

external orientation.

• internal orientation: The internal orientation of an object can be
used to specify which side of the object is defined as the front, back,
left, right, etc. An internal orientation is actually defined by a rotation
of the local reference frame1 of the object around some of the axes of
the global reference frame2 (which is equal to the default reference
frame). This principle is illustrated in figure 3.6. Figure 3.6(a) shows
the default internal orientation of an object. Next, in figure 3.6(b) an
internal orientation of 45 degrees counterclockwise around the front
direction axis is illustrated. As we can see, only the local reference
frame of the object is rotated while the object itself maintains its
orientation inside the virtual world. Actually we changed the left-
right and top-bottom sides of the object.

Figure 3.6: (a) default orientation; (b) internal orientation 45 degrees coun-
terclockwise around the front axis

• external orientation: The external orientation of an object can
be used to rotate the object itself around some of the axes of its local
reference frame. This means that an object will be rotated around
some of the axes of its reference frame and this will be visible in the
virtual environment. The external orientation is illustrated in figure
3.7. Figure 3.7(a) shows the default orientation of an object while fig-
ure 3.7(b) shows an external orientation using a rotation of 45 degrees
counterclockwise around the front axis. As we can see, the complete
concept has been rotated.

In the VR-WISE approach, the internal orientation of a concept or instance
can be changed by means of its visual properties. To change the external

1Local reference frame refers to the coordinate system local to the object. With other
words, the coordinate system where the origin equals the origin of the object.

2Global reference frame refers to the coordinate system of the virtual environment.
The origin of the global reference frame is equal to the origin of the virtual environment.

53

54 Overview of the VR-WISE approach

Figure 3.7: (a) default orientation; (b) external orientation 45 degrees coun-
terclockwise around the front axis

orientation we developed two types of orientation relations.
The first type of orientation relation is used to specify the orientation of an
object relative to another object. Using this type of orientation relation the
designer can for example specify that an object is oriented with it’s front
side towards another object it’s left side. This type of orientation relation
is called orientation by side. Definition 3.3.4 gives an informal definition of
the orientation by side relation.

Definition 3.3.4 (Orientation by side relation)
An orientation by side relation specifies how some object is oriented towards
another object. It can be used to specify which side of an object is oriented
to which side of another object.

Graphical notation

The orientation by side relation symbol is a rounded rectangle. The relation
has two parts; each needs to be connected to a concept or instance. Inside
such a part the designer specifies which side of the object (concept or in-
stance) needs to be oriented towards the other object. Therefore he may use
the sides left, right, top, bottom, front and back or a combination of them.
The combination has to follow the same rule as the combined direction we
have seen with the spatial relations.
The graphical symbol for the orientation by side relation also contains a
specific icon. The graphical notation for the orientation by side relation is
illustrated in figure 3.8.
Example

Again suppose we have two instances, myCar and myHouse as defined ear-
lier. Now suppose the designer wants to specify the fact that myCar is

54

High-level modeling concepts 55

Figure 3.8: Graphical notation for the orientation by side relation

oriented with its right side towards the front side of the house. The specifi-
cation for this fact is shown in figure 3.9. Note the use of the arrow. The
arrow indicates that the orientation of the instance myCar, and not the ori-
entation of the instance myHouse, needs be changed to fit the requirements
of the orientation relation.

Figure 3.9: Example of the use of the orientation by side relation

The second type of orientation relation is the orientation by angle re-
lation. This relation can be used to orient a single object by rotating it
around an axis of its local reference frame over a certain angle. Definition
3.3.5 gives the informal definition of the orientation by angle relation.

Definition 3.3.5 (Orientation by angle relation)
An orientation by angle relation specifies a rotation of an object over a
certain angle around some specified axis.

Graphical notation

The orientation by angle relation symbol is a rounded rectangle contain-
ing the icon specific for this type of relation. Inside the rounded rectangle
the designer can specify the axis around which the rotation needs to be
done and the angle of the rotation. The axes that can be used are front-to-
back, left-to-right and top-to-bottom. This graphical notation is illustrated
in figure 3.10.
Example

Suppose we have an instance myCar, as defined earlier. If the designer

55

56 Overview of the VR-WISE approach

Figure 3.10: Graphical notation for the orientation by angle relation

wants to specify that the instance myCar needs to be rotated 45 degrees
around its top-to-bottom axis he can use the orientation by angle relation
for this. This example is shown in figure 3.11.

Figure 3.11: Example of the use of the orientation by angle example

So far, we have introduced high-level modeling concepts for specifying simple
objects and their position and orientation inside the virtual environment. In
the next section we will briefly describe the modeling of behavior inside the
VR-WISE approach.

56

High-level modeling concepts 57

3.3.2 Modeling concepts for behavior

The VR-WISE approach also provides high-level modeling concepts for spec-
ifying behavior. The approach used for specifying behavior in the VR-WISE
approach is called action-oriented. This means that the focus is on the ac-
tions an object needs to perform rather than on the states an object can
be in. The behavior can be specified independent from the structure of the
objects and from the interaction used to invoke the behavior. This improves
the reusability of the behavior specifications.
The behavior specification process contains two steps, the behavior definition
specification and the behavior invocation specification.

• The behavior definition specification allows the designer to define dif-
ferent behaviors for an object.

• A behavior invocation specification is created for each behavior def-
inition specification. It assigns the behaviors defined in a behavior
definition specification to an actual object and denotes the events that
may trigger the behavior.

In the VR-WISE approach a set of high-level modeling concepts is developed
which can be used to create behavior definition specifications and behavior
invocation specifications. These modeling concepts are the topic of another
PhD. We refer the interested reader to [46], [47], [45] and [48].

However, it is interesting to have a closer look to the relation between con-
nections and constraint for complex objects and behavior. Suppose we have
two concepts, a Base which is connected to a Rail by means of a slider
constraint. This means that the base may only slide along the rail. Now
we will look to behavior which is defined for the base concept. Figure 3.12
shows an example of a behavior definition diagram. This diagram defines
an actor, which is an abstract concept, called Primary. This actor has the
behavior called MoveIt. The behavior MoveIt is defined as a move towards
the left over 3 meters.

Figure 3.13 gives an example of a behavior invocation diagram. This
diagram couples the behavior that we have specified in figure 3.12 to the
Base concept. So, the diagram in figure 3.13 actually models that when
the Base concept is touched the behavior MoveIt is performed. The Base
concept acts as the actor Performer.
Now suppose we defined the slider constraint between the Base and the
Rail concept in such a way that the Base is only allowed to move left over

57

58 Overview of the VR-WISE approach

Figure 3.12: Behavior Definition Diagram example

Figure 3.13: Behavior Invocation Diagram example

2 meters along the rail. When the Base concept is touched, the MoveIt
behavior will try to move the Base 3 meters to the left. However, this
behavior will be limited by the slider constraint because this constraint only
allows it to move 2 meters to the left. Hence, we can say that connection
relations and constraints will limit the behavior of objects connected to each
other.

3.4 Use of the VR-WISE approach

Note that the VR-WISE approach is a first step towards a complete design
methodology for virtual environments. Such a design methodology contains
a number of phases such as a requirements phase, a design phase, an im-
plementation phase, etc. A number of research projects investigated the
need for a design methodology for VE’s. For example, [53] introduces the
Concurrent and LEvel by Level Development of VR Systems (CLEVR). [19]
gives an overview of known work in this field and also proposes a design
methodology for VE’s. Future research may be performed in order to in-
vestigate if we can integrate the VR-WISE approach into such an existing
design methodology or to investigate the creation of a new design method-
ology of which the VR-WISE approach will be part.

Furthermore, some modeling languages also contain a step-by-step design
procedure which can be used to create the conceptual model. For example,
ORM [27, 28] contains such a 7-step design procedure. For the VR-WISE
approach we may also think of such a design procedure in order to create
a conceptual model using the high-level modeling concepts. ”Model simple

58

Conclusion 59

objects”, ”Model complex objects”, ”Model behavior”, . . . are examples of
steps that can be needed to come to a complete conceptual model. However,
further research is needed for the creation of such a step-by-step design
procedure for the VR-WISE approach.

3.5 Conclusion

In this chapter we have given an overview of the VR-WISE approach. The
goal of the VR-WISE approach is to facilitate and shorten the development
process of virtual environments. This is done by introducing a conceptual
design phase in which high-level modeling concepts are used to create con-
ceptual specifications. The introduction of a conceptual design phase and
the use of high-level modeling concepts enhances the participation of domain
experts into the development of a VR-application. Results of this research
have been published in [62], [9], [10] and [43].

As we have seen in this chapter, there are mainly three categories of high-
level modeling concepts. The first category contains the modeling concepts
that can be used for specifying simple VR objects. The second category
contains the high-level modeling concepts that can be used for specifying
complex VR objects. This category is the topic of this thesis and will be
discussed in detail in the next chapters. The last category contains the
modeling concepts that can be used for specifying behavior.

59

60 Overview of the VR-WISE approach

60

Chapter 4

Modeling Concepts for
Complex Objects

In the previous chapter we have presented an overview of the VR-WISE
conceptual modeling approach for Virtual Reality. So far we have seen how
to specify simple objects and how to specify their position and their orienta-
tion relative to each other. However, most real-world objects are assembled
of several components and often this needs to be reflected in the virtual
environment. Usually, all objects connected forming a complex object, need
to keep their own identity and it should be possible to manipulate them
individually in the virtual environment as far as this is allowed (by their
connections and constraints imposed). Therefore we need some mechanisms
in our approach to specify complex objects. Complex objects can be seen as
objects assembled of several simple or complex objects, called components.
In this chapter we will introduce a set of high-level concepts to specify com-
plex objects at a conceptual level in the context of the VR-WISE approach.

4.1 Introduction

We will start by giving an informal definition for a ”complex object”. This
is done in definition 4.1.1.

Definition 4.1.1 (Complex objects)
Complex objects are built from existing simple and/or complex objects. They
are composed by connecting or constraining two or more simple and/or com-
plex objects to each other. The connected objects are called components. All
components keep their own identity and can be manipulated individually.

61

62 Modeling Concepts for Complex Objects

When specifying complex objects, we need some mechanisms to specify the
way connections are established between the components of the complex
object. A component can be a concept (instance) or a complex concept
(instance). It is necessary to specify the type of connection used to connect
the components because the type of connection will have an impact on the
possible motion of the components with respect to each other. We explain
this in more detail. Normally an object has six degrees of freedom, three
translational degrees of freedom and three rotational degrees of freedom.
The translational degrees of freedom are translations along the three axes
of the coordinate system while the three rotational degrees of freedom are
the rotations around the three axes of the coordinate system. The way
components of a complex object are connected to each other may restrict
the number of degrees of freedom in their displacements with respect to each
other.
Note that we consider complex objects at the domain specification level as
well as at the world specification level. At the domain level the abstract
characteristics of a complex VR object are specified. Similar to simple VR
objects, complex instances are instances of complex concepts. Also similar
to the conventions we made for simple objects we will now use the following
terms:

• Complex concept: ”Complex concept” is the term that will be used
for the specification of a complex VR object in the conceptual domain
specification.

• Complex instance: The term ”complex instance” will be used for
instances of complex concepts which appear in the conceptual world
specification.

• Complex object: We will use the term ”complex object” when it is
not necessary to distinguish between a complex concept and a complex
instance.

• Complex VR object: Finally the term ”complex VR object” will
be used to refer to the visible 3D complex object in the virtual envi-
ronment.

A complex concept will be graphically represented by means of a rectangle
(see figure 4.1). At the top of the rectangle, a label is given to name the
concept. Inside the rectangle the conceptual model for the complex concept
is specified (in its graphical notation) using the modeling concepts already

62

Introduction 63

discussed in chapter 3 and the modeling concepts that will be introduced in
this chapter.

Figure 4.1: Graphical notation for the conceptual model of a Complex Con-
cept

Complex concepts may also be used in other conceptual models, for exam-
ple as a component of another complex concept. Therefore, graphically a
complex concept could be referred to in the same way as a simple concept,
namely by a rectangle with the label of the complex object inside it (see
figure 4.2).

Figure 4.2: Refering to a complex concept by means of its label

A complex instance is graphically represented as an ellipse containing the
instantiated conceptual specification of the complex concept it is an instance
of. At the top of the ellips the name of the complex instance and the name of
the complex concept it is an instance of are given using the format: ”Com-
plexConcept : ComplexInstance”. This graphical notation is illustrated in
figure 4.3. We will discuss complex instances in more detail in section 4.7.

Figure 4.3: Graphical notation for an instance of a complex concept

When we look to existing VR modeling tools such as toolkits and author-
ing tools we see they all provide in some way mechanisms to connect objects

63

64 Modeling Concepts for Complex Objects

Table 4.1: Connection mechanisms in existing VR modeling tools

ODE PhysX MotionWorks
ball and socket joint spherical joint spherical joint
universal joint prismatic joint prismatic joint
hinge joint revolute joint revolute joint

to each other. Table 4.1 illustrates this for ODE, PhysX and MotionWorks.
For example, ball and socket joints, spherical joints and universal joints all
represent a connection between two objects over a center of motion. Pris-
matic, hinge and revolute joints all represent a connection between two ob-
jects over an axis of motion. Furthermore, prismatic joints limit the motion
of the connected objects in such a way that they may only translate along
the axis of motion while hinge and revolute joints limit the motion in such
a way that the connected objects are only allowed to rotate around the axis
of motion. From exploring different tools we have abstracted a number of
general connection relations and constraints. We will introduce these rela-
tions in this chapter.

In the VR-WISE approach we provide three ways of connecting two
components of a complex object, namely over a center of motion, over an
axis of motion and over a surface of motion. Therefore we provide three high-
level connection relations, which are introduced and explained in section 4.2:

• Connection Point Relation

• Connection Axis Relation

• Connection Surface Relation

As already indicated, these connection relations impose some constraints on
the orientation and position of the components of a complex object with
respect to each other. However, their motion can be constrained even more
using constraints that can be specified on top of the connection relations. For
example, suppose two objects are connected along a connection axis (e.g.,
a door connected to a door post). Then, those objects can still move along
this axis or around this axis. An extra constraint could impose that they
may only rotate a certain number of degrees around this axis. Therefore in
section 4.3, the following connection constraints will be introduced:

64

Introduction 65

• Hinge Constraint

• Slider Constraint

• Joystick Constraint

In section 4.4 we will discuss the position and orientation of a complex ob-
ject. Nesting of complex objects, which means that complex objects are
part of other complex objects, is discussed in section 4.5. In section 4.6 the
modeling concept Role will be introduced. This modeling concept allows a
concept to play different roles inside the conceptual model of a complex ob-
ject. Next, in section 4.7, the instantiation of complex concepts is discussed.

There can also be constraints between objects which are not physically
connected. Some examples are the simulation of a magnetic field between
two objects, or a coffee cup that can be placed only on a saucer. In section
4.8 we will introduce and explain constraints that can be used in the context
of what we will call connectionless object groups:

• Fixed Relative Position Constraint

• Fixed Relative Orientation Constraint

• Positioning Constraint

In section 4.9 we will define a number of modeling concepts which can be
used to model complex shapes. For complex objects, all objects connected to
form the complex object keep their own identity and can all be manipulated
in the virtual environment as far as their connections and constraints allow.
For complex shapes, all objects used to form the complex shape are melted
together so they actually form one whole. So within complex shapes the
connected objects loose their identity. The modeling concepts introduced
in section 4.9 are based on the operators from Constructed Solid Geometry
[52] (CSG will be explained later in this chapter):

• Union Relation

• Intersection Relation

• Difference Relation

65

66 Modeling Concepts for Complex Objects

4.2 Specifying connections between objects

In this section, high-level concepts for specifying connections between com-
ponents of a complex object will be discussed in detail. As mentioned in the
introduction, three different types of connections are distinguished: a con-
nection over a center of motion, over an axis of motion and over a surface of
motion. These types of connections are specified by means of the so-called
connection relations. Next to the informal definitions of these connection
relations, also a graphical notation for these relationships is given.

4.2.1 The Connection Point Relation

A first way of connecting two components of a complex object to each other
is over a center of motion. In the real world we can find examples of physical
objects connected over a center of motion like the shoulder of the human
body connecting the arm to the torso.
A center of motion means that in the visual representation of both connected
components there is somewhere a point that needs to fall on the same po-
sition during the complete lifetime of the complex VR object. We will call
this point the connection point. Connecting two objects over a center of mo-
tion removes all three translational degrees of freedom of the objects with
respect to each other.

To allow modeling (at a high level of abstraction) a connection over a
center of motion between two objects, we have introduced the Connection
Point Relation. Definition 4.2.1 gives an informal definition for the Connec-
tion Point Relation.

Definition 4.2.1 (Connection Point Relation)
A connection point relation specifies a connection over a center of motion
between two components of a complex object. This means that both compo-
nents are constrained in such a way that on each of the components there is
a point that needs to fall on the same position during the complete lifetime
of the complex VR object of which the connected components are part.

We will now explain how this relation should be specified and how it is
represented in the graphical notation of our approach.

To specify a connection point relation between two objects we have to define
the connection point on each object. To define a connection point on an ob-
ject we start from the position of the object. The position of the connection

66

Specifying connections between objects 67

point is specified relative to the position of the object. The designer can do
this by using the spatial relations as introduced in chapter 3. For example,
the connection point lies 3 meters left of the positioning point. Directions
may be combined taking into account the same rule as we have seen in chap-
ter 3. This rule states that a combined direction combines at least two and
at most three directions with the restriction that no two directions can come
from the same set of directions defined as follows:

A={”front”, ”back”}
B={”left”, ”right”}
C={”bottom”, ”top”}

For example, we may translate the connection point towards the ”frontleft”
direction but we may not do a translation towards the ”frontback” direction
since the ”front” and ”back” directions belong to the same set. After all, it
doesn’t make sense to use a direction like ”frontback” since the combined
directions are exactly each others opposite.

Graphical notation

The Connection Point Relation is represented in our graphical notation by
a rounded rectangle containing the connection point icon (see figure 4.4).
The connection point relation connects two concepts (or instances). Note
the use of the arrow. This arrow turns the relation into a directed relation
with a source and a target concept. In figure 4.4 the source is concept A
while the target is concept B. This means that A will be connected to B.
Note that this is not the same as connecting B to A using the same relation.
Let us explain this. Suppose both concepts already have a default position.
By introducing the relation between both concepts, it is necessary to know
which concept must eventually be repositioned so that the connection points
of both concepts fall together. In this case it will be the concept A that will
be repositioned so that its connection point falls together with the connec-
tion point for concept B. Actually, the direction of the arrow indicates the
way the connection point relation must be read. Hence, figure 4.4 can be
read as: Concept A is connected by means of a connection point to concept
B.
Note that the graphical notation given in figure 4.4 does not specify the
actual connection points. To be able to specify the connection points or
other properties of the relation, the graphical notation is expandable. Us-
ing the expanded graphical notation the designer can specify the details of

67

68 Modeling Concepts for Complex Objects

Figure 4.4: Graphical notation for the Connection Point Relation

the relation using a simple and intuitive markup language. Note that this
approach will be used for all types of connection relations and all types of
constraints described in this chapter. The expanded area for a connection
point relation has three sub areas. The top area can hold attributes speci-
fying general properties of the relation (such as the stiffness). The second
and third areas hold the definition of the connection point for the source
object respectively for the target object. The area for the connection point
specification for the source object is indicated with an S inside a circle, the
area for the connection point specification of the target object contains a T
inside a circle. The expanded graphical notation is illustrated in figure 4.5

Figure 4.5: Expanded graphical notation for the Connection Point Relation

To define the attributes and the connection points, a simple markup lan-
guage is used. Its syntax is given in BNF (Backus-Naur Form 1):

<CPDefinition> ::= ’connection point is position point’<translation>∗

<translation> ::= ’translated’ <distance> ’to’ <direction>
<direction> ::= <A>[][<C>] | [<C>] | <C>
<A> ::= ’front’ | ’back’
 ::= ’left’ | ’right’
<C> ::= ’top’ | ’bottom’
<distance> ::= <arithmetic expression>

<arithmetic expression> ::=
<constant> | <object property> |
(< arithmetic expression >) |

1http://www.garshol.priv.no/download/text/bnf.html

68

Specifying connections between objects 69

<arithmetic expression> <operator> <arithmetic expression>

<operator> ::= + | - | * | /
<object property> ::= letter [<rest>]
<constant> ::= float-literal
<rest> ::= digit [<rest>] | letter [<rest>]

A connection point is specified by means of zero or more translations of
the position point of the object. A translation is specified by the sentence
’translated by distance to direction’ where distance and a direction need
to be replaced by a distance and direction respectively. The distance is
expressed by means of an arithmetic expression. Note that inside the arith-
metic expression, object properties can be used. They refer to properties
of the connected concepts. Referring to a property of a concept is done
by means of the pattern ConceptName.PropertyName. Note that the use
of arithmetic expressions will be the same in all connection relations. As
already explained, the direction can be a combined direction. This way
’translated 2 to left’ specifies a translation of the position point 2 units
towards the left in order to define the connection point.
The syntax (in BNF) of the stiffness attribute is given as follows:

<CPAttributes> ::= [<stiffness>]

<stiffness> ::= ’connection stiffness is’ <stiffnessType>
<stiffnessType> ::= ’soft’ | ’medium’ | ’hard’

Currently there is only one connection point relation attribute defined,
namely the stiffness. The stiffness is specified by the sentence ’connection
stiffness is’ followed by the value ’soft’, ’medium’ or ’hard’.

Connection point relation example

Figure 4.6 gives an example a connection point relation. The handle of a
joystick is connected to the base of the joystick by means of a connection
point. We have defined the connection point for the target concepts, the base
of the joystick, as 2 units backwards and 2 units towards the top from the
positioning point of the base. The connection point for the source concept,
the handle, is 4 units towards the bottom from the positioning point of the
handle. The connection point relation has a stiffness property with value
soft.

Figure 4.7 shows the connection point for the base in the example. In
case the base is represented as a box and the position point corresponds to

69

70 Modeling Concepts for Complex Objects

Figure 4.6: connection point relation example

the middle point of this box. The connection point is indicated in red.

Figure 4.7: illustration of the connection point definition for the joystick
base

4.2.2 The Connection Axis Relation

A second way to connect two components of a complex object is over an axis
of motion. Again a lot of examples of this connection type can be found in
the real world. Some examples are a wheel that turns around a certain axis;
a door connected to a wall that can be opened around a certain axis; the
slider of an old-fashioned typing machine that moves along a certain axis.
Actually, an axis of motion means that there is an axis that restricts the
displacements of the connected objects with respect to each other in such
a way that the connected objects may only move along this axis or around
this axis. The axis of motion is called the connection axis. A connection by

70

Specifying connections between objects 71

means of a connection axis thus removes four degrees of freedom leaving only
one translational degree of freedom and one rotational degree of freedom.

In the following paragraphs we will explain the Connection Axis Relation
introduced to model this kind of connection. First we will give an informal
definition for the Connection Axis Relation (see definition 4.2.2).

Definition 4.2.2 (Connection Axis Relation)
A connection axis relation specifies a connection over an axis of motion be-
tween two components of a complex object. This means that both components
are constrained in such a way that they can only rotate around or move along
their connection axis with respect to each other.

To specify a connection axis relation between two objects, we actually have
to specify an axis for each of the two objects. These two axes need to fall
together during the complete lifetime of the connection. Such an axis is
defined as follows. Three planes through each object are defined. These are
the horizontal plane, the vertical plane and the perpendicular plane. They
are defined as follows:

• The horizontal plane is defined by the front-to-back and the left-to-
right axes.

• The vertical plane is defined by the front-to-back and the top-to-
bottom axes.

• The perpendicular plane is defined by the left-to-right and the top-to-
bottom axes.

These planes are illustrated in figure 4.8.

Figure 4.8: (a) the horizontal plane; (b) the vertical plane; (c) the perpen-
dicular plane

A connection axis is defined as the intersection between two of these planes.
The three predefined planes can also be translated or rotated which allows

71

72 Modeling Concepts for Complex Objects

more possibilities to define an axis. Each plane may rotate over two possi-
ble axes. The horizontal plane may rotate over the left-to-right axis or the
front-to-back axis; the vertical plane may rotate over the front-to-back or
the top-to-bottom axis; and the perpendicular plane over the top-to-bottom
or the left-to-right axis.

Next to define the connection axes, it is also necessary to give the initial
positions of both components. For this we use translation points. A trans-
lation point of the connection axis for an object is defined as the orthogonal
projection of the middle point (or position) of this object onto the defined
connection axis. By default, the objects connected via a Connection Axis
Relation will be positioned in such a way that their connection axis falls
together as well as their corresponding translation points. However, our ap-
proach also allows the designer to translate the objects to be connected along
the connection axis. This is done by means of a translation of the translation
point along the connection axis. This principle is illustrated in figure 4.9.
The red and blue cubes are connected over the yellow connection axis. The
black line segments illustrate the orthogonal projections of the middle points
of the cubes on the defined connection axis. Figure 4.9(a) shows the default
position while figure 4.9(b) shows the positions of the connected VR objects
in case the designer has specified a translation of the translation point of
the blue cube of 1 meter backwards. Note that there may be different ways
to accomplish the same result. If we would for example use a translation of
the translation point of the red cube of 1 meter to the front, this would give
the same result.

Figure 4.9: translation of the translation point on a connection axis relation

72

Specifying connections between objects 73

Graphical notation

The Connection Axis Relation is represented in our graphical notation by
a rounded rectangle containing the connection axis icon. Similar to the
connection point relation, the connection axis relation connects two concepts
(or instances). The graphical notation for the Connection Axis Relation is
shown in figure 4.10. Note that also here the direction of the arrow indicates
the way in which the connection axis relation must be read. So in figure
4.10 we can read the relation as: Concept A is connected by means of a
connection axis to concept B.

Figure 4.10: Graphical notation for the Connection Axis Relation

Again, for the specification of the connection axes or general properties
of the relation, the graphical notation is expandable. When expanding the
graphical notation for a connection axis relation, we get three areas similar
as in case of the connection point relation. The top area is used for specifying
general properties (attributes) of the relation. The second and third areas
hold the definition of the connection axis for the source and the target. The
area where the connection axis for the source object is specified is indicated
with an S inside a circle, the area for the target object connection point
specification contains a T inside a circle. The expanded graphical notation
is illustrated in figure 4.11

Figure 4.11: Expanded graphical notation for the Connection Axis Relation

The syntax of the language that allows specifying the attributes and the
connection axes is as follows (given in BNF):

73

74 Modeling Concepts for Complex Objects

<CADefinition> ::= ’connection axis is intersection of: "
<planeDefinition>
<planeDefinition>
[<translationPoint>]

<planeDefinition> ::= <horizontal> | <vertical> | <perpendicular>

<horizontal> ::=
’horizontal plane ’ [<horizontalTrans>] [<horizontalRot>]

<vertical> ::=
’vertical plane ’ [<verticalTrans>] [<verticalRot>]

<perpendicular> ::=
’perpendicular plane ’ [<perpendTrans>] [<perpendRot>]

<horizontalTrans> ::= ’translated ’ <distance> ’to ’ (’top’ | ’bottom’)
<verticalTrans> ::= ’translated ’ <distance> ’to ’ (’left’ | ’right’)
<perpendTrans> ::= ’translated ’ <distance> ’to ’ (’front’ | ’back’)

<horizontalRot> ::=
’rotated over ’ (’frontToBack’ | ’leftToRight’) ’axis with ’ <angle>

<verticalRot> ::=
’rotated over’ (’frontToBack’ | ’topToBottom’) ’axis with ’ <angle>

<perpendRot> ::=
’rotated over’ (’leftToRight’ | ’topToBottom’) ’axis with ’ <angle>

<angle> ::= <arithmetic expression>

<translationPoint> ::=
’translation point translated ’ <distance> ’to ’ <direction>

<CAAttributes> ::= [<stiffness>]

<stiffness> ::= ’connection stiffness is’ <stiffnessType>
<stiffnessType> ::= ’soft’ | ’medium’ | ’hard’

So, a <CADefinition> specifies the connection axis as the intersection of
two planes. These planes are specified by means of <planeDefinition>.
A <planeDefinition> can be either the horizontal, vertical or perpendicular
plane followed by an optional translation and an optional rotation. As ex-
plained earlier, each plane can be translated in two directions and rotated
over two possible axes. The horizontal plane can be translated to the top
or bottom direction and rotated over the front-to-back or the left-to-right
axes. The vertical plane can be translated to the left or right direction and
rotated over the front-to-back or the top-to-bottom axis. The perpendicu-
lar plane can be translated to the front or back direction and rotated over

74

Specifying connections between objects 75

the left-to-right or the top-to-bottom axis. <angle> specifies an angle by
means of an arithmetic expression. <distance> is defined as for the connec-
tion point relation. The connection axis definition can also have an optional
<translationPoint> specification.
The syntax for the connection axis relation attributes, <CAAttributes> is
the same as for the connection point relation.

Connection axis relation example

Figure 4.12 shows an example of two concepts connected to each other by
means of a connection axis. A door is connected to a doorpost using a
connection axis. Note the use of arithmetic expressions in the specifications
of the connection axis. The connection axis on the door side, the source
side, is specified by translating the vertical plane over half of the width of
the Door to the right and the perpendicular plane over half of the depth of
the Door to the front. The connection axis on the door-post side, the target
side, is specified by translating the vertical plane over half of the width of
the door-post to the left and the perpendicular plane over half of the depth
of the door-post to the front. We didn’t need to translate the translation
point as we use the default positioning of both concepts according to the
axis. The stiffness attribute of the connection axis relation is set to medium.

Figure 4.12: connection axis relation example

Figure 4.13 illustrates the connection axis specification given in figure
4.12. Figure 4.13(a) shows the door, (b) shows the perpendicular and the
vertical plane used to define the connection axis, (c) shows the translated
planes and (d) shows the connection axis on the door as defined by the
intersection of the translated planes.

75

76 Modeling Concepts for Complex Objects

Figure 4.13: Illustration of the connection axis specification for the door
object

4.2.3 The Connection Surface Relation

The third way to connect two objects to each other is over a surface of
motion. A real world example of this type of connection is a boat on a water
surface. The boat is able to float over the water surface. However its bottom
surface stays inside the water surface. A surface of motion means that there
is a surface that allows the connected objects to move along the directions of
this surface. This surface removes 3 degrees of freedom. The only degrees of
freedom for the objects with respect to each other are the two translational
degrees of freedom in the directions of the surface and one rotational degree
of freedom around the axis perpendicular to the surface. This is illustrated
in figure 4.14. The surface of motion is called the connection surface. In
order to be able to specify this kind of connection we have introduced the
Connection Surface Relation. Definition 4.2.3 gives an informal definition
of the Connection Surface Relation.

76

Specifying connections between objects 77

Figure 4.14: degrees of freedom for the connection surface relation

Definition 4.2.3 (Connection Surface Relation)
A connection surface relation specifies a connection over a surface of mo-
tion between two components of a complex object. This means that both
components are constrained in such a way that they can only move over the
connection surface with respect to each other.

To specify connection surface relation we need to specify the connection sur-
face on both objects that need to be connected. The connection surfaces
on both objects need to fall together during the complete lifetime of the
connection. To do this, we use the same planes as defined for the Connec-
tion Axis Relation, namely the horizontal plane, the vertical plane and the
perpendicular plane. For each of the objects, the designer selects an initial
plane to work with. This plane can be translated and rotated.
Similar as in the Connection Axis Relation we also need translation points
to specify the initial position of both objects along the connection surface.
By default, the translation point of the objects is the orthogonal projection
of the middle point (position) of each object on the corresponding connec-
tion surface. The objects connected via a Connection Surface Relation will
be positioned in such a way that the connection surfaces fall together as
well as the translation points. Also for the connection surface relation, the
translation point can be translated to specify other positions. This principle
is illustrated in figure 4.15. In figure4.15(b) the translation point of the blue
cube is translated 0.5 meter towards the back and 0.5 meter towards the
right side.

Graphical notation

The Connection Surface Relation is represented graphically by means of a
rounded rectangle containing the connection surface icon (see figure 4.16).
Again, the direction of the arrow indicates the way the relation must be

77

78 Modeling Concepts for Complex Objects

Figure 4.15: translating the translation point in a connection surface relation

read. Hence we can read the connection surface relation in figure 4.16 as
follows: Concept A is connected by means of a connection surface to concept
B.

Figure 4.16: graphical notation for the connection surface relation

Similar to the connection point relation and the connection axis relation,
the graphical notation of the connection surface relation is expandable. The
expanded graphical notation again has three area’s, one for specifying the
properties of the relation, one area for the specification of the connection
surface on the source object and one area for the specification of the con-
nection surface on the target object. The extended graphical notation is
illustrated in figure 4.17.

The syntax for specifying the connection surface for the source and target
side is as follows (given in BNF):
<CSDefinition> ::= ’connection surface is: ’

<planeDefinition> [<CSTranslationPoint>]

<CSTranslationPoint> ::= ’translation point translated ’
<distance> ’to ’ <direction>
[’and ’ <distance> ’to ’ <direction>]

So the specification of a connection surface consists of the sentence ’connec-
tion surface is: ’ followed by a <planeDefinition>. <planeDefinition> has

78

Specifying connections between objects 79

Figure 4.17: Extended graphical notation for the Connection Surface Rela-
tion

already been defined for the connection axis relation. The connection surface
definition can also have a translation point specification. The specification
of the translation point differs from the one of the connection axis relation
because here it is possible to move the translation point in two directions
on the connection surface.

Connection surface example

Figure 4.18 models the example of a boat on a water surface. The connection
surface for the boat object is defined as the horizontal plane translated
towards the bottom of the boat; the connection surface for the water surface
is also the horizontal plane. As the water surface is a plane itself we dont
need to translate the horizontal plane towards the top surface of the water.
Figure 4.19 shows a possible outcome of the specification given in figure
4.18. The connection surface of the boat is allowed to move freely on the
blue water surface.

Figure 4.18: connection surface relation example

79

80 Modeling Concepts for Complex Objects

Figure 4.19: ship moving over a water surface

80

Constraints on connections 81

4.3 Constraints on connections

So far we have seen a number of relations that can be used to connect two
objects to each other. As discussed, each of these relations imposes a lim-
itation to the degrees of freedom of the connected objects with respect to
each other. In this section we will discuss a number of additional constraints
that allow further restricting the position and orientation of the connected
objects relative to each other. Note that in the literature, the terms con-
straints and joints are often used interchangeably. In our research, we will
systematically use the term constraint. In the following sections the Hinge
Constraint, the Slider Constraint and the Joystick Constraint will be in-
troduced and explained. The names of the constraints are metaphor-based
which should make it easier for non-technical persons to understand and
remember their meaning.

4.3.1 The Hinge Constraint

The first constraint is the hinge constraint. This constraint can only be
placed on top of a connection axis relation. The hinge constraint still allows
the objects connected through a connection axis relation to rotate around
the connection axis, but forbids them to move along the axis (which would be
possible without this constraint). As the name suggests, a hinge constraint
could for example be used to attach a door to a doorpost. When specify-
ing a hinge constraint the designer can also restrict the possible rotation by
specifying limits for the rotation. These limits indicate the number of de-
grees that the connected concepts (instances) are allowed to rotate around
the connection axis. The hinge limits can be specified for the clockwise di-
rection and for the counterclockwise direction. The specified hinge limits
are expressed from the initial position of both concepts (instances). When
no limits are specified, the objects are allowed to rotate infinitely clockwise
and counterclockwise around the connection axis. Definition 4.3.1 gives the
informal definition of a hinge constraint.

Definition 4.3.1 (Hinge constraint)
A hinge constraint constrains two components of a complex object connected
by means of a connection axis in such a way that they are only allowed
to rotate around the connection axis with respect to each other. A hinge
constraint can have limits indicating how much the components may rotate
around the connection axis in the clockwise as well as in the counterclockwise
direction.

81

82 Modeling Concepts for Complex Objects

To have an unambiguous meaning of clockwise and counterclockwise the
designer also needs to specify from which viewpoint (direction) he looks to
the objects involved when using the terms clockwise and counterclockwise.
If we take the reference frame of one of the connected objects then we can
split the environment in eight subspaces and each of these subspaces can be
characterized by means of three directions as illustrated in figure 4.20(a),
e.g., (top, back, right). Now there are three different possibilities for the
connection axis:

• The connection axis can go through two of the eight subspaces. This
situation is shown in figure 4.20(b). This means that the designer can
use as a viewpoint all possible directions (as defined earlier). Indeed,
each direction is involved in the characterization of the two subspaces.
E.g., if the designer would for example use top as his viewpoint than
we could look to the axis from the (top, front, right) subspace.

• A second possibility for the connection axis is that it coincides with
a plane defined by two axes of the reference frame (or a plane that
is parallel with it). In this case only two pairs of directions can be
used as a viewpoint, namely the directions from the axes defining the
plane. In the example in figure 4.20(c) this means the designer could
use front, right, back and left as a viewpoint since the connection axis
is lying in the plane described by the left-right axis and the front-back
axis.

• The third possibility (see figure 4.20(d)) is that the connection axis
coincides with an axis of the reference frame (or is parallel with one
of them). In this case only the directions of this axis can be used as a
viewpoint. In the example this would mean that only left or right can
be used as a viewpoint.

Once we know the viewpoint we can easily define the meaning of clockwise
and counterclockwise. Because of the way in which the viewpoint is specified
(as shown in figure 4.20) we know that the designer looks along the axis used
for the hinge constraint. This principle is illustrated in figure 4.21.

When we look along an axis as shown in figure 4.21 we see the axis as
a dot. Now we can define clockwise and counterclockwise rotations around
the axes as shown in figure 19. The red spot in figure 4.22 is the axis as
seen from the viewpoint.
Note also that the specified viewpoint can be different for both connected
objects. Suppose the objects have a different orientation then the viewpoint

82

Constraints on connections 83

Figure 4.20: possible viewpoint on the connection axis for the specification
of a hinge constraint

front could mean something completely different for the two objects. There-
fore it is also necessary to specify which object’s reference frame is used to
determine the viewpoint. This is specified by means of the position where
the hinge constraint is attached to the connection axis relation. When the
hinge constraint is attached between the connection axis relation and the
source object then the constraint will use the reference frame of the source
object. This is similar for using the target object’s reference frame.

Graphical notation

To specify this constraint the graphical notation shown in figure 4.23 is used.
The constraint is represented as an octagon containing the hinge constraint
icon.
Furthermore the notation is expandable (as illustrated in figure 4.24) which
gives an area to specify the limits of the hinge constraint when needed.
The syntax for specifying hinge constraint limits is as follows:

83

84 Modeling Concepts for Complex Objects

Figure 4.21: looking along an axis from the viewpoint

Figure 4.22: Clockwise and counterclockwise as seen from the viewpoint

<HingeDefinition> ::=
’seen from ’ <direction>
’components can rotate around the connection axis: ’
<angleLimit> ’degrees clockwise’
<angleLimit> ’degrees counterclockwise’

<angleLimit> ::= <arithmetic expression>

Inside the <HingeDefinition> ’seen from <direction>’ specifies the view-
point, where <direction> is as defined earlier. Next ’<angleLimit> degrees
clockwise’ and ’<angleLimit> degrees counterclockwise’ specify the limits
of the hinge constraint. The limit angle is an arithmetic expression.

Figure 4.23: graphical notation for the hinge constraint

84

Constraints on connections 85

Figure 4.24: expanded graphical notation for the Hinge Constraint

Hinge constraint example

For an example of the hinge constraint we return to the door example from
section 4.2.2. Figure 4.25 shows the door together with the orientation of
the door and the connection axis defined on it.

Figure 4.25: The connection axis for a door in a virtual environment

Suppose we want to specify the fact that the door can be pulled open
(towards the front) 90 degrees. We can model this by specifying a maximum
rotation of 90 degrees counterclockwise and 0 degrees clockwise as seen from
the top. This means that from the initial position modeled (the closed door),
the door could be pulled 90 degrees and cannot be pushed. By putting the
constraint on the Connection Axis Relation at the side of the Door concept
we indicate that the reference frame used by the constraint is the reference
frame of the Door concept. The graphical representation of the conceptual
model for this example is shown in figure 4.26

4.3.2 The Slider Constraint

Next to the hinge constraint there is a second type of constraint that can
be specified on top of a connection axis relation. This constraint is the

85

86 Modeling Concepts for Complex Objects

Figure 4.26: hinge constraint example

Slider Constraint. The slider constraint limits the movement of the objects
connected by means of a connection axis in such a way that they are only
allowed to move along this axis. Here, also limits can be set so that the
movement is allowed only over a certain distance along the axis. When
no limits are specified, the connected objects are allowed to move infinitely
along the connection axis with respect to each other. An example is given
by means of a robot arm that can ’slide’ along a rail as illustrated in figure
4.27. In this example, the connection axis is on top of the rail and parallel
with it.

Figure 4.27: Example of a robot arm moving along a rail

First we will give an informal definition for the slider constraint. This is
done in definition 4.3.2.

Definition 4.3.2 (Slider constraint)
A slider constraint constrains two components of a complex object connected

86

Constraints on connections 87

by means of a connection axis in such a way that they are only allowed to
move along the connection axis with respect to each other. A slider constraint
can have limits indicating how much the components may move along the
connection axis.

When specifying how far the objects may move along the connection axis in a
certain direction, the designer has to respect the rule that the directions have
to be opposite. If for example, he uses ’left’ for one direction of movement,
then the other direction must be ’right’ and cannot e.g. be ’top’.

Graphical notation

The graphical notation for the slider constraint is given in figure 4.28. The
constraint is represented as an octagon containing the slider constraint icon.

Figure 4.28: graphical notation for the slider constraint

Again, it is possible to have an expanded version of the graphical nota-
tion which allows the designer to specify the slider constraint limits. This
notation is illustrated in figure 4.29.

Figure 4.29: expanded graphical notation for the slider constraint

The syntax that must be used for the specification of the limits is as follows:
<sliderDefinition> ::=

’components can move along the connection axis’
(<leftRightSliding> | <frontBackSliding> | <topBottomSliding>)

<leftRightSliding> ::= <distance> ’to left’
<distance> ’to right’

<frontBackSliding> ::= <distance> ’to front’
<distance> ’to back’

<topBottomSliding> ::= <distance> ’to top’
<distance> ’to bottom’

87

88 Modeling Concepts for Complex Objects

So <sliderDefinition> exists of two limit specifications, one in each possible
direction. Note that the BNF specification enforces that the directions, in
which the objects can slide, are opposite. <distance> and <direction> were
defined earlier.

Slider constraint example

Now we can go back to our robot example. Figure 4.30 models the Base
concept connected to the Rail concept by means of a connection axis. On
this relation there is a slider constraint specified. This constraint allows the
Base to move 3 units towards the left along the connection axis and 5 units
to the right along the axis.

Figure 4.30: slider constraint example

4.3.3 The Joystick Constraint

The Joystick Constraint can be specified on top of a connection point rela-
tion. Note that this kind of constraint is also called ’universal constraint’ in
the domain of VR. However, we have chosen a name based on the joystick
metaphor to make the constraint more intuitive for non VR-persons. The
joystick constraint itself is illustrated in figure 4.31. As we can see there are
two perpendicular axes specified. The connected objects are only allowed to
rotate around these axes in such a way that the axes stay perpendicular to
each other.
This kind of constraint is also used in a joystick (hence the name of the
constraint). Figure 4.32 shows a joystick. The handle is connected to the
base by means of a connection point. However in general, the handle may
only turn 45 degrees towards the front, back, left and right directions.

88

Constraints on connections 89

Figure 4.31: The joystick constraint [55]

Figure 4.32: a joystick makes use of the joystick constraint

As we can see in figure 4.33(a) the handle and the joystick have a connection
point. Initially we can take three axes perpendicular to each other through
the connection point. These are the axes of the local reference frame of
one of the connected objects placed their origin in the connection point.
These are the three red axes shown in figure 4.33. These axes are called the
frontToBack, leftToRight and topToBottom axis (as we have seen with the
connection axis relation).

The designer can use two of these default axes through the connection point
for the specification of the joystick constraint. However, to offer more pos-
sibilities, the designer can rotate these axes. Note that the axes must be
rotated as one whole. This way they stay perpendicular to each other. Sup-
pose they are rotated by 45 degrees over the leftToRight axis. This will
result in the situation shown in figure 4.33(b).

89

90 Modeling Concepts for Complex Objects

Next to the specification of the two axes around which the objects may ro-
tate, the designer can specify how much both objects may rotate clockwise
and counterclockwise. Note that the limit specified for a certain axis indi-
cates that the objects may rotate half of that limit clockwise around the
axis and half of the limit counterclockwise around the axis.

Figure 4.33: possible axes for the joystick constraint

In the joystick example, as we will see later on, the axes used will be the
frontToBack and the leftToRight axes.
Before going to the graphical notation we will first give an informal definition
of the joystick constraint in definition 4.3.3.

Definition 4.3.3 (Joystick constraint)
The joystick constraint allows two components connected by means of a con-
nection point to rotate with respect to each other around two perpendicular
axes through the connection point. A joystick constraint can have limits indi-
cating how much the components may rotate around the axes in the clockwise
as well as in the counterclockwise direction.

Graphical notation

The graphical notation for the joystick constraint is similar to the graphical
notation for the other constraints and is shown in figure 4.34. The graphical
notation of the expanded version is given in figure 4.35.
The syntax of the joystick constraint specification is (in BNF):

<JoystickDefinition> ::=

90

Constraints on connections 91

Figure 4.34: graphical notation for the joystick constraint

Figure 4.35: expanded graphical notation for the joystick constraint

’components can rotate’
<angle> ’degrees around’ <axisDefinition>
<angle> ’degrees around’ <axisDefinition>
[<axesRotation>]

<axisDefinition> ::=
’frontToBack axis’ | ’leftToRight axis’ | ’topToBottom axis’

<angle> ::= <arithmetic expression>

<axesRotation> :: ’axes are rotated ’ <angle> ’around ’ <axis>

In summary, the Joystick Constraint is specified as follows. The designer
can specify the two axes used for the joystick constraint followed by the
limits of the allowed rotation around these axes. Next he can also specify a
rotation of the default axes.

Joystick constraint example

Now we go back to our joystick example. As we can see in figure 4.36,
the Handle and the Base concepts are connected by means of a connection
point relation. The joystick constraint is specified on the connection point
relation at the side of the Base concept. This means that the axes used
in the specification of the joystick constraint are oriented in the same way
as the orientation of the Base concept’s orientation. The axes used are the
’frontToBack’ axis and the ’leftToRight’ axis. Around both axes the objects
can turn 45 degrees clockwise as well as counterclockwise. This means that
the rotation limit for both perpendicular axes is 90 degrees. There is no
need to have a rotation of the default axes.

91

92 Modeling Concepts for Complex Objects

Figure 4.36: joystick constraint example

Using this specification the joystick handle will be allowed to move as shown
in figure 4.37.

Figure 4.37: allowed movement of the handle in the joystick example

92

Position and Orientation of complex objects 93

4.4 Position and Orientation of complex objects

As we have seen in the previous chapter each object has a position and
orientation. This can be an explicit position and orientation or it can be
relative to another object. Also for a complex object we need a mechanism to
specify the position and orientation. In our approach, this is done by means
of a reference object. The designer can specify that a certain component of a
complex object is the reference object for that complex object. The complex
object will then have the same position and orientation as its reference
object. For example, if we have a complex object car with the chassis,
engine and bodywork as parts, then we could specify that the chassis is the
reference object. This would mean that the position for an instance of the
car concept is the position of the chassis of that car-instance and that the
orientation of this car instance is the same as the chassis’ orientation. In the
graphical representation, the reference object of a complex object is drawn
in bold.

4.5 Nesting Complex Objects

In all the examples that were used so far, all components of a complex
object are simple objects. However, a complex object may exist of simple
and/or complex object parts. The conceptual model of a complex object
can specify that another complex object is attached to another simple or
complex object using the relations that were introduced in this chapter.
There are several possibilities for connecting two complex objects. A first
way of connecting two complex objects considers the complex objects as a
whole, i.e. as if they were simple objects. In this case the connection relation
(and constraints) is implied between the complex objects as such. This is
illustrated in figure 4.38 where two complex concepts, ComplexConcept1 and
ComplexConcept2, are connected by means of a Connection Axis Relation.
In this case the specification of the connection axis will be based on the
position and orientation of the complex objects.
A second way of connecting two complex objects is by connecting one of their
components. In figure 4.39 component A of ComplexConcept1 is connected
to component C of ComplexConcept2. Note that it is also possible to connect
two complex objects by connecting one of the complex objects as a whole
to a component of the other complex object.
In the previous examples, the complete graphical representation of the con-
ceptual model of the different complex objects was used. However, this is

93

94 Modeling Concepts for Complex Objects

Figure 4.38: Connecting two complex objects

Figure 4.39: Connecting two complex objects by means of their parts

not always convenient and it may overload the models. Therefore to re-
fer to a complex object as a whole, we can refer to in the same way as a
simple object, i.e. by a box labeled with the name of the complex object.
To refer to a component of a complex object, we use the box notation but
labeled with ComplexObjectName:ComponentName. This is illustrated in
figure 4.40. The example of figure 4.40 actually models the same connection
as the one in figure 4.39.

Figure 4.40: Referring to parts of complex objects for connection

This way of referring to a component of a complex object is also useful
with nested complex objects. Suppose we have a complex object Car. One
component of this complex object is the Engine which is a complex object
on its own. The Cylinder is a component of the Engine. Now referring to the
Cylinder component can be done using the expression Car:Engine:Cylinder.

94

Roles 95

4.6 Roles

As we have seen, the conceptual model for a complex concept contains a
number of concepts. These concepts are the different components of the
complex concept. However, it is possible that a single concept is used more
than once as a component in the conceptual model of a complex concept.
Take for example the complex concept Car. The concept Wheel is a part of
the concept Car, but a car in general has four wheels: two front wheels, one
on the left side and one on the right side, and also two rear wheels, again
one on the left side and one on the right side. A possible conceptual model
for the complex concept Car could be the model shown in figure 4.41. Note
that the expanded notation for the connection axis relation is shown only
once since the other specifications are similar.

Figure 4.41: Possible conceptual model for the concept Car

However, this model neglects the fact that the four components FrontLeft-
Wheel, BackLeft-Wheel, FrontRight-Wheel, and BackRight-Wheel are actu-
ally always the same concept but each playing different roles. In this model
we need to define four similar Wheel concepts, which introduce redundancy
and is therefore very error-prone. Therefore, we have introduced the mod-
eling concept Role. This concept is analogous to the concept role used in
Object-Role Modeling (see chapter 2) where the world is described in terms
of objects that play roles. Definition 4.6.1 gives the informal definition for
a role in the VR-WISE approach.

95

96 Modeling Concepts for Complex Objects

Definition 4.6.1 (Role)
A role is a concept playing a certain role in the context in which it is used.
The concept playing the role can be defined local to the context in which the
role is used or external to this context. When defined local to the context it
cannot be reused in another context.

A Role is represented in our graphical notation by a double-sided rectangle.
The name of the role together with the name of the concept playing the role
is mentioned inside the rectangle. This graphical notation is shown in figure
4.42.

Figure 4.42: Graphical notation for the modeling concept Role

Using the modeling concept Role allows the designer to model a concept once
and use it for different roles inside the context of the complex concept. For
example for the concept Wheel, we introduce four roles inside the context of
the complex concept Car: the role of left front wheel, right front wheel, left
rear wheel and right rear wheel. The graphical notation for the conceptual
model of the complex concept Car with the use of roles is given in figure
4.43.

Figure 4.43: Conceptual model for the concept Car using roles

96

Instantiating Complex Objects 97

4.7 Instantiating Complex Objects

So far we have seen how to describe complex concepts at the conceptual do-
main specification of the VR-WISE approach. In the conceptual world spec-
ification we need to instantiate these complex concepts in order to populate
the virtual environment. The instantiation of a complex concept happens
by instantiating each concept (or role) that is a component of the complex
concept. In the conceptual domain specification, default values for proper-
ties of components may have been specified. These values are inherited by
the instances, but in the conceptual world specification they may be over-
written. In figure 4.44 the instance SmallCar is specified as an instance of
the Car concept defined in figure 4.43. Note that all concepts (and roles),
which are part of the Car concept specification are now instantiated and
some default values have been overwritten. For example,the default posi-
tioning of the wheels (2 meters to the front and back side of the car chassis)
are overwritten and they are positioned 1.5 meters to the front and back side
of the chassis. This is reflected in the Connection Axis Relation where the
plane transformation is changed from 2 to 1.5 (between the SmallChassis
and FLWheel instances).

Figure 4.44: SmallCar instantiated from the Car concept

97

98 Modeling Concepts for Complex Objects

4.8 Specifying and constraining connectionless groups
of objects

In the previous sections we have seen how two objects can be physically
connected and how their translational and rotational degrees of freedom
with respect to each other can be constrained. However it may also be
necessary to constrain the relative position and orientation of objects while
they are not physically connected. Some examples can be found in reality,
e.g., when simulating a magnetic field between two objects, or a coffee cup
which can be placed on a saucer. In this section we will describe a number
of constraints that can be used in the context of connectionless groups of
objects.

4.8.1 The Fixed Relative Position Constraint

The Fixed Relative Position Constraint forces the position of one object to
be constant relative to another object’s position. This constraint is specified
on top of a spatial relation as it is constraining the spatial position of the
two objects given by means of the relation. However, it is also possible that
this constraint holds between two objects for which no spatial relation has
been specified. Definition 4.8.1 gives the informal definition for the Fixed
Relative Position Constraint.

Definition 4.8.1 (Fixed Relative Position Constraint)
The fixed relative position constraint forces two objects to keep the same
position relative to each other during their complete life-time.

We will start explaining the case where a spatial relation has been defined
between the objects involved. The Fixed Relative Position Constraint indi-
cates that this relation should hold for the complete lifetime of both objects.
In other words their relative position may not be changed. No other informa-
tion needs to be provided. Therefore we have chosen to attach the constraint
symbol, an octagon, containing an F (indicating ’fixed’) to the graphical no-
tation of the spatial relation between the objects. We have chosen for a
constraint symbol instead of a new type of spatial relation in order to keep
the number of modeling primitives low and not to clutter the diagrams.
The graphical notation of the Fixed Relative Position Constraint is shown
in figure 4.45.

The second case is when the designer wants to specify that two objects
that are not related by means of an explicit spatial relation must have a fixed

98

Specifying and constraining connectionless groups of objects 99

Figure 4.45: graphical notation of the fixed relative position constraint

relative position with respect to each other. We illustrate the purpose of this
constraint with an example. Suppose we have two objects, A and B that
are not related via a spatial relation. They both have a concrete position
in the environment. However the designer wants to specify that their initial
position (at time zero in the lifetime of the objects) with respect to each other
must be frozen. This means that when object A undergoes a translation in
the virtual environment, object B needs to undergo the same translation and
vice versa. The graphical notation used in figure 4.45, is not usable here since
there is no explicit spatial relation. Therefore we need to introduce an extra
graphical notation for this case. This graphical notation is illustrated in
figure 4.46. It is the constraint symbol (an octagon) containing the spatial
relation icon. This graphical notation is placed between the two concepts
that the designer wants to constraint with a fixed relative position.

Figure 4.46: graphical notation of the fixed relative position constraint with-
out explicit spatial relation

4.8.2 The Fixed Relative Orientation Constraint

The Fixed Relative Orientation Constraint freezes one object’s orientation
relative to another object’s orientation. It is therefore modeled on top of an
orientation relation between two objects, but it can also be used between
two objects that are not related by an explicit relative orientation relation.

99

100 Modeling Concepts for Complex Objects

Definition 4.8.2 gives an informal definition for the fixed relative orientation
constraint.

Definition 4.8.2 (Fixed Relative Orientation Constraint)
The fixed relative orientation constraint forces two objects to keep the same
orientation relative to each other during their complete life-time.

We start with the first case in which an orientation relation is specified be-
tween both objects. Again there is no need to specify additional information
as the constraint only indicates that the relative orientation between two
objects needs to stay constant during the complete lifetime of the objects.
Therefore the fixed relative orientation constraint is represented in the same
way as the fixed relative position constraint. A octagon containing an F is
attached to the relative orientation between the constrained objects. The
graphical notation for the fixed relative orientation constraint is illustrated
in figure 4.47.

Figure 4.47: graphical notation of the fixed relative orientation constraint

Similar to what we have seen with the fixed relative position constraint,
the designer may want to specify that two objects which are not related via
an explicit orientation relation have a fixed relative orientation. Take two
objects, A and B that are not related via an orientation relation. They both
have their own orientation in the virtual environment. The designer may
wish to specify that when object A undergoes a rotation, object B needs to
undergo the same rotation and vice versa. To represent this constraint, we
introduced a graphical notation similar to the one for a fixed relative position
constraint. It consists of the constraint symbol containing the orientation
relation icon and is placed between the concepts to be constrained. This
graphical notation is illustrated in figure 4.48.

4.8.3 The Positioning Constraint

In a virtual environment the user can manipulate the objects, he can move
and turn them. However, most VR objects cannot be positioned on an

100

Specifying and constraining connectionless groups of objects 101

Figure 4.48: graphical notation of the fixed relative orientation constraint
without explicit orientation relation

arbitrary place. This can have several reasons: physics properties, human
conventions, etc. One example is a coffee cup that is mostly placed on a
saucer while it can usually not be placed on a wire.
In order to describe this kind of constraint we have introduced the Posi-
tioning Constraint. This constraint allows describing where VR objects can
be positioned and which VR objects can serve as a positioning base for
other objects. This approach is based on the approach described by [54].
Definition 4.8.3 gives the informal definition for the positioning constraint.

Definition 4.8.3 (Positioning Constraint)
The positioning constraint specifies which objects can serve as a position-
ing base for which other objects. It is specified by means of anchor area
constraints and binding area constraints, which are labeled by one or more
labels. Objects with an anchor area can be placed on objects with a binding
area when they both share the same label.

• An anchor area specifies for an object the area of the object that can
be used for positioning.

• A binding area specifies for an object the area of the object that can be
used as positioning base.

We will explain the Positioning Constraint by means of an example. Sup-
pose we have two concepts in the virtual environment, let’s say Desk and
Book. We want to express that all instances of the concept Book can be po-
sitioned only with their back side on top of each possible instance of Desk.
Therefore we can define the top surface of Desk as being a binding area.
Next, we define the backside of Book to be an anchor area. Anchor area’s
can be positioned on binding area’s. However, we also need to indicate on
which binding areas the anchor area of a book can be positioned. For this
purpose we will label the areas. We can for example label the anchor area

101

102 Modeling Concepts for Complex Objects

of the book with the label Workspace. All binding area where the book can
be places are given the same label. Thus the binding area of the desk will
also be labeled Workspace. Suppose books can also be placed on shelves.
Then the designer could also define a binding area on the shelve concept
and label it as a Workspace. Note that an area may have more than one
label. For example if we would model a computer in such a way that it can
only be placed on a desk. Therefore we would specify an anchor area for
the computer concept. We could label it Desktop. Then the binding area of
the desk can be given a second label Desktop next to the Workspace label.
This way, computers can be placed on desks while books can be placed on
desks and shelves.

Graphical notation

Now we will describe the graphical notation for this constraint. Again we
have an expandable graphical notation. Figure 4.49 illustrates the graphical
icons used for (a) the binding area and (b) the anchor area.

Figure 4.49: graphical icons for (a) the binding area; (b) the anchor area

In the expanded graphical notation there is an area for specifying the binding
area or the anchor area. This is shown in figure 4.50.

Figure 4.50: Expanded notation for (a) binding area and (b) anchor area

The syntax for the <BindingDefinition> and the <AnchorDefinition> is as
follows:

102

Specifying and constraining connectionless groups of objects 103

<BindingDefinition> ::=
’the binding surface is ’ <surface> ’labeled as’ <labelName>

<AnchorDefinition> ::=
’the anchor surface is ’ <surface> ’labeled as’ <labelName>

<surface> ::= ’front’ | ’back’ | ’left’ |
’right’ | ’top’ | ’bottom’

<labelName> ::= <label> | ’{’ <labelEnum> ’}’
<label> ::= <char> | <label><char>
<labelEnum> ::= <label> | <labelEnum><label>
<char> ::= ’a’ | ’b’ | ’c’ | ...| ’z’ | ’0’ | ’1’ | ...| ’9’

Positioning constraint example

We now come back to the example of the positioning constraint between
the book concept and the desk concept. Figure 4.51 shows the graphical
notation for the definition of the binding area on the desk while figure 4.52
shows the graphical notation for the definition of the anchor area on the
book.

Figure 4.51: specification of the binding area on the Desk concept

Figure 4.52: specification of the anchor area on the Book concept

103

104 Modeling Concepts for Complex Objects

4.9 Specifying complex shapes

In this section we will define a number of modeling concepts which can
be used to model complex shapes. In the case of a complex object, all
objects connected to form the complex object keep their own identity and
can all be manipulated individually in the virtual environment as far as their
connections and constraints allow. In case of a complex shape, all objects are
melted together to form one whole. So within complex shapes the connected
objects loose their identity. Only the complex shape can be manipulated in
the virtual environment as one entity. Actually, when specifying complex
shapes we are concerned with the representation of the complex shape in
the virtual world. When specifying complex objects we are concerned with
the physical structure of the complex object.
The approach we chose to model complex shapes is very closely related to
Constructed Solid Geometry (CSG). Constructive solid geometry [52] is a
technique used for solid modeling. This technique can be used to create
complex shapes or objects using a set of boolean operators. Although other
boolean operators may be offered, the boolean operators mostly used in CSG
are union, intersection and difference. Figure 4.53 shows two initial VR ob-
jects. When performing the logical operators on these objects the results
are as shown in figure 4.54. Figure 4.54(a) shows the union operation. Note
that there is no visual difference with the original figure. However, in the
original figure the two VR objects are two different VR objects while after
performing the union operation they define one VR-object. Figure 4.54(b)
shows the intersection of both VR objects while figure 4.54(c) shows the
difference between the cube and the cylinder. Note that after performing a
union, intersection or difference relation between two objects, the original
objects used in the relation do not exist anymore. However, a new object
is created as being respectively the union, intersection or difference of both
original objects.

Figure 4.53: Two initial objects used in CSG operations

104

Specifying complex shapes 105

Figure 4.54: CSG operations: (a) union; (b) intersection and (c) difference

The CSG technique is popular because it allows creating very compli-
cated geometries with relatively simple objects and operators. Therefore
we have introduced three relations in the VR-WISE approach which can be
used in the same way as the logical operations in CSG. In the following para-
graphs we will introduce the Intersection Relation, the Difference Relation
and the Union Relation.

4.9.1 The Union Relation

The Union Relation allows the designer to model a new object by taking the
union of two existing objects. Definition 4.9.1 gives an informal definition
for the union relation.

Definition 4.9.1 (Union relation)
The union relation defines a new object as the union of two other objects,
i.e. the geometry for the union of the two objects will consist of all points
that are part of the geometry representing the first object and all points that
are part of the geometry representing the second object.

The graphical notation for the Union Relation is shown in figure 4.55.

Figure 4.55: Graphical notation of the Union Relation

4.9.2 The Intersection Relation

The Intersection Relation can be used to model a new object by intersecting
two existing objects. Definition 4.9.2 gives an informal definition of the

105

106 Modeling Concepts for Complex Objects

intersection relation.

Definition 4.9.2 (Intersection relation)
The intersection relation defines a new object as the intersection of two other
objects, i.e. the geometry for the intersection of the two objects will consist
of all points that are part of the geometry for the first object as well as of
the geometry for the second object.

The graphical notation for the Intersection Relation is shown in figure 4.56.

Figure 4.56: Graphical notation of the Intersection Relation

4.9.3 The Difference Relation

The Difference Relation allows the designer to model a new object by tak-
ing the difference between two existing objects. Definition 4.9.3 gives an
informal definition for the difference relation.

Definition 4.9.3 (Difference relation)
The difference relation defines a new object as the difference between two
other objects, i.e. the geometry for the difference of the two objects will
be represented by a geometry consisting of all points that are part of the
geometry for the first object but are not part of the geometry for the second
object.

Note that the Difference Relation is not symmetric like the Intersection
Relation and the Union Relation. This means that the difference of concept
A with concept B is not the same as the difference of concept B with concept
A. Therefore in the graphical notation, the arc connecting the concepts
through the Difference Relation is directed. The direction of the arc specifies
the way the relation must be read. The graphical representation is shown
in figure 4.57. Because of the direction of the arrow we read the relation in
figure 4.57 as ”Concept A minus Concept B” or ”The difference of concept
A with concept B”.

106

Specifying complex shapes 107

Figure 4.57: Graphical notation of the Difference Relation

4.9.4 Modeling CSG Trees

A model for a complex shape may consist of several concepts all combined
using the logical operations discussed so far. Therefore in CSG a CSG tree
is often used to give a clear overview of the model constructed. A CSG tree
only shows the history of the generation of the complex shape specified. It
does not show additional information like for example relative positioning
of parts. The root of a CSG tree indicates the actual complex shape. An
example of a CSG tree is shown in figure 4.58.

Figure 4.58: An example of a CSG tree

Note that a CSG tree is always unambiguous. However it is not unique.
In other words, a CSG tree always models exactly one object but a single
object can in general be modeled with several CSG trees.

The organizational structure of a CSG tree can also be reflected in the VR-
WISE approach. This is done by means of nesting complex shapes. The
example shown in figure 4.58 is modeled in VR-WISE as shown in figure 4.59.
Note that the model represented in figure 4.59 not only shows the history of
how the complex shape is created but also shows additional information like
positioning of the parts of which the complex shape has been constructed.

107

108 Modeling Concepts for Complex Objects

Figure 4.59: CSG tree as represented in the VR-WISE approach

As we can see in figure 4.59 the complete concept is identified with the label
Church. Subparts don’t necessarily need to have an identifying label. Only
the root needs to have an identifying name.

4.9.5 Orientation and position of subparts in CSG

When two objects are only combined with the Union, Intersection or Differ-
ence Relation and no other information like relative positioning is provided
then before the calculation of the visual representation of the complex shape
in the virtual environment, both subparts are given the same orientation and
the same position. This means that the position of the subparts lie on the
same coordinate. This default situation can be overwritten by modeling
extra information using spatial relations and/or orientation relations.

108

Part II

Formal Definitions

109

111

In the first part of the dissertation we have discussed a set of high-level
modeling concepts that can be used for specifying VR objects (simple as well
as complex) on a higher level of abstraction. For all modeling concepts we
have given an informal definition. In this part of the dissertation a formal
specification of these high-level modeling concepts will be given. Such a
formal specification has several benefits:

• A formalization unambiguously specifies the modeling concepts and
thus allows to build conceptual specifications that are also unambigu-
ous.

• In addition, a formal specification gives a formal foundation that allows
to reason about conceptual specifications.

• The formal specification for the modeling concepts is independent from
any implementation. Therefore, different implementations can be built
based on the formal specification.

We have opted for a logic-based formalism. More in particular, the F-logic
(see chapter 5) formalism extended with arithmetic operators such as cosi-
nus, sinus, . . . will be used. These extensions are similar to the ones made by
the OntoBroker tool [23]. We also include operators similar to the ones used
in Flora-2 [68], e.g., we use the operator ’is’, which is used to evaluate
arithmetic operators.

This part is organized as follows. First, in chapter 5 we give a brief intro-
duction to F-logic and we clarify why F-logic is used for the formalization
of the modeling concepts. In chapter 6 a number of general classes and de-
ductive rules are defined. These classes and rules will be used in the actual
formalization of the modeling concepts. In chapter 7 all modeling concepts
for modeling static virtual environments are formalized. Chapter 8 gives the
formalization of the connection relations defined inside the VR-WISE ap-
proach. Next, we give the formalization of constraints in chapter 9 and CSG
relations in chapter 10 respectively. Finally we give a number of possible
applications of the formalization in chapter 11.

111

112

112

Chapter 5

Introduction to F-Logic

Frame-Logic is a frame-based language. The central modeling primitives
in frame-based languages are classes with certain properties (attributes).
These attributes can be used to store primitive values or to relate classes
to other classes. In general classes can be sub-classed. Frame-Logic (F-
Logic) is a full-fledged logic. It provides a logical foundation for object-
oriented languages for data and knowledge representation. F-logic stands in
the same relationship to the object-oriented paradigm as classical predicate
calculus stands to relational programming. In this thesis, F-logic is used to
give a formal specification of the modeling concepts developed for modeling
objects, simple as well as complex. In this chapter we will give a brief
introduction to F-Logic. The motivation for using F-Logic can be found
in section 5.5. The remainder of this chapter is structured as follows. In
section 5.1 we introduce F-Logic by means of examples. Next in section 5.2
we give an overview of the F-Logic syntax. This introduction is based on
[36], [40] and [23] to which we refer the interested reader for more details.
In section 5.4 we give a brief introduction to the F-logic semantics.

5.1 F-Logic by example

5.1.1 Signatures

The following F-logic statements provide information about classes and their
signatures. A signature of a class specifies names of properties and the
methods that are applicable to that class.

person[name ⇒ string; (1)
address ⇒ string]

113

114 Introduction to F-Logic

professor[publications ⇒⇒ article; (2)
dep ⇒ department;
highestDegree ⇒ string;
highestDegree •→ "phd"]

article[authors ⇒⇒ person; (3)
title ⇒ string;
writtenAt ⇒ institution]

student[studentNbr ⇒ integer] (4)

employee[employeeNbr ⇒ integer] (5)

department[assistants ⇒⇒ (student, employee); (6)
profs ⇒ professor;
head ⇒ professor]

Properties and types

Statement (1) gives the class signature for the class person. It says that for
every member-object of the class person the properties name and address
must be of type string. To specify an attribute definition ⇒ is used.

Multi-valued properties

Statement (2) gives the class signature for the class professor. publications
⇒⇒ article states that publications is a multi-valued property. This
means that each member-object in the class professor has an attribute
publications which has a set of objects as its value. The objects in this
set-value are restricted to the type article.

Inheritable properties

Also in (2), highestDegree •→ "phd" states an inheritable property
for the class professor. Asserting an inheritable property for a class has
the effect that each member-object of that class inherits this property. Sup-
pose we have a member ”bill” of class professor, then bill will have the
property highestDegree with value ”phd” by inheritance. An inheritable
property may also be inherited by a subclass. In the case of a subclass, the
inheritable property remains inheritable in this subclass while an inherita-
ble property inherited by a member of the class becomes not inheritable.

114

F-Logic by example 115

We will discuss class membership and the subclass relation in more detail
in sections 5.1.2 and 5.1.4. Note that different kinds of information about
objects can be mixed in one statement. For example, highestDegree
⇒ string indicates that the type of the highestDegree property must be
string while highestDegree •→ "phd" states an inheritable property
for the class Professor.

Conjunction of types

In statement (6) we have assistants ⇒⇒ (student, employee).
This statement specifies a multi-valued property. However, the objects that
belong to the value set must simultaneous be a member of the student class
and the employee class. In natural language we could say that assistants of
a department must be students and simultaneously employees.

5.1.2 Class membership

In F-Logic we use ”:” to represent class membership. Statement (7) denotes
that mary is a member of the class employee while (8) states that dinf is
a member of department.

mary : employee (7)
dinf : department (8)

(9) states that the object denoted by the oid mary has employeeNbr 25186.

mary[employeeNbr → 25186] (9)

Note that in F-Logic classes are reified which means that they belong to the
same domain as individual objects. This makes it possible to manipulate
classes and member-objects in the same language. This way a class can be
a member of another class. This gives us a great deal of uniformity.

5.1.3 Method signatures and deductive rules

Next to properties, classes can have methods. In the following class signature
we give the signature of a method attached to the class.

professor[publications ⇒⇒ article; (10)
dep ⇒ department;
highestDegree ⇒ string;

115

116 Introduction to F-Logic

highestDegree •→ phd;
boss ⇒ professor]

In (10) we give the signature of a method boss. Actually this signature is
the signature of a new property boss since a property is simply a method
without arguments. Indeed, in F-Logic, there is no essential difference be-
tween methods and properties. So the method boss takes no arguments as
input and gives an object of type professor as output. Next, statement
(11) is a deductive rule defining the new method boss for objects of the
class professor. Rules offer the possibility to derive new information. They
encode information of the form: when the precondition is satisfied, the con-
clusion also is satisfied. The precondition is called the rulebody while the
conclusion is called the rulehead. Thus the part of the rule which comes
before the ← sign is the head, the part of the rule after the ← sign is called
the rule body. So (11) states that when a member B of type professor is
the head of a departement D for which a member P of type professor is
working, then B is the boss of P.

P[boss → B] ← P : professor ∧ (11)
D : departement ∧
P[dep → D[head → B : professor]]

It is also possible to create methods that take some arguments as input.
Syntactically the arguments are included in parentheses and are separated
from the method name by the @-sign. However, when the method takes
only one argument the parentheses may be omitted. Statement (12) gives
the signature of a method papers for the class professor. It takes one
argument of type institution and returns a set-value of type article.

professor[papers@institution ⇒⇒ article] (12)

Next, the deductive rule in (13) defines the new method papers for the
member-objects of class professor.

P[papers@I →→ Z] ← P : professor ∧ (13)
I : institution ∧
P[publications →→ Z] ∧
Z[writtenAt → I]

(13) states that the method papers returns a set-value of type article con-
taining all member-objects of the class article which were written by a

116

F-Logic by example 117

member-object P of class professor at a member-object I of class institution.
In natural language this means that given an institution I and a professor
P, the method papers returns all articles that were written by professor P
at institution I.

5.1.4 Subclass relationship

In F-Logic we use ”::” to represent the subclass relationship. Statement
(14) denotes that student is a subclass of person, statement (15) says
that employee is a subclass of person, while statement (16) denotes that
professor is a subclass of employee.

student :: person (14)
employee :: person (15)
professor :: employee (16)

5.1.5 Function symbols

In F-Logic, function symbols can be used as constructors for class id’s and
class member id’s. Statement (17) introduces the unary function symbol
phdStudent. It states that a phd student of a professor is a subclass of the
class student. Note that phdStudent(professor) is the logical id of a new
class.

phdStudent(professor) :: student (17)

In (18) we introduce a new property for the class professor, namely the
property phdStudents. Since phdStudent(professor), defined in (17), is
the logical id of a class, we can use it as the type for the phdStudents
property.

professor[phdStudents ⇒⇒ phdStudent(professor)] (18)

Since phdStudent(professor) is the constructor of a class id, we can con-
struct the class phdStudent(bill). Next we can state that mary is a member
of the newly created class phdStudent(bill). This is expressed in (19).

mary : phdStudent(bill) (19)

117

118 Introduction to F-Logic

5.1.6 Predicates

In F-Logic, predicate symbols can be used in the same way as in predicate
logic. They are represented by a predicate symbol followed by one or more
id-term separated by commas and included in parentheses. Statement (20)
gives an example of a predicate in F-Logic.

promotorOf(mary, bill) (20)

An n-ary predicate symbol can usually be translated into the more natural
style of modeling in F-Logic. (21) shows the encoding of the predicate
illustrated in (20).

mary[promotor → bill] (21)

5.1.7 Queries

Queries can be considered as a special kind of rules. They can be seen as
rules with an empty head. The following query (22) requests for all members
of the class professor which are working at the department indicated by
the oid dinf .

?- X : professor ∧ X[dep → dinf] (22)

So far we have introduced the main features of F-Logic by means of some
examples. In the next section we will take a look to the F-Logic syntax in
more detail.

118

Syntax 119

5.2 Syntax

In this section we will look in more detail to the F-Logic syntax.

5.2.1 The alphabet of an F-Logic language

Definition 5.2.1 gives the definition of the alphabet of an F-Logic lanuage L.

Definition 5.2.1 (Alphabet of an F-Logic language)

The alphabet of an F-Logic language, L, consists of:

• a set of object constructors, F ;

• an infinite set of variables, V;

• auxiliary symbols, such as, (,), [,], ←, →→ , •→ , •→→ , ⇒, ⇒⇒ ,
etc; and

• usual logical connectives and quantifiers, ∨, ∧, ¬, →, ∀, ∃.

The elements of F , the object constructors, play the role of function symbols
of F-Logic (see section 5.1.5). Each function symbol has an arity which
determines the number of arguments a function can take. Symbols of arity
0 are called constants while symbols with an arity of at least 1 are used to
construct larger terms out of simpler ones. An id-term is a first-order term
composed of function symbols and variables as in predicate calculus [64].

5.2.2 Molecular formulas

A language of F-Logic consists of a set of formulae which are constructed out
of symbols from the alphabet. The simplest type of formulas aremolecularF−
formulas or simply F −molecules. Definition 5.2.2 gives the definition of
molecular formulas.

Definition 5.2.2 (Molecular Formulas)

A molecule in F-logic is one of the following statements:

1. An is-a assertion of the form C :: D or of the form O : C; where C,
D and O are id-terms.

119

120 Introduction to F-Logic

2. An object molecule of the form O[”;”-separated list of method expres-
sions] where O is an id-term.
A method expression can be either a non-inheritable data expres-
sion, an inheritable data expression or a signature expression.

• A non-inheritable data expression takes one of the following
two forms:

(a) A non-inheritable scalar expression (k ≥ 0):
ScalarMethod@Q1, ..., Qk → T

(b) A non-inheritable set-valued expression (l, m ≥ 0):
SetMethod@R1, ..., Rl →→ {S1, ..., Sm}

where Q1, . . . , Qk and R1, . . . , Rl and S1, . . . , Sm are id-terms.

• An inheritable data expression, scalar or set-valued, is sim-
ilar to non-inheritable data expressions. The only difference is
that we replace ”→” by ”•→ ” and ”→→ ” by ”•→→ ”.

• A signature expression takes one of the following two forms:

(c) A scalar signature expression (n, r ≥ 0):
ScalarMethod@V1, ..., Vn ⇒ (A1, ..., Ar)

(d) A set-valued signature expression (s, t ≥ 0):
SetMethod@W1, ..., Ws ⇒⇒ (B1, ..., Bt)

where V1, . . . , Vn, A1, . . . , Ar, W1, . . . , Ws and B1, . . . , Bt are
id-terms.

ScalarMethod and SetMethod are id-terms. In the data-expression (a) and
(b) from definition 5.2.2, T and Si are id-terms that represent the output of
the respective methods. For the signature expressions (c) and (d), Ai and
Bj are id-terms that represent types of the results returned by the respective
methods when they are invoked on an object of class C with arguments V1,
. . . , Vn and R1, . . . , Rl respectively.
Note that the same method or the same data/signature expression may have
multiple occurrences in the same molecule.

120

Path expressions 121

5.2.3 Complex Formulas

Definition 5.2.3 gives the definition of F-formulea. F-formulas are built out
of simpler F-formulas by means of logical connectives and quantifiers.

Definition 5.2.3 (F-formulas)

An F-formulae can be one of the following:

• Molecular formulea are F-formulas;

• ϕ ∨ ψ, ϕ ∧ ψ, ¬ϕ are F-formulae if ϕ and ψ are F-formulae;

• ∀X ϕ, ∃Y ψ are F-formulae when ϕ and ψ are F-formulae and X and
Y are variables.

Note that F-Logic also makes use of the implication connective ”←”. The
implication connective is defined in F-logic in the same way as in classical
logic, namely ϕ← ψ is the same as ϕ ∨ ¬ψ.

5.3 Path expressions

As we have seen, objects are directly accessible through their object names.
Another way of accessing them is to navigate to them by applying a method
to another object. This can be done by means of pathexpressions. Note
that path expressions are not unique to F-logic, they are also used in many
other object-oriented languages. For example, the object accessible via the
object name dinf is also accessible by calling the method dep on the object
bill when bill[dep → dinf] holds. The corresponding path expres-
sion for this is "bill.dep". It is also possible that path expressions contain
methods that take some arguments. Suppose that vub is a member of the
institution class, thus vub : institution . Then we can refer to all
publications written by bill at the vub by means of the path expression
"bill.papers@vub".
It is possible to nest path expressions at any position where id-temrs are
allowed in F-molecules as well as P-molecules (predicates).

121

122 Introduction to F-Logic

5.4 Semantics

In this section we will briefly introduce the semantics of F-logic. However,
a complete description of the F-logic semantics lies out of the scope of this
dissertation. Therefore we refer the interested reader for more details to
[36].

In F-logic formulas are interpreted by a semantic structure, a so-called F-
structure. Given an F-language L (see def. 5.2.1), an F-structure is a tuple
I = < U,≺U ,∈U , IF , I→, I →→ , I•→, I•→→, I⇒, I ⇒⇒ > for which:

• U is the domain of I. This is similar to classical logic where U can be
seen as a set of all actual objects in a possible world I.

• ≺U is an irreflexive partial order on U denoting the semantic coun-
terpart of the subclass-relationship. This means that a ≺U b is inter-
preted as a being a subclass of b.

• ∈U is a binary relation which is used to model class membership. This
means that a ∈U b is interpreted as a being a member of class b.

• IF denotes the mapping for interpreting function symbols. In F-logic
this is done in the same way as in predicate calculus. This mapping
thus interprets each k-ary object constructor f ∈ F by a function
Uk → U . For k = 0, IF (f) can be identified with an element of the
domain U .

• I→, I →→ , I•→, I•→→, I⇒, I ⇒⇒ denote mappings for interpreting each of
the six types of method expressions in F-logic. For more details about
these mappings we refer the reader to [36].

A variable assigment is a mapping from the set of variables V of an F-
language L to the domain U . Such a variable assignment is denoted v. Take
d to be a variable, if d ∈ F has arity 0 then v(d) = IF (d). Recursively,
v(f(..., T, ...)) = IF (f)(..., v(T), ...).

Definition 5.4.1 (Satisfaction of F-Molecules)

Let I be an F-structure and G be an F-molecule. We write I |=v G if and
only if all of the following holds:

• When G is an is-a assertion then:

122

Semantics 123

(i) v(Q) �U v(P), if G = Q :: P ; or
v(Q) ∈U v(P), if G = Q : P

• When G is an object molecule of the form O[a ’;’-separated list of
method expressions] then for every method expression E in G, the
following conditions must hold:

(ii) If E is a non-inheritable scalar data expression of the form ScalM@Q1,
..., Qk → T, the element I(k)

→ (v(ScalM))(v(O), v(Q1, ..., v(Q(k)))
must be defined and equal v(T).
Similar conditions must hold if E is an inheritable scalar data
expression, except that I(k)

→ should be replaced with I(k)
•→ .

(iii) If E is a non-inheritable set-valued data expression, of the form
SetM@R1, ..., Rl →→ {S1, ..., Sm}, the set I(l)→→ (v(SetM))(v(O),
v(R1), ..., v(Rl)) must be defined and contain the set {v(S1), ...,
v(Sm)}.
Similar conditions must hold if E is an inheritable set-valued data
expression, except that I(l)→→ should be replaced by I(l)•→→

(iv) If E is a scalar signature expression, ScalM@Q1, ... Qn ⇒ (R1,
..., Ru), then the set I(n)

⇒ (v(ScalM))(v(O), v(Q1, ..., v(Qn)) must
be defined and contain {v(R1), ..., v(Ru)}.

(v) If E is a set-valued signature expression of the form SetM@V1,
..., Vs ⇒⇒ (W1, ..., Wv), the set I(s)⇒⇒ (v(SetM))(v(O), v(V1, ...,
v(Vn)) must be defined and contain {v(W1), ..., v(Wv)}.

Conditions (ii) and (iii) state that in case of a data-expression, the inter-
preting function must be defined on appropriate arguments and yield results
compatible with those specified by the expression. Conditions (iv) and (v)
state that in case of a signature expression, the type of a method specified
by the expression must comply with the type assigned to this method by I.

The meaning of the formulaes ϕ∨ψ, ϕ∧ψ and ¬ϕ are defined in the standard
way:

• I |=v ϕ ∨ ψ ⇔ I |=v ϕ or I |=v ψ.

• I |=v ϕ ∧ ψ ⇔ I |=v ϕ and I |=v ψ.

• I |=v ¬ϕ ⇔ I |=/ v ϕ

123

124 Introduction to F-Logic

Note that the negation we will use in the formalization is denoted as nega-
tion as failure. This means that ¬p will be true when p cannot be derived
as being true. This differs from the logical classical negation where ¬p will
be undefined when p is not known. Here ¬p will be true when p is known
to be false while ¬p will be false if p is known to be true.

Also note that for a closed formula1 we can omit the mention of v and
simply write I |= ϕ, since the meaning of a closed formula is independent of
the choice of variable assignments.
An F-structure, I, is a model of a closed formula, ψ, if and only if I |= ψ.

5.5 Why F-Logic?

To provide a formalization of the high-level modeling concepts of the VR-
WISE approach we need a formal language that we can use for this formal-
ization. As mentioned in chapter 3, the underlying representation formalism
currently used by our approach is based on ontologies. More specific, we are
using the Web Ontology Language OWL2. OWL, and more specifically the
OWL DL variant (which is a sub-language of OWL). This is a notational
variant of Description Logics (DL) [6]. DL are a family of knowledge repre-
sentation formalisms that represent the knowledge of a domain by means of
concepts in the domain and by using these concepts to specify properties of
objects and individuals in the domain. Some examples of DL languages are
SHIF(D) and SHOIN (D).
At the first sight, since our approach is following the object-oriented paradigm,
DL may look suitable as the formalization language for our modeling con-
cepts. However there is a major problem that restrains us from using DL
as the formalization language. The problem is that DL doesn’t allow meta-
modeling.
The VR-WISE approach actually contains three levels. As we have seen in
chapter 3, we have the conceptual domain specification, which contains all
the concepts specified for the application domain and the relations between
these concepts. Next, we have the conceptual world specification, which is
an instantiation of the conceptual domain specification. However, there is
a third level, which acts as a meta-level. This level contains our high-level
modeling concepts used for the creation of the conceptual specifications.

1A closed formula does not contain free variables. A variable inside a formula is free
when it is not bound by means of a quantifier.

2http://www.w3.org/TR/owl-features/

124

Why F-Logic? 125

Figure 5.1 illustrates these three levels. Because we want to formalize the
modeling concepts (the meta-level), we need to be able to use all three levels
in our formal specifications.

Figure 5.1: Three levels of formalization

We will look at an example. Suppose we specify a concept ’Airplane’ at the
conceptual domain specification. This concept is actually an instance of the
modeling concept Concept. Suppose now that we create an instance ’Air-
bus380’ in the conceptual world specification as an instance of the concept
’Airplane’. First ’Airplane’ was an instance of Concept which now has to
act as a class for the instance ’Airbus380’. As DL requires a strict sepa-
ration between classes, individuals and properties it is not the most suited
language to use for our purpose.

Classical logics, like predicate logic [64] are also not very suitable because
they don’t follow the object-oriented approach. To be able to use predicate
logic we would need to extend this with object-oriented constructs. This is
how we came to F-logic. F-logic is an object-oriented logic that can be seen
as an extension of predicate logic.

When investigating the F-logic language it became clear that this logic lan-
guage would fit the requirements we need for our formalization language.
First of all, it supports the object-oriented paradigm. And next, classes can
be treated as objects, which allows meta modeling. Although not crucial,
but also an advantage, is the fact that we can query the data-level (domain
and world specification) as well as the meta-level with the same language.
This can be an extra advantage when one wants to perform intelligent rea-
soning.

125

126 Introduction to F-Logic

Because of these reasons we have opted for F-logic as the language for the
formalization. Note that other object-oriented logic languages exist. A
few examples are C-logic [14], COL [3] and O-logic [35], each with its own
strengths and weaknesses. However, among all of these approaches, F-Logic
is the most elaborated one. Also note that F-logic borrowed some ideas from
O-logic.
Also note that we could use OWL-Flight [17] as the underlying representa-
tion mechanism for the conceptual specifications. OWL-Flight is an ontology
language for which the semantics has been based on F-Logic. To reflect the
formalization of the modeling concepts presented in this chapter inside our
implementation, all we need to do is to substitute OWL by OWL Flight.

5.6 Conclusion

In this chapter we have given a short overview of the frame-based language
called Frame-Logic. We also provided the syntax of F-Logic and we ex-
plained path expressions in F-Logic. Next, we also motivated our choice
of F-Logic as the formalization mechanism. This introduction provides the
reader the necessary information for understanding the F-Logic constructs
used in the rest of this dissertation. We refer the interested reader for more
details on F-Logic to [36], [40] and [23].

126

Chapter 6

Fundamentals

In this section a number of general classes (such as point, orientation, . . .)
and deductive rules needed in rest of the formalization, will be defined.

6.1 Point

A point, in our conceptual modeling language for VR, is given by means of
an x, y and z coordinate. The x, y and z coordinate are of the type float.
Using the F-logic formalism we can define the modeling concept point as a
class with three properties x, y and z. Definition 6.1.1 gives the definition
of the class point using the F-logic formalism.

Definition 6.1.1 A point is defined as

point[x ⇒ float;
y ⇒ float;
z ⇒ float]

6.2 Orientation

Each VR object in a virtual environment has an orientation. Hence, in the
VR-WISE approach, each object specified in the conceptual specifications
gets a default orientation. This default orientation is illustrated in figure
6.1.
The default orientation of a concept can be changed by rotating the con-
cept around on or more of the axes of the reference frame. In order to

127

128 Fundamentals

Figure 6.1: Default orientation of a concept in the VR-WISE approach

express the orientation of a concept, we define the class orientation with
properties frontAngle, leftAngle and topAngle, each representing a rotation
angle around respectively the front, left and top axis of the global reference
frame. In the default situation all rotation angles are 0. This is reflected in
definition 6.2.1.

Definition 6.2.1 An orientation is defined as

orientation[frontAngle •→ 0;
leftAngle •→ 0;
topAngle •→ 0]

6.3 Rotations

In our formalization, rotations are defined by means of deductive rules. The
rotation of a point with x, y and z coordinates around the axes of the local
reference frame of an object, can be defined as three separate rotations
around the three axes of the reference frame. Using mathematics, rotations
can be written as 3× 3 matrices.
The rotation around the X-axis with an angle α can be written as a 3 ×
3 matrix as follows: 1 0 0

0 cos(α) −sin(α)
0 sin(α) cos(α)

The rotation around the Y-axis with an angle β can be written as the fol-
lowing 3× 3 matrix: cos(β) 0 sin(β)

0 1 0
−sin(β) 0 cos(β)

128

Rotations 129

And finally the rotation around the Z-axis with an angle σ can be written
as the 3× 3 matrix: cos(σ) −sin(σ) 0

sin(σ) cos(σ) 0
0 0 1

When combining these three rotations into one rotation matrix we get the
3× 3 matrix:

24 cos(β)cos(σ) −cos(β)sin(σ) sin(β)
cos(σ)sin(α)sin(β) + cos(α)sin(α) cos(α)cos(σ) − sin(α)sin(β)sin(σ) −cos(β)sin(α)
−cos(α)cos(σ)sin(β) + sin(α)sin(σ) cos(σ)sin(α) + cos(α)sin(β)sin(σ) cos(α)cos(β)

35

Lets call the above matrix A. The matrix A is the matrix defining a combined
rotation around the X-axis with α degrees, around the Y-axis with β degrees
and around the Z-axis with σ degrees. Rotating a point x, y, z in this way
can be written as x′

y′

z′

 = A

 x
y
z

Therefore, x′, y′, z′ can be calculated using the following mathematical for-
mulas:

x′ = xcos(β)cos(σ) + zsin(β)− ycos(β)sin(σ)

y′ = −zcos()β)sin(α) + x[cos(σ)sin(α)sin(β) + cos(α)sin(σ)]+
y(cos(α)cos(σ)− sin(α)sin(β)sin(σ))

z′ = zcos(α)cos(β) + x[−cos(α)cos(σ)sin(β) + sin(α)sin(σ)]+
y[cos(σ)sin(α) + cos(α)sin(β)sin(σ)]

We will now define a deductive rule rotate(P, α, β, σ, P ′) as follows: given a
point P , P ′ is the point which results after rotating the point P α degrees
around the X-axis, β degrees around the Y-axis and σ degrees around the
Z-axis.
To define this deductive rule, we decompose the problem in three other, more
simple problems, and first define deductive rules called xRotate, yRotate
and zRotate as follows. Given a point P , xRotate calculates X’ as the new
x-value of the resulting point when rotating the point P α degrees around

129

130 Fundamentals

the X-axis, β degrees around the Y-axis and σ degrees around the Z-axis.
yRotate and zRotate do a similar calculation for the y-value and z-value
respectively of the resulting point. Note the use of the operator ’is’ inside
the following definitions. This operator is used in Flora-2 [68] to evaluate
arithmetic operators. The arithmetic operators like ’+’ and ’∗’ are also
provided inside Flora-2.

Definition 6.3.1

xRotate(P, α, β, σ, X’) ← P : point ∧ P[x → X, y → Y,z → Z] ∧
X’ is X ∗ cos(β) ∗ cos(σ) + Z ∗ sin(β)− Y ∗ cos(β) ∗ sin(σ)

Definition 6.3.2

yRotate(P, α, β, σ, Y’) ← P : point ∧ P[x → X, y → Y,z → Z] ∧
Y’ is −Z ∗ cos(β) ∗ sin(α) +

X ∗ [cos(σ) ∗ sin(α) ∗ sin(β) + cos(α) ∗ sin(σ)] +
Y ∗ [cos(α) ∗ cos(σ)− sin(α) ∗ sin(β) ∗ sin(σ)]

Definition 6.3.3

zRotate(P, α, β, σ, Z’) ← P : point ∧ P[x → X, y → Y,z → Z] ∧
Z’ is Z ∗ cos(α) ∗ cos(β) +

X ∗ [−cos(α) ∗ cos(σ) ∗ sin(β) + sin(α) ∗ sin(σ)] +
Y ∗ [cos(σ) ∗ sin(α) + cos(α) ∗ sin(β) ∗ sin(σ)]

Now we can define the deductive rule rotate(P, α, β, σ, P ′) where the point
P ′ is the result of rotating the point P α degrees around the X-axis, β
degrees around the Y-axis and σ degrees around the Z-axis. This is given
in definition 6.3.4.

Definition 6.3.4

rotate(P, α, β, σ, P’) ← xRotate(P, α, β, σ, X’) ∧
yRotate(P, α, β, σ, Y’) ∧
zRotate(P, α, β, σ, Z’) ∧
P’ : point[x → X’, y → Y’, z → Z’]

130

Other fundamentals 131

6.4 Other fundamentals

We will also need some mathematical objects inside our formalization. Some
examples are a line or a circle. In this section we will define their F-logic
variant.

Definition 6.4.1 We formally define a line with the following parametric
equations:

x = x0 + ta
y = y0 + tb
z = z0 + tc

as follows in F-logic:

line [x0 ⇒ float;
y0 ⇒ float;
z0 ⇒ float;
a ⇒ float;
b ⇒ float;
c ⇒ float]

Definition 6.4.2 We formally define a vector (a, b, c) as follows in F-logic:

vector [a ⇒ float;
b ⇒ float;
c ⇒ float]

Definition 6.4.3 We formally define a circle with equation (x, y, z) = C
+ R cos(t) U + R sin(t) V as follows in F-logic:

circle [c ⇒ point;
r ⇒ float;
u ⇒ vector;
v ⇒ vector]

Definition 6.4.4 We formally define a cone as follows:

cone [vertex ⇒ point;
height ⇒ float;
semiminor ⇒ float;
semimajor ⇒ float;
rotationAxis ⇒ vector;
rotationAngle ⇒ float]

131

132 Fundamentals

So a cone has a vertex, a height and both a semimajor and semiminor
axis. As we will see, all cones we will define open either along the X, Y or Z
axis. To be able to define cones which open in another direction, we allow
a rotation around a certain vector through the vertex. This is represented
by the properties rotationAxis and rotationAngle.

132

Chapter 7

Formalizing Static World
Modeling Concepts

In this chapter we give the formal specifications for the modeling concepts
inside the VR-WISE approach. These concepts were formally defined in
chapter 3.

7.1 Concepts

As we have discussed in chapter 4, a concept has a name, a number of
attributes which can have a default value, an orientation and a position.
The position can either be exact or relative. When the designer specifies
a position by means of a point (coordinates) we have an exact position for
the concept. When the position of a concept is given by means of some
spatial relation or connection relation (as we will see later) we say that the
concept has a relative position. Also the orientation can be exact or relative.
Remember that we are using a default orientation (see figure 6.1). To allow
other orientations, we have introduced the notions of external and internal
orientation (see chapter 3). Just as a reminder we will give the idea behind
the external and internal orientation once more.

• External orientation: Using the notion of external orientation, we
can indicate that the concept is rotated around some of the axes of its
reference frame. This means that an instance of this concept will be
rotated around some of the axes of the reference frame and this will
be visible in the virtual environment. An external orientation rotates
the complete concept in the virtual environment.

133

134 Formalizing Static World Modeling Concepts

• Internal orientation: The notion of internal orientation is used to
indicate that the concept is using a different left-right, top-bottom or
front-back direction. An internal orientation is actually a rotation of
the local reference frame of a concept around some of the axes of the
global reference frame (which is equal to the default reference frame).

A concept from our conceptual model is modeled in F-Logic as a class.
A class representing a concept needs to be a subclass of the class concept.
The class concept is defined in definition 7.1.1.

Definition 7.1.1 A concept is defined as

concept[position ⇒ point; (1)
internalOrientation ⇒ orientation; (2)
externalOrientation ⇒ orientation] (3)

The properties position (1), internalOrientation (2) and externalOrienta-
tion (3) are methods. We will define these methods when we discuss the
definitions of spatial, orientation or connection relations later in this chapter.

We will also define a number of predicates that can be used to retrieve the
front-, left- and top-angle of the internal orientation for a concept as well as
the front-, left- and top-angle of the external orientation. All these predicates
are similar. To illustrate them we define the predicate iFrontAngle(A, α)
in definition 7.1.2. This predicate is true when α is the front angle of the
internal orientation of a concept A.

Definition 7.1.2
iFrontAngle(A, α) ← A : concept ∧

A[internalOrientation →I] ∧
I[frontAngle → α]

It is easy to see that the predicates iLeftAngle, iTopAngle, eFrontAngle,
eLeftAngle and eTopAngle can be defined similarly.

We will now look to an example. We take a car as a concept in our model.
This means that car is defined as a subclass of concept.

car :: concept

134

Instances 135

The concept car may have one or more properties. Suppose in our case it
has a weight property with default value 1500 and a color property with
default value red. All properties of a concept will be defined as inheritable
properties. This way, all subclasses and instances of a concept will inherit the
default values. They can be overwritten if necessary for a specific subclass
or instance. Lets go back to our example. The properties for car are defined
as follows:

car[weight •→ 1500;
color •→ red]

Suppose now that we want to specify an exact position for the car. This
means that we need to define a default position value for the car concept,
which means that each car-instance will be positioned at this given position.
Suppose this default position is the point (5,8,3). We write this down in the
formalization as follows:

car[position•→ point[x→ 5;
y → 8;
z → 3]]

7.2 Instances

An instance of a concept will be represented as the F-logic instance of the
corresponding F-logic concept. Definition 7.2.1 gives the definition of the
modeling concept instance.

Definition 7.2.1 Let c be a concept, thus c :: concept, then an instance i
of concept c is defined as i : c

Lets go back to our example. Now suppose we have an instance myCar,
which is an instance of the concept car defined earlier. This instance is de-
fined as follows:

135

136 Formalizing Static World Modeling Concepts

myCar : car

Since the properties of the concept car are defined as inheritable properties,
the instance will inherit these default values. So the following statement is
derivable:

myCar[weight→ 1500]

Suppose now that the myCar instance needs to have a weight of 1830. To
define this we can overwrite the default value as follows:
myCar[weight→ 1830]

In the next section we will look to the formalization of complex concepts
and their corresponding instances.

7.3 Complex Concepts and Instances of Complex
Concepts

Remember from chapter 4 that a complex concept consists of a number of
parts. Parts can be simple concepts or complex concepts on their own. To
define complex concepts, the partOf property is used, which allows express-
ing that one concept is a part of another concept. Definition 7.3.1 defines
how the part of relation is specified.

Definition 7.3.1 Let a and b be two concepts, thus a::concept and b::concept.
The fact that a is part of b is expressed by adding a property partOf to the
concept definition of a:
a[partOf ⇒ b]

Remember from chapter 4 that a complex concept also has a reference part.
This means that the position and orientation of the reference part is also
the position and orientation of the complex concept. All other parts of the
complex concept can then be positioned and oriented relative to this refer-
ence part. This is expressed by the referencePartOf property (see definition
7.3.2).

136

Complex Concepts and Instances of Complex Concepts 137

Definition 7.3.2 Let a and b be two concepts, thus a::concept and b::concept.
The fact that a is the reference part of b is expressed by adding a property
referencePartOf to the concept definition of a:
a[referencePartOf ⇒ b]

Note that when a concept is the reference part of a complex concept, then
by definition that concept should also be a part of this complex concept.
This is expressed in definition 7.3.3.

Definition 7.3.3 Let a and b be two concepts, thus a::concept and b::concept,
where a is the reference part of b. Then the following deductive rule holds:
a[partOf ⇒ b] ← a[referencePartOf ⇒ b]

The partOf property and the referencePartOf property now allow us to
formalize the modeling concept complexConcept. Definition 7.3.4 gives the
formalization of a complex concept. complexConcept can be defined as (1)
a subclass of the concept class (since a complex concept is also a concept)
with the properties (methods) allParts (2) and referencePart (3) return-
ing respectively all the parts of the complex concept, and the reference part.

Definition 7.3.4 The modeling concept complexConcept is defined as fol-
lows:

complexConcept :: concept (1)
complexConcept[allParts ⇒⇒ concept; (2)

referencePart ⇒ concept] (3)

where allParts and referencePart are methods defined using the following
deductive rules:

C[allParts →→ A] ←C : complexConcept ∧
A : concept ∧
A[partOf → C]

137

138 Formalizing Static World Modeling Concepts

C[referencePart → A] ←C : complexConcept ∧
A : concept ∧
A[referencePartOf → C]

Next we need to define the relationship between the position/orientation of
a complex concept and the position/orientation of its reference part. Ac-
tually, when a complex concept has a reference part, then the position and
orientation of an instance of the complex concept will be the same as re-
spectively the position and orientation of the reference part.

Definition 7.3.5 gives the definition of the referenced position predicate.
Given three attributes, A, C, and P, this predicate is true when A is an
instance of a complex concept, C is an instance of a concept and is the ref-
erence part of A, and P is an instance of point and it is the position of the
instance C.

Definition 7.3.5
referencedPosition(A, C, P) ← A : complexConcept ∧

C : concept ∧ P : point ∧
C[referencePartOf → A] ∧
C[position → P]

The referencedPosition predicate allows us to continue with the defini-
tion of concept (see definition 7.1.1). We have already mentioned that the
position property is a method, but we did not yet define this method. Def-
inition 7.3.6 gives the definition for the position method for a concept.

Definition 7.3.6
A[position → P] ← A:concept ∧ C:concept ∧ P:point ∧

referencedPosition(A, C, P)

So when A and C are instances of a concept and P is an instance of point,
and the predicate referencedPosition(A,C, P) is true (which means that
P is the position of C which is the reference part of A), then the position
method will return P as value.

Now lets look to an example. Suppose we define a car as a complex con-
cept. Suppose that chassis and dashboard are two parts of the car concept
and that the chassis is the reference part of the complex concept. In our

138

Complex Concepts and Instances of Complex Concepts 139

formalization this is represented as follows:

car :: complexConcept
chassis :: concept
dashboard :: concept
dashboard[partOf ⇒ car]
chassis[referencePartOf ⇒ car]

Note that chassis[partOf ⇒ car] is implicit because of definition 7.3.3. So
far our example defined the concept level of our conceptual specification.
Now suppose we create an instance myCar of car, an instance myDashboard
of the concept dashboard and an instance myChassis of chassis. Suppose
also that the instances myDashboard and myChassis are part of myCar and
that myChassis is the reference part of myCar. This is formally specified as
follows:

myCar : car
myChassis : chassis
myDashboard : dashboard
myDashboard[partOf → myCar]
myChassis[referencePartOf → myCar]

The above formalization defines the instance level of our model. If we
would now like to know the position of the instance myCar in the vir-
tual environment we could use the position method from the concept class.
Tools like OntoBroker or Flora-2 will then try to resolve the predicate
referencedPosition(myCar,C, P). This would result in the following:

referencedPosition(myCar, C, P) ← myCar : complexConcept ∧
C : concept ∧ P : point ∧
C[referencePartOf → myCar) ∧
C[position → P]

The predicate can be resolved when C ismyChassis sincemyChassis[referencePartOf →
myCar] holds. So the position P is the position of the instance myChassis.

So far we have defined the relative position of a complex concept accord-
ing to its reference part. Now similar we will define the relative orientation of

139

140 Formalizing Static World Modeling Concepts

a complex concept with respect to its reference part. To do this we will first
define two predicates referencedExtOrientation and referencedIntOrientation.
Definition 7.3.7 gives the definition of the referencedExtOrientation pred-
icate.

Definition 7.3.7
referencedExtOrientation(A, C, E) ← A : complexConcept ∧

C : concept ∧ E : orientation ∧
C[referencePartOf → A] ∧
C[externalOrientation → E]

So when C is an instance of a concept being the reference part of an instance
A of a complex concept and E is an orientation being the external orienta-
tion of C, then the predicate referencedExtOrientation(A,C,E) is true.

Again, the referencedExtOrientation predicate allows us to continue with
the concept definition (def. 7.1.1). More specific, we can now define the sig-
nature of the externalOrientationmethod. The definition of the externalOrientation
method is given in definition 7.3.8.

Definition 7.3.8
A[externalOrientation → E] ← A:concept ∧ C: concept ∧

E:orientation ∧
referencedExtOrientation(A, C, E)

So when A and C are instances of concepts and E is an orientation and the
predicate referencedExtOrientation(A,C,E) is true (which means that E
is the external orientation of C which is the reference part of A), then E
is the value for the externalOrientation property of A. With other words,
when E is the external orientation of C and C is the reference part of A,
then E is the external orientation of A.
Similar we will define the semantics of the internal orientation of a complex
concept. Definition 7.3.9 gives the definition of the referencedIntOrientation
predicate.

Definition 7.3.9
referencedIntOrientation(A, C, I) ← A : complexConcept ∧

C : concept ∧ I : orientation ∧
C[referencePartOf → A] ∧
C[internalOrientation → I]

140

Complex Concepts and Instances of Complex Concepts 141

Definition 7.3.9 states that when C is an instance of a concept being the refer-
ence part of an instance A of a complex concept and I is an orientation being
the internal orientation of C, then the predicate referencedIntOrientation(A,C, I)
is true. The referencedIntOrientation predicate allows us now to define
the internalOrientation method for a concept (as used in definition 7.1.1).
The internalOrientation method is defined in definition 7.3.10.

Definition 7.3.10
A[internalOrientation → I] ← A:concept ∧ C:concept ∧

I:orientation ∧
referencedIntOrientation(A, C, I)

Definition 7.3.10 states that when C is the reference part of A and I is the
internal orientation of C, then I is also the internal orientation of A.

So far we have seen how complex concepts are formalized. Note that all
methods are working on instances of complex concepts. However, it may be
interesting to be able to query the system about the concepts that are part
of some complex concept. E.g., instead of asking for the instances which
are part of a particular instance of the complex concept car, it may also be
necessary to ask for the concepts that are part of the complex concept car.
Therefore we need to overwrite the methods allParts and referencePart
so they can also work with classes.

Definition 7.3.11
C[allParts →→ A] ←C :: complexConcept ∧

A :: concept ∧
A[partOf ⇒ C]

C[referencePart → Y] ←C :: complexConcept ∧
A :: concept ∧
A[referencePartOf ⇒ C]

Note that the definition for the methods allParts and referencePart
in definition 7.3.11 is very similar to the one of definition 7.3.4. The only
difference is that C now needs to be a subclass of the complexConcept con-
cept instead of an instance and that A is a subclass of concept instead of
an instance of concept. Since concepts are not represented in the virtual

141

142 Formalizing Static World Modeling Concepts

environment, they have no position or orientation (except for a possible
default value for their instances). Therefore, we don’t need to overload the
referencedPosition, referencedExtOrientation and referencedIntOrientation
for subclasses of concepts.

7.4 Roles

In chapter 4 we have introduced the concept role to be able indicating that
a concept is playing a particular role in the context in which it is used. The
context in which it is used is for instance a complex object. For example,
inside a complex concept car we have the concept wheel playing the role
leftFrontWheel. Here, the context in which the concept is playing its
role is the complex concept car. So the role doesn’t need to keep track of
its context since it can be derived. Therefore we can define the modeling
concept role as a subclass of a concept having one extra property, namely
the name of the concept playing the role. Definition 7.4.1 defines this.

Definition 7.4.1 A role is defined as a subclass of a concept having the ad-
ditional property conceptName of type concept indicating the concept playing
the role:

role :: concept
role[conceptName ⇒ concept]

Since role is formalized as a subclass of concept it also inherits all methods
of the concept class. This way the complete theory about part-of relations
from the previous section also holds for roles. Roles can also be used in
spatial relations, orientation relations, connection relations, etc.
Similar as with the modeling concept concept, a role in a conceptual model
will be represented as a subclass of the modeling concept role. Take the
following example where wheel is a concept and leftFrontWheel is a role
played by the concept wheel. This is formally defined as follows:

wheel :: concept
leftFrontWheel :: role
leftFrontWheel[conceptName⇒ wheel]

We will now look to the instantiation of a role. SupposemyLeftFrontWheel
is an instance of the role leftFrontWheel. As we have seen in an informal

142

Spatial Relations 143

way in chapter 4, myLeftFrontWheel is an instance of the concept wheel
because it is an instance of the role leftFrontWheel played by the concept
wheel. This rule is expressed in definition 7.4.2.

Definition 7.4.2
X:B ← A::role ∧ X:A ∧

A[conceptName ⇒ B]

So definition 7.4.2 states that when A is a role, X is an instance of A and
B is the concept playing the role A, then X is also an instance of B. Lets
go back to our example. We create the instance myLeftFrontWheel as
follows:

myLeftFrontWheel : leftFrontWheel

If we ask our knowledge base for the concept(s) of which myLeftFrontWheel
is an instance we will get the answer wheel. The query would look as follows:

?−myLeftFrontWheel : X ∧X :: concept

The above query will return X = wheel which is exactly the result we want.

7.5 Spatial Relations

In this section we will give a formalization of the spatial relations. As we
have seen, spatial relations can be used to position an object relative to
another object (see chapter 3). They can be applied on concepts as well
as on instances. However they can also be used in the context of complex
concepts on concepts, on instances, and on roles.
As explained in chapter 3, we have a number of different spatial relations.
First, we have six elementary spatial relations, namely leftOf, rightOf, topOf,
bottomOf, frontOf and backOf. Next, we have relations that are a combi-
nation of two elementary spatial relations, namely leftTopOf, leftBottomOf,
frontLeftOf, backLeftOf, rightTopOf, rightBottomOf, frontRightOf, back-
RightOf, frontTopOf, backTopOf, frontBottomOf and backBottomOf. Fi-
nally, we have the relations that are a combination of three elementary
spatial relations. These are frontLeftTopOf, backLeftTopOf, frontLeftBot-
tomOf, backLeftBottomOf, frontRightTopOf, backRightTopOf, frontRight-
BottomOf and backLeftBottomOf. The definition of a spatial relation is
given in definition 7.5.1.

143

144 Formalizing Static World Modeling Concepts

Definition 7.5.1
spatialRelation[direction ⇒ string;

distance ⇒ float]

A spatial relation has thus two properties, namely direction and distance.
Now we will define how to specify that one concept is positioned relative to
another concept by means of a spatial relation. This is defined in definition
7.5.2. Note that the positioned property is defined as an inheritable property
which means that each instance of a will be positioned by default to an
instance b by means of the spatial relation r.

Definition 7.5.2 Let a and b be two concepts, thus a :: concept and b ::
concept. The fact that a is positioned relative to b with a distance d towards
direction ’dir’ is formally expressed as follows:

r : spatialRelation[direction → ’dir’;
distance → d]

a [positioned@b •→ r]

So far we have defined the declaration for the spatial relation. Next, we
also need to define the semantics of the spatial relation. Therefore in the
following paragraphs we will introduce the necessary definitions.

We will define a predicate relativePosition(A,X, Y, Z, P). This predicate
will be true when P is a point and A is a concept for which the following
hold:

- the value of the property x of P equals X plus the x-value of the
position of A, and,

- the value of the property y of P equals Y plus the y-value of the
position of A, and,

- the value of the property z of P equals Z plus the z-value of the position
of A.

Actually the predicate relativePosition(A,X, Y, Z, P) is true when P is a
point which lies X units left of A, Y units left of A and Z units top of A. This
is because, as stated earlier, by definition the front direction corresponds to
the x-direction, the left direction to the y-direction and the top direction
to the z-direction. The predicate relativePosition(A,X, Y, Z, P) is given in
definition 7.5.3. The explaination is given afterwards.

144

Spatial Relations 145

Definition 7.5.3
relativePosition(A, X, Y, Z, P) ←

A : concept ∧ (1)
iFrontAngle(A, iα) ∧ iLeftAngle(A, iβ) ∧ (2)
iTopAngle(A, iσ) ∧ eFrontAngle(A, eα) ∧ (3)
eLeftAngle(A, eβ) ∧ eTopAngle(A, eσ) ∧ (4)
P1 : point[x → X, y → Y, z → Z] ∧ (6)
rotate(P1, iα, iβ, iσ, P2) ∧ (7)
rotate(P2, eα, eβ, eσ, P3) ∧ (8)
A[position → PA] (9)
P : point[x → P3.x + PA.x, y → P3.y + PA.y, z → P3.z + PA.z] (10)

We will now explain the above predicate in more detail. Let’s assume that
A is positioned at (0, 0, 0). Then P1 = (X, Y, Z) (see line (6)) lies X units
in front of A, Y units right of A and Z units above A. However, we also need
to take into account the internal and external orientation. The predicate
rotate in line (7) is true when P2 is equal to the point P1 after rotating
it using the internal orientation angles of A. Next, the predicate rotate in
line (8) is true when P3 is equal to the point P2 rotated using the external
orientation angles of A. So P3 needs to be the resulting point when rotating
P1 over the internal as well as the external orientation of A. Remember that
we started with the assumption that A was positioned at (0, 0, 0). How-
ever, A can be at another position in the virtual environment, let’s say PA

= (XA, YA, ZA) (see line (9)). So finally (line (10)) the relativePosition
predicate is true when P lies X units in front of A, Y units right of A and Z
units above A taking into account the internal and external orientation of A.

We can now use the relativePosition predicate to define the actual se-
mantics of the spatial relations. We will start by defining the predicate
leftOfPos in definition 7.5.4. This predicate is true when P is a point
which lies D units to the left of an instance C. This is actually the case
when the predicate relativePosition(C, 0, D, 0, P) is true.

Definition 7.5.4
leftOfPos(C, D, P) ←

C : concept ∧ P : point ∧
relativePosition(C, 0, D, 0, P)

We can define similar predicates frontOfPos(C, D, P), rightOfPos(C, D,
P), bottomOfPos(C, D, P), For example, rightOfPos(C, D, P) would

145

146 Formalizing Static World Modeling Concepts

be true when P is a point that lies D units right of an instance A. This
definition is given in definition 7.5.5.

Definition 7.5.5
rightOfPos(C, D, P) ←

C : concept ∧ P : point ∧
relativePosition(C, 0, -D, 0, P)

Next we also need to formalize the meaning of spatial relations that are a
combination of two or three simple spatial relations. Therefore we define the
leftTopOfPos, leftBottomOf , frontLeftTopOfPos, . . . predicates. We
will start with the frontLeftOfPos predicate. When the distance towards
the front-left direction is D then we calculate the corresponding distances
in the left direction and the front direction. Figure 7.1 illustrates this.

Figure 7.1: Distances in separate directions calculated from a combined
direction

We need to calculate the distances D1 and D2. Note that we assume that
the angle between D1 and D and the angle between D2 and D are equal. In
principle, it is possible to have a distance D towards the front-left direction
for which this is not the case. However, the frontLeftOfPos relation is
intended to be an intuitive modeling concept usable by people with little
to no mathematical background. Therefore preciseness is sacrificed. Due
to this assumption we can apply the rule of Pythagoras which says that
D =

√
D2

1 +D2
2. Since a combination of two directions is always exactly

in the middle of the two directions D1 = D2. Thus, D =
√

2D1. Thus
D1 = D2 = D√

2
. Therefore, if an object A is frontLeftOf an object B with

a distance D, this means that A is D√
2

units left of B and also D√
2

units

front of B. This means D√
2

units in the X-direction (front) as well as in the
Y-direction (left). This is reflected in the definition of the frontLeftOfPos
predicate given in definition 7.5.6.

146

Spatial Relations 147

Definition 7.5.6
frontLeftOfPos(C, D, P)← C:Concept ∧ P:Point ∧

relativePosition(C, D√
2
, D√

2
, 0, P)

The other combinations are very similar. For example leftTopOfPos is for-
malized as follows:

Definition 7.5.7
leftTopOfPos(C, D, P)← C:Concept ∧ P:Point ∧

relativePosition(C, 0, D√
2
, D√

2
, P)

The formalization of a combination of three directions is similar. For exam-
ple, we formalize the relation frontLeftTopOfPos predicate as follows:

Definition 7.5.8
frontLeftTopOfPos(C, D, P)← C:Concept ∧ P:Point ∧

relativePosition(C, D√
2
, D√

2
, D√

2
, P)

Next we define a predicate spatialPosition(A, C, P), which is true when
P is the position of an instance A which has a spatial relation with an in-
stance C. To define this predicate we will make use of predicates defined
earlier. The spatialPosition(A, C, P) predicate is given in definition 7.5.9.

Definition 7.5.9
spatialPosition(A, C, P) ← A : concept ∧

C : concept ∧ P : point ∧
R : spatialRelation ∧ A[positioned@C → R] ∧
R[distance → D] ∧
(R[direction → ”leftOf”] ∧ leftOfPos(C, D, P)) ∨ (1)
(R[direction → ”rightOf”] ∧ rightOfPos(C, D, P)) ∨ (2)
. . .
(R[direction → ”leftTopOf”] ∧ leftTopOfPos(C, D, P)) ∨ (3)
. . .
(R[direction → ”leftTopFrontOf”] ∧ leftTopFrontOfPos(C, D, P)))]

So spatialPosition(A, C, P) is true when for example the instance A is left
of the instance C with a distance D and P is the point which lies D units
left of instance C (see (1)). Hence, A is positioned at the point P which lies
D units left of C. Or the spatialPosition(A, C, P) predicate can also be true

147

148 Formalizing Static World Modeling Concepts

when A is right of C with distance D and P is a point which lies rightOf C
with distance D (see (2)). So here A is positioned at the point P which lies
D units right of C. We can continue with all other possible spatial relations.
Finally, we can use the spatialPosition predicate in order to refine the
signature for the positionmethod we already defined for concept in definition
7.3.6. We will now refine this method in such a way that when for a concept
a spatial relation with another concept has been given, then the position
method returns the relative position according to this spatial relation. The
refined definition of the position method is given in definition 7.5.10.

Definition 7.5.10
A[position → P] ← A:concept ∧ C:concept ∧ P:point ∧

(referencedPosition(A, C, P) ∨ (1)
spatialPosition(A, C, P)) (2)

So the position method for an instance A returns a point P such that either:

(1) A is an instance of a complex concept that has a reference part C
position and point P. Hence P is also the position for A. Or,

(2) there is somewhere an instance C which is related to instance A via a
spatial relation. Hence P is the position of A relative to C.

Now we will illustrate how the theory discussed above works in practice.

7.5.1 Example

Figure 7.2: A spatial relation between two concepts

Take two concepts, car and house, where car is positioned 2 units left of
house (see figure 7.2). This is formally expressed as:

car :: concept
house :: concept
r : spatialRelation[direction→ ”leftOf”; distance→ 2]
car[positioned@house•→ r]

148

Spatial Relations 149

Suppose also that we have an instance myCar of car and an instance my-
House of house such that:

myCar : car
myHouse : house
myCar[positioned@myHouse→ r]

Systems like OntoBroker or Flora-2 can be used to query the system for
the position of myCar. This query looks as follows:

?−myCar[position→ P]

The system will then start a number of deductions in order to resolve this
query. First it starts with the position method:

myCar[position→ P]←myCar : concept ∧ C : concept ∧ P : point∧
(referencedPosition(myCar,C, P)∨
spatialPosition(myCar,C, P))

At some point during the solving process the system will try to find an
instance C and point P so that the predicate spatialPosition(myCar, C, P)
becomes true. This means that C is spatially related to myCar and myCar
is position at point P relative to C according to the spatial relation between
myCar and C. So the spatialPosition predicate looks as follows:

spatialPosition(myCar,C, P)← myCar : concept∧
C : concept ∧ P : point∧
R : spatialRelation ∧myCar[positioned@myHouse→ R]∧
R[distance→ D]∧
(R[direction→ ”leftOf”] ∧ leftOfPos(C,D,P))∨
(R[direction→ ”rightOf”] ∧ rightOfPos(C,D,P))∨
. . .
(R[direction→ ”leftTopOf”] ∧ leftTopOfPos(C,D,P))∨
. . .
(R[direction→ ”leftTopFrontOf”] ∧ leftTopFrontOfPos(C,D,P)))]

149

150 Formalizing Static World Modeling Concepts

Since there is a spatial relation instance r so that myCar[positioned@myHouse
→ r], R will be substituted by r. Because of the definition of r, we know that
r[direction → ”leftOf”] holds. The branche (R[direction → ”leftOf”] ∧ left-
OfPos(C, D, P)) will become (r[direction→ ”leftOf”] ∧ leftOfPos(myHouse,
2, P)) to the system. The system will now try to find a point P so that
leftOfPos(myHouse, 2, P) is true. The leftOfPos predicate looks as fol-
lows:

leftOfPos(myHouse, 2, P)←
myHouse : concept ∧ P : point∧
relativePosition(myHouse, 0, 2, 0, P)

Following the leftOfPos predicate, the system will try to resolve the pred-
icate relativePosition(myHouse, 0, 2, 0, P). This results in

relativePosition(myHouse, 0, 2, 0, P)←
myHouse : concept ∧ P : point∧
iFrontAngle(myHouse, iα) ∧ iLeftAngle(myHouse, iβ)∧
iTopAngle(myHouse, iσ) ∧ eFrontAngle(myHouse, eα)∧
eLeftAngle(myHouse, eβ) ∧ eTopAngle(myHouse, eσ)∧
P1 : point[x← 0, y ← 2, z ← 0]∧
rotate(P1, iα, iβ, iσ, P2)∧
rotate(P2, eα, eβ, eσ, P3)∧
myHouse[position→ PA]
P : point[x→ P3.x+ PA.x, y → P3.y + PA.y, z → P3.z + PA.z]

Now suppose that the instance myHouse has the default orientation. This
means that iα = iβ = iσ = eα = eβ = eσ = 0. Suppose also that
myHouse is positioned at (2, 3, 2), hence XA = 2, YA = 3 and ZA =
1. By the definition of the rotate predicate (see section 6.3) we will get
P [x → 0 + 2, y → 2 + 3, z → 0 + 1]. The position of myCar, P , will be
P [x→ 2, y → 5, z → 1]. So the position of myCar in the virtual environment
is (2, 5, 1) while the position of myHouse is (2, 3, 1). Since the global Y-axis
represents the left direction by default we can see that the position of myCar
is indeed 2 units left of myHouse in the virtual environment.
In this section we have formally defined the spatial relations. In the next
section we will give formal definitions for the orientation relations.

150

Orientation Relations 151

7.6 Orientation Relations

In this section we will give formal definitions for the orientation relations.
First we will give the formalization of relative orientation relations, which
are orientation relations between two concepts, instances or roles. Next we
will give the formalization for the orientation by angle relation.

7.6.1 Relative orientation relations

We will start with formally defining the relative orientation relations. As
we have seen in chaper 3, we have simple relative orientation relations like
frontToFront, frontToRight, topToFront, etc. Next, we also have combined
relative orientation relations like frontToLeftTop, frontToFrontLeftTop, etc.
Similar as we have done for the spatial relations, we will start by formally
defining the declarative side of the orientation relations. The definition of
an orientation relation is given in definition 7.6.1.

Definition 7.6.1
relativeOrientationRelation[sourceFace ⇒ string;

targetFace ⇒ string]

An orientation relation has thus two properties, namely sourceFace and
targetFace. If one wants to specify that the source is oriented with its front
towards the front of the target, then the values for both properties become
’front’. Now we will define how to specify that one concept is oriented
relative to another concept by means of an orientation relation. This is
defined in definition 7.6.2. Note that the oriented property is defined as an
inheritable property which means that each instance of a will be oriented
by default to an instance b by means of the orientation relation r.

Definition 7.6.2 Let a and b be two concepts, thus a :: concept and b ::
concept. The fact that a is oriented with side ’aSide’ relative to the ’bSide’
of b is formally expressed as follows:

r : relativeOrientationRelation[sourceFace → ’aSide’;
targetFace → ’bSide’]

a [oriented@b •→ r]

Note that the values of the sourceFace and targetFace properties can have
as values all possible directions (front, back, . . .) or any valid combination
of directions. All other values will just be ignored.

151

152 Formalizing Static World Modeling Concepts

In the following paragraphs we will define the semantics of the orientation
relations. We will start with a simple relative orientation relation. Take a
and b to be two concepts where concept a needs to be oriented with its front
towards the front of concept b. This is expressed graphically in figure 7.3.

Figure 7.3: Example of a relative orientation relation between concepts

Now suppose we have two instances named instanceA and instanceB. InstanceA
must be oriented with its front side to the front side of instanceB. This
default situation is shown in figure 7.4.

Figure 7.4: Default orientation of two objects

For each side of an object we can calculate the vector representing this side.
Take for example the front side. We know that in the default orientation
of an object, the front side corresponds to the x-axis of the local reference
frame of the object. So the vector (1, 0, 0) represents the front side of the
object. However, we need also to take into account the internal and external
orientation of the object. Therefore we need to rotate the vector represent-
ing the side around the object’s internal and external orientation.
Now, definition 7.6.3 defines the directionVectors(A, B, V1, V2) predicate.
This predicate is true when V1 and V2 are the vectors representing the side
of A and the side of B respectively when A and B are oriented with repect
to each other by means of a relative orientation relation.

152

Orientation Relations 153

Definition 7.6.3
directionVectors(A, B, V1, V2) ← A : concept ∧

B : concept ∧ A[oriented@B •→ R] ∧
iFrontAngle(A, iAα) ∧ iLeftAngle(A, iAβ) ∧
iTopAngle(A, iAσ) ∧ iFrontAngle(B, iBα) ∧
iLeftAngle(B, iBβ) ∧ iTopAngle(B, iBσ) ∧
eFrontAngle(A, iAα) ∧ eLeftAngle(A, iAβ) ∧
eTopAngle(A, iAσ) ∧ eFrontAngle(B, iBα) ∧
eLeftAngle(B, iBβ) ∧ eTopAngle(B, iBσ) ∧
((R[sourceFace → ”front”] ∧ X : point[x → 1,

y → 0,
z → 0]) ∨

...
(R[sourceFace → ”frontRight”] ∧ X : point[x → 1, (1)

y → -1,
z → 0])) ∧

((R[targetFace → ”front”] ∧ Y : point[x → 1,
y → 0,
z → 0]) ∨

...
(R[targetFace → ”frontRight”] ∧ Y : point[x → 1,

y → -1,
z → 0])) ∧

rotate(X, iAα, iAβ, iAσ, X1) ∧ (2)
rotate(X1, eAα, eAβ, eAσ, X2) ∧ (3)
rotate(Y, iBα, iBβ, iBσ, Y1) ∧
rotate(Y1, eBα, eBβ, eBσ, Y2) ∧
V1 : vector[a → X2.x, b → X2.y, c → X2.z] ∧ (4)
V2 : vector[a → Y2.x, b → Y2.y, c → Y2.z]

So, suppose that the face for the source side (thus for A) is equal to
”frontRight” then we define a point (1, 0, 0). This is done in line (1). Next we
rotate this point around the internal and external orientation of A (see lines
(2)-(3)). Finally we turn the resulting point into a vector V1 representing
the face used on the source side of the relation (see line (4)). The same is
done for the face used on the target side.
Now that we know the vectors representing the directions, we can define the
semantics of the relative orientation relation. A relative orientation relation
is fullfilled when the vectors representing the directions used in the relation
have an opposite direction. Having an opposite direction thus means that

153

154 Formalizing Static World Modeling Concepts

the angle between both vectors must be -180 degrees. Therefore, we need to
calculate the angle between the vectors V1 and V2. Take V1 = (x1, y1, z1)
and V2 = (x2, y2, z2). Then the angle between these vectors can be calculated
using the following mathematical formula:

cosα = V1·V2
||V1||||V2||

Since the dot product of V1 and V2 equals x1x2+y1y2+z1z2 and the norm of
a vector V = (x, y, z) equals

√
x2 + y2 + z2 we know that we can calculate

the angle α as:

cosα = x1x2+y1y2+z1z2√
x2
1+y2

1+z2
1

√
x2
2+y2

2+z2
2

Therefore we define the predicate angleBetween(V1, V2, α) which is true
when α is the angle between V1 and V2. This predicate is defined in defini-
tion 7.6.4.

Definition 7.6.4

angleBetween(V1, V2, α) ←
V1 : vector ∧ V2 : vector ∧
α is cos−1 V1.aV2.a+V1.bV2.b+V1.cV2.c√

(V1.a)2+(V1.b)2+(V1.c)2
√

(V2.a)2+(V2.b)2+(V2.c)2

When the angle between V1 and V2 equals -180 degrees then we don’t
need to do anything. This means that the relative orientation relation is
already fullfilled. However, when this is not the case, we need to rotate
the source concept over an angle of -180 - α (when alpha is the angle be-
tween V1 and V2). This rotation is done around the unit vector that stands
perpendicular on the vectors V1 and V2. This perpendicular vector can be
calculated as the cross product of V1 and V2.

The cross product V1 × V2 is calculated as follows:

V1 × V2 = (y1z2 − z1y2, z1x2 − x1z2, x1y2 − y1x2)

We call this vector V3, V3 = V1 × V2 = (x3, y3, z3). We will now calculate
the unit vector u = (u1, u2, u3) parallel to the vector V3. The unit vector u
is thus equal to V3

||V3|| .

Now, in definition 7.6.5 the predicate isOrthogonal(V1, V2, V) is defined.
This predicate is true when V is a unit vector that stands perpendicular on
the vectors V1 and V2.

154

Orientation Relations 155

Definition 7.6.5

isOrthogonal(V1, V2, V) ←
V1 : vector ∧ V2 : vector ∧ V : vector ∧
V3 [a → V1.b V2.c - V1.c V2.b;

b → V1.c V2.a - V1.a V2.c;
c → V1.a V2.b - V1.b V2.a] ∧

N is
√
V3.a2 + V3.b2 + V3.c2 ∧

V [a → V3.a
N ; b → V3.b

N ; c → V3.c
N]

So the source object needs to be rotated -180 - α degrees around the
unit vector u. However, as we have seen earlier (see definition 6.2.1) the
orientation of an object is expressedd using Euler angles. This means that
an object is rotated β degrees around its front-to-back axis, σ degrees around
its left-to-right axis and θ degrees around its top-to-bottom axis. Therefore
we need to translate the rotatation of α degrees around an arbitrary axis
parallel to the vector u = (u1, u2, u3) towards the corresponding Euler-angle
representation. Therefore we can use the following formulas:

β = sin−1(u1u2(1− cos(α)) + u3sin(α))
σ = tan−1(u1sin(α)−u2u3(1−cos(α))

1−(u2
1+u2

3)(1−cos(α)

θ = tan−1(u2sin(α)−u1u3(1−cos(α))
1−(u2

2+u2
3)(1−cos(α)

In definition 7.6.6, the predicate eulerAngles(β, σ, θ, V, α) is defined. This
predicate is true when β, σ and θ are the angles to rotate around the x-axis,
y-axis and z-axis respectively so that these rotations have an equal result as
when rotating the object α degrees around a unit vector V.

Definition 7.6.6

eulerAngles(β, σ, θ, V, α) ← V : vector ∧
β is sin−1(V.a * V.b * (1 - cos(α)) + V.c * sin(α)) ∧
σ is tan−1 (V.a * sin(α) - V.b * V.c * (1-cos(α))) /

(1 - (V.a2 + V.c2) * (1-cos(α))) ∧
θ is tan−1 (V.b * sin(α) - V.a * V.c * (1-cos(α))) /

(1-(V.b2 + V.c2) * (1-cos(α))) ∧

Using all of the above defined predicates we can now define the semantics
of the relative orientation relation. The relativeOrientation predicate is
defined in definition 7.6.7.

155

156 Formalizing Static World Modeling Concepts

Definition 7.6.7
relativeOrientation(A, C, E) ← A : concept ∧

C : concept ∧
A[oriented@C •→ R] ∧
directionVectors(A, C, V1, V2) ∧
angleBetween(V1, V2, δ) ∧
λ is -180 - δ ∧
isOrthogonal(V1, V2, V) ∧
eulerAngles(α, β, γ, V, λ)
A[externalOrientation → EA] ∧
E : orientation[frontAngle •→ EA.frontAngle + α,

leftAngle •→ EA.leftAngle + β,
topAngle •→ EA.topAngle + γ]

Now finally we can refine the externalOrientation method defined for the
class concept. We already defined a first version of this method in definition
7.3.8. Now we extend this definition (see definition 7.6.8).

Definition 7.6.8
A[externalOrientation → E] ← A:concept ∧ C: concept ∧

E:orientation ∧
(referencedExtOrientation(A, C, E) ∨ (1)
relativeOrientation(A, C, E)) (2)

So the value E of the externalOrientation method is the value for which
either:

- E is the external orientation of C which is the reference part of A,
hence E is the external orientation for A, or,

- A and C are related by means of a relative orientation relation and E
is the external orientation for A so that the orientation relation with
respect to C is respected.

In this section we have discussed the formal definitions of the relative
orientation relations. In the next section we will look to the formalization
of orientation by angle relations.

7.6.2 Orientation by angle relations

Next we need to define the formalization of the orientation by angle relation.
Suppose now that we have a concept A which is oriented by means of an

156

Orientation Relations 157

orientation by angle relation as graphically expressed in figure 7.5. This
relation states that A is rotated 90 degrees over the top to bottom axis.

Figure 7.5: Example of an orientation by angle relation

More general, when a concept a is attached to an orientation by angle
relation over the top to bottom axis with an angle of θ degrees, then this
relation will be formalized by overwriting the externalOrient property as
an inheritable property with value θ. The orientation by angle relation is
formally defined in definition 7.6.9.

Definition 7.6.9 Let a be a concept, thus a::concept. The fact that a has
an orientation by angle relation around the front-to-back axis of α degrees,
around the left-to-right axis of β degrees and around the top-to-bottom axis
of θ degrees is expressed as follows:

a[externalOrient •→ orientation[frontAngle → α,
leftAngle → β,
topAngle → θ]

So an orientation by angle relation is translated into its external orien-
tation parameters.

157

158 Formalizing Static World Modeling Concepts

158

Chapter 8

Formalizing Connection
Relations

In this section we will explain how the connection point relation, the connec-
tion axis relation and the connection surface relation are formalized. Note
that the formalization of the connection relations can be considered from
two different viewpoints. On the one hand, a connection relation expresses
how two components should be connected and in this way defines what this
means in terms of the position and orientation of the two components. This
is what we will call the initial semantics of the connection relation, as it
defines the semantics of the connection relations at time zero of the virtual
environment. On the other hand, a connection relation also expresses con-
straints on the possible behavior of the components during the rest of the
lifetime of the connected objects. This is what we will call the simulation
semantics.

8.1 Formalization of the connection axis relation

In this section we will formally define the connection axis relation. Because
of the complexity of this connection relation, we will first elaborate on the
mathematics underlying this relation. Afterwards, we will give the formal
definition in F-Logic.

To establish a connection axis relation, five steps are needed. We will
first describe each step from a mathematical point of view using an example.

1. Compute the connection axes for both the source and the

159

160 Formalizing Connection Relations

target objects.

As we have seen in the previous chapter, the connection axis for the

Figure 8.1: Connection axis is the intersection of two planes

source as well as for the target is described by means of two planes.
The intersection of these planes forms the connection axis. In figure
8.1 a VR object is illustrated through which two planes (the horizontal
and the vertical plane) are specified. We have to compute the inter-
section of the horizontal and the vertical plane. From mathematics we
know that a line through the point (x0, y0, z0) parallel with a vector
(a, b, c) has the following parametric equations (for all t between -∞
and +∞):

x = x0 + ta
y = y0 + tb
z = z0 + tc

We know that the line which is the intersection of the horizontal and
the vertical plane goes through the position of the object. So take
the position of the object to be (x0, y0, z0). We also know that the
line is parallel to the vector (1, 0, 0). Therefore we know that the
parametric equations for the connection axis L (as the intersection of
the horizontal plane and the vertical plane) will be as follows:

x = x0 + t −∞ < t < +∞
y = y0

z = z0

160

Formalization of the connection axis relation 161

However it is possible that one, or both of the planes have been rotated
around a certain axis. Take the example from figure 8.2. In this

Figure 8.2: Rotation of the vertical plane around the top-to-bottom axis

example, the vertical plane has been rotated 45 degrees (or π
4 radians)

counterclockwise around the top-to-bottom axis. From the definition
of orientation (see 6.2.1) we know that a rotation around the top-to-
bottom axis equals a rotation around the z-axis. Therefore we need
to rotate the unit vector (1, 0, 0) (which is the intersection between
the horizontal and vertical plane) also 45 degrees around the z-axis.
This will result in a vector which is parallel to the line L which is
the intersection of the horizontal plane and the rotated vertical plane.
This rotation can be done using the following rotation matrix: cos(π

4) −sin(π
4) 0

sin(π
4) cos(π

4) 0
0 0 1

So the vector v = (v1, v2, v3) which is parallel to the intersection line
between the horizontal and the rotated vertical plane is given by the
multiplication of the above rotation matrix and the vector (1, 0, 0):

v1 = 1.cos(π
4)− 0.sin(π

4) =
√

2
2

v2 = 1.sin(π
4) + y.cos(π

4) =
√

2
2

v3 = 0

So the line L, which is parallel to the vector (
√

2
2 ,

√
2

2 , 0) and goes

161

162 Formalizing Connection Relations

trough the point (x0, y0, z0) has the following equation:
x = x0 +

√
2

2 t −∞ < t < +∞
y = y0 +

√
2

2 t
z = z0

The last possibility is that one of the planes has been translated in
a certain direction. This will be reflected in the point (x0, y0, z0).
Suppose the vertical plane from our example in figure 8.1 has been
translated 3 units to the left. Since the left direction corresponds
to the y-axis, we know that the point (x0, y0 + 3, z0) will lie on
the intersection line between the horizontal plane and the translated
vertical plane. Hence, this point (x0, y0+3, z0) will be used in the
parametric equations for the intersection line.
So far we have explained how to calculate the connection axis for the
source and target objects of the connection axis relation.

2. Rotate the source so that its connection axis is parallel to the
connection axis for the target.

Suppose we have the situation as illustrated in figure 8.3. In this

Figure 8.3: Connection axes for source and target may not fall together

situation the connection axes of the source and the target do not fall
together. Since, for the connection axis relation it is required that
both connection axes fall together we will need to adjust the situa-
tion. In this step we will change the orientation of the source (which

162

Formalization of the connection axis relation 163

is the blue cube in our example) so that its connection axis becomes
parallel to the connection axis for the target (which is the yellow cube
in the example).

First we will calculate the angle α between the connection axes L1 and
L2. We know that the line L1 is parallel with a vector v1 = (x1, y1, z1)
and that the line L2 is parallel with a vector v2 = (x2, y2, z2). As we
have seen before with the formalization of the orientation relations,
with this information we can calculate the angle α between both lines
using the mathematical formulae:

cosα = v1·v2
||v1||||v2||

Since the dot product of v1 and v2 equals x1x2 + y1y2 + z1z2 and the
norm of a vector v = (x, y, z) equals

√
x2 + y2 + z2 we know that we

can calculate the angle α as:

cosα = x1x2+y1y2+z1z2√
x2
1+y2

1+z2
1

√
x2
2+y2

2+z2
2

When the angle α equals 0, then we don’t need to change the ori-
entation of the source object. An angle of 0 degrees means that the
connection axes are already parallel. When the angle differs from 0,
we need to calculate the vector v1× v2 which stands perpendicular on
both L1 and L2. The cross product v1 × v2 is calculated as follows:

v1 × v2 = (y1z2 − z1y2, z1x2 − x1z2, x1y2 − y1x2)

We call this vector v3, v3 = v1 × v2 = (x3, y3, z3). We will now cal-
culate the unit vector u = (u1, u2, u3) parallel to the vector v3. The
unit vector u is thus equal to v3

||v3|| . So the source object needs to be
rotated α degrees around the unit vector u. However, as we have seen
earlier (see definition 6.2.1) the orientation of an object is expressedd
using Euler angles. This means that an object is rotated β degrees
around its front-to-back axis, σ degrees around its left-to-right axis
and θ degrees around its top-to-bottom axis. Therefore we need to
translate the rotatation of α degrees around an arbitrary axis parallel
to the vector u = (u1, u2, u3) towards the corresponding Euler-angle
representation. This is very similar to what we have seen with the
orientation relations. When adding the Euler angles to the external
orientation of the source object, the source object will be oriented in

163

164 Formalizing Connection Relations

Figure 8.4: Connection axes for source and target are parallel

such a way that its connection axis is parallel to the connection axis
of the target object. This situation is illustrated in figure 8.4.

3. Calculate the orthogonal projections of the source and target
position onto their connection axis.

The next things that we will calculate are the orthogonal projections
of the position of the source and the target on their respective con-
nection axes. These orthogonal projections are illustrated in figure
8.5 by means of ps and pt respectively. These projections will be the
so called translation points for the source and target object. Suppose

Figure 8.5: Orthogonal projection of source and target position on their
connection axes

the source object is on position p0 = (x0, y0, z0). We also know that
the connection axis for the source, which we call L, goes through some
point p1 = (x1, y1, z1) and that it is parallel to some vector v = (a, b, c).

164

Formalization of the connection axis relation 165

This is all illustrated in figure 8.6.

Figure 8.6: Orthogonal projection of a point on a line

To calculate the orthogonal projection ps we first need to calculate the
projection of p0 − p1 onto the line L. This is indicated in figure 8.6
as the line segment projL(p0 − p1). To get the point ps we need to
add projL(p0 − p1) v

||v|| to p1. So ps = p1 + projL(p0 − p1) v
||v|| . The

projection of p0 − p1 onto the line L can be calculated as follows:

projL(p0 − p1) = (p0−p1)·v
||v||

We can do this calculation for both the source and the target. So far
we have calculated the translation points for the source object and the
target object.

4. Translate the source so that its connection axis falls together
with the connection axis for the target.
The next thing we need to do is to calculate the translation of the
source object necessary to make sure that the connection axes and the
translation points fall together. Therefore we will calculate the vector
v = pt − ps as shown in figure 8.7. If we now translate the position
of the source over the vector v, the source will be positioned in such a
way that the connection axes fall together as do the translation points.
The result in illustrated in figure 8.8

5. Translate the source along the axis so that the translation
point conditions of the connection axis relation are respected.
The last step that may be necessary when solving a connection axis
relation is meeting the translation point conditions. As we have seen in
the informal description, the designer may specify a translation of one
or both translation points along the connection axis. By doing this, the
designer actually specifies the initial position of the connected objects
somewhere along the connection axis. Now suppose in our case that

165

166 Formalizing Connection Relations

Figure 8.7: Calculation of the translation of the source object

Figure 8.8: Result after the calculation of the connection axis relation

the designer specified a translation of the source translation point 3
units towards the top of the connection axis. Take t to be the original
translation point and tn to be the translated translation point. Since
we know the equation of the connection axis L, it is easy to calculate
tn. Next we can calculate the vector tn - t. Now we can use this vector
to translate the source object. This is illustrated in figure 8.9. The
point ps becomes the new position for the source object.

So far we have described the semantics of a connection axis relation from
a mathematical point of view. Now we will formally define this complete
relation description using F-Logic.

We will first define the horizontal plane, the vertical plane and the perpen-
dicular plane. As we have seen earlier, the horizontal plane can be rotated

166

Formalization of the connection axis relation 167

Figure 8.9: Translation of the translation point for the source object

over the left-to-right axis and over the front-to-back axis. The horizontal
plane can also be translated along the top-to-bottom axis. This means that
the point (0, 0, z) lies on the plane when the default horizontal plane has
been translated z units along the top-to-bottom axis (z ∈ <).
So in our definition of the horizontal plane we have two properties which
indicate the possible rotation around the left-to-right axis and the front-to-
back axis (which have the default value 0). We also have three properties
x0, y0 and z0. x0, y0 and z0 are defined as inheritable properties having
the value 0 while the value of z0 will then be overwritten with the value of
the translation along the top-to-bottom axis. The formal definition of the
horizontal plane is given in definition 8.1.1. Also note that we define the
horizontal plane to be a subclass of plane. Note that plane is a class having
no properties. We only included the class plane to be able to refer to a
horizontal as well as to a vertical or a perpendicular plane.

Definition 8.1.1 We formally define the horizontal plane as follows in F-
logic:

horizontal :: plane
horizontal [leftToRightAngle •→ 0;

frontToBackAngle •→ 0;
x0 •→ 0;
y0 •→ 0;
z0 •→ 0]

167

168 Formalizing Connection Relations

We define the vertical and the perpendicular plane similar in respectively
definition 8.1.2 and 8.1.3.

Definition 8.1.2 We formally define the vertical plane as follows in F-
logic:

vertical :: plane
vertical [frontToBackAngle •→ 0;

topToBottomAngle•→ 0;
x0 •→ 0;
y0 •→ 0;
z0 •→ 0;]

Definition 8.1.3 We formally define the perpendicular plane as follows in
F-logic:

perpendicular :: plane
perpendicular [leftToRightAngle •→ 0;

topToBottomAngle •→ 0;
x0 •→ 0;
y0 •→ 0;
z0 •→ 0]

Formalization of the initial semantics

First we will formalize the initial semantics of the connection axis relation.
To do this we return to the five steps described above. For each of these
steps we will formally define a number of predicates. Note that we will not
explain these formal definitions in detail since they are a straightforward
translation of the mathematical approach we have given.

1. Compute the connection axes for both the source and the
target objects.

First we will define a predicate horizontalVerticalIntersect(P, Q, V)
which is true when a vector V is parallel to the intersection of an
instance of horizontal plane and an instance of vertical plane. This
predicate is formally defined in definition 8.1.4.

168

Formalization of the connection axis relation 169

Definition 8.1.4

horizontalVerticalIntersect(P, Q, V) ←
V : vector ∧ P : plane ∧ Q : plane ∧
((P : horizontal ∧ Q : vertical ∧

P [leftToRightAngle → α] ∧
Q [topToBottomAngle → β]) ∨

(P : vertical ∧ Q : horizontal ∧
P [topToBottomAngle → α] ∧
Q [leftToRightAngle → β])) ∧

V1 : vector [a → 1, b → 0, c → 0] ∧
rotate(V1, 0, α, β, V)

Note that we do not need to take into account rotations of the horizon-
tal plane as well as of the vertical plane around the front-to-back axis.
This is because the intersecting line falls together with this rotation
axis and thus doesn’t affect the orientation of the vector V parallel to
the intersection line. Also remember that the predicate rotate which
is used in the above definition was defined in definition 6.3.4.
It is easy to see that we can define similar predicates horizontalPer-
pendicularIntersect(P, Q, V) and verticalPerpendicularIntersect(P, Q,
V) which are true when V is a vector parallel to the intersection of
an instance of horizontal plane and an instance of perpendicular plane
respectively parallel to the intersection of an instance of vertical plane
with an instance of perpendicular plane.
Using these predicates we will now formally define the predicate paral-
lelToIntersection(P, Q, V). This predicate turns out to be true when
a vector V is parallel to the intersection of two planes P and Q. This
predicate is defined in definition 8.1.5.

Definition 8.1.5

parallelToIntersection(P, Q, V) ←
V : vector ∧ P : plane ∧ Q : plane ∧
(horizontalVerticalIntersect(P, Q, V) ∨

horizontalPerpendicularIntersect(P, Q, V) ∨
verticalPerpendicularIntersect(P, Q, V))

Now finally we can define the predicate isIntersectionLine(P, Q, L)
which is true when L is a line which is the intersection of a plane P
and a plane Q. We define this predicate in definition 8.1.6.

169

170 Formalizing Connection Relations

Definition 8.1.6

isIntersectionLine(P, Q, L) ←
L : line ∧ P : plane ∧ Q : plane ∧
parallelToIntersection(P, Q, V) ∧
L [x0 → P.x0 + Q.x0;

y0 → P.y0 + Q.y0;
z0 → P.z0 + Q.z0;
a → V.a;
b → V.b;
c → V.c]

Note the use of path expressions in definition 8.1.6. Now we have
defined all necessary F-logic predicates for the first step.

2. Rotate the source so that its connection axis is parallel to the
connection axis for the target.

The first predicate that we will define in this second step is the predi-
cate angleBetween(L, M, α) which is true when α is the angle between
two lines L and M. This predicate is defined in definition 8.1.7. Note
that this predicate is very similar to definition 7.6.4 we have seen in
chapter 7. Actually, the predicate is overloaded so that it now works
for angles between vectors as well as for angles between lines.

Definition 8.1.7

angleBetween(L, M, α) ←
L : line ∧ M : line ∧
α is cos−1 L.aM.a+L.bM.b+L.cM.c√

(L.a)2+(L.b)2+(L.c)2
√

(M.a)2+(M.b)2+(M.c)2

Next we also need a predicate which is true when a unit vector V is
orthogonal to two lines L and M. Therefore we define the predicate
isOrthogonalTo(L, M, V). This predicate is defined in definition 8.1.8.
This predicate is also overloaded from definition 7.6.5.

Definition 8.1.8

isOrthogonal(L, M, V) ←
L : line ∧ M : line ∧ V : vector ∧

170

Formalization of the connection axis relation 171

V1 : vector [a → L.b M.c - L.c M.b,
b → L.c M.a - L.a M.c,
c → L.a M.b - L.b M.a] ∧

N is
√
V1.a2 + V1.b2 + V1.c2 ∧

V [a → V1.a
N ; b → V1.b

N ; c → V1.c
N]

So far we have defined all the necessary predicates for the second step.

3. Calculate the orthogonal projections of the source and target
position onto their connection axis.

For this step we need to define a predicate which is true when a point
P is the orthogonal projection of a point Q onto a line L. Therefore in
definition 8.1.9 we formally define the predicate projection(P, Q, L).

Definition 8.1.9

projection(P, Q, L) ←
P : point ∧ Q : point ∧ L : line ∧
X1 is Q.x - L.x0 ∧ Y1 is Q.y - L.y0 ∧ Z1 is Q.z - L.z0 ∧
NV is

√
L.aL.a+ L.bL.b+ L.cL.c

PL is X1∗L.a+Y1∗L.b+Z1∗L.c
NV

∧
P [x → L.x0 + PL∗L.a

NV
;

y → L.y0 + PL∗L.b
NV

;
z → L.z0 + PL∗L.c

NV
]

4. Translate the source so that its connection axis falls together
with the connection axis for the target.

In this step we will formally define a predicate isDifference(V, V1,
V2) which is true when a vector V is the result of the vector V1 minus
the vector V2. This predicate is defined in definition 8.1.10.

Definition 8.1.10

isDifference(V, V1, V2) ←
V : vector ∧ V1 : vector ∧ V2 : vector ∧
V [a → V1.a - V2.a;

b → V1.b - V2.b;
c → V1.c - V2.c;]

171

172 Formalizing Connection Relations

5. Translate the source along the axis so that the translation
point conditions of the connection axis relation are respected.

For this last step we will define two predicates. The first predicate
is the parameterValue(L, P, T) predicate. This predicate is true when
T is the value to fill in in the parametric equations of a line L to get
the point P. This predicate is formally defined in definition 8.1.11.

Definition 8.1.11

parameterValue(L, P, T) ←
L : line ∧ P : point ∧
P.x = L.x0 + T * L.a ∧
P.y = L.y0 + T * L.b ∧
P.z = L.z0 + T * L.c

Next in definition 8.1.12 we will define the predicate newSourceTP(R,
P, Q). Take P to be the translation point for the source object and R
to be the connection axis relation involved. Note that the definition
for the connection axis relation is given a bit further. The predicate
newSourceTP(R, P, Q) is true when Q is the translation point for
the source after translating the original source translation point P
according to the connection axis relation R.

Definition 8.1.12

newSourceTP(R, P, Q) ←
R : connectionAxisRelation ∧ P : point ∧ Q : point ∧
R [sourceTPDist → D, sourceAxis → L] ∧
parameterValue(L, P, T) ∧
((R [sourceDir → ”left”] ∧ (1)

((L.b > 0 ∧ S is T + D) ∨
(L.b < 0 ∧ S is T-D))) ∨

(R [sourceDir → ”top”] ∧ (2)
((L.c > 0 ∧ S is T + D) ∨

(L.c < 0 ∧ S is T-D))) ∨
. . .) ∧

Q [x → L.x + S * L.a;
y → L.y + S * L.b;
z → L.z + S * L.c]

172

Formalization of the connection axis relation 173

So for example, when the translation point needs to be translated into
the left direction (see (1)) then based on the slope in the left direction
(the slope in the y-direction) which is positive or negative we can
calculate the new translation point along the line. Line (2) shows the
case when the translation is in the top direction. It is easy to write
similar approaches for possible translations in all other directions.
We have now defined all the necessary predicates for all five steps
needed when solving a connection axis relation.

We will now use all of the above predicates to formally define the con-
nection axis relation as well as the semantics of this relation. The con-
nectionAxisRelation class defined in definition 8.1.13 contains a number of
properties keeping track of the planes used to define the connection axis for
both the source and target objects. There are also a number of properties
which keep track of the translation for the translation point for the source
or the target objects. Next the connectionAxisRelation class also has two
properties sourceAxis and targetAxis which are methods returning a line
which is the connection axis for the source and the target object respectively.

Definition 8.1.13 We formally define the connection axis relation as fol-
lows in F-logic:

connectionAxisRelation [sourcePlane1 ⇒ plane;
sourcePlane2 ⇒ plane;
targetPlane1 ⇒ plane;
targetPlane2 ⇒ plane;
sourceAxis ⇒ line;
targetAxis ⇒ line;
sourceTPDist ⇒ float;
sourceTPDir ⇒ string;
targetTPDist ⇒ float;
targetTPDir ⇒ string]

The methods sourceAxis and targetAxis are defined as follows:

C[sourceAxis → L] ← C : connectionAxisRelation ∧ L : line ∧
A[connectedTo@B •→ C] ∧
A[position → p] ∧
intersectionLine(C.sourcePlane1, C.sourcePlane2, M) ∧
L : line[x0 → M.x0 + p.x;

y0 → M.y0 + p.y;

173

174 Formalizing Connection Relations

z0 → M.z0 + p.z;
a → M.a; b → M.b; c → M.c]

C[targetAxis → L] ← C : connectionAxisRelation ∧ L : line ∧
A[connectedTo@B •→ C] ∧
B[position → p] ∧
intersectionLine(C.targetPlane1, C.targetPlane2, M) ∧
L : line[x0 → M.x0 + p.x;

y0 → M.y0 + p.y;
z0 → M.z0 + p.z;
a → M.a; b → M.b; c → M.c]

We will now show how a connection axis relation between two concepts
is formally defined. This is done in definition 8.1.14.

Definition 8.1.14 Let a and b be two concepts, thus a :: concept and b
:: concept. The fact that a is connected to b by means of a connection axis
relation r (thus r : connectionAxisRelation) is formally expressed as follows:

a [connectedTo@b •→ r]

Next we will formally define the initial semantics of a connection axis rela-
tion between two concepts in terms of the position and orientation of the
source concept involved in the relation.

First we will define the predicate connectionAxisPos(A, C, P) which is true
when P is the position of a concept A when it is connected via a connection
axis relation to concept C. This predicate is defined in definition 8.1.15.
Actually, definition 8.1.15 contains the complete process we discussed in the
five steps above. It unites all the predicates defined above.

Definition 8.1.15
connectionAxisPos(A, C, P) ← A : concept ∧ C : concept ∧ P : point ∧

A [connectedTo@C •→ R] ∧
R [sourceAxis → L, targetAxis → M] ∧
projection(T1, A.position, L) ∧
projection(T2, C.position, M) ∧
V1 : vector[a → T1.x, b → T1.y, c → T1.z] ∧
V2 : vector[a → T2.x, b → T2.y, c → T2.z] ∧
isDifference(V, V2, V1) ∧

174

Formalization of the connection axis relation 175

P1 : point[x → A.position.x + V.a,
y → A.position.y + V.b,
z → A.position.z + V.c] ∧

projection(T3, P1, M) ∧
newSourceTP(R, T3, T4) ∧
isDifference(T, T4, T3) ∧
P : point[x → P1.x + T.a,

y → P1.y + T.b,
z → P1.z + T.c]

So the above predicate can check the position of a concept A (the source)
which is connected to a concept C (the target) by means of a connection
axis relation. However, not only the position of A is stipulated by the
connection axis relation, and also the position of the target concept C can
be influenced by this connection relation. This is because there may be
specified a translation of the target translation point. Therefore we define
a predicate TPPos(C, R, P) which is true when P is the position of of a
concept C for C playing the role of target object in some connection axis
relation R. This predicate is defined in definition 8.1.16. Note the predicate
newTargetTP is defined similar to the predicate newSourceTP (see definition
8.1.12).

Definition 8.1.16
TPPos(C, R, P) ← C : concept ∧ R : connectionAxisRelation ∧ P : point ∧

R [targetAxis → L] ∧
projection(T1, C.position, L) ∧
newTargetTP(R, T1, T2) ∧
isDifference (T, T2, T1) ∧
P [x → C.position.x + T.a,

y → C.position.y + T.b,
z → C.position.z + T.c]

Next we will define a predicate connectedPosition(A, C, P) which is true
when P is the position of a concept A which is connected via a connection
relation (not necessarily a connection axis relation) to a concept C. The
predicate works as well when A is the source of a connection relation as when
A is the target. Note that in the first definition we will only take into account
connection axis relations. Later when we formalize the connection point
relation and the connection surface relation we will adapt this definition.
The predicate is formally defined in definition 8.1.17.

175

176 Formalizing Connection Relations

Definition 8.1.17
connectedPosition(A, C, P) ← A : concept ∧ C : concept ∧ P : point ∧

(A [connectedTo@C •→ R] ∧ R : connectionAxisRelation ∧
connectionAxisPos(A, C, P)) ∨
(C [connectedTo@A •→ R] ∧ R : connectionAxisRelation ∧
TPPos(A, R, P))

We now only need to extend the method position which was defined for
concept earlier in definition 7.5.10. Earlier we defined the position method
returning the position of a concept when (1) the concept was a complex
concept having a reference concept, or when (2) the concept was related by
means of a spatial relation to another concept. Now we extend this signature
so that the method also returns the relative position of the concept when
it is connected to another concept by means of a connection relation. The
extended definition is given in definition 8.1.18.

Definition 8.1.18
A[position → P] ← A:concept ∧ C:concept ∧ P:point ∧

(referencedPosition(A, C, P) ∨ (1)
spatialPosition(A, C, P) ∨ (2)
connectedPosition(A, C, P)) (3)

So far we have defined the semantics of the connection axis relation in
terms of positioning. However it is also possible that the external orienta-
tion of the source object changes when it is connected to another concept,
as we have seen in step 2. Therefore we will define the predicate connec-
tionAxisOrient(A, C, E) which is true when E is the external orientation a
concept A needs to have so that it’s connection axis becomes parallel to the
connection axis of a concept C it is connected to. This predicate is defined
in definition 8.1.19.

Definition 8.1.19
connectionAxisOrient(A, C, E) ←

A : concept ∧ C : concept ∧ E : orientation ∧
A [connectedTo@C •→ R] ∧
R : connectionAxisRelation ∧
R [sourceAxis → L, targetAxis → M] ∧
angleBetween(L, M, α) ∧
isOrthogonal(L, M, V) ∧
eulerAngles(β, σ, θ, V, α) ∧

176

Formalization of the connection axis relation 177

A[externalOrientation → EA] ∧
E : orientation[frontAngle → β + EA.frontAngle;

leftAngle → σ + EA.leftAngle;
topAngle → θ + EA.topAngle]

We also define a predicate connectedOrientation(A, C, E) which is true
when E is the external orientation for a concept A which respects the con-
nection relation requirements when A is connected to C by means of some
connection relation. This predicate is defined in definition 8.1.20.

Definition 8.1.20
connectedOrientation(A, C, E) ←

A : concept ∧ C : concept ∧ E : orientation ∧
A [connectedTo@C → R] ∧
R : connectionAxisRelation ∧ connectionAxisOrient(A, C, E)

Now we also need to adapt the method externalOrientation defined for
concepts (see definition 7.6.8). We will extend this definition so that the
external orientation method can also return the external orientation of a
concept A connected to a concept C. The extended definition is given in
definition 8.1.21.

Definition 8.1.21
A[externalOrientation → E] ← A:concept ∧ C: concept ∧

E:orientation ∧
(referencedExtOrientation(A, C, E) ∨
relativeOrientation(A, C, E) ∨
connectedOrientation(A, C, E))

Formalization of the simulation semantics

So far we have formalized the initial semantics of the connection axis rela-
tion. However, we also need to define the meaning of the connection axis
relation for the rest of the simulation, the so called in simulation seman-
tics. In the initial semantics, the source needs to be positioned and ori-
ented according to the targets position and orientation taking into account
the connection axis relation. During the simulation, the difference between
source and target is not relevant anymore. When one of the objects moves
or changes orientation, the other one has to move with it in such a way that
their connection axis relation is respected.

177

178 Formalizing Connection Relations

First we define the predicate caPosConstraint(A, C, P) which is true when
P is the position of A relative to C according to a connection axis relation
between A and C. Note that this definition is very similar to the definition
of the predicate connectionAxisPos (see definition 8.1.15). However, in the
predicate connectionAxisPos we positioned the source along the connection
axis according to the specified translation point. Now for the simulation se-
mantics, the translation points are of zero importance. Therefore instead of
using the distance between both translation points (see step 4) to move the
source towards the target, we will use the distance between both connection
axes.

Therefore we first need to define a predicate lineLineDist(L,M, V). As
we assume lines L and M to be parallel (this is the case because of the
enforced orientation by the connection axis relation), the lineLineDist(L,
M, V) predicate is true when V is a vector from line L perpendicular to line
M. The lineLineDist predicate is defined in definition 8.1.22.

Definition 8.1.22
lineLineDist(L, M, V) ←

L : line ∧ M.line ∧
P : point [x → L.x0; y → L.y0; z → L.z0] ∧
projection(P, Q, M) ∧
V1 : vector [a → L.x0; b → L.y0; c → L.z0] ∧
V2 : vector [a → Q.a; b → Q.b; c → Q.c] ∧
isDifference(V, V2, V1)

Now we can use the lineLineDist predicate to define the caPosCon-
straint(A, C, P) predicate. This is given in definition 8.1.23.

Definition 8.1.23
caPosConstraint(A, C, P) ← A : concept ∧ C : concept ∧ P : point ∧

((A [connectedTo@C → R] ∧
R [sourceAxis → L, targetAxis → M]) ∨

(C [connectedTo@A → R] ∧
R [targetAxis → L, sourceAxis → M])) ∧

AS : line [x0 → A.position.x + L.x0;
y0 → A.position.y + L.y0;
z0 → A.position.z + L.z0;
a → L.a; b → L.b; c → L.c] ∧

AC : line [x0 → C.position.x + M.x0;

178

Formalization of the connection axis relation 179

y0 → C.position.y + M.y0;
z0 → C.position.z + M.z0;
a → M.a; b → M.b; c → M.c] ∧

lineLineDist(AS, AC , V] ∧
P : point[x → A.position.x + V.a,

y → A.position.y + V.b,
z → A.position.z + V.c]

Now using the above predicate we can define the simulation semantics for
the connection axis relation. This is formally defined in definition 8.1.24.

Definition 8.1.24 If two concepts a and b (thus a :: concept and b :: con-
cept) are connected over a connection axis relation R, then for their simu-
lation semantics the position and orientation of a and b must be so that:

caPosConstraint(a, b, Pa) ∧ a[position → Pa]
caPosConstraint(b, a, Pb) ∧ b[position → Pb]

connectionAxisOrient(a, b, Ea) ∧ a[externalOrientation → Ea]
connectionAxisOrient(b, a, Eb) ∧ a[externalOrientation → Eb]

We have now described the complete formalization of the connection axis
relation. In the next section we will formally define the connection point
relation.

179

180 Formalizing Connection Relations

8.2 Formalization of the connection point relation

In this section we will formally define the connection point relation. We
informally introduced this relation in chapter 4. Remember that on both
objects which are connected by means of a connection point relation a con-
nection point is specified. The connection points of these objects need to
be at the same position during the complete lifetime of the connected ob-
jects. We will start by the definition of the connection point relation. The
connection point relation is defined in definition 8.2.1.

Definition 8.2.1
connectionPointRelation[sourceDirection ⇒ string;

sourceDistance ⇒ float;
targetDirection ⇒ string;
targetDistance ⇒ float]

So a connection point relation has four properties. The sourceDirection
and sourceDistance properties together specify the connection point of the
source object relative to the position point of the source. The targetDirection
and targetDistance properties specify the connection point of the target ob-
ject relative to the position of the target. Now we will define how to specify
that two concepts are connected by means of some connection point relation.
This is defined in definition 8.2.2.

Definition 8.2.2 Let a and b be two concepts, thus a :: concept and b
:: concept. The fact that a is connected to b by means of a connection
point relation r (thus r : connectionPointRelation) is formally expressed as
follows:

a [connectedTo@b •→ r]

In the following paragraphs we will formalize the semantics of the con-
nection point relation. Similar to the connection axis relation we also define
two types of semantics. First we will formalize the initial semantics. Next
we will define the simulation semantics of the connection point relation.

Formalization of the initial semantics

We will first define the predicate targetCPPosition(T, R, P) which is true
when P is the connection point for a given target concept T according to a
connection point relation R. This predicate is defined in defintion 8.2.3.

180

Formalization of the connection point relation 181

Definition 8.2.3
targetCPPosition(T, R, P) ←

T : concept ∧ R : connectionPointRelation ∧
R [targetDistance → D] ∧
((R [targetDirection → ”left”] ∧ relativePosition(T, 0, D, 0, P)) ∨

(R [targetDirection → ”right”] ∧ relativePosition(T, 0, -D, 0, P) ∨
(R [targetDirection → ”top”] ∧ relativePosition(T, 0, 0, D, P) ∨
. . .)

Now we will first overload the predicate relativePosition(A, X, Y, Z, P)
(see definition 7.5.3). The overloaded predicate will take one extra argument.
The new predicate is defined in definition 8.2.4. This predicate is true when
P is a point which lies X units in front of, Y units left of and Z units towards
the top of some point Q, according to the orientation of some concept A.

Definition 8.2.4
relativePosition(A, Q, X, Y, Z, P) ←

A : concept ∧ Q : point ∧
iFrontAngle(A, iα) ∧ iLeftAngle(A, iβ) ∧
iTopAngle(A, iσ) ∧ eFrontAngle(A, eα) ∧
eLeftAngle(A, eβ) ∧ eTopAngle(A, eσ) ∧
P1 : point[x → X, y → Y, z → Z] ∧
rotate(P1, iα, iβ, iσ, P2) ∧
rotate(P2, eα, eβ, eσ, P3) ∧
P : point[x → P3.x + Q.x, y → P3.y + Q.y, z → P3.z + Q.z]

Next we define the predicate sourcePositionCP(S, T, R, P). This predicate
is true when P is the position of the source object S which is connected via a
connection point relation R to the target object T. This predicate is defined
in definition 8.2.5.

Definition 8.2.5
sourcePositionCP(S, T, R, P) ←

S : concept ∧ T : concept ∧ R : connectionPointRelation ∧
R [sourceDistance → D] ∧
targetCPPosition(T, R, P1) ∧
((R [sourceDirection → ”left”] ∧ relativePosition(S, P1, 0, -D, 0, P)) ∨

(R [sourceDirection → ”right”] ∧ relativePosition(S, P1, 0, D, 0, P) ∨
(R [sourceDirection → ”top”] ∧ relativePosition(S, P1, 0, 0, -D, P) ∨
. . .)

181

182 Formalizing Connection Relations

So far we have defined some predicates to check the position of the source
concept according to some connection point relation it is involved in. Now
we will extend the definition of the connectedPosition(A, C, P) predicate
which we defined in definition 8.1.17. We will extend this definition so
that the predicate is true when P is the position of a concept A which is
connected via a connection point relation or via a connection axis relation
to some concept C.

Definition 8.2.6
connectedPosition(A, C, P) ← A : concept ∧ C : concept ∧ P : point ∧

(A [connectedTo@C •→ R] ∧ R : connectionPointRelation ∧
sourcePositionCP(A, C, R, P)) ∨

(A [connectedTo@C •→ R] ∧ R : connectionAxisRelation ∧
caPos(A, C, P)) ∨

(C [connectedTo@A •→ R] ∧ R : connectionAxisRelation ∧
TPPos(A, R, P))

Note that by extending the connectedPosition predicate the positionmethod
defined for concepts is now possible of returning the position of a concept
which is connected to another concept by means of a connection point rela-
tion.

Formalization of the simulation semantics

So far we have formally defined the initial semantics of the connection
point relation. However, during the rest of the lifetime of the connected
objects, when one object moves, the other object may also need to change
its position so that the connection point relation is respected. Actually there
is no difference between source and target anymore. Remember that we
only needed a distinction between source and target to know which object
initially should be connected to the other object. We need to define an
extra constraint so that when the source changes its position, the target
eventually moves with it and vice versa. Therefore we define the predicate
cpPosConstraint(A, C, P) which is true when P is the position of some
concept A so that A is positioned in such a way that its connection point
falls together with the connection point of some concept C according to some
connection point relation R between A and C. This predicate is defined in
definition 8.2.7.

Definition 8.2.7

182

Formalization of the connection point relation 183

cpPosConstraint(A, C, P) ←
A : concept ∧ C : concept ∧ P : point ∧
((A [connectedTo@C •→ R] ∧ sourcePositionCP(A, C, R, P)) ∨

(C[connectedTo@A •→ R] ∧
R1 : connectionPointRelation[sourceDistance → R.targetDistance;

targetDistance → R.sourceDistance;
sourceDirection → R.targetDirection;
targetDirection → R.sourceDirection] ∧

sourcePositionCP(A, C, R1, P)))

So when A is the source for the connection point relation we can reuse the
sourcePositionCP predicate to check its position. When A is the target then
we create a new instance of the connection point relation. This new instance
is actually the inverse of the original connection point relation between A
and C. This means that the sourceDirection becomes the targetDirection
and so on. This way we again can reuse the sourcePositionCP predicate
but then with the new created connection point relation. So this predicate
has to be true during the complete lifetime of two concepts connected via a
connection point relation. This is defined in definition 8.2.8.

Definition 8.2.8 Take a and b to be two concepts, thus a :: concept and b
:: concept. When a[connectedTo@b → R] holds for some connection point
relation R (thus R : connectionpointRelation) then the position of a and b
during the complete lifetime of a and b in the virtual environment needs to
be as follows:

cpPosConstraint(a, b, Pa) ∧ a[position → Pa]
cpPosConstraint(b, a, Pb) ∧ b[position → Pb]

Now we have defined the initial semantics as well as the simulation se-
mantics for the connection point relation. In the next section we will for-
malize the connection surface constraint.

183

184 Formalizing Connection Relations

8.3 Formalization of the connection surface rela-
tion

In this section we will formally define the connection surface relation. We
will start with the definition of the connection surface relation.

To specify a connection surface relation between two objects, the designer
has to specify a plane on both objects. These planes have to fall together
in the virtual world at all times. For the formal definition we can use one
of the plane subclasses horizontal, vertical or perpendicular as defined for
the connection axis relation. Next the designer can also specify a translation
point for both objects to define the initial position of the objects along the
plane. A translation point can be translated into two directions. There-
fore a translation point specification is defined as in definition 8.3.1. So a
translation point specification for the connection surface relation has four
properties, two directions indicating the directions of the translation and
two distances indicating the distances for the translation.

Definition 8.3.1
csTranslationPoint [direction1 ⇒ string;

distance1 ⇒ float;
direction2 ⇒ string;
distance2 ⇒ float]

Using the plane subclasses and the csTranslationPoint class we can define
the connection surface relation as in definition 8.3.2.

Definition 8.3.2
connectionSurfaceRelation [sourceSurface ⇒ plane;

targetSurface ⇒ plane;
sourceTP ⇒ csTranslationPoint;
targetTP ⇒ csTranslationPoint]

In definition 8.3.3 we will define how to specify that two concepts are con-
nected by means of some connection surface relation.

Definition 8.3.3 Let a and b be two concepts, thus a :: concept and b
:: concept. The fact that a is connected to b by means of a connection
surface relation r (thus r : connectionSurfaceRelation) is formally expressed
as follows:

184

Formalization of the connection surface relation 185

a [connectedTo@b •→ r]

Now we can formally define the initial and simulation semantics for the con-
nection surface relation.

Formalization of the initial semantics

The initial semantics for the connection surface relation is very similar
to the initial semantics of the connection axis relation. We also need to take
five steps. These steps are described below.

1. Calculate the connection surface on both the source and tar-
get object.

The connection surface of one of the connected objects is specified
by translating and/or rotating one of the default planes (horizontal,
perpendicular or vertical plane). The calculation of the specified plane
is included in the definition of the default planes we defined earlier.

2. Rotate the source object so that the connection surface of the
source objects becomes parallel to the connection surface of
the target object.

Suppose we have the situation as shown in figure 8.10 where the

Figure 8.10: Rotation of the connection planes

connection surfaces of the connected objects are not parallel. Sim-
ilar as we have seen for the connection axis relation, we will rotate
the source object α degrees around the vector N which is parallel to
the intersecting line between two connection surfaces. So therefore we

185

186 Formalizing Connection Relations

need to calculate the angle between the connection surfaces.
The angle between two planes (or surfaces) is equal to 180 - the an-
gle between the normal vectors of the planes. Suppose the connection
surface for the source object has the normal vector n1 and the con-
nection surface for the target object has the normal vector n2, then
cosα = n1 · n2. Therefore, the angle between the planes equals 180
- α. The vector around which we need to rotate will be parallel to
the vector which stand orthogonal on both n1and n2. Thus the vector
around which we need to rotate is n1 × n2.

3. Calculate the orthogonal projections of the position of the
objects onto their respective connection surfaces.

Similar to the connection axis relation where we calculated the orthog-
onal projection of the source and target position onto their respective
connection axis to get the translation points, also here we need to cal-
culate the translation points. However, now we need the orthogonal
projections of the source and the target objects onto their respective
connection surfaces.

4. Translate the source so that the connection surface of the
source falls together with the connection surface of the tar-
get.

So far we know that the connection surfaces are parallel to each other.
We also know the initial translation points of both objects to connect.
Next, we need to make sure that the connection surfaces fall together.
Similar to the connection axis relation, we will calculate the vector be-
tween the translation points. Then we will translate the source object
along this vector. This way, the connected objects are positioned in
such a way that both their connection surfaces and their translation
points fall together.

5. Translate the source and the target inside the plane to re-
spect the translation point requirements.

In the last step we need to calculate the translation of the source and
target according to the specification of the translation points. Also
this is very similar to the connection axis relation. The only difference
is that now the translation point of a connected object can be trans-
lated in two directions instead of one direction as in the case of the

186

Formalization of the connection surface relation 187

connection axis relation.

So far we have given the mathematical description of the initial semantics
for the connection surface relation. We will now give the F-logic formaliza-
tion for this relation. Note that we can reuse most of the predicates defined
for the connection axis relation.

For the first and second step we don’t need to define additional predicates.
These steps can be performed by predicates already defined for the con-
nection axis relation. However, for the third step we need to define some
new predicates. First we will define the predicate planeParameters(S, N, P)
which is true when N is the normal vector for a given plane S (which can be
an instance of horizontal, perpendicular or vertical) and P is a point on
that plane. This predicate is defined in definition 8.3.4.

Definition 8.3.4
planeParameters(S, N, P) ← S : plane ∧

((S : horizontal ∧
S [frontToBackAngle → α;

leftToRightAngle → β] ∧
V : vector [a → 0; b → 0; c → 1] ∧
rotate(V, α, β, 0, N)) ∨

(S : vertical ∧
S [frontToBackAngle → α;

topToBottomAngle → β] ∧
V : vector [a → 0; b → 1; c → 0] ∧
rotate(V, α, 0, β, N)) ∨

(S : perpendicular ∧
S [leftToRightAngle → α;

topToBottomAngle → β] ∧
V : vector [a → 1; b → 0; c → 0] ∧
rotate(V, 0, α, β, N))) ∧

P : point [x → S.x0; y → S.y0; z → S.z0]

Next we will define the predicate planeProjection(P, S, Q) which is true
when a point P is the orthogonal projection of a point Q on a plane S. This
predicate is defined in definition 8.3.5.

Definition 8.3.5
planeProjection(P, S, Q) ← S : plane ∧ Q : point ∧

187

188 Formalizing Connection Relations

planeParameters(S, N, P0) ∧
L : line [x0 → P0.x; y0 → P0.y; z0 → P0.z;

a → N.a; b → N.b; c → N.c;] ∧
projection(P1, Q, L) ∧
V : vector[a → P1.x - P0.x; b → P1.y - P0.y; c → P1.z - P0.z] ∧
P : point [x → Q.x - V.a; y → Q.y - V.b; z → Q.z - V.c]

So far we have defined the necessary predicates for step 3. For the 4th step
we also can reuse existing predicates defined for the connection axis relation.
For step 5 we need to define a number of predicates defining the translation
point semantics for translation points on connection surfaces. The main
difference from translation point on a connection axis is that for connection
surfaces the translation point may be translated in two directions while for
a connection axis it may be translated in only one direction.

Take for example the horizontal plane. This plane lies in the front-back and
left-right directions while the top-bottom direction is the normal vector for
the horizontal plane. Now suppose the horizontal plane has been rotated.
This means that the original normal vector (which is the vector (0, 0, 1)) has
been rotated in the same way as the plane is rotated. We will now introduce
a predicate planeRF(S, Vx, Vy, Vz) which is true when the vectors Vx, Vy

and Vz are the resulting vectors from rotating the vectors (1, 0, 0), (0, 1, 0)
and (0, 0, 1) respectively in the same way as the plane S has been rotated.
With other words, Vx indicates the front-to-back direction along the plane
S, Vy the left-to-right direction along the plane and Vz the top-to-bottom
direction along the plane. Note that for each plane subclass, one of these
vectors will be the normal vector. This predicate is defined in definition
8.3.6.

Definition 8.3.6
planeRF(S, Vx, Vy, Vz) ←

((S : horzontal ∧
S [frontToBackAngle → α;

leftToRightAngle → β] ∧
θ is 0) ∨

(S : vertical ∧
S [frontToBackAngle → α;

topToBottomAngle → θ] ∧
β is 0) ∨

(S : perpendicular ∧

188

Formalization of the connection surface relation 189

S [leftToRightAngle → β;
topToBottomAngle → θ] ∧

α is 0)) ∧
X : point [x → 1; y → 0; z → 0] ∧
Y : point [x → 0; y → 1; z → 0] ∧
Z : point [x → 0; y → 0; z → 1] ∧
rotate(X, α, β, θ, Px) ∧
rotate(Y, α, β, θ, Py) ∧
rotate(Z, α, β, θ, Pz) ∧
Vx : vector [a → Px.x; b → Px.y; c → Px.z] ∧
Vy : vector [a → Py.x; b → Py.y; c → Py.z] ∧
Vz : vector [a → Pz.x; b → Pz.y; c → Pz.z] ∧

Using the above predicate we can now define the predicate newTP(U, S, T,
P) which is true when P is the result of translating a point U as described
by the csTranslationPoint T for a connection surface S. This predicate is
defined in definition 8.3.7.

Definition 8.3.7
newTP(U, S, T, P) ← U:point ∧ S : plane ∧

T : csTranslationPoint ∧
planeRF(S, X, Y, Z) ∧
((T[direction1 → ”left”] ∧

Vleft : vector [a → T.distance1 * Y.a;
b → T.distance1 * Y.b;
c → T.distance1 * Y.c]) ∨

... ∨
(T[direction2 → ”right”] ∧

Vleft : vector [a → -T.distance2 * Y.a;
b → -T.distance2 * Y.b;
c → -T.distance2 * Y.c])) ∧

P : point [x → U.x + Vleft.a + Vfront.a + Vtop.a;
y → U.y + Vleft.b + Vfront.b + Vtop.b;
z → U.z + Vleft.c + Vfront.c + Vtop.c]

Finally we can define the predicate connectionSurfacePos(A, C, P) which
is true when P is the position for a concept A connected over a connection
surface relation to a concept C. This predicate is defined in definition 8.3.8.

189

190 Formalizing Connection Relations

Definition 8.3.8
connectionSurfacePos(A, C, P) ← A : concept ∧ C : concept ∧

A [connectedTo@C •→ R] ∧ R : connectionSurfaceRelation ∧
R [sourceSurface → S; targetSurface → T] ∧
planeProjection(P1, S, A.position) ∧
planeProjection(P2, T, C.position) ∧
V1 : vector [a → P1.x; b → P1.y; c → P1.z] ∧
V2 : vector [a → P2.x; b → P2.y; c → P2.z] ∧
isDifference(V, V2, V1) ∧
P3 : point [x → A.position.x + V.a;

y → A.position.y + V.b;
z → A.position.z + V.c] ∧

newTP(P3, T, R.sourceTP, P)

Note that the above predicate only checks the position for an object con-
nected to some other object by means of a connection surface relation. On
the other hand, we also need to verify the orientation of the connected ob-
jects. As we have seen in step 2, the orientation of the source object needs
to be in such a way that its connection surface is parallel to the connection
surface for the target object. Therefore we will define the predicate connec-
tionSurfaceOrient(A, C, E) which is true when E is the external orientation
for some concept A connected to a concept C by means of a connection
surface relation. This predicate is defined in definition 8.3.9.

Definition 8.3.9
connectionSurfaceOrient(A, C, E) ← A : concept ∧ C : concept ∧ E : orientation ∧

A [connectedTo@C •→ R] ∧ R : connectionSurfaceRelation ∧
R [sourceSurface → S; targetSurface → T] ∧
planeParameters(S, Ns, Ps) ∧
planeParameters(T, Nt, Pt) ∧
As : line [x0 → Ps.x; y0 → Ps.y; z0 → Ps.z;

a → Ns.a; b → Ns.b; c → Ns.c] ∧
At : line [x0 → Pt.x; y0 → Pt.y; z0 → Pt.z;

a → Nt.a; b → Nt.b; c → Nt.c] ∧
angleBetween(As, At, γ) ∧
α is 180 - γ ∧
isOrthogonal(As, At, V) ∧
eulerAngles(β, σ, θ, V, α) ∧
A[externalOrientation → EA] ∧
E : orientation[frontAngle → β + EA.frontAngle;

190

Formalization of the connection surface relation 191

leftAngle → σ + EA.leftAngle;
topAngle → θ + EA.topAngle]

The only thing which lefts us to do is to extend the definitions of the con-
nectedPosition(A, C, P) and the connectedOrientation(A, C, E) predicates.
These predicates were already defined and extended to capture the initial
semantics of the connection axis relation and connection point relation in
respectively the position and externalOrientation properties for concepts.
In definition 8.3.10 we give the extended definition for the connectedPosition
predicate while in definition 8.3.11 we give the extended definition for the
connectedOrientation predicate. Note that the connectedPosition predicate
also takes a possible translation of the target object into account according
to the target translation point specification.

Definition 8.3.10
connectedPosition(A, C, P) ← A : concept ∧ C : concept ∧ P : point ∧

(A [connectedTo@C •→ R] ∧ R : connectionPointRelation ∧
sourcePositionCP(A, C, R, P)) ∨

(A [connectedTo@C •→ R] ∧ R : connectionAxisRelation ∧
caPos(A, C, P)) ∨

(C [connectedTo@A •→ R] ∧ R : connectionAxisRelation ∧
TPPos(A, R, P))

(A [connectedTo@C •→ R] ∧ R : connectionSurfaceRelation ∧
connectedSurfacePos(A, C, P)) ∨

(C [connectedTo@A •→ R] ∧ R: connectionSurfaceRelation ∧
newTP(A.position, R.targetPlane, R.targetTP, P))

Definition 8.3.11
connectedOrientation(A, C, E) ←

A : concept ∧ C : concept ∧ E : orientation ∧
A [connectedTo@C •→ R] ∧
((R : connectionAxisRelation ∧ connectionAxisOrient(A, C, E)) ∨

(R : connectionSurfaceRelation ∧ connectionSurfaceOrient(A, C, E)))

Formalization of the simulation semantics

Also the simulation semantics for the connection surface relation are
very similar to the simulation semantics for the connection axis relation.
Where for the initial semantics, the source object needs to be positioned

191

192 Formalizing Connection Relations

and oriented in such a way that the connection surface relation is respected,
the simulation semantics needs to enforce that whenever one of the objects
moves or changes its orientation, the other one may have to move or re-orient
in order to respect the connection surface relation.

This will happen exactly in the same way as we have described in the first
four steps. The fifth step is not needed since the translation points are only of
importance to the initial position of the connected objects along the surface.
However, in step 4 we translate the source so that its connection surface falls
together with the connection surface of the target. This translation is equal
to the vector from the source translation point to the target translation
point. Since for the simulation semantics we don’t have translation points,
the translation of the source is equal to the distance between both connection
surfaces. Therefore we will define the predicate planePlaneDist(S, T, D)
which is true when D is the distance between two parallel planes S and T.
This predicate is defined in definition 8.3.12.

Definition 8.3.12
planePlaneDist(S, T, D) ←

S : plane ∧ T : plane ∧
planeParameters(T, N, P) ∧
D is |N.a∗(S.x0−T.x0)+N.b∗(S.y0−T.y0)+N.c∗(S.z0−T.z0)|√

N.a2+N.b2+N.c2

Next we define the predicate csPosConstraint(A, C, P) which is true when
P is the position of a concept A connected to a concept C by means of
a connection surface relation. The difference between this predicate and
the connectionSurfacePos predicate (see definition 8.3.8) is that concept A
is translated over the distance between both connection surfaces instead
of over the distance between the translation points. The csPosConstraint
predicate is defined in definition 8.3.13.

Definition 8.3.13
csPosConstraint(A, C, P) ← A : concept ∧ C : concept ∧

((A [connectedTo@C •→ R] ∧
R [sourceSurface → S; targetSurface → T]) ∨

(C [connectedTo@A •→ R] ∧
R [sourceSurface → T; targetSurface → S]))) ∧

R : connectionSurfaceRelation ∧
planeParameters(T, N, P) ∧
U is

√
N.a2 +N.b2 +N.c2 ∧

planePlaneDist(S, T, D) ∧

192

Formalization of the connection surface relation 193

V : vector [a → N.a∗D
U ;

b → N.b∗D
U ;

c → N.c∗D
U] ∧

P : point [x → A.position.x + V.a;
y → A.position.y + V.b;
z → A.position.z + V.c] ∧

Finally we can define the simulation semantics by using the above defined
predicates. The simulation semantics for the connection surface relation is
defined in definition 8.3.14.

Definition 8.3.14 If two concepts a and b (thus a :: concept and b :: con-
cept) are connected via a connection surface relation r (thus r : connec-
tionSurfaceRelation), then for their simulation semantics the position and
orientation of a and b must be as follows at all times:

csPosConstraint(a, b, Pa) ∧ a[position → Pa]
csPosConstraint(b, a, Pb) ∧ b[position → Pb]

connectionSurfaceOrient(a, b, Ea) ∧ a[externalOrientation → Ea]
connectionSurfaceOrient(b, a, Eb) ∧ b[externalOrientation → Eb]

193

194 Formalizing Connection Relations

194

Chapter 9

Formalizing Constraints

9.1 Slider constraint

In this section we will formally define the slider constraint. As we have
seen earlier, the slider constraint restricts two objects connected over a con-
nection axis relation in such a way that they can only move over a certain
distance along the axis.

First we will give the formal definition of the slider constraint. This is
defined in definition 9.1.1. A slider has a property which keeps track of
the connection axis relation the slider is defined on. It also has a property
onConcept who’s value is the concept on which the constraint is defined.
Next, it has a direction property of which the value indicates one of the
directions in which the object can move. Note that in the informal specifi-
cation there are two directions (used for readability) but since the directions
need to be opposite we don’t need to keep them both inside the slider ob-
ject. Finally a slider has the properties distance1 and distance2. The value
of distance1 indicates the distance the object may move in the direction of
property direction. Distance2 indicates how far the object may move in the
other (opposite) direction. Note that distance1 and distance2 are also de-
fined as inheritable properties with value ∞. This is because we informally
defined that when the user does not specify limits for the slider constraint,
then the constrained objects may move infinitely along the connection axis.

Definition 9.1.1
slider [CARelation ⇒ connectionAxisRelation;

onConcept ⇒ concept;
distance1 ⇒ float;

195

196 Formalizing Constraints

distance1 •→ ∞;
distance2 ⇒ float;
distance2 •→ ∞;
direction ⇒ string]

Next we will define the semantics of the slider constraint. Note that
constraints do not have an initial semantics; and therefore we only need to
define the simulation semantics.

Formalization of the simulation semantics

First we will define a predicate moveAxis(A, R, L) which is true when
L is a line parallel with the connection axis going through the position of a
concept A, when A is involved a connection axis relation R either as source
or as target object. This predicate is defined in definition 9.1.2.

Definition 9.1.2
moveAxis(A, R, L) ← A : concept ∧

R : connectionAxisRelation ∧ L : line ∧
R [targetAxis → M] ∧
L : line [x0 → A.position.x;

y0 → A.position.y;
z0 → A.position.z;
a → M.a; b → M.b; c → M.c]

When an object involved in a connection axis relation is constrained via
a slider constraint it is only allowed to move over its move axis (which is
the axis through the position of the object parallel to the connection axis)
over a certain distance. This way we can define the slider constraint using a
predicate sliderConstraint(A, S) which needs to be true during the complete
lifetime of the constrained object.

Definition 9.1.3
sliderConstraint(A, S) ← A : concept ∧

(A[connectedTo@B •→ R] ∨ B[connectedTo@A •→ R]) ∧
moveAxis(A, R, L) ∧
projection(P, A.position, L) ∧
parameterValue(L, P, T) ∧
projection(Q, B.position, L) ∧
parameterValue(L, Q, U) ∧

196

Hinge constraint 197

((S [direction → ”left”] ∧ (1)
((L.b > 0 ∧ U-S.distance2 < T < U + S.distance1) ∨

(L.b < 0 ∧ U-S.distance1 < T < U+S.distance2))) ∨
(S [direction → ”top”] ∧ (2)

((L.c > 0 ∧ U-S.distance2 < T < U + S.distance1) ∨
(L.c < 0 ∧ U-S.distance1 < T < U+S.distance2))) ∨

. . .)

Finally, definition 9.1.4 formally defines the simulation semantics for the
slider constraint.

Definition 9.1.4 Take a and b to be two concepts, thus a :: concept and b ::
concept, connected via a connection axis relation r. Thus a[connectedTo@b
•→ r]. Also take the following slider constraint defined on the connection
axis relation r for the concept a (where ”dir” is one of the known directions):

s : slider [CARelation → r,
onConcept → a,
distance1 → D,
distance2 → E,
direction → ”dir”]

Then the above slider constraint is respected when the following predicates
are true during the complete lifetime of concept a:

sliderConstraint(a, S) sliderConstraint(b, S)

9.2 Hinge constraint

In this section we will formally define the hinge constraint. Remember that
an object connected via a connection axis relation can be constrained by
the hinge constraint in such a way that the object is only allowed to move
a certain angle around the connection axis. First we will give the definition
of the hinge constraint in definition 9.2.1.

Definition 9.2.1
hinge [CARelation ⇒ connectionAxisRelation;

onConcept ⇒ concept;
viewpoint ⇒ string;
cw ⇒ float;

197

198 Formalizing Constraints

cw •→ ∞;
ccw ⇒ float;
ccw •→ ∞]

So the hinge constraint has a property which contains the connection axis
on which the hinge is defined and a property referring to the concept which
needs to be constrained. It also has a viewpoint property indicating the
viewpoint of the designer onto the connection axis. Next, the hinge con-
straint also has a cw and ccw property which contains the angle that the
object may rotate around the connection axis in respectively the clockwise
and counterclockwise directions. Note that cw and ccw are also inheritable
with value ∞. Now we can define the simulation semantics for the slider
constraint. Note that similar to the slider constraint we do not have initial
semantics.

Formalization of the simulation semantics

Suppose that for a connection axis relation the source concept is con-
strained by means of a hinge constraint. Take L as the connection axis and
p as the initial position of the source concept (see figure 9.1). The specified
hinge constraint will only allow the source concept to be positioned on the
circle shown in figure 9.1. Take c to be the center of this circle. Note that we
can calculate c as the orthogonal projection of the position p of the source
concept onto the connection axis L.

Figure 9.1: Semantics of the hinge constraint

So we have the following information:

• p is the position of the constrained object.

• L is the connection axis on which the hinge constraint is defined.

198

Hinge constraint 199

• C is the orthogonal projection of p on L. This means that c is the
center of the circle on which the constrained object is allowed to move.

• N is a vector parallel to the connection axis L.

• U is a unit vector pointing from the center c towards the point p.

• R is the radius of the circle on which the constrained object is allowed
to move. Thus R is the distance from c to p.

• V is the vector N × U .

Using the above information we can now give the parametic equation of the
circle on which the object is allowed to move. This parametric equation is
as follows:

(x, y, z) = C +R cos(t)U +R sin(t)V

Now suppose that the constrained objects are allowed to rotate α degrees
clockwise and β degrees counterclockwise around the connection axis. Now,
depending on the viewpoint we can determine the possible values for the pa-
rameter t in the above equation. When the viewpoint (which is specified by
the designer for the hinge constraint) is left, top or front, then −α ≤ t ≤ β.
When the viewpoint is right, bottom or back, then −β ≤ t ≤ α.

Now we formalize the above theory by defining a predicate which is true
when the position of the constrained object lies on the circle as described
above. The simulation semantics is then defined by the fact that the de-
fined predicate must be true during the complete lifetime of the constrained
object.
We start with defining a predicate isElement(P, C, T) which is true when
P is a point that lies on the circle C for a certain parameter value T in the
equation of C. This predicate is defined in definition 9.2.2.

Definition 9.2.2
isElement(P, C, T) ← P : point ∧ C : circle ∧

P [x → C.c.x + r cos(T) C.u.a + r sin(T) C.v.a;
y → C.c.y + r cos(T) C.u.b + r sin(T) C.v.b;
z → C.c.z + r cos(T) C.u.c + r sin(T) C.v.c]

Next we will define the predicate moveCircle(H, C) which is true when C
is the cirlce on which an object constrained by the hinge constraint H is
allowed to move. This predicate is defined in definition 9.2.3.

199

200 Formalizing Constraints

Definition 9.2.3
moveCircle(H, C) ← H : hinge ∧ C : circle ∧

H [CARelation → R] ∧
A [connectedTo@B •→ R] ∧
R [targetAxis → M] ∧
projection(C0, H.onConcept.position, M) ∧
N : vector [a → M.a; b → M.b; c → M.c]
isDifference(U, H.onConcept.position, C0) ∧
R is

√
U.a2 + U.b2 + U.c2 ∧

U1 : vector [a→ U.a
R ; b→ U.b

R ; c→ U.c
R] ∧

V : vector [a → N.b U.c - N.c U.b;
b → N.c U.a - N.a U.c;
c → N.a U.b - N.b U.a] ∧

C : circle [c → C0; r → R; u → U1; v → V]

The last predicate we will define is the predicate hingeConstraint(H) which is
true when all conditions for a hinge constraint H are satisfied. This predicate
is defined in definition 9.2.4.

Definition 9.2.4
hingeConstraint(H) ← H : hinge ∧

H [onConcept → A ; cw → α; ccw → β] ∧
moveCircle(H, C) ∧
isElement(A.position, C, T) ∧
(((H[viewpoint → ”left”] ∨

H[viewpoint → ”top”] ∨
H[viewpoint → ”front”]) ∧

(-α ≤ T ≤ β)) ∨
((H[viewpoint → ”right”] ∨

H[viewpoint → ”bottom”] ∨
H[viewpoint → ”back”]) ∧

(-β ≤ T ≤ α)))

Finally we can define the simulation semantics for the hinge constraint. This
is done in definition 9.2.5.

Definition 9.2.5 Take a and b to be two concepts, thus a :: concept and b
:: concept, connected by means of a connection axis relation r. Also take a
to be constrained by means of the hinge constraint h defined as follows:

200

Joystick constraint 201

h [CARelation → r;
onConcept → a]

Then the simulation semantics for the hinge constraint means that the fol-
lowing predicate must always be true during the complete lifetime of object a:

hingeConstraint(h)

The above definition completes the formal definition for the simulation
semantics of the hinge constraint.

9.3 Joystick constraint

In this section we will formally define the joystick constraint. Remember
that the joystick constraint allows two objects connected by means of a
connection point relation to rotate over a certain angle around two perpen-
dicular axes through the connection point. First we will give the definition
of the joystick constraint. The joystick constraint is formally defined in
definition 9.3.1.

Definition 9.3.1
joystick [CPRelation ⇒ connectionPointRelation;

onConcept ⇒ concept;
axis1 ⇒ axis;
axis2 ⇒ axis;
angle1 ⇒ float;
angle2 ⇒ float;
rotationAxis ⇒ string;
rotationAngle ⇒ float]

So a joystick constraint has the following properties:

• CPRelation: contains the connection point relation on which the
joystick constraint is defined.

• onConcept: contains the concept (source or target of the connection
point relation) on which the joystick constraint is defined.

• axis1 and angle1: describes one of both perpendicular axes around
which the object is allowed to rotate angle1 degrees in the clockwise
as well as the counterclockwise directions.

201

202 Formalizing Constraints

• axis2, angle2: describes the other of both perpendicular axes around
which the object is allowed to rotate angle2 degrees in the clockwise
as well as the counterclockwise directions.

• rotationAxis, rotationAngle: specifies a possible rotation for the
perpendicular axes axis1 and axis2. As the designer can use three
default axes (left-to-right, top-to-bottom and front-to-back), a rotation
of these default axes offers more possibilities, as we have discussed in
chapter 4.

So an object constrained by means of a joystick constraint (see figure 9.2(a))
is actually allowed to move as if it was inside a cone (illustrated in figure
9.2(b)). So we will need to calculate the equation of the elliptical cone for
a specific joystick constraint. Next, we need to define a predicate that is
true when a point P falls inside an elliptical cone C. Then the simulation
semantics for the joystick constraint will be defined by requiring that the
position of the constrained object falls inside the cone corresponding to the
joystick constraint.

Figure 9.2: Example of a joystick constraint

Take the cone as shown in figure 9.3. This cone opens towards the z-direction
and has its vertex at (x0, y0, z0). All points which fall inside or on the cone
are described by the following parametric equations (for θ ∈ [0, 2π[and u ∈
[0, h]):

x = x0 + (a− s)h−u
h cos θ 0 ≤ s ≤ a

y = y0 + (b− t)h−u
h sin θ 0 ≤ t ≤ b

z = z0 + h− u

202

Joystick constraint 203

Figure 9.3: Example of a cone opening towards the z-direction

So using the above equation we can check whether a point falls inside or on
a given elliptical cone. Next we need to find a way to calculate the cone
corresponding to a joystick constraint. By the specification of the joystick
constraint we have the following information: the connection point p0 =
(x0, y0, z0) and the position p1 = (x1, y1, z1)of the constrained object. Thus
in order to have the equation of the corresponding cone we need to calculate
the height h of the cone, the semiminor axis a and the semimajor axis b.

Figure 9.4: Calculation of the cone

We can calculate the height of the cone by calculating the distance from the
point p0 to p1. This will be the maximum height a point inside the cone will
be able to take. Next we need to calculate the semimajor axis b. Take L to
be the line through the point (0, 0, h) parallel to the y-axis. Next calculate
the vector v as being the vector (0, 0, 1) rotated around axis1 of the hinge
constraint (in fig. 9.4 this is the x-axis) with angle1 degrees (which is α in
our example). Then take M to be the line throught p0 parallel to the vector
v. If we now take the intersection of L and M and substract the point (0, 0,

203

204 Formalizing Constraints

h) from it we get the semimajor axis b. It is clear thet the semiminor axis
a can be calculated similarly.

Now we will formally define this in F-logic. Inside the formal definition
we will also take into account a possible rotation of the perpendicular axes
of the hinge constraint (which is a simple orientation) and we will also take
into account cones which open towards the x-direction or the y-direction.

Formalization of the simulation semantics

First we will define three subclasses of the class cone (see chapter 6).
We will first start with the class zCone which represents a cone that opens
towards the Z-direction. This class is defined in definition 9.3.2.

Definition 9.3.2
zCone [xyz@s, t, u, θ ⇒ point]

zCone :: cone

where xyz is a method defined as follows:

C[xyz@s, t, u, θ → P] ← C : cone ∧
C [vertex → Q; height → h;

semiminor → a; semimajor → b;
rotationAxis → V;
rotationAngle → α] ∧

P1 : point [x → Q.x + (a-s)h−u
h cosθ; (1)

y → Q.y + (a-s)h−u
h sinθ; (2)

z → Q.z + h - u] ∧ (3)
eulerAngles(β, σ, γ, V, α) ∧
rotate(P1, β, σ, γ, P)

So the method xyz returns a point inside or on the cone for the given cone
parameters s, t, u and θ.

Similar we can define the classes xCone and yCone as subclasses of the
class cone. These classes will represent respectively cones which open to-
wards the X-direction or towards the Y-direction. The definition of the xyz
method will be similar to the one we have given in definition 9.3.2. The
only difference will be in the lines (1)-(3). For example, for the xCone, the

204

Joystick constraint 205

x property of p1 will be equal to Q.x + h − u while the z property will be
equal to Q.z + (a− s)h−u

h cosθ.

Next we will introduce the predicate constraintZCone(J, H, P, C). This
predicate is true when C is a zCone with height H and vertex P correspond-
ing with the joystick constraint J. This predicate is defined in definition
9.3.3.

Definition 9.3.3
constraintZCone(J, H, P, C) ← J : joystick ∧ P : point ∧

Q : point [x → 0; y → 0; z → 1] ∧
((J [axis1 → ”frontToBack”] ∧

rotate(Q, J.angle1
2 , 0, 0, V1) ∧

rotate(Q, 0, J.angle2
2 , 0, V2)) ∨

(J[axis1 → ”leftToRight”] ∧
rotate(Q, J.angle2

2 , 0, 0, V1) ∧
rotate(Q, 0, J.angle1

2 , 0, V2))) ∧
T1 is H

V1.c ∧
X1 is T1 * V1.a ∧ Y1 is T1 * V1.b ∧
T2 is H

V2.c ∧
X2 is T2 * V2.a ∧ Y2 is T2 * V2.b ∧
B is

√
X2

1 + Y 2
1 ∧

A is
√
X2

2 + Y 2
2 ∧

C : zCone [vertex → P;
height → H;
semiminor → A;
semimajor → B;
rotationAxis → J.rotationAxis;
rotationAngle → J.rotationAngle]

Similar, we can define predicates which are true when C is an xCone or a
yCone with height H and vertex P corresponding with the joystick constraint
J. These predicates are named constraintXCone and constraintZCone. Now
we can define the predicate constraintCone(J, C) which is true when C is
the cone corresponding to a joystick constraint J. This predicate is defined
in definition 9.3.4.

Definition 9.3.4
constraintCone(J, C) ← J : joystick ∧

A[connectedTo@B → J.CPRelation] ∧

205

206 Formalizing Constraints

targetCPPosition(B, J.CPRelation, P0) ∧
J [onConcept → C[position → P1]] ∧
H is

√
(P1.x− P0.x)2 + (P1.y − P0.y)2 + (P1.z − P0.z)2

(((J [axis1 → ”frontToBack”] ∧ J [axis2 → ”leftToRight”]) ∨
(J [axis1 → ”leftToRight”] ∧ J[axis2 → ”frontToBack]) ∧
constraintZCone(J, H, P0, C)) ∨

((J [axis1 → ”frontToBack”] ∧ J [axis2 → ”topToBottom”]) ∨
(J [axis1 → ”topToBottom”] ∧ J[axis2 → ”frontToBack]) ∧
constraintYCone(J, H, P0, C)) ∨

((J [axis1 → ”leftToRight”] ∧ J [axis2 → ”topToBottom”]) ∨
(J [axis1 → ”topToBottom”] ∧ J[axis2 → ”leftToRight]) ∧
constraintZCone(J, H, P0, C)))

Finally using the above predicates we can now define a predicate joystick-
Constraint(J) which is true when there exist values for the parameters s, t,
u and σ in the equation of the cone corresponding to the joystick constraint
such that the position of the onConcept property is the value of the xyz
property for the cone. With other words, this predicate is true when the
position of the onConcept property value falls inside or on the cone corre-
sponding to the joystick constraint. This predicate is defined in definition
9.3.5.

Definition 9.3.5
joystickconstraint(J) ← J : joystick ∧

J [onConcept → A] ∧
constraintCone(J, C) ∧
σ ≥ 0 ∧ σ ≤ 2Π ∧
u ≥ 0 ∧ u ≤ C.height ∧
s ≥ 0 ∧ s ≤ C.semiminor ∧
t ≥ 0 ∧ t ≤ C.semimajor ∧
C[xyz@s, t, u, σ → A.position]

Using the above predicate we will now define the simulation semantics for
the joystick constraint. This is defined in definition 9.3.6.

Definition 9.3.6 Take a and b to be two concepts, thus a :: concept and b
:: concept, connected by means of a connection point relation r. Also take a
to be constrained by means of the joystick constraint j defined as follows:

j [CPRelation •→ r;
onConcept → a]

206

Fixed Relative Position Constraint 207

Then the simulation semantics for the joystick constraint means that the fol-
lowing predicate must always be true during the complete lifetime of object a:

joystickConstraint(j)

9.4 Fixed Relative Position Constraint

Remember that the fixed relative position constraint enforces two objects to
keep the same position relative to each other during their complete lifetime.
This constraint can be specified on top of a spatial relation or it can hold
between two objects for which no spatial relation has been specified. First
we will formalize the fixed relative position constraint when specified on top
of an explicit spatial relation between two objects. Next we will give the
formalization for a fixed relative position constraint between two objects
that have no explicit spatial relation in common.

In case of an explicit spatial relation

The fixed relative position constraint is defined in definition 9.4.1. It has one
attribute, namely onSpatialRel representing the spatial relation on which the
fixed relative position constraint is defined.

Definition 9.4.1
fixedRelativePositionSR [onSpatialRel ⇒ spatialRelation]

Suppose that between the two objects a and b a spatial relation has been
defined. Let’s say a is positioned left of b with a distance d. As we have
seen before, this spatial relation is formalized on the initial semantics level
(see chapter 7). If the designer has specified a fixed relative position con-
straint on top of the spatial relation between a and b then this means that
this spatial relation not only holds on the initial semantics level but also on
the simulation semantics level. In order to respect the fixed relative position
constraint we need to add the following fact in our simulation semantics level:

a[position→ P]← leftOfPos(b, d, P)

Actually, the above fact overwrites the position method for instance a. It
means that the position of a must be left of b with distance d. It is easy to
see that the formalization of the fixed relative position constraint on top of
all other spatial relations is similar.

207

208 Formalizing Constraints

In case there is no spatial relation involved

When there is no spatial relation involved, the fixed relative position con-
straint is defined as in definition 9.4.2. It has two attributes, namely concept1
and concept2 representing the concepts between which the fixed relative po-
sition constraint is defined.

Definition 9.4.2
fixedRelativePosition [concept1 ⇒ concept;

concept2 ⇒ concept]

Suppose object a is defined to have a fixed relative position according to
an object b. This means that a needs to keep the same relative position to b
according to the initial situation. Therefore from the initial semantics level
we need to calculate the distance from a to b in all possible directions (left-
right, top-bottom and front-right). These distances need to be maintained
during the rest of the life cycle of a and b. Suppose we define the distances
in all directions between a and b from the initial semantics level as follows:

xDiff is a.position.x− b.position.x
yDiff is a.position.y − b.position.y
zDiff is a.position.z − b.position.z

Then the fixed relative position constraint between a and b can be formal-
ized in the simulation semantics level by adding the following deductive rule:

a[position→ P]← RelativePosition(b, xDiff, yDiff, zDiff, P)

Remember from chapter 7 that the predicate RelativePosition (B, X, Y, Z,
P) is true when P is the position that lies X units in front of, Y units left of
and Z units on top of some object B.

9.5 Fixed Relative Orientation Constraint

The fixed relative orientation constraint freezes one object’s orientation rel-
ative to another object’s orientation. This constraint can be specified on
top of an orientation relation or it can hold between two objects for which
no orientation relation has been specified.

208

Fixed Relative Orientation Constraint 209

In case of an explicit orientation relation

The fixed relative orientation constraint is defined in definition 9.5.1. It has
one attribute, namely onOrientationRel representing the relative orientation
relation on which the fixed relative position orientation is defined.

Definition 9.5.1
fixedRelativeOrientationOR [onOrientationRel ⇒ relativeOrientationRelation]

Suppose that between the two objects a and b an orientation relation has
been defined. Let’s say a is oriented with its left side towards the left side of
b. This orientation relation is formalized on the initial semantics level (see
chapter 7). If the designer specifies a fixed relative orientation constraint
on top of the orientation relation between a and b then this means that
this orientation relation not only holds on the initial semantics level but
also on the simulation semantics level. In order to respect the fixed relative
orientation constraint on top of the specified orientation relation we need to
add the orientation relation to our simulation semantics level as follows:

a[oriented@b•→ r]∧
r : relativeOrientationRelation[sourceFace→ ”front”;

targetFace→ ”front”]

In case there is no orientation relation involved

When there is no orientation relation involved, the fixed relative orientation
constraint is defined as in definition 9.5.2. It has two attributes, namely
concept1 and concept2 representing the concepts between which the fixed
relative orientation constraint is defined.

Definition 9.5.2
fixedRelativeOrientation [concept1 ⇒ concept;

concept2 ⇒ concept]

Suppose object a is defined to have a fixed relative orientation according
to an object b. This means that when b changes it’s orientation, a will
undergo the same change in it’s orientation. Therefore from the initial se-
mantics level we need to calculate the difference in orientation between a and
b for the leftAngle, topAngle and frontAngle property of the orientations.

209

210 Formalizing Constraints

These differences in the external orientation of a and b need to be maintained
during the rest of a and b their lifecycle. Suppose we define the differences
in all orientations between a and b from the initial semantics level as follows:

frontAngleDiff is
a.externalOrientation.frontAngle− b.externalOrientation.frontAngle

leftAngleDiff is
a.externalOrientation.leftAngle− b.externalOrientation.leftAngle

topAngleDiff is
a.externalOrientation.topAngle− b.externalOrientation.topAngle

Then the fixed relative orientation constraint between a and b can be for-
malized in the simulation semantics level by adding the following deductive
rule:

a[externalOrientation→ E]←
bFrontAngle is b.externalOrientation.frontAngle ∧
bLeftAngle is b.externalOrientation.leftAngle ∧
bTopAngle is b.externalOrientation.topAngle ∧
E : orientation[frontAngle→ bFrontAngle− frontAngleDiff ;

leftAngle→ bLeftAngle− leftAngleDiff ;
topAngle→ bTopAngle− topAngleDiff]

The above deductive rule actually states that the external orientation of
a must stay constant with respect to the external orientation of b according
to the initial situation.

9.6 Positioning Constraint

The positioning constraint constrains the possibilities to place certain ob-
jects in the virtual environment. In contrast to all other connections and
constraints defined so far, the positioning constraint only acts on the simu-
lation semantics level. As we have seen in chapter 4, a positioning constraint
is defined by means of an anchor area and a binding area. An object with
an anchor area with a certain label can only be positioned in such a way
that its anchor area falls inside the binding area (with the same label) of
another object. However, these anchor and binding area’s depend on the
way an object is represented in the virtual environment. Therefore we first
need to define what we mean by shape. This is done in definition 9.6.1. A

210

Positioning Constraint 211

shape is represented by means of an F-logic class having a points property
containing all points of which the shape consists. The class point has been
defined in definition 6.1.1 (see chapter 6). Furthermore, a shape also has a
height, depth and width property defined as a method. For example, the
height is the result of the z-value of the highest point of the shape minus
the z-value of the lowest point of the shape. This follows from our definition
for the default orientation of an object (see chapter 6). Next, a shape has
a top, bottom, left, right, front and back property who’s values are a set of
points respectively representing the shape’s top, bottom, left, right, front
and back side. These properties are also defined by methods. Note that
all of these methods are defined similarly. Therefore, we will only illustrate
their definitions by defining the top and right property.

Definition 9.6.1 A shape is defined as follows:

shape[points ⇒⇒ point;
height ⇒ float;
depth ⇒ float;
width ⇒ float;
top ⇒⇒ point;
bottom ⇒⇒ point;
front ⇒⇒ point;
back ⇒⇒ point;
left ⇒⇒ point;
right ⇒⇒ point]

S[height → H] ← S : shape ∧
(S[points →→ P1] ∧ ¬(S[points →→ Q1] ∧ Q1.z > P1.z))
(S[points →→ P2] ∧ ¬(S[points →→ Q2] ∧ Q2.z < P2.z))
H is |P1.z - P2.z|

S[width → W] ← S : shape ∧
(S[points →→ P1] ∧ ¬(S[points →→ Q1] ∧ Q1.y > P1.y))
(S[points →→ P2] ∧ ¬(S[points →→ Q2] ∧ Q2.y < P2.y))
W is |P1.y - P2.y|

S[depth → D] ← S : shape ∧
(S[points →→ P1] ∧ ¬(S[points →→ Q1] ∧ Q1.x > P1.x))
(S[points →→ P2] ∧ ¬(S[points →→ Q2] ∧ Q2.x < P2.x))
D is |P1.x - P2.x|

211

212 Formalizing Constraints

S[top→→ P] ← S : shape ∧
S[points →→ P] ∧ P[z → S.height

2]

S[right→→ P] ← S : shape ∧
S[points →→ P] ∧ P[y → −S.width

2]

Note that in order to calculate the points which belong to one of the sur-
faces, we assume that the shape is positioned at (0,0,0). The real position
will be determined by the object mapped onto the shape. We will take this
into account when defining the simulation semantics of the positioning con-
straint.
Now we will also formalize the mapping. We see a mapping as an F-logic
class with two properties, a fromConcept property containing the concept
that will be mapped and a toShape property containing the shape to which
the concept is mapped. This definition is given in definition 9.6.2.

Definition 9.6.2

mapping[fromConcept ⇒ concept,
toShape ⇒ shape]

Now we will define the anchor and binding constraints. The anchor con-
straint is defined in definition 9.6.3. While the surface property’s value
represents the name of the surface used to specify the anchor area, the
pointSurface contains all points which belong to the anchor area. These
points are calculated from the shape on which the object is mapped and
takes the objects position and orientation into account.

Definition 9.6.3

anchor[onConcept ⇒ concept;
surface ⇒ string;
pointSurface ⇒⇒ point;
label ⇒ string]

212

Positioning Constraint 213

where pointSurface is defined as follows:

A[pointSurface →→ P] ← A : anchor ∧
A[onConcept → C] ∧
M : mapping ∧ M[fromConcept → C; toShape → S] ∧
C[position → Pc] ∧
eFrontAngle(A, α) ∧ eLeftAngle(A, β) ∧ eTopAngle(A, γ)
((A[surface → ’top’] ∧ S[top →→ Q]) ∨

(A[surface → ’bottom’] ∧ S[bottom →→ Q]) ∨
(A[surface → ’front’] ∧ S[front →→ Q]) ∨
(A[surface → ’back’] ∧ S[back →→ Q]) ∨
(A[surface → ’left’] ∧ S[left →→ Q]) ∨
(A[surface → ’right’] ∧ S[right →→ Q])) ∧

R : point[x → Q.x + Pc.x;
y → Q.y + Pc.y;
z → Q.z + Pc.z] ∧

rotate(R, α, β, γ, P)

Next, definition 9.6.4 defines the concept binding. Note that the pointSur-
face property is almost identically defined as in definition 9.6.3. Therefore
we will not repeat this definition.

Definition 9.6.4

binding[onConcept ⇒ concept;
surface ⇒ string;
pointSurface ⇒⇒ point;
label ⇒ string]

Now that we have defined the anchor and binding area concepts we can de-
fine their semantics. A positioning constraint is satisfied when for an object
A having an anchor area, there is some object B having a binding area with
the same label as A’s anchor area, so that at least one point of A’s anchor
area falls inside B’s binding area. This is defined in definition 9.6.5. When
the predicate defined in definition 9.6.5 is true for an object A having an
anchor area, then the positioning constraint is satisfied.

213

214 Formalizing Constraints

Definition 9.6.5

positioningConstraint(A) ← A : concept ∧
N : anchor ∧ N[onConcept → A; label → L] ∧
B : concept ∧
M : binding ∧ M[onConcept → B; label → L] ∧
P : point ∧
N[pointSurface →→ P] ∧
M[pointSurface →→ P]

214

Chapter 10

Formalizing CSG Relations

In the previous chapter, we informally introduced the modeling of complex
shapes by means of CSG relations. Therefore we introduced three relations,
namely the union relation, the intersection relation and the difference rela-
tion. In this section we will formalize these relations.

In contrast to the relations we formalized so far, the CSG relations create
new shapes on which the related concepts or instances are mapped in the
virtual environment rather than creating new concepts and instances from
existing ones. In the following section the CSG relations are formalized.

10.1 Union Relation

A union relation between two objects a and b creates a new shape which
exists of all points of the shape on which object a is mapped and of all points
of the shape on which object b is mapped. Since a union relation actually
defines a new shape we will formalize it as a subclass of shape. The union
class will also have two additional properties, namely concept1 and concept2
of type concept. These properties represent the concepts between which a
union relation is defined. Next, we also overwrite the points property. This
property is now a method returning all points on which concept1 has been
mapped and all points on which concept2 has been mapped. The union
relation is formally defined by definition 10.1.1.

Definition 10.1.1

union :: shape
union[concept1 ⇒ concept,

215

216 Formalizing CSG Relations

concept2 ⇒ concept]

where the points property is overwritten with the following method signature:

A[points →→ P] ← A : union ∧
A[concept1 → C1,

concept2 → C2] ∧
M1 : mapping [fromConcept → C1,

toShape → S1] ∧
M2 : mapping [fromConcept → C2,

toShape → S2] ∧
(S1[points →→ P] ∨ S2[points →→ P])

10.2 Intersection relation

An intersection relation between two objects a and b creates a new shape
which exists of all points that belong to the shape on which object a has been
mapped and also belong to the shape on which object b has been mapped.
Again we will formally define an intersection relation as a subclass of shape.
The definition for the intersection relation is very similar to the one we have
given for the union relation. The only difference is in the points method
which now returns all points that belong to the shape on which concept1 is
mapped and also belong to the shape on which concept2 has been mapped.
Definition 10.2.1 formally defines the intersection relation.

Definition 10.2.1

intersection :: shape
intersection[concept1 ⇒ concept,

concept2 ⇒ concept]

where the points property is overwritten with the following method signature:

A[points →→ P] ← A : intersection ∧
A[concept1 → C1,

concept2 → C2] ∧
M1 : mapping [fromConcept → C1,

toShape → S1] ∧
M2 : mapping [fromConcept → C2,

toShape → S2] ∧

216

Difference relation 217

(S1[points →→ P] ∧ S2[points →→ P])

10.3 Difference relation

A difference relation between two objects a and b creates a new shape that
exists of all points which belong to the shape on which object a has been
mapped and do not belong to the shape on which object b has been mapped.
The difference relation is formally defined in a similar way as the union and
intersection relation. However, here there is one difference. While the union
and intersection are symmetric, the difference relation is not. The difference
relation is given in definition 10.3.1.

Definition 10.3.1

difference :: shape
difference[concept1 ⇒ concept,

concept2 ⇒ concept]

where the points property is overwritten with the following method signature:

A[points →→ P] ← A : difference ∧
A[concept1 → C1,

concept2 → C2] ∧
M1 : mapping [fromConcept → C1,

toShape → S1] ∧
M2 : mapping [fromConcept → C2,

toShape → S2] ∧
(S1[points →→ P] ∧ ¬(S2[points →→ P]))

217

218 Formalizing CSG Relations

218

Chapter 11

Applications of the
formalization

In the previous chapters we have given a complete formal specification of
a set of high-level modeling concepts that can be used for specifying sim-
ple as well as complex VR objects on a higher level of abstraction. These
modeling concepts are specified in an unambiguous way by means of the
above formalization. In this chapter we will illustrate some of the possible
applications of the formalization. In section 11.1 we will illustrate the use
of F-logic to reason over the formal conceptual specifications. In section
11.2 we will illustrate how consistency checking can be performed on formal
conceptual specifications.

11.1 Reasoning

In the beginning of this chapter we also stated that this formal specification
allows us to reason about conceptual specification. In this section we will
illustrate this by means of some examples.

Suppose we have an F-Logic knowledge base containing the conceptual
specification for a certain virtual environment. Using a tool like Flora2 or
OntoBroker we can perform some reasoning about this conceptual specifica-
tion by feeding some queries to the reasoner. Let’s look to a first example.
Suppose we would like to know which instances (of either which concept)
are defined to be left of an instance myCar of the concept car. As we have
seen in definition 7.5.2 an object a is defined as being left of an object b as
a[positioned@b → r] where r : spatialRelation[direction → ”left”; distance

219

220 Applications of the formalization

→ d]. Take the following query:

?−X : concept ∧X[positioned@myCar → R]∧
r[direction→ ”left”; distance→ D]

A reasoning tool will return all objects which are explicitly specified as being
left of the instance myCar as the answer to the above query. The answer
will also contain the distance D for each object X. However, the above query
only returns the objects that are explicitly modeled as being left of myCar.
It is also possible that there are objects which are left of myCar but which
aren’t explicitly modeled as such. To retrieve these objects we can query
the conceptual knowledge base using the following query:

?−X : concept ∧X[position→ P]∧
relativePosition(myCar, 0, D, 0, P) ∧D > 0

The above query will return all objects which are positioned on a positive
distance D towards the left of myCar. Now suppose we would like to know
if there is an object which lies exactly 2 units left of myCar, then we could
use the following query:

?−X : concept ∧X[position→ P]∧
relativePosition(myCar, 0, 2, 0, P)

The above queries show how the formal specification of a conceptual
model can be used to reason about that conceptual model. It is also possible
to provide the user with a number of predicates that can be used to query
the system. We could for example define the following predicate:

objectsLeftOf(A,X)←X : concept ∧A : concept∧
X[position→ P]∧
relativePosition(A, 0, D, 0, P) ∧D > 0

220

Consistency checking 221

The user can then easily query the system without having to know internal
details of the formal specification. Querying the system for all objects which
are positioned on the left side of the object myCar can then be done with
the following query:

?− objectsLeftOf(myCar,X)

11.2 Consistency checking

In this section we will illustrate by means of a small example how we can
use the formalization to perform some consistency checks on the conceptual
specifications. As we have seen for complex objects, an object can be part
of another object. However, if somewhere in the conceptual specification
an object a is modeled to be part of an object b but somewhere else in
the conceptual specification b is stated to be a part of a then we have an
inconsistency in our specification. The part-of relation is not symmetric.
We will now specify a predicate partOfInconsistency(X,Y) as follows:

partOfInconsistency(X,Y)←X : concept ∧ Y : concept∧
X[partOf → Y]∧
Y [partOf → X]

Now suppose that in the knowledge base we have the following facts:

a[partOf → b]
b[partOf → a]

Using a reasoning tool like Flora-2 we can now check if there is a part-of
inconsistency in our knowledge base. This can be done by asking the fol-
lowing query:

?− partOfInconsistency(D,E)

When this query returns some values for D or E then we know immediately
that there is a part-of inconsistency in our conceptual specification. The
values of D and E will also indicate with which objects the inconsistency
exists. In our case, a and b will be the values returned for D and E.

221

222 Applications of the formalization

222

Part III

Implementation, Use Case
and Conclusions

223

Chapter 12

Implementation

In chapter 4 we have informally described a set of high-level modeling con-
cepts for complex objects for virtual environments. In chapters 7 to 10 we
have unambiguously defined these modeling concepts by means of our for-
malization in F-logic.

In this chapter we will describe a number of prototype implementations.
These implementations serve as a proof of concept for the feasibility of the
modeling approach presented in this dissertation. This chapter is struc-
tured as follows: in section 12.1, a general overview of the implementations
is given. Next, in section 12.2, we describe the diagram editor that has been
implemented as an extension to Microsoft Visio [67]. This diagram editor
supports the modeling of virtual environments using the VR-WISE graph-
ical notations introduced in chapters 3 and 4. In section 12.3 we describe
the Physics Generator Component (PGC) that has been build to support
the specification of the desired mappings (see chapter 3) and to generate
the actual VR application. The PGC has been developed specifically for
the complex objects. In section 12.4, we illustrate how the PGC fits into
the OntoWorld tool. The OntoWorld tool support the overall VR-WISE
approach, including simple objects, complex objects and behavior.

225

226 Implementation

12.1 General Overview

Figure 12.1 shows a general overview of the different prototype implementa-
tions that have been built. The diagram editor allows the user to draw the
conceptual specifications using the graphical notation discussed in chapter
4. The diagram editor is described in more detail in section 12.2. Next
we have developed the Physics Generator Component (PGC) (see section
12.3)which is a standalone application supporting the modeling of complex
objects. This PGC allows to specify the mappings from the concepts and in-
stances from the conceptual model to the virtual representation of it. Using
these mappings it generates the complex objects inside the virtual environ-
ment. For the overall VR-WISE approach the OntoWorld tool has been
built. The OntoWorld tool supports the complete VR-WISE approach, in-
cluding simple objects, relations between objects such as spatial relations,
complex objects and behavior. However, the PGC needs to be integrated
with the OntoWorld tool in future. More details about this integration are
given in section 12.4. The diagram editor communicates about the concep-
tual specifications with the OntoWorld tool by means of XML-files.

Figure 12.1: General overview of the implementation

12.2 Diagram Editor

The diagram editor provides a graphical interface for the specification phase
in the VR-WISE approach. It allows the user to draw the conceptual speci-
fications using the graphical notation developed for our modeling concepts.
The graphical editor has been implemented as an extension to Microsoft Vi-
sio. Figure 12.2 shows the different components of the diagram editor. Note
that the red components indicate the components of the diagram editor that
have been extended or added in the context of the work presented in this
dissertation.

The graphical user interface component accesses Microsoft Visio by means

226

Diagram Editor 227

Figure 12.2: Diagram Editor overview

of an ActiveX control1. To use MS Visio, a number of Visio stencils have
been created. Such a stencil contains graphical elements that can be used
to create a particular diagram. For the graphical elements of the modeling
concepts introduced in this dissertation, the complex objects stencil has been
created. Figure 12.3 shows this Visio stencil.

Figure 12.3: Visio stencil for complex object modeling concepts

The user can drag and drop the graphical elements from the stencils onto

1ActiveX is a Microsoft technology which allows the development of reusable object
oriented software components.

227

228 Implementation

the canvas and connect them using relations. As we have seen in chapter 4,
some graphical elements have a simple and an extended notation (e.g., the
connection relations). This is supported in the drawing editor. By double
clicking on some graphical concept the user gets a graphical user interface
that allows him to give the necessary details for the modeling concept. These
details differ from modeling concept to modeling concept. Hence, for each
modeling concept introduced in this dissertation, a new GUI component has
been implemented. For example, when double clicking on a connection axis
relation, a graphical interface is provided for specifying the connection axis.
The expanding behavior of the modeling concepts together with the GUI for
specifying the modeling concept details (attributes) has been implemented
in C# [39] and is loaded as a COM object. Figure 12.4 shows a screenshot
of the drawing editor.

Figure 12.4: Screenshot from the graphical editor

Next, the core component of the diagram editor takes care of exporting the
graphical conceptual models into an XML-format. For exporting the high-
level modeling concepts introduced in chapter 4, this core component has
also been extended. The high-level information from the graphical models
is translated into a more low-level mathematical description. For example,
a connection axis which is specified as the intersection of two planes in the
conceptual model, is translated into the parametric equation for the connec-

228

Physics Generator Component 229

tion axis before exporting it in the XML-format. Note that the calculation
of the mathematical representations for the conceptual modeling concepts
has been based on the mathematics as discussed in the formalization (see
chapters 7 to 10). We illustrate this with a part of the XML-representation
of a connection axis relation. As we can see, the connection axis element has
a source and a target and it has the connection axis itself which is defined by
means of the elements <a>, and <c> representing the direction vector
of the connection axis and the elements <x>, <y> and <z> representing a
point on the connection axis.

<connection-axis>
<caSource instanceRef="instance1">
<caTarget instanceRef="instance2">
<connectionAxis>
<a>1
1
<c>1</c>
<x>1</x>
<y>1</y>
<z>1</z>

</connectionAxis>
</connection-axis>

This type of information is easier to use when generating the virtual
environment.

12.3 Physics Generator Component

As mentioned in the previous section, the diagram editor exports the con-
ceptual specification in an XML-format. This XML-format can be imported
in the OntoWorld tool. Once a conceptual specification is imported, the user
needs to follow two steps. First the mapping step has to be performed; next
the generation step can be executed. In order to support this process for
complex objects, we have implemented the Physics Generator Component
(PGC) as a standalone tool that allows demonstrating the feasibility of the
conceptual modeling approach in the context of complex objects and shapes.

Mapping

During the mapping step the developer is asked to map the conceptual
objects on an appropriate visual representation in the virtual environment.

229

230 Implementation

Mappings can be defined for concepts as well as for instances. When a
concept is mapped onto a visual representation, by default, all instances of
this concept will be represented by this visual representation. However, to
overwrite this default mapping inherited from its concept, an instance can
also be mapped onto a visual representation. Figure 12.5 shows the object
mapping window of the PGC. Note that this mapping step is the same as the
mapping step performed in the general OntoWorld tool (see section 12.4).
In figure 12.5 only some default VR primitives (box, cylinder, . . .) are
offered as the target for the mapping. However, the developer has the possi-
bility to import other shapes. Importing a new shape happens by importing
an X3D2-file. The content of such an X3D file looks as follows:

<ProtoDeclare name="shape name">
<ProtoInterface>

<field name="attibute name" type="type"> (1)
</ProtoInterface>
<ProtoBody>

<Shape>
<Appearance>

...
</Appearance>
<IndexedTriangleSet index= "0 2 1 2 3 5 ..."> (2)

<Coordinate
point=" 1 1 1, 1.5 1 2, 1 0 3, ..."> (3)
</Coordinate>

</IndexedTriangleSet>
</Shape>

</ProtoBody>
</ProtoDeclare>

So, X3D files that can be imported contain a ProtoDeclare node declaring the
shape to import. Inside the ProtoDeclare node there is a ProtoInterface and
a ProtoBody node. The ProtoInterface node contains all possible properties
for the defined shape. Such a property definition is illustrated on line (1). It
describes the name of the property and the type of the property. Examples of
such attributes are the mass or the length of the shape. Next, the ProtoBody
node contains the actual definition of the shape. The shape is specified by
means of an IndexedTriangleArray node (see line (2)) representing a 3D
shape composed of a collection of individual triangles. The Coordinate node

2http://www.web3d.org/x3d/

230

Physics Generator Component 231

(line (3)) contains a number of vertices while the index field on line (2)
specifies which vertices form a triangle. So, each three consecutive indices
in the index field specify a triangle. If we look to the above example, then
because of the first three indices 0 2 1 (on line (2)), the first triangle is
formed by the coordinates (1,1,1), (1.5,1,2) and (1,0,3).

Figure 12.5: Concept/instance mapping window

For each object that is mapped onto a visual representation the developer
may need to map the properties of that object onto properties of the vi-
sual representation. For example, the weight property of an instance car in
the conceptual model can be mapped onto the mass property of its visual
representation. The attribute mapping is shown in figure 12.6.

Generation

When all necessary mappings have been specified, the generation of the
virtual environment can start. The generation of the PGC is illustrated in
figure 12.7.

The PGC therefore uses the information available in the XML-specification
of the conceptual model together with the information from the mapping
step. The virtual environment is generated using the PhysX API, formerly
known as the Novodex SDK. This is a high-performance C/C++ physics
engine developed by Ageia. However, since the implementation of our tool

231

232 Implementation

Figure 12.6: Attribute mapping window

Figure 12.7: Code generation in the Physics Generator Component

is completely written in C# we use the Novodex wrapper3. The Novodex
wrapper is a .NET wrapper for the PhysX API. The virtual environment
generated by means of the PhysX API is using Direct3D4. The Direct3D
API is part of Microsoft’s DirectX. The outcome of this process is send to
a previewer which shows the virtual environment to the developer. Figure
12.8 shows a screenshot from the GUI for a generated virtual environment.

So the PGC parses the conceptual specification in XML format. For each
instance found in the conceptual specification the generator searches the
appropriate mapping created during the mapping step. When the mapping
is found, the generator creates the virtual object (using Direct3D). This
virtual object can be a primitive VR object (such as a cylinder or sphere) or

3http://www.zelsnack.com/jason/JttZ/Novodex NET Wrapper
4http://www.microsoft.com/windows/directx/default.mspx

232

Integration with OntoWorld 233

Figure 12.8: Generated virtual environment

it can be an imported shape specified in an X3D-file as we discussed above.
When all objects have been created, the generator parses the connection
relations and constraints from the conceptual model. For each of these
relations or constraints between two instances, the appropriate joint (from
the PhysX API) is created between the corresponding virtual objects. The
PhysX API will then take care of satisfying all connections and constraints
during the simulation.

12.4 Integration with OntoWorld

The OntoWorld tool supports the overall VR-WISE approach. It supports
the creation of the conceptual models through the use of a GUI or by using
the diagram editor described in section 12.2. It also allows specifying the
mappings from the conceptual level to the implementation level. Note that
this mapping process is the one described for the Physics Generator Compo-
nent. Finally, it performs the generation of the actual virtual environment.
This generation is using the XML-specification of the conceptual model. It
is performed by the core component of the OntoWorld application. The
generation process is shown in figure 12.9.

The core of the OntoWorld tool exists of several components. As we
can see in figure 12.9, there is the statics generator component taking care

233

234 Implementation

Figure 12.9: Generation process of the OntoWorld application

of the generation of the simple objects and the relations between objects
such as the spatial relations. There is also a behavior generator component,
which generates the behavior of objects. The generation part of the Physics
Generator Component (see section 12.3) will need to be integrated into the
physics generator component of the OntoWorld core. Then, the OntoWorld
tool will take care of the mappings and will use the physics generator com-
ponent for the generation of complex objects and shapes. Note that this
integration is not yet realized. However, integrating the PGC into the On-
toWorld tool will not impose a lot of problems since the integration has been
taken into account when developing the PGC. Furthermore, the generated
virtual environment can be viewed by the developer using the previewer.

234

Chapter 13

Case Study

In the previous chapter we have described our prototype implementation
which serves as a proof of concept for the usability of the modeling concepts
proposed in this dissertation and the feasibility of the VR-WISE approach
in the context of complex object modeling. The aim of this chapter is to
illustrate the modeling concepts for the conceptual specification of complex
objects by means of an elaborated example. The outcome of this example
can be fed to the proof-of-concept OntoWorld implementation which can
then generate the corresponding virtual environment.

235

236 Case Study

13.1 Subject

The subject of the case study is a virtual mechanical welding robot. The
subject has been chosen in such a way that most of the modeling concepts
defined in this dissertation are illustrated. The subject of this case study is
illustrated in figure 13.1.
The welding robot consists of several parts. It has a base which can move
along a rail. A mechanical arm stands on the base. The arm consists of two
parts, a lower arm and an upper arm. On top of the upper arm there is a
movable welding head.

Figure 13.1: The virtual mechanical welding robot

13.2 Conceptual design

We will start the conceptual design by modeling the welding robot example
on the domain specification level (see chapter 3). This level describes the
concepts of the application domain and possible relations that hold between
these concepts. We first identify and list the different concepts in the ap-
plication domain together with their domain properties and default values.
This information is given in table 13.1.
Before starting the actual modeling we will first describe how the different
components are connected to each other. All these connections are illus-
trated in figure 13.2.

The Base of the robot is connected to the Rail over a connection axis in
such a way that the Base and Rail are allowed to move a certain distance
along the connection axis. Next, the LowerArm is connected to the Base

236

Conceptual design 237

Table 13.1: Different concepts of the welding robot

Concept Attribute Default value

Rail Length 6.0
Height 0.4
Width 1.0
Weight 110

Base Height 0.5
Diameter 1.8
Weight 90

LowerArm Depth 0.5
Height 2.5
Width 0.5
Weight 30

UpperArm Length 2.0
Radius 0.2
Weight 15

WeldingHead Length 0.3
Size 0.1
Weight 2

by means of a connection axis relation around which the components are al-
lowed to rotate. The UpperArm is connected to the LowerArm by means of
a hinge mechanism so that the UpperArm can move up and down. Finally,
the WeldingHead is connected by means of a connection point to the Up-
perArm. The WeldingHead and UpperArm are further constrained so that
the WeldingHead can only move as a joystick handle on the UpperArm.
After we identified all different concepts of our example together with the
relations which connect them we can start the actual modeling of the welding
robot. We will illustrate the modeling step by step. In the end, a complete
conceptual model for the welding robot will be presented.

13.2.1 Base - Rail connection

The Base is connected to the Rail by means of a connection axis. For the
Rail concept, the connection axis can be defined as the intersection of the
perpendicular plane with the horizontal plane translated over half of the
height of the Rail concept towards the top of the Rail. This is illustrated in

237

238 Case Study

Figure 13.2: Connections between parts of the welding robot.

figure 13.3.
The connection axis on the Base concept is defined similarly. It can

be specified as the intersection between the perpendicular plane and the
horizontal plane translated to the bottom of the Base concept over half of
the height of the Base. The conceptual specification of the connection axis
relation between the Rail and Base concepts is given in figure 13.4.

A connection axis relation allows the connected concepts to rotate around
or move along the connection axis. However, we only want to allow the Base
to move along this connection axis. Therefore, as also shown in figure 13.4
we need to specify a slider constraint on top of the connection axis relation.
This slider constraints allows the objects to move 2.5 units to the left and
2.5 units to the right starting from the initial positions of the connected
objects with respect to each other.

13.2.2 LowerArm - Base connection

As illustrated in figure 13.2, the LowerArm is connected to the Base in such
a way that the LowerArm can rotate infinitely around the connection axis.
The connection axis lies exactly in the middle of the LowerArm and Base
towards the top-to-bottom direction. Therefore, on both the LowerArm and
the Base the axis can be defined as the intersection between the vertical

238

Conceptual design 239

Figure 13.3: Ilustration of the specification of the connection axis on the
Rail concept.

plane and the perpendicular plane.
However, if we would only specify the connection axis relation as explained
above, the result of this connection relation would look as shown in figure
13.5. This is due to the fact that the objects are positioned along the
connection axis in such a way that the translation points on both axes
fall together. In order to get the desired result we need to translate the
LowerArm along the axis towards the top direction. This is done by means
of a translation point translation on the source side inside the connection
axis specification.

Finally we need to constrain the motion of the Base and LowerArm in
such a way that the objects may only rotate around the axis and not move
along the axis. Since the LowerArm can rotate infinitely, it is sufficient to
add a hinge constraint on top of the connection axis relation. No hinge limits
need to be specified since no limits on a hinge constraint means that the
objects may rotate infinitely. The conceptual specification for the connection
between the LowerArm and the Base together with the hinge constraint is
given in figure 13.6.

13.2.3 UpperArm - LowerArm connection

The UpperArm is connected to the LowerArm over a connection axis which
serves as a hinge mechanism. Again, the connection axis is specified in a

239

240 Case Study

Figure 13.4: Conceptual specification for the Base to Rail connection.

Figure 13.5: Connection between LowerArm and Base without translation
point specification.

similar way as for the other connections we already discussed.
Next to the connection axis we also need to specify a hinge constraint that
allows the UpperArm to move up and down with respect to the LowerArm.
As explained in chapter 4, first we need to specify a viewpoint from which we
look to the connection axis when specifying the limits of the hinge constraint.
The viewpoint we will use here is from the right, as indicated in figure 13.2
by means of an eye icon.

From this viewpoint, moving the upper arm down is equal to a clockwise
rotation of the upper arm with respect to the connection axis, while moving
the upper arm up is equal to a counterclockwise rotation. We want the
UpperArm to move up so that it becomes horizontal. This means from its

240

Conceptual design 241

Figure 13.6: Conceptual specification for the LowerArm to Base connection.

initial position (as shown in figure 13.2) the UpperArm can move 45 degrees
counterclockwise around the connection axis. We also want the UpperArm
to move down by rotating 90 degrees clockwise around the connection axis.
The hinge constraint with the described limits is modeled in figure 13.7.

13.2.4 WeldingHead - UpperArm connection

The last connection we need to model is the connection between the Weld-
ingHead and the UpperArm. First we need to model a connection point
relation, next we need to constrain this relation by means of a joystick con-
straint. The conceptual specification of this connection is shown in figure
13.8.
A connection point on an object is specified relative to the position point.
Since the position point of the upper arm is located exactly in the middle
of the UpperArm, the connection point on the UpperArm is specified by
translating the position of the UpperArm over a distance of half the length
of the UpperArm towards the top of the UpperArm. This way we know
that the connection point lies exactly on the top of the UpperArm. For
the WeldingHead we translate the position point over a distance of half the
length of the WeldingHead towards the bottom of the WeldingHead. This
way the connection point lies on the bottom of the WeldingHead.
So far we have modeled the connection point relation. Next we need to
constrain the allowed motion so that the objects are only allowed to rotate

241

242 Case Study

Figure 13.7: Conceptual specification for the UpperArm to LowerArm con-
nection.

around two perpendicular axes that go through the connection point. This
is done by specifying a joystick constraint on top of the connection point re-
lation. From the reference frame of the UpperArm we take the left-to-right
axis and the front-to-back axis. Around each of these axes we want the
WeldingHead to be able to rotate 45 degrees in each direction. Therefore,
we constraint the rotation around both axes with an angle of 90 degrees
(remember that a limit of 90 degrees means that the object may rotate 45
degrees clockwise and 45 degrees counterclockwise).

13.2.5 The overall conceptual model

The complete conceptual model for the complex concept Welding Robot is
given in figure 13.9. Note that the external orientation for both the Upper-
Arm and the WeldingHead is changed by means of an orientation by angle
relation. This is done so that the initial situation would look like in figure
13.1. Both concepts are rotated 45 degrees over the left-to-right axis of their
reference frame.
Also note that the Rail concept has been chosen as reference concept of
the complex concept. This means that the position and orientation of the
complex concept is equal to the position and orientation respectively of the
Rail concept.

242

Conceptual design 243

Figure 13.8: Conceptual specification for the WeldingHead to UpperArm
connection.

243

244 Case Study

Figure 13.9: Complete conceptual specification for the welding robot

244

Generation of the virtual world 245

13.3 Generation of the virtual world

So far we have modeled the complex concept Welding Robot. To generate
the virtual environment we need to do two things. We need to give the
concepts that are part of the Welding Robot a default mapping towards
their representation inside the virtual environment. Next we need to create
an instance of the Welding Robot which will be represented inside the virtual
environment.

13.3.1 Mapping

From figure 13.1 it is easy to see that the Rail and Base concepts can be
represented by VR primitives. A Rail can be represented as a box while the
Base can be represented as a cylinder. The attribute mappings are trivial
here. For example, the height, weight and diameter

2 of the Base are mapped
on the height, mass and radius respectively of the cylinder.
However, the LowerArm, UpperArm and WeldingHead cannot be repre-
sented by VR primitives. Therefore we will map them on shapes specified
inside an X3D-file (as an indexed triangle set). The representations of these
concepts are illustrated in figure 13.10.

Figure 13.10: Representation in the virtual environment of (a) the Lower-
Arm; (b) the UpperArm; and (c) the WeldingHead.

13.3.2 Instantiation

If we now want to create a virtual environment containing a welding robot,
then we need to instantiate the Welding Robot complex concept. The spec-

245

246 Case Study

ification of an instance of this complex concept is given in figure 13.11. As
can be seen from this figure, each concept which is part of the complex
concept has been instantiated.

13.3.3 Generation

Now the conceptual specifications given in this chapter can be imported into
our OntoWorld tool in order to generate the virtual environment. Since we
didn’t specify other mappings for the sub-instances of our robot instance,
all parts will be represented by means of the default mappings associated
with the concepts.

13.4 Limitations

In this chapter we have illustrated the modeling concepts for the conceptual
specification of complex objects by means of an elaborated example. How-
ever, our approach also has some limitations. It will probably be difficult
to use the VR-WISE approach to model for example detailed mechanical
assemblies. This is due to the high-level of detail required for such types of
objects. We can also think of other domains where the general VR-WISE
approach can be difficult to apply because of domain specific concepts. How-
ever, in some situations these limitations may be solved by introducing a
domain specific library of high-level modeling concepts.

246

Limitations 247

Figure 13.11: An example instance of the complex concept Welding Robot.

247

248 Case Study

248

Chapter 14

Conclusions

In this chapter we will summarize the work presented in this dissertation.
We also take the opportunity to reflect on the contributions that have been
delivered. Finally, we will list a number of limitations of the approach
presented and we will discuss possible future work.

14.1 Summary

In this dissertation we have presented a new approach for modeling complex
objects for Virtual Environments. The work presented in this dissertation
fits into the VR-WISE framework which is a conceptual modeling approach
for developing Virtual Environments. The VR-WISE approach introduces
an explicit conceptual design phase in the development of a VR-application.
During the conceptual design phase, high-level representations of objects in-
side the virtual environment, the relations that hold between these objects
and the interaction between the objects and between the objects and the
user, are specified. This allows domain experts to participate in the develop-
ment of a VR-application. Also, the conceptual specifications can be used as
a basis for discussions between the various stakeholders of a project. Finally,
implementations can be build to transform these conceptual specifications
into a working virtual environment.
In the first part of this dissertation, we have presented a number of high-
level modeling concepts that can be used for specifying complex objects and
complex shapes for virtual environments in the context of the VR-WISE
approach. Several categories of modeling concepts can be distinguished.
These are connection relations, connection constraints, constraints between
connectionless groups of objects and CSG relations. Note that in most

249

250 Conclusions

toolkits the distinction between these categories is not made. If we look for
example to the ODE [55] toolkit, all of the above modeling concepts are
categorized as joints. For some connection relations in ODE the designer
needs to create a joint and afterwards weaken the constraint limits on it.
To our opinion it is more intuitive to have a number of basic connection
relation which can be refined or constrained afterwards.
In the category of connection relations we have the connection point relation,
the connection axis relation and the connection surface relation. These re-
lations can be used to model a connection between two objects over a center
of motion, over an axis of motion and over a surface of motion respectively.
In the category of constraints on connections, we distinguish the hinge con-
straint, the slider constraint and the joystick constraint. The hinge con-
straint is always specified on top of a connection axis relation between two
objects and constrains the connected objects in such a way that they can
only rotate around the connection axis with respect to each other. Limits
can be specified indicating how much the components may rotate around the
connection axis. The slider constraint is specified on top of a connection axis
relation between two objects. The slider constraint constrains the objects
in such a way that they are only allowed to move along the connection axis.
Also here, limits can be specified indicating how much the object may move
along the connection axis. Finally, the joystick constraint is specified on top
of a connection point relation. It constrains the motion of the connected
objects in such a way that they may only rotate around two perpendicular
axes through the connection point. Again, limits can be specified indicating
how much the objects may rotate around each of these axes. Note that we
have chosen to give the constraints a metaphor-based name. We believe that
this is easier for non-technical persons to understand and remember their
meaning.
Next, we have the category of constraints between connectionless groups
of objects. In some situations it may be necessary to constrain for exam-
ple the position or the orientation of objects while they are not physically
connected. Therefore we incorporated a number of constraints to target
these kinds of constraints between physically unconnected objects. These
constraints are the fixed relative position constraint, the fixed relative orien-
tation constraint and the positioning constraint. The fixed relative position
constraint forces two objects to keep the same position relative to each other
during their complete life-time while the fixed relative orientation constraint
forces two objects to keep the same orientation relative to each other during
their complete life-time. The positioning constraint specifies which objects
can serve as a positioning base for which other objects. This constraint can

250

Summary 251

for example be used to indicate that a coffee cup can only be position on a
saucer.
The last category of modeling concepts introduced in this dissertation is
the set of CSG relations. For all the connections and constraints described
above, the connected objects keep their own identity and can be manip-
ulated individually in the virtual environment, as far as their connections
and constraints allow. With CSG relations the connected objects loose their
identity and are melted together to form one whole. Such a whole is called
a complex shape. We introduced three CSG relations, which are the union
relation, the intersection relation and the difference relation. For example,
the union relation defines a new object as the union of two other objects.
This means that the geometry of the union of two objects will consist of
all points that are part of the geometry representing the first object and all
points that are part of the geometry representing the second object. The
definition of the intersection relation and the difference relation is similar.
Furthermore we introduced the modeling concepts reference object and role.
An object that is part of a complex object can be the reference object of that
complex object. This means that the position and orientation of the com-
plex object is equal to the position and orientation of the reference object.
Next, a role can be seen as a concept playing a certain role in the context
in which it is used. The role modeling concept has been introduced to be
able to reuse a concept that is needed several times (playing a different role)
inside the specification of a complex concept.

In the second part of this dissertation we have given formal definitions
for all the modeling concepts introduced in the first part of the disserta-
tion, and also for existing modeling concepts in the VR-WISE approach.
For this formalization we opted to use the logic-based formalism F-Logic
because it fits the requirements we needed for the formalization language.
The formalization given in this dissertation offers several benefits. Firstly,
it unambiguously specifies the modeling concepts and this allows building
unambiguous conceptual specifications. Secondly, the formalization offers
a formal foundation that can be used for reasoning about the conceptual
specifications. And thirdly, the formalization is independent from any im-
plementation. Therefore, different implementations can be built based on
the formal specification.
The formalization is comprised of actually three levels. The first level for-
mally defines the syntax of the modeling concepts. The second and third
level defines the semantics of the modeling concepts. On the second level,
the formalization defines the semantics of a modeling concept on time zero

251

252 Conclusions

of the virtual environment. For example, a spatial relation specifies how two
objects are positioned with respect to each other at time zero of the virtual
environment. This level of semantics formalization is called the initial se-
mantics level. The third level specifies the semantics of modeling concepts
that also have semantics on times other than time zero in the virtual envi-
ronment. For example, the connection axis relation not only takes care of
correctly positioning two connected components along the connection axis
at time zero of the virtual environment. During the rest of the simulation
the components need to respect the connection axis relation in terms of po-
sitioning and orientation according to each other. This level of simulation
semantics is therefore called the simulation semantics level.
In order to validate the modeling concepts proposed in this dissertation and
to illustrate the feasability of the approach, a prototype implementation has
been built. We built a diagram editor as an extension to Microsoft Visio
which allows the user to draw the conceptual specifications using the graph-
ical notation introduced in this dissertation. Next, we also built a tool that
takes care of the complete process of translating the conceptual specifica-
tions into a working virtual environment. This tool is called OntoWorld.
Finally, we worked out a use case that serves to illustrate the use of the
modeling concepts for complex objects inside the context of the VR-WISE
approach. This is done by means of the elaborated example of a mechanical
welding robot.

14.2 Contributions

In this section we will discuss the contributions and achievements resulting
from this dissertation. First we will describe the contributions in relation
with the problems and goals stated in the introduction (see chapter 1). Next,
we will look to the contributions of the dissertation in the context of the
overall VR-WISE research.

14.2.1 Contributions in relation to the problems and goals

• The available tools for developing VR applications require a
considerable knowledge about VR technology. As explained in
the introduction, the available tools for creating VR applications re-
quire a considerable knowledge about VR technology. The approach
presented in this dissertation tries to avoid this by introducing a con-
ceptual design phase into the development process of a VR application.
When specifying concepts and instances, the designer can use domain

252

Contributions 253

terminology instead of immediately having to specify the objects in
terms of VR primitives. Concerning the specifications of connections
and constraints, all connections and constraints can be described on
a higher level of abstraction, reducing the need of VR knowledge.
However, a basic mathematical knowledge and some spatial (three-
dimensional) insight might be needed. For example when specifying
a connection axis constraint the designer at least needs to know that
the intersection between two planes defines an axis.
Note that VR knowledge might be needed when we come to the map-
ping. However, when the conceptual specifications need to be trans-
lated in terms of VR building blocks the designer can be assisted by a
VR expert. At this stage of the development process a major part of
the modeling has already been specified using the conceptual specifica-
tions. This way, the domain expert can be involved early in the design
process, which lowers the chance of errors and misunderstandings early
in the development process of a VR application.

• The design phase in the development of a VR application is
usually a very informal activity. As stated in the introduction,
few formal techniques in the context of VR exist to support the design
phase effectively. This dissertation has made an attempt in providing
such a technique by the introduction of a conceptual modeling phase.
During this phase unambiguous conceptual specifications are built. By
means of building the conceptual specification using high-level model-
ing concepts having a formal foundation, the design phase becomes a
formal activity inside the design process of a VR application.

• There does not exist a formal basis for discussing the design
of a virtual environment between the different stakeholders of
a project. As stated in the introduction, often sketches and notes are
used during the initial design. However, natural language and sketches
are informal, ambiguous and often incomplete. As explained in chap-
ter 2 conceptual models provide a communication platform between
the various stakeholders in a project and help in the early detection
of misunderstandings, errors and missing information. Therefore we
believe that a VR-WISE conceptual model can serve as a basis for
communication between designers, programmers and other stakehold-
ers in a project. The conceptual specifications are easier to understand
for the different stakeholders since they do not express the design in
technical VR terms but on a higher level of abstraction using general

253

254 Conclusions

knowledge and domain terminology. Furthermore, this dissertation
also unambiguously specifies the modeling concepts by means of the
proposed formalization. These modeling concepts are also complete
in a sense that all information required for a certain connection or
constraint is captured within one modeling concept. The unambigu-
ousness and completeness of the conceptual specification may lead to
fewer misunderstanding.

Furthermore, as stated in the goals in the introduction, we also wanted
an approach that allows doing some intelligent reasoning. The approach
presented in this dissertation offers this possibility through its formalization
based on logic. This has been illustrated in chapter 11.

14.2.2 Contributions to the VR-WISE approach

Figure 14.1: VR-WISE research results

254

Contributions 255

Figure 14.1 gives an overview of the different research results inside the
VR-WISE research project. They are divided into two parts. A first part
consists of the VR-WISE approach itself which had been described in detail
in chapter 3. The second part consists of the modeling concepts that can
be used during the specification phase of the VR-WISE approach and their
formal definition. The modeling concepts are grouped on the left side of
figure 14.1. We will refer to them as the informal results because all the
modeling concepts have been defined in an informal way. Also a graphical
notation for each modeling concept has been provided. The right side of
figure 14.1 concerns the formalization, which formally defines the modeling
concepts. We will refer to them as the formal results.
The yellow blocks represent work preceding this dissertation and the achieve-
ment of several researchers at the WISE lab of the Vrije Universiteit Brussel.
This includes the development of the overall process of the VR-WISE ap-
proach and the high-level modeling concepts for modeling simple objects,
spatial relations, and orientation relations. Results of this work have been
published in [62, 9, 10, 43].
The green blocks represent the work that has been performed specifically in
the context of this dissertation. First of all, as informal results, this disserta-
tion has introduced a set of high-level modeling concepts that can be used to
model complex objects inside the context of the VR-WISE approach. Four
categories of modeling concepts have been introduced which are connection
relations, constraints on connection relations, modeling concepts for speci-
fying complex shapes and finally a number of constraints that can be used
for connectionless groups of objects.
The formal research results were completely obtained in the context of this
dissertation. They define the modeling concepts for simple objects, relations
between objects, and complex objects in an unambiguous way.
The grey block in figure 14.1 is work that has been performed parallel in
the context of the PhD dissertation of B. Pellens [42]. This dissertation
introduces high-level modeling concepts for modeling behavior for virtual
environments.

Next, extensions have been made to the VR-WISE implementation.
These have been described in chapter 12. The diagram editor has been ex-
tended with the modeling concepts presented in this dissertation. A proof-
of-concept implementation, the Physics Generator Component, has been
build to illustrate the approach in the context of complex object modeling.
In future, most components of this Physics Generator Component will be
integrated into the OntoWorld tool which supports the overall VR-WISE

255

256 Conclusions

approach.

14.3 Limitations

As stated in the introduction, this dissertation does not claim to present
a complete solution to all problems related to the development of virtual
environments. In this section we will list the limitations that apply to the
work presented in this dissertation:

• The first limitation is that the approach presented in this dissertation
is only usable for modeling virtual environment up to a certain level of
complexity. E.g., the approach presented is difficult to use for modeling
detailed mechanical assemblies. This is due to the fact that these types
of virtual objects require a very high level of detail and also because
of the fact that domain specific concepts are needed. However, a layer
can be built on top of our approach that pre-defines these necessary
domain specific modeling concepts. Such an extension can be made for
each domain. Also, our approach may be used for fast prototyping and
for modeling the main lines of a virtual environment for such domains.
Afterwards, the virtual environment generated from the conceptual
specification may be refined by VR experts using other tools such as
VR toolkits.

• A second limitation is that it is not yet possible to define a combi-
nation of connections and constraints between two components. This
way, more powerful connections and constraints could be specified. As
we have seen in the related work, for example with SimMechanics,
joint composites are defined as a combination of some joint primi-
tives. Such a mechanism can be powerful in defining new types of
constraints. When looking to physics engines, we sometimes see they
provide what is called a carwheel constraint. This is actually a com-
bination of two hinge constraints comparable to the way a wheel is
attached to a car. The problem however is that the motion allowed
by one hinge constraint may be in contradiction to the motion allowed
by the second hinge constraint. Indicating which motion allowed by
which constraint has priority in the combination of constraints is easy
to do inside a physics engine because of the access to all the underly-
ing technical details of the constraints contained in the combination.
In our approach however, there is no access to these low-level details.

256

Future Work 257

Therefore, a new mechanism may need to be developed allowing to
specify combinations of constraints and/or connections.

14.4 Future Work

• Implementation of the formalization. The formalization given in
this dissertation unambiguously defines the modeling concepts inside
the VR-WISE approach. As we have indicated in chapter 11, this for-
malization also allows to reason over the conceptual specification and
to do some consistency checking. However, in order to make reason-
ing and consistency checking available, an implementation needs to be
built.
First of all, an extension of one of the available development environ-
ments for F-Logic is needed. Take for example Flora-21. Although
Flora-2 already has support for most of the mathematical operators
used in our formalization, some operators may need to be included.
However, this may not be a major problem since Flora-2 has been de-
veloped with extensibility in mind.
Once such an extension has been implemented, the formalization can
be placed inside a knowledge base. Note that we need several intercon-
nected knowledge bases representing the different levels of our formal-
ization. Once these knowledge bases have been defined they can be fed
to the extended development environment. Conceptual specifications
can then be translated into their corresponding F-logic representation
and also added to the knowledge bases. Having all this information
in F-Logic knowledge bases, we can use the extended Flora-2 to query
the conceptual specifications and in such a way to do some reasoning
and consistency checking.
So far, the reasoning would happen by means of F-Logic queries. These
queries are not very easy to build for people without knowledge about
F-Logic. Therefore another idea for future work is to develop a high-
level query language on top of the formalization implementation. Such
a query language is comparable to SQL [37] in the domain of databases.
The user can use it to interact with the conceptual specifications in a
natural language-like way.

• Dynamic conceptualizations. As we have seen in chapter 2, the
CODY Virtual Constructor [66, 33, 34] contains also , next to the

1http://flora.sourceforge.net/

257

258 Conclusions

static initial conceptual representation, a dynamically updated con-
ceptual representation describing the current situation in the virtual
environment. Such a dynamic conceptualization offers the advantage
of reasoning in real time over the virtual environment. Based on the
implementation of the formalization we have described above, it is only
possible to reason over the initial conceptual specifications. However,
in future work we could think of extending our current prototype im-
plementation and the implementation of the formalization described
above to be able to dynamically update our conceptual specifications.
Therefore we would need to implement a mechanism so that changes
in the generated virtual environment are reflected inside the concep-
tual specification. Such an extension would then allow us to query
virtual environments modeled by means of our VR-WISE approach in
real time.

• Extension to the set of modeling concepts. In this disserta-
tion we introduced high-level modeling concepts for the most com-
monly used connections and constraints when modeling complex ob-
jects. However, this set of modeling concepts can be extended with
other types of concepts. We only list a number of possibilities here.
One possible extension is the introduction of high-level grouping pat-
terns for objects. Often when we look to real world examples we see
that objects are positioned in some pattern such as a line, a raster,
a circle, . . .We can think of examples like buildings and streets in
Manhattan which are organized in some raster-like way or, the public
of a football game organized in rows or lines. Therefore introducing
grouping patterns may be interesting. This would allow the user to
create automatically for example hundred instances of some domain
concept and place them in a raster instead of having to model each
instance separately and organize these instances in the desired way
using spatial relations.
Another possible extension would be to introduce a number of model-
ing concepts that allow automatic generation of instances of concepts
in different ways. We could think of generating a number of instances
of a concept which all follow the Gaussian distribution. This means
that the values of some properties of the concept being instantiated a
number of times are changed in such a way that these values form
a Gaussian distribution. This way we could for example model a
crowd by automatically instantiating a concept human a number of
times following the Gaussian distribution. This means that not all

258

Future Work 259

instances would look the same but that we could have small, large,
thick, . . . humans. Note that maybe for some reason other statistical
distributions can be implemented.
Next, when we look to related work we see that some of the approaches
also contain a number of other modeling concepts. Take for example
MotionWorks (see chapter 2). MotionWorks contains a number of so-
called contact joints. This type of joints does not really describe a
connection but rather a contact between two objects. An example of
such a contact joint are two gearwheels of a watch which need to roll
against each other. These may be modeling concepts to introduce later
in the VR-WISE approach. However, which extensions are needed will
follow from everyday use of the approach and will also differ from ap-
plication domain to application domain.

Note that not only the modeling concepts for modeling complex ob-
jects may need to be extended but also other categories of modeling
concepts in the VR-WISE approach. For example we might think of
introducing n-ary spatial relationships. Such a spatial relation can for
example be used to state that object A is positioned between object B
and object C. The between spatial relation is an example of a ternary
spatial relation.

259

260 Conclusions

260

Bibliography

[1] Extensible 3d (x3d) international standard. Technical report, Web 3D
Consortium (Web3D), 2003.

[2] Motionworks 2004 tutorial, 2004.

[3] S. Abiteboul and S. Grumbach. Col: A logic-based language for complex
objects. In Proceedings of the International Conference on Extending
Database Technology: Advances in Database Technology, pages 271–
293. Springer-Verlag London, 1988.

[4] Steven Aukstakalnis and David Blatner. Silicon Mirage: The Art and
Science of Virtual Reality. Peachpit Press, 1992.

[5] Ronald T. Azuma. A survey of augmented reality. Presence: Teleoper-
ators and Virtual Environments, 6(4):355–385, 1997.

[6] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, editors. The Description Logics Handbook: Theory, Imple-
mentation and Applications. Cambridge University Press, 2003.

[7] Alistair P. Barros, Arthur H. M. ter Hofstede, and Henderik Alex
Proper. Towards real-scale business transaction workflow modelling.
In Conference on Advanced Information Systems Engineering, pages
437–450, 1997.

[8] Stefan Berner, Martin Glinz, and Stefan Joos. A classification of stereo-
types for object-oriented modeling languages. In Robert France and
Bernhard Rumpe, editors, UML’99 - The Unified Modeling Language.
Beyond the Standard. Second International Conference, Fort Collins,
CO, USA, October 28-30. 1999, Proceedings, volume 1723, pages 249–
264. Springer, 1999.

261

262 BIBLIOGRAPHY

[9] W. Bille, B. Pellens, F. Kleinermann, and O. De Troyer. Intelligent
modelling of virtual worlds using domain ontologies. In L. Sheremetov
and M. Alvarado, editors, Proceedings of the Workshop of Intelligent
Computing, pages 272–279, Mexico City, Mexico, 2004.

[10] W. Bille, O. De Troyer, F. Kleinermann, B. Pellens, and R. Romero.
Using ontologies to build virtual worlds for the web. In P. Isaias and
N. Karmakar, editors, Proceedings of the IADIS International Confer-
ence WWW/Internet, Volume I, Madrid, Spain, 2004. IADIS PRESS.

[11] Dennis J. Bouvier. Getting Started with the Java 3D API: A Tutorial
for Beginners, 2002.

[12] Grigore C. Burdea and Philippe Coiffet. Virtual Reality Technology.
John Wiley & Sons, Inc., second edition, 2003.

[13] P. Chen. The entity-relationship model: Towards a unified view of data.
ACM Transactions on Database Systems, 1(1):471–522, 1976.

[14] W. Chen and D.S. Warren. C-logic of complex objects. In Proceedings of
the eighth ACM SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, pages 369–378, Philadelphia, USA, 1989. ACM
Press NY.

[15] Thomas Connolly, Carolyn Begg, and Anne Strachan. Database sys-
tems: A practical approach to Design, Implementation and Manage-
ment. Addison Wesley, 1999.

[16] C. Cruz-Neira, D.J. Sandin, and T.A. DeFanti. Surround-screen
projection-based virtual reality: The design and implementation of the
cave. In Proceedings of the 20th annual conference on Computer graph-
ics and interactive techniques, pages 135–142, 1993.

[17] J. de Bruijn, R. Lara, A. Polleres, and D. Fensel. Owl dl vs. owl flight:
conceptual modeling and reasoning for the semantic web. In Proceedings
of the 14th international conference on World Wide Web, pages 623–
632, Chiba Japan, 2005. ACM Press London.

[18] Sharon J. Kemmerer (Ed). Step: The grand experience. NIST Special
Publication 939, 1999.

[19] Clive Fencott. Towards a design methodology for virtual environments.

262

BIBLIOGRAPHY 263

[20] Steven J. Fenves. A core product model for representing design infor-
mation. Technical report NISTIR 6736, National Institute of Standards
and Technology (NIST), 2001.

[21] Martin Fowler and Kendall Scott. UML Distilled: a brief introduction
to the standard object modeling language. Addison-Wesley Professional,
second edition, 1999.

[22] Kim G.J., Kang K. C., and Kim H. Software engineering of virtual
worlds. In Proceedings of the ACM symposium on Virtual Reality and
Technology, pages 131–138. ACM Press, 1998.

[23] Ontoprise GmbH. How to write f-logic programs covering ontobroker
version 4.3, January 2006.

[24] Michael Gosele and Wolfgang Stuerzlinger. Semantic constraint for
scene manipulation. In Proceedings of the Spring Conference in Com-
puter Graphics, pages 140–146.

[25] T.R. Gruber. A translation approach to portable ontologies. Knowledge
acquisition, 5(2):199–220, 1993.

[26] N. Guarino and P. Giaretta. Ontologies and knowledge bases: towards
a terminological clarification, pages 25–32. ION Press, 1995.

[27] Terry Halpin. Conceptual Schema and Relational Database Design.
WytLytPub, second edition, 1999.

[28] Terry Halpin. Information Modeling and Relational Databases: From
Conceptual Analysis to Logical Design. Morgan Kaufmann, first edition,
2001.

[29] Jed Hartman and Josie Wernecke. The VRML 2.0 Handbook. Addison
Wesley, 1998.

[30] Cay Horstmann. Object-oriented design and patterns. John Wiley and
Sons, 2003.

[31] S. Jayaram, H. Connacher, and K. Lyons. Virtual assembly using vir-
tual reality techniques. Journal of Computer-Aided Design, 29(8), 1997.

[32] S. Jayaram, Y. Wang, U. Jayaram, K. Lyons, and P. Hart. A virtual
assembly design environment. In Proceedings of IEEE Virtual Reality
Conference, pages 172–180, Houston, Texas, USA, 1999.

263

264 BIBLIOGRAPHY

[33] Bernhard Jung, Martin Hoffhenke, and Ipke Wachsmuth. Virtual as-
sembly with construction kits. In Proceedings of ASME Design Engi-
neering Technical Conferences, Sacramento, California, USA, 1997.

[34] Bernhard Jung and Ipke Wachsmuth. Integration of geometric and con-
ceptual reasoning for interacting with virtual environments. In Proceed-
ings of the AAAI Spring Symposium on Multimodal Reasoning, pages
22–27, Palo Alto, California, USA, 1998.

[35] M. Kifer and J. Wu. A logic for object-oriented programming (maier’s o-
logic revisited). In Proceedings of the eighth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 379–393,
Philadelphia, USA, 1989. ACM Press NY.

[36] Michael Kifer, Georg Lausen, and James Wu. Logical foundations
of object-oriented and frame-based languages. Journal of the ACM,
42(4):741–843, 1995.

[37] Kevin E. Kline. SQL in a Nutshell. O’Reily, 2 edition, 2004.

[38] Eric Lengyel. Mathematics for 3D game programming and computer
graphics. Charles River Media Inc., 2nd edition, 2004.

[39] Jesse Liberty. Programming C#. O’Reilly, 2003.

[40] Wolfgang May. How to write f-logic programs in florid.
http://dbis.informatik.uni-freiburg.de, accessed 6th of November 2006,
2000.

[41] Kelly L. Murdock. 3ds max 5 bible. Wiley Publishing, 2003.

[42] B. Pellens. A Conceptual Modelling Approach for Behaviour in Vir-
tual Environments using a Graphical Notation and Generative Design
Patterns. PhD thesis, Vrije Universiteit Brussel, 2007.

[43] B. Pellens, W. Bille, O. De Troyer, and F. Kleinermann. Vr-wise: A con-
ceptual modeling approach for virtual environments. In CD-ROM Pro-
ceedings of the Methods and Tools for Virtual Reality workshop, Gent,
Belgium, 2005.

[44] B. Pellens, F. Kleinermann, W. Bille, and O. De Troyer. Overview of
existing vr modeling concepts. Deliverable 1.1, VR-Demo Project (IWT
030248), 2004.

264

BIBLIOGRAPHY 265

[45] B. Pellens, F. Kleinermann, O. De Troyer, and W. Bille. Model-based
design of virtual environment behavior. In H. Zha et al., editor, Proceed-
ings of the 12th International Conference on Virtual Reality Systems
and Multimedia, pages 29–39, Xian, China, 2006. Springer-Verlag.

[46] B. Pellens, O. De Troyer, W. Bille, and F. Kleinermann. Conceptual
modeling of object behavior in a virtual environment. In Xavier Fisher
et al., editor, Proceedings of Virtual Concept 2005, pages 93–94, Biar-
ritz, France, 2005. Springer-Verlag.

[47] B. Pellens, O. De Troyer, W. Bille, F. Kleinermann, and R. Romero.
An ontology-driven approach for modeling behavior in virtual environ-
ments. In R. Meersman et al., editor, Proceedings of Ontology Mining
and Engineering and its use for Virtual Reality 2005, pages 1215–1224,
Agia Napa, Cyprus, 2005. Springer-Verlag.

[48] B. Pellens, O. De Troyer, F. Kleinermann, and W. Bille. Conceptual
modeling of behavior in a virtual environment. Special Issue of the
International Journal of Product and Development, pages xx–xx, 2006.

[49] S. Rachuri, Y-H. Han, S. Foufou, S. C. Feng, U. Roy, F. Wang, R.D.
Sriram, and K. W. Lyons. A model for capturing product assembly
information. Journal of Computing and Information Science in Engi-
neering, 6(1):11–21, 2006.

[50] G. Robertson, M. Czerwinski, K. Larson, and M. van Dantzich. Im-
mersion in desktop virtual reality. In Proceedings of the 10th Annual
Symposium on User Interfaces and Technology (UIST), pages 11–19,
1997.

[51] Ton Roosendaal and Stefano Selleri. The official Blender 2.3 Guide:
Free 3D creation suite for Modeling, Animation and rendering. No
Starch Press, 3 edition, 2005.

[52] Jarek R. Rossignac and Aristides A.G. Requicha. Solid Modeling. John
Wiley, 1999.

[53] Jinseok Seo and Jounghyun Kim. Design for presence: A structured
approach to virtual reality system design. Presence, 11(4):378–403,
2002.

[54] G. Smith and W. Stuerzlinger. Integration of constraints into a vr envi-
ronment. In Proceedings of the Virtual Reality International Conference
2001, pages 103–110, Laval, France, 2001.

265

266 BIBLIOGRAPHY

[55] Russell Smith. Open dynamics engine v5.0 user guide, 2004.

[56] Finnegan Southey and James G. Linders. Ossa — a conceptual mod-
elling system for virtual realities. Lecture Notes in Computer Science,
2120:333–345, 2001.

[57] Wolfgang Stuerzlinger and Graham Smith. Efficient manipulation of
object groups in virtual environments. In Proceeding of the VR2002,
Orlando, Florida, 2002.

[58] Ivan E. Sutherland. A head-mounted three dimensional display. In Pro-
ceedings of the Fall Joint Computer Conference, pages 757–764, 1968.

[59] Vildan Tanriverdi and Robert J.K. Jacob. Vrid: A design model
methodology for developing virtual reality interfaces. In Proceedings
of ACM Virtual Reality Software and Technology, Alberta, Canada,
2001. ACM.

[60] A. H. M. ter Hofstede and Th.P. van der Weide. Fact orientation
in complex object role modelling techniques. In T. A. Halpin and
R. Meersman, editors, Proceedings of the First International Conference
on Object-Role Modelling (ORM-1), pages 45–59, Townsville, Australia,
1994.

[61] Alias Learning Tools. The art of Maya: An introduction to 3D computer
graphics. Sybex, 3 edition, 2005.

[62] O. De Troyer, W. Bille, R. Romero, and P. Stuer. On generating virtual
worlds from domain ontologies. In Tat-Seng Chua and Tosiyasu L. Ku-
nii, editors, Proceedings of the 9th International Conference on Multi-
Media Modeling, pages 279–294, Taipei, Taiwan, 2003.

[63] Olga De Troyer, Frederic Kleinermann, Haitem Mansouri, Bram Pel-
lens, Wesley Bille, and Vladimir Fomenko. Developing semantic vr-
shops for e-commerce. Special issue of Virtual Reality in e-society for
the Journal of Virtual Reality, 2006.

[64] J.F.A.K. van Benthem, H.P. van Ditmarsch, J. Ketting, and W.P.M.
Meyer-Viol. Logica voor informatici. Addison Wesley, 2 edition, 1993.

[65] John Vince. Introduction to Virtual Reality. Springer-Verlag, 2004.

[66] Ipke Wachsmuth and Bernhard Jung. Dynamic conceptualization in a
mechanical-object assembly environment. Artificial Intelligence Review,
10(3-4):345–368, 1996.

266

BIBLIOGRAPHY 267

[67] Mark H. Walker, Nanette J. Eaton, and Nanette Eaton. Microsoft Visio
2003 Inside Out. Microsoft Press, 2003.

[68] Guizhen Yang, Michael Kifer, Chang Zhao, and Vishal Chowdhary.
Flora-2: User’s Manual, 2005.

[69] Thomas G. Zimmerman, Jaron Lanier, Chuck Blanchard, Steve Bryson,
and Young Harvill. A hand gesture interface device. ACM SIGCHI
Bulletin, 17(SI):189–192, 1986.

267

