
Design Science as Nested Problem Solving

Roel Wieringa
Department of Electrical Engineering, Mathematics, and Computer Science

University of Twente, The Netherlands
roelw@cs.utwente.nl

ABSTRACT
Design science emphasizes the connection between knowl-
edge and practice by showing that we can produce scientific
knowledge by designing useful things. However, without fur-
ther guidelines, aspiring design science researchers tend to
identify practical problems with knowledge questions, which
may lead to methodologically unsound research designs. To
solve a practical problem, the real world is changed to suit
human purposes, but to solve a knowledge problem, we ac-
quire knowledge about the world without necessarily chang-
ing it. In design science, these two kinds of problems are
mutually nested, but this nesting should not blind us for
the fact that their problem-solving and solution justification
methods are different. This paper analyzes the mutual nest-
ing of practical problems and knowledge problems, derives
some methodological guidelines from this for design science
researchers, and gives an example of a design science project
following this problem nesting.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Design science, regulative cycle, nested problems, practical
problems

1. INTRODUCTION
Following Simon [34], March & Smith [20, page 253] in-
troduced design science as attempts to create things that
serve human purposes. Later, Hevner et al. [13] provided a
methodological context for design science in which (1) busi-
ness needs motivate the development of validated artifacts
that meet those needs, and in which (2) the development
of justified theories about these artifacts produces knowl-
edge that can be added to the shared knowledge base of
design scientists. This framework clarifies the interface of
design science with its social environment and with the sci-
entific knowledge base, and it makes clear that design and

research are closely related activities. However, the interac-
tion of these activities is not analyzed, and this may create
methodological problems. In particular, practical problems
and knowledge problems in design science may be identified,
and this can create methodological problems.

Practical problems call for a change of the world so that it
better agrees with some stakeholder goals. Knowledge prob-
lems by contrast do not call for a change the world but for
a change our knowledge about the world [39, 42]. These
two problems are both first class citizens in design science,
in that they can both be equally challenging and reward-
ing to solve, but they do have important methodological
differences. Answers to knowledge problems are proposi-
tions claimed to be true; solutions to practical problems
are changes in the world claimed to meet the goals of some
stakeholders. As a consequence, solving practical problems
involves investigating the goals of stakeholders, and evaluat-
ing solutions involves applying stakeholder criteria; but an-
swering knowledge problems involves applying stakeholder-
independent criteria of truth. The distinction is defined in
section 2 and elaborated in section 4.

Teaching problem-solving methodology to undergraduate and
graduate students in information systems engineering1 has
shown me that students often state practical problems in
the form of knowledge questions. For example, (1) “Design
an architecture for exchanging information between hospitals
and insurance companies” is a practical problem, because it
calls for a design of a change in the world. However, to
make it look like a research problem, students often state in
the form (2) “What is an architecture for exchanging infor-
mation between hospitals and insurance companies?” This
is exactly the same practical problem, but stated in a way
that makes it very hard to distinguish it from the knowledge
question (3) “What is the architecture for exchanging infor-
mation between hospitals and insurance companies?” Ques-
tion (2) differs in only one word from question (3). However,
(3) is a knowledge question, that asks for information about
the currently existing information exchange architecture be-
tween hospitals and insurance companies, whereas (2) asks
for the specification of a new artifact. Question (2) is a de-
sign question and this question is more clearly formulated
in (1). To answer this design question, the problem solver
must identify stakeholders and their goals, derive design cri-
teria from these, investigate how a proposed solution would

1http://wwwhome.cs.utwente.nl/~roelw/
DesignScienceMethodology-handout.pdf

kmohan
Text Box
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copies arenot made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, or republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.DESRIST'09, May 7-8, 2009, Malvern, PA, USA.Copyright 2009 ACM 978-1-60558-408-9/09/05...$5.00.

achieve a goal in a given context, analyze trade-offs between
alternative solutions, and assess the sensitivity of a solution
to changes in context; tasks that are not present in answer-
ing a knowledge question like (3). To answer knowledge
question (3), the researcher should investigate existing arti-
facts and describe them, and then validate the description.
Expressing problem (1) in the form of problem (2) is bound
to create methodological trouble.

The goal of this paper is to clarify the methodology of de-
sign science by first distinguishing practical problems and
knowledge questions as sharply as possible (section 2) and
then identifying some important knowledge questions that
occur within the practical problem solving cycle (section 3).
This allows us to rationally reconstruct the logic of design
science as mutually nested problem solving cycles, in which
solving a practical problem may lead the problem solver to
ask knowledge questions, and answering these knowledge
questions leads the problem solver to new practical prob-
lems (section 4). Reflection on this nested structure leads
us in section 5 to a discussion of the terminology of design
science, of scientific research methods, of levels of theory,
and of the role of conditions of practice in design science.
In section 6 I compare the proposal of this paper with other
work. Section 7 concludes by extracting from the paper
some guidelines for the aspiring design scientist.

2. KNOWLEDGE PROBLEMS VERSUS PRAC-
TICAL PROBLEMS

In this paper the view is taken that design science projects
are problem solving projects. The first distinction to be
made then is between kinds of problems to solve. I define
a practical problem2 as a difference between the way the
world is experienced by stakeholders and the way they would
like it to be, and a knowledge problem as a difference
between current knowledge of stakeholders about the world
and what they would like to know.

Examples of practical problems are the problem of getting
electricity from suppliers to consumers [14], increasing the
altitude and speed of airplanes [6], providing a national in-
frastructure for the exchange of patient data between hospi-
tals and health insurance companies, and developing a web
site to sell last-minute airplane tickets. In practical prob-
lems there is someone who wants to change something in
the world in the near or more distant future. Examples of
knowledge questions are the questions when a rigid beam
breaks under weight [38], why light bulbs get blackened by
ductile-tungsten filaments [28, pages 121–127], what the per-
formance of a database under different workloads is, and
what the cheapest ticket to Sidney is. Answering these ques-
tions tells us something about the world without changing

2We called this a world problem earlier [42], because this
makes clear that the outcome of practical problem solving
is a change of the world, just as the outcome of answering a
knowledge question is a change of our knowledge. However,
this is not quite right because both kinds of problems con-
cern the world, but with the purpose of changing it resp. of
learning about it. The term “action problem” is more accu-
rate than“world problem”, but to many people this suggests
incorrectly that we are talking about action research only.
The term “practical problem” fits nicely with the term “con-
ditions of practice” introduced later.

it—but our knowledge about the world changes.

The reason for making the distinction is that practical prob-
lems are solved by changing the world in accordance with
stakeholder desires, but knowledge problems are solved by
formulating propositions about the world [41, page 52]. This
different problem-solving approach in turn implies a differ-
ence in evaluation criteria for proposed solutions. The eval-
uation criterion for solutions to practical problems is found
by analyzing the problem, namely by identifying solution
criteria, often called requirements [10], based on stakeholder
goals. The evaluation criterion for answers to knowledge
problems does not depend on stakeholder goals but is found
by evaluating its truth value with respect to the subject do-
main of the knowledge.

For example, the practical problem“improve the architecture
for exchanging information between this hospital and these
insurance companies” calls for an improvement of the world,
viz. of some IT architecture. To solve the problem, the
problem-solver must identify stakeholders and their goals,
derive criteria from these in order to find out what kind of
improvement is called for, propose an architecture that he
or she thinks will meet these criteria, validate this proposal
against the criteria and then, if the sponsor of the project
approves, implement the selected proposal. By contrast, the
knowledge question“What is the architecture for exchanging
information between this hospital and these insurance com-
panies?” asks for information about something that exists.
This could be a subproblem of the above practical problem
but to answer this subproblem, the problem solver should
study existing documentation, possibly analyze source code,
verify his or her understanding by interviewing maintenance
personnel etc. The result is not a changed architecture but
a report about the existing architecture.

Henceforth, I will talk of practical problems and knowledge
questions, which have solutions and answers, respectively.
Their problem domain, the part of the world where the prac-
tical problem exists or the part of the world that the ques-
tion is about, may be very particular or very generic. The
practical problem “paint this house” leads to the knowledge
question “what color do you like?”, both having a particu-
lar problem domain, namely this house at this moment, and
your color preferences at this moment, respectively. There
is no deep research interest served by answering these prob-
lems. The practical problem to deliver propulsion technol-
ogy for airplanes at high altitudes and high speeds has a
very generic problem domain, namely the propulsion of air-
planes of different sizes at different (high) altitudes at differ-
ent (high) speeds under different weather conditions. And
the question what the cause of blackening of a light bulb is,
has as domain all light bulbs constructed of this material.
The scientist who answered it, Irving Langmuir, received a
Nobel prize for this work [28]. The following two sections
analyze the logic of practical problem solving in both partic-
ular as well as generic cases; we return to the classification
of the genericity of knowledge in section 5.

3. THE REGULATIVE CYCLE
3.1 Tasks in the regulative cycle
March & Smith [20, page 253] have defined design science as
attempts to create things that serve human purposes. Here

I generalize this to also include attempts to improve existing
things to serve human purposes better. This makes a design
science problem a practical problem as defined above. We
will structure a design science project as a set of nested
problems in which the top level problem is always a practical
problem. A logical structure for solving practical problems
is the regulative cycle, shown in figure 1.3

The regulative cycle [35, 41] starts with an investigation
of a practical problem, itself the outcome of solving earlier
practical problems; then specifies solution designs, validates
these, and implements a selected design; the outcome of
which can then be evaluated, which could be the start of a
new turn through the regulative cycle. Researchers in such
various fields as product development [7, 15, 29], systems en-
gineering [12], architecture [1], mechanical engineering [25]
and psychological practice [35] have identified, with some
minor variations, the regulative cycle as the logical struc-
ture of rational practical action. The regulative cycle is the
general structure of a rational problem solving process [21,
33]: Analyze the current situation and current change goals,
propose possible changes to meet those goals, evaluate possi-
ble changes and select one, apply the change and then start
all over again.

We will use the regulative cycle as our conceptual framework
for the logic of practical problem solving. So we decompose
practical problems into knowledge subproblems and practi-
cal subproblems (figure 2). As illustrated later, the prac-
tice of solving practical problems is messier than the simple
structure in figure 2, because rationality is not the structure
of the real world but of our attempts to deal with the real
world. However, we will see that the regulative cycle pro-
vides useful guidelines for solving practical problems. We
now look at the structure of the regulative cycle in more
detail.

Problem investigation. Problem investigation is a knowl-
edge question, because it asks for information about and un-
derstanding of the given problem, without yet changing it.
The goal of problem investigation is to describe the problem,
to explain it, and possibly to predict what would happen if
nothing is done about it.

It is useful to distinguish four non-exclusive reasons for in-
vestigating practical problems, namely problems, goals, and
impacts. Each of these leads to different emphases in the
problem investigation process.

• In problem-driven investigation, stakeholders ex-
perience problems that need to be diagnosed before
solving them. For example, a company may experi-
ence problems with supplying its different branches,
located in different cities. Problem investigation then
starts with a description and diagnosis (explanation)
of these problems. Important tasks in problem-driven

3I have called this the engineering cycle elsewhere [42, 39]
There is nothing wrong with this term but to avoid the im-
pression that in this paper I restrict myself to technical de-
sign science I use the more general term “regulative cycle”,
borrowed from Van Strien [35], which refers to exactly the
same cycle.

investigation are describing problematic phenomena,
formulating and testing hypotheses about their causes,
and identifying priorities for problems to be solved.

• Goal-driven investigation considers a situation in
which there may be no problem experienced but where
there are nevertheless reasons to change the world in
agreement with some goals. For example, hospitals
and insurance in the Netherlands experienced no prob-
lem in exchanging data, but a new law requires them to
exchange new kinds of data for new kinds of goals, and
so a new IT communication infrastructure needed to
be designed. Problem investigation in this case starts
with an analysis of goals to be achieved rather than
with problems that stakeholders experience. Impor-
tant tasks in all cases of solution-driven problem in-
vestigation are describing stakeholder goals, defining
and operationalizing them, and identifying priorities
of goals.

• In solution-driven investigation, technology is in
search of problems that can be solved with it. For ex-
ample, from a consumer point of view, new technology,
such as mobile information technology or cloud com-
puting may bring new goals within reach of potential
users of this technology. Problem investigation in this
case would start with an investigation of the proper-
ties of the new technology; and solution design would
be an exploration of ways in which it could be used
to achieve new goals. From a manufacturer’s perspec-
tive, new technology could be developed to open up
new markets, such as the development of video record-
ing technology for the consumer market in the 1970s.
Problem investigation in this case consists of making
an inventory of goals and of current technology, and
in identifying functionality and performance require-
ments for new technology.

More innovative even is the search for new technol-
ogy that can solve problems not yet experienced. The
development of jet propulsion technology in the early
20th century [6], was triggered by the expectation of
some engineers that in the future, contemporary air-
craft propulsion technology would reach performance
limits. In this case there was no experienced problem,
but a possible future technical possibility. Problem
investigation consisted of clarifying performance goals
for the new technology at the same time as the tech-
nology was being developed.

• In impact-driven investigation, also called evalua-
tion research, we focus on the outcome of past actions
rather than preparing for the design of future solu-
tions. For example, we may evaluate the cost savings
realized by an ERP implementation or we may evalu-
ate the performance of the current generation of video
recorders on the market. Important tasks in evalu-
ation research are describing solutions implemented
earlier, identifying their impacts and explaining these
impacts in terms of properties of the implemented so-
lutions, identifying relevant stakeholder goals, trans-
lating these into criteria and applying these to the im-
pacts.

These categories are not mutually exclusive but to the extent

Figure 1: The regulative cycle.

Figure 2: A simple decomposition of practical problems into subproblems.

that each of them is present, certain aspects of the problem
will be emphasized and other aspects de-emphasized.

Solution design. Calling this task solution design is op-
timistic because it may blind the reader to the possibility
that “solutions” may be designed that after implementation
will turn out to have made things worse, at least for some
stakeholders. “Improvement” has the same problem; “arti-
fact” may blind the reader for organizational solutions, and
“treatment” and “intervention” have the opposite problem.
“Provision” [2] has none of these problems but is rarely used.
So I will use the term“solution”but use some of the the other
terms if they fit the context better.

I would like to avoid the suggestion that a solution is com-
pletely specified before being validated or implemented—
often it is not. Even when not specified completely, though,
solutions are designed. I follow the Merriam-Webster dictio-
nary by viewing design as a plan in which the means to an
end is laid down.4 The end to be reached consists of one or
more stakeholder goals. The means to reach this end is the
solution designed by the problem solver, and in information
systems may consist of a new or improved technique, nota-
tion, instrument, device, algorithm, process, business struc-
ture, etc. to reach the desired stakeholder ends. The plan to
reach the end is always specified to some extent, because it
must be communicated to others. And this specification may
take many forms, ranging from natural language descrip-
tions to formal specifications, diagrams, sketches, blueprints,
mathematical models, scale models, prototypes, etc. or any
combination of these.

The reason for classifying solution design as a practical prob-
lem in figure 2 is that designing is the formation of a commit-
ment by stakeholders to improve the world in a certain way.
The practical problem solver help stakeholders form this
commitment by offering possible solution designs. Forming
the design commitment is a significant change in the world

4http://www.merriam-webster.com/dictionary/design.

that reduces the gap between what stakeholders experience
(“we are uncertain about what to do”) and what they would
like to experience (“we are sufficiently certain about what to
do”). The resulting solution specification is not a descrip-
tion of the world, for the specified solution does not exist
yet; nor is it an explanation, because it is a specification of
a possible future change rather than an explanation of what
happened; it is not even a prediction, for the decision to ap-
ply this change must still be taken, and after it is taken, the
specification may be implemented incorrectly. A solution
specification does not have a truth value because it does not
describe a past, current or future state of the world. Rather,
the specification is the expression of a possible commitment
to act in a certain way.

Later, after the solution design is implemented, we may ask
wether the implementation is correct. Even then, the solu-
tion specification is not a description of the implementation,
because if the implementation is incorrect with respect to the
specification, we conclude that the implementation is wrong
and not that the specification is false.

In terms of speech acts, creating a specification is a direc-
tive speech act [31]. By specifying a solution, the design
scientists influence the behavior of stakeholders; and by ac-
cepting a specification, the stakeholders commit to behaving
in a certain way.

Design validation. Design validation is a knowledge task
in which we ask whether the specified design, if implemented
correctly, would indeed bring stakeholders closer to their
goals. There are three important knowledge questions in
design validation:

V1 Internal validity. Would this design, implemented
in this problem context, satisfy the criteria identified
in the problem investigation? This contains two sub-
questions.

E1 Causal question: In problem domain D, would
solution S have effects E?;

E2 Value question: Do E satisfy stakeholder crite-
ria C?

V2 Trade-offs. How would slightly different designs, im-
plemented in this context, satisfy the criteria?

V3 External validity (a.k.a. sensitivity analysis).
Would this design, implemented in slightly different
contexts, also satisfy the criteria?

These are knowledge questions. Their answers are proposi-
tions, claimed to be true. Importantly, and typical of design
research, they are all predictions: What would happen in the
future if this design were implemented in that context? The
object of interest, an implemented solution, does not exist
yet. This sets it apart from evaluation research, where we
ask questions like E1 and E2 about an implemented change.
We return to these questions when we discuss the design
argument below.

Implementation. The term“implementation”is overloaded.
In this paper I take the view that what constitutes an im-
plementation depends on what solution has been designed.
If the goal was to bring a video recorder on the consumer
market, and a process to reach this goal has been designed,
then an implementation of this design is the execution of this
process; but if the goal was to try out a new video recorder
design, and series of tests has been designed to do this, then
an implementation of these designs is an execution of these
tests according to these plans.

We have now identified a large number of knowledge ques-
tions in the regulative cycle, that have already been briefly
summarized in figure 1. Note that some of the knowledge
questions in a regulative cycle can be answered without
starting a research project but by taking the answer from
an existing knowledge base. However, other knowledge ques-
tions, such as problem diagnosis or solution validation, may
require research projects to answer them. So an instance of
the regulative cycle may or may not contain research prob-
lems.

3.2 Rational reconstruction of a practical prob-
lem solving process

The process of solving a practical problem is a sequence of
activities and events as they could be written down in the
diaries of the problem solvers involved in it. This process
does not necessarily follow the regulative cycle. Already
in 1971 Bruce Archer remarked that a design process does
not start with a statement of requirements, leading up to
a specification of a solution unknown at the start of the
process [2]. Rather, the practical problem solving process
starts with obscurity about the requirements, or about the
the practicability of a possible solution, or about the match
between requirements and solution; and it leads to a state
with a requirements/solution match that contains an accept-
ably small amount of residual misfit and obscurity [2, page
17]. This view has been corroborated by empirical studies of

designers, which show that experienced designers start with
matching an incompletely specified solution to an incom-
pletely understood problem and then jointly elaborate their
solution specification and problem understanding [8]. We
also find this view in systems engineering, where the “doc-
trine of successive refinement” says that the problem solvers
iterate through the regulative cycle at increasingly detailed
levels of understanding and design specification, starting
with incomplete and vague problem/solution descriptions,
and ending with a sufficiently clear set of problem/solution
descriptions [23]. And in industrial product development
this phenomenon is known too, where it is called “concen-
tric development” [29, pages 26, 112].

So what does the regulative cycle represent, if not how the
project actually evolves? It is a template for rational recon-
struction of a practical problem solving process that lumps
together what problem solvers did to understand the prob-
lem, to design an improvement, to validate it and to im-
plement it. A rational reconstruction of a problem solving
process is a chain of tasks from problem to improvement im-
plementation that we construct to justify the improvement
to others [41, pages 368, 372–373].

The concept of rational reconstruction has been used to
discuss the relationship between history of science, which
studies knowledge acquisition processes in history, and the
philosophy of science, which studies the logical structure of
justification of scientific knowledge [17]. The logical justi-
fication is a rational reconstruction of what actually hap-
pened. The same concept has also been identified by Parnas
and Clements [26] in software engineering, who call it fak-
ing a development process. And in the ethnographic study
of administrative processes, Suchman [36] showed that in
offices, a lot of activity goes into rationally reconstructing
administrative events such as receiving payments, paying
out refunds, and sending bills, as if they happened accord-
ing to the official procedures. These reconstructions are not
falsifications of history but constructions of accountability,
according to the rules of accountability applicable to the
reconstructed process.

3.3 The design argument
Crucial for being able to justify a solution design is the abil-
ity to justify its internal validity, which is the claim that a
correct implementation of the design solves some practical
problem for a stakeholder. This argument occurs both in
design validation and in problem evaluation, and I state it
here in time-neutral way.

E1 Causal claim: In problem domain D, solution S has
effects E;

E2 Value claim: E satisfies stakeholder criteria C

The problem domain D consists of the part of the world
with which the solution will interact, such as the phenom-
ena experienced as problematic by stakeholders, or the enti-
ties with which the solution will interact in order to achieve
certain effects. After introduction of the solution in this
domain, D has become the context of use of S.

The effects mentioned in the causal claim only result if the
solution interacts with the domain: The new video recorder
has to be used by consumers in their home to record a TV
program from a cable TV provider (but it may fail to pro-
duce the desired effects in certain countries), the new ERP
package has to be used by procurement officers to buy new
material (and may reduce or increase the procurement pro-
cess, depending on the context of use); the medicine will
create a certain effect in John Smith (and possibly another
in Jay Jones), etc. E1 is a claim about the effect of the so-
lution in a context; Different contexts of the same solution
may lead to different effects. The value claim then compares
the effects with criteria derived from stakeholder goals.

The design argument occurs in various forms in problem
investigation and design validation in the regulative cycle. If
the problem investigation is impact-driven, then the above
design argument precisely is the structure of realist (non-
positivist) evaluation, in which outcomes are identified and
attributed to the interaction between solution and problem
domain, and then evaluated against stakeholder goals [27].
The realist evaluator is interested in the mechanisms that
make the interaction between S and D create effects E. For
example, an ERP implementation (solution) implemented
in a particular company (problem domain) may turn out to
fail to reduce costs (effects), which violates the stakeholder
goal of reducing costs. Investigation of the implementation
reveals the mechanism that causes this unexpected effect: In
this company, employees received training in the use of the
ERP package, which raised their competence level, and this
caused these employees to look for and find a better paid
job elsewhere, forcing the company to spend more money
on hiring and training new employees. In other companies,
this effect may be absent.

If problem investigation is problem-driven, goal-driven or
solution-driven, part of the argument may be omitted be-
cause it is not needed in order to justify possible solutions.
For example, in goal-driven problem investigation only the
operationalization of goals into criteria C may be performed,
and in problem-driven investigation, only description and
evaluation of effects E may be performed.

As we saw, internal validation of a design follows the design
argument too. Here we are looking to a future action in-
stead of evaluation the outcome of past actions. In software
engineering this is known as the“reference model for require-
ments and specification” [11], where in terms of this paper
the requirements are stakeholder goals, and specifications are
specifications of solution designs.

External validation of a solution design, finally, is analyz-
ing whether the design argument remains valid if we would
change the term D in it; and trade-off analysis consists in
varying the term S.

4. PROBLEM NESTING
4.1 Problem classes
In order to analyze problem nesting it is helpful refine our
classification of problems. Figure 3 shows the classification
of problems that we will use. We have already distinguished
two kinds of practical problems, namely design problems, in
which we construct a specification of a solution to a practical

• Practical problems

– Design problems. How to construct or improve
something?

– Implementation problems. Implement an improve-
ment design.

• Knowledge questions

– Conceptual questions

∗ Conceptual modelling: Which concepts do
we use?

∗ Conceptual analysis: What are the concep-
tual relationships among these concepts?

– Empirical questions

∗ Description: What are the facts?

∗ Explanation: What are their causes?

∗ Prediction: What are their effects?

∗ Evaluation: How do the
facts/causes/impacts compare to crite-
ria?

Figure 3: A classification of problems.

problem, and implementation problems, in which we imple-
ment a specification (figure 2). We have also encountered
four kinds of knowledge questions, namely (1) description
and (2) explanation, which are likely to occur in problem
investigation to find out what problems need improvement
and what their causes are; (3) prediction, which is done in
design validation in order to estimate what the effects of an
implementation would be; and (4) evaluation, in which ob-
served, diagnosed or predicted facts are compared against
criteria (figure 2).

In figure 3 we group these knowledge questions into the
class of empirical questions and contrast these with a second
group of knowledge questions, namely conceptual questions.
Where empirical questions ask for facts, their causes and
their impacts, conceptual questions ask for the concepts by
which we describe and classify these facts. For example,
when developing a personnel information system we need
concepts such as employee, contract and organizational unit
to define the meaning of the data in the system. This is
conceptual modelling. At a higher level of aggregation, we
may make a reference model of the subject domain of per-
sonnel information systems in an industry branch, and at a
yet higher level we may make a model of concepts needed
to describe the role of personnel information systems in re-
alizing company mergers. At each of these levels, concepts
are needed to describe the problem and the effort to define
these concepts is conceptual modelling. The source of the
definitions may be the stakeholders in the domain, or a dis-
cipline such as HRM management. Conceptual modelling
thus may range from fixing a set of concepts that define
the meaning of data in an information system to adapting
concepts developed elsewhere to the domain at hand.

In information system development, conceptual modelling is
more than developing a dictionary to be used in a particular
domain. When developing a particular information system
for a particular company, the developer may discover that
there is no such a dictionary in this company, or that dif-

ferent stakeholders may have different dictionaries—as in
company mergers. Since the domain contains stakehold-
ers who use concepts to structure their domain, conceptual
modelling involves a dialog with these stakeholders, in which
relevant concepts are jointly identified and defined.

The same is true if we are investigating rather than devel-
oping information systems. Information systems are sub-
systems of organizations that contain people who interpret
their world, and whose world partly consists of interpreta-
tions. The researcher then tries to understand these inter-
pretations, a situation called“double hermeneutics” in social
science [30, pages 29 ff.]

In both information systems development and information
systems research, interaction between the developer/researcher
and the social system that is studied may lead to a change
of concepts used in the domain, a phenomenon shared with
all social studies. Social systems have a history [27, pages
72 ff.]. This does not invalidate the classification of figure 3,
but it does indicate that it should be used with care be-
cause in reality some problems may have features of more
than one problem class. In particular, empirical questions
may contain conceptual questions and vice versa. This is in
line with the claim of this paper that problems are nested.

Nesting should not blind us for the difference between a
problem and its subproblems. The classification of figure 3
is presented here because the information systems devel-
oper/researcher needs to do different things in order to solve
different problems, even if a problem of one kind is nested
inside a problem of another kind. I will illustrate how this
works out in practice in the next section.

4.2 Example: Problem-driven research
Figure 4 shows the nested problem structure of the Ph.D.
thesis of Bela Mutschler [22]. The large transparent box
is the decomposition of the practical problem problem how
to improve effort estimation of process-aware information
systems (PAIS) in an industrial company X. This problem
was tackled by performing the first three tasks of the regu-
lative cycle, namely problem investigation, solution design,
and design validation. The transparent box contains three
knowledge questions that inquire into the problem, namely
Which problems are experienced (box (2) in figure 4), What
effort estimation techniques are available (box 5) , and How
do these fare on solving these problems (9). Next, a design
problem (10) calls for an alternative technique that avoids
some of the problems of existing techniques, and finally the
designed technique is internally validated (14). Having spec-
ified and validated a solution to the design problem, the
researcher looked back and drew lessons learned about the
problem-solving process itself (18). This resulted in some
improvement suggestions that could help researchers who
want to do a similar project later.

We can make a number of interesting observations of this
decomposition. First, a glance at the table of contents of
Mutschler’s thesis [22] would reveal that this problem de-
composition has been mapped onto the table of contents of
the thesis. This is a general feature of this kind of problem
decomposition: They help the researcher structure their re-
port about the research project. This is in line with the role

of the regulative cycle in the production of accountability.

Second, knowledge questions can contain practical problems
as subproblems. For example, the knowledge question what
the current problems experienced in company X are (2) is de-
composed into a number of problem-driven questions about
problems and stakeholders (3). To answer these questions,
a practical problem must be solved, namely how to get the
relevant information. This problem has been solved by con-
ducting an internet survey in company X and by interview-
ing some project managers (4). We can generalize this: To
answer a knowledge question, we have to do something, for
example ask someone, or look it up in a knowledge base,
or do original research. Answering a knowledge question is
thus itself a practical problem.

Third, problems can be decomposed forever, but in prac-
tice, decomposition can stop when we reach a subproblem
for which we know what to do to answer it. For exam-
ple, conducting an internet survey and interviewing project
managers (4) have not been decomposed further because
they are well-known research tasks which have more or less
standard decompositions. By contrast, making an inventory
of existing effort estimation approaches (5) turned out to be
unexpectedly complicated, because the researcher wanted to
classify existing approaches, and there turned out to be sev-
eral conflicting taxonomies. The new problem then was to
make a taxonomy first (6). This too was solved following the
regulative cycle (7), which contained, among others, a liter-
ature review of existing taxonomies. Only then the existing
effort estimation techniques could be classified according to
the taxonomy designed by the researcher (8). This involved
another literature review.

Fourth, design problems can contain knowledge questions
too. For example, using causal loop diagrams (CLDs) to
model qualitative relations among cost factors (10) was part
of the design of a solution. It included knowledge elicitation
sessions with project managers (12).

Fifth, sometimes, answers are found to knowledge questions
that were not asked. For example, the research collected
modelling guidelines for CLDs, although this answers a ques-
tion not asked by company X (13).

Sixth, Mutschler encountered knowledge questions that re-
quired original research to answer, and no research method is
banned from being used to answer these questions.. Mutschler
used survey research combined with interviews (4, 12), meta-
research (structured literature reviews) (7, 8), experiments
(15), and case study research (17). The experiment in (15)
was done using a student project, the pilot project in (17)
was a real project in company X where the manager used
the effort estimation models developed by Mutschler.

Seventh, although the regulative cycle is recognizable in the
leftmost stack of boxes in figure 4, the problem decompo-
sition is a lot messier than the neat cycle of figure 1. This
illustrates the point made earlier about rational reconstruc-
tion. Actual research projects contain the logic of the reg-
ulative cycle but in addition contain many factors that one
may call conditions of research practice, unforeseen condi-
tions regarding available knowledge and research resources

Figure 4: Nested problem structure of a Ph.D. project. Hollow arrows denote problem decomposition, single
arrows denote temporal sequence. The numbers do not indicate sequence but are for ease of reference.

that have to be dealt with. Figure 4 is a rational recon-
struction too, but now of the problem nesting of Mutschler’s
project. It is closer to what actually happened, but a day-to-
day log of his project would reveal many iterations and false
starts not reported in the thesis nor visible in the problem
decomposition of 4.

Eighth, one deviation from the regulative cycle is that trade-
off analysis was part of design (10) rather than of validation
(14). The literature review of existing methods revealed a
number of weaknesses that made some methods less suitable
for the projects studied by Mutschler, and he positioned
his CLD method as a complement to existing methods that
would avoid these weaknesses. Sensitivity analysis has not
been done because so far only one pilot project has been
performed. More pilot projects in different contexts would
reveal more about the sensitivity of the CLD technique to
differences in project context.

5. DISCUSSION
5.1 Design science
In section 3 we identified design science problems as prac-
tical problems, and then in sections 3 and 4 avoided the
term “design science” as much as possible. We now return
to an analysis of its meaning in terms of the framework of
this paper. In terms of the regulatory cycle, design science
as defined by March & Smith [20, page 254] and Hevner
et al. [13, page 77] is the design and validation of solution
proposals to practical problems. This is how I use the term
henceforth in this paper.

Hevner et al. suggest that design science differs in two as-
pects from other branches of science: (a) it is concerned with
artifacts rather than facts of nature or social structure, and
(b) it is concerned with a search for prescriptive rules for
design, rather than a search for descriptions, explanations
and predictions, as other branches of science are. This goes
back to Simons’s remark that natural science is concerned
with the way things are but that design science, or the sci-
ence of design, is concerned with how things ought to be,
with devising artifacts to attain goals [34, page 132].

However, property (a) of design science, the study of ar-
tifacts rather than of nature, is not a distinguishing fea-
ture. Even though it may be possible to distinguish nature
from human-made artifacts, in the 20th century industrial-
scientific complex it is impossible to distinguish a science of
nature from a science of artifacts [5, 9, 28]. In fact, even
in 17th century science it was a matter of debate whether
experimental philosophers were studying artifacts such as
barometers and air pumps [32] or natural phenomena such
as air pressure. Of course the processes in artifacts are nat-
ural processes. But even if the distinction between nature
and artifacts is maintained, research methods used to study
nature may be used to study artifacts and vice versa. I
conclude that distinction (a) of design science drops out.

Distinction (b), that design science yields prescriptive rules
for design, is philosophically suspect: prescriptions do not
follow from observations. However, during practical problem
solving we need to show the internal validity of a design
(questions E1 and E2). The internal validity argument E1
does imply a prescriptive rule, namely

P1 In order to produce E, one can place S in context D.

However, human choice is involved, as there may be other
solutions S′ that in context D produce the same effects.
Most importantly, the rule does not say it is a good thing
to do. It simply tells us how an effect can be produced.
Whether the effect is good depends on stakeholder goals and
on the truth of E2. So distinction (b) drops out too. What
we are left with is an iteration over designing and validating
solution proposals, which is how I view design science.

So what justifies our use of the term “design science” rather
than “design”? This requires looking again at the genericity
of knowledge questions, as we did at the end of section 2.

5.2 Levels of theory
The regulative cycle contains two important kinds of knowl-
edge questions, namely problem investigation, in which we
investigate currently existing problems, goals, and outcomes,
and design validation, in which we try to predict future out-
comes when a design would be implemented (figure 1).

Van Strien [35] makes a useful distinction between what
I here will call practice-oriented theories5 and N=1 theo-
ries. A practice-oriented theory is a theory of a class of
practical problems. Van Strien distinguishes two kinds of
practice-oriented theories, diagnostic theories and treatment
theories. To bring this terminology in line with what we
said earlier about possible triggers of problem investiga-
tion (section 3.1), we refine this into four kinds of practice-
oriented theory: A diagnostic theory [35, page 692] explains
the causes of problematic phenomena; A solution theory6

predicts the effect of a solution design, following the schema
E1 mentioned earlier; A goal theory conceptualizes and op-
erationalizes goals; and an impact theory describes and ex-
plains the impact that an implemented solution has brought
about. Impact theories are made after a design has been
implemented and effects have actually occurred in a partic-
ular case. These theories may be generalizable to other cases
where similar mechanisms occur [27].

In order to apply a practice-oriented theory to the particu-
lar, concrete problem at hand, the practitioner needs to deal
with the unique features of this problem, and the role of a
practice-oriented theory is to help the practitioner to formu-
late an N=1 theory of the problem at hand [35, page 692].
For example, a practice-oriented theory of trade-offs between
efficiency and flexibility in ERP implementation can help a
practitioner to formulate a theory of trade-offs in a particu-
lar company.

Practice-oriented theories are contrasted by Van Strien with
nomothetic theories, in which general laws are formulated.
For example, social network analysis can provide a nomoth-
etic theory of alliances and gatekeepers in social networks.
A theory of cooperation patterns in global software develop-
ment would be a practice-oriented theory. A project man-
ager could use such a practice-oriented theory to formulate
an N=1 theory about the communication in her project.

5Called problem-oriented theories by Van Strien.
6Treatment theory in Van Strien.

Figure 5: Refinement of the framework of Hevner et al. [13].

This gives us three levels of theory, N=1, practice-oriented,
and nomothetic, with increasingly large scopes. The view
taken in this paper is that design-science research aims at
practice-oriented theories. It aims to produce diagnostic the-
ories of classes of problems, solution theories of classes of
solutions, operationalizations of classes of goals, and expla-
nations of impacts. Practice-oriented theories correspond
to what Walls et al. [37, page 41] call design theories, ex-
cept that I do not think that they are prescriptive, as Walls
et al. say, but that are operationalized in the form E1,
as I explained above. A practice-oriented theory may use
a nomothetic theory as background knowledge, which then
functions as Walls et al.’s kernel theories. But in my view
this is not a requirement for being a practice-oriented theory.

5.3 Research methods
Above I made the claim that no research design is banned
a priori from design science research. Methods to investi-
gate nature may be used to investigate artifacts and vice
versa. This claim needs to be qualified, because there is a
preference for certain kinds of research designs in validation
research.

In validation research we ask questions about a thing that
does not exist yet: the implementation. Hence we make a
prototype or scale model and investigate that. For exam-
ple, when the jet engine was developed in the 1930s and
1940s, scale models of it were constructed and investigated
in the laboratory, and these were increased in size and inves-
tigated in increasingly realistic conditions until a test pilot
tested one in a plane [6]. Similarly, if one wants to test a new
business process modelling technique, never used before, the
researcher can (1) set up a simulation with students using
the technique in a laboratory experiment, and then scale up
by (2) having professionals use it in a field experiment and
then include even more conditions of practice by (3) using
the technique in a pilot project. These experiments, simula-
tions and pilots are done under increasingly less controlled
conditions. In general, design validation researchers have a
preference for research methods that involve modelling and
simulation, so much so that in some versions of the regula-
tive cycle, validation is called “simulation” [29].

In addition, in validation research there is often a sequence
of investigations starting in a lab where conditions of prac-
tice are almost all absent, and leading up to field tests where
conditions of practice are all present. Conditions of practice
is a concept introduced in the history of science and tech-
nology to indicate the numerous variables that exist in con-
crete artifacts and that can impact their behavior [18, 19].

Design-science research studies practical problems or their
solutions, and therefore cannot abstract from conditions of
practice as basic science can [4]. This forces the validation
researcher to slowly scale up his or her models to conditions
of practice that exist in the field [16]. This explains the pref-
erence of engineering researchers for field research methods
such as field experiments and case studies in the form of pilot
projects to test out a solution under conditions of practice.

Technical design-science research typically proceeds by an
endless iteration over solution design and design validation
using models, starting in the lab end ending with pilot projects
in the field. Such an endless iteration is not possible if the
investigated solution is a social system, such as an informa-
tion system when construed as subsystem of an organization.
It simply too expensive, or not moral, or not valid to iter-
ate over successive versions of a solution design involving
people as many times and in the same way as this can be
done with inanimate material. Field experiments using the
intended users of the technique may be too expensive too,
and in addition pilot projects involving a technique proposed
by design-science researcher may be a bridge too far for the
intended users of the technique. An alternative road open
to the information systems design-science research is then to
use a technical action research (TAR) approach, where the
researcher validates a technique by using it herself in a real
project under conditions of practice [3].

This discussion indicates a preference for some kinds of re-
search methods in validation research but this does not in-
validate the point that no research method is banned from
design science a priori. In design science, as anywhere else,
a research design should be driven by the research questions
asked, the properties of the subject that is investigated, and
the available resources [40].

6. COMPARISON WITH OTHER WORK
We have now refined the framework of Hevner et al. [13]
in three ways (figure 5). First, the regulative cycle elab-
orates problem investigation to elicit business needs. This
aspect does not receive much attention in the framework of
Hevner et al. but problem investigation is an important task
on the road to possible relevance. Second, the knowledge
base is stratified into the levels of N=1 theories, practice-
oriented theories and nomothetic theories. Design science is
primarily concerned with the intermediate level. Third, IS
design-science research is decomposed into a nested problem
structure, where the two major problem classes are practical
problems and knowledge questions. Knowledge questions
may be answered applying knowledge from the knowledge

[G1] Distinguish practical problems from knowledge questions
Section 2. In practical problems stakeholders desire to change
the world, in knowledge questions the researcher desires to
change his/her knowledge of the world.

[G2] Solve practical problems by the regulative cycle Figure 1.

[G3] Distinguish problem investigation from design validation
Section 3. In problem investigation existing phenomena are
investigated, in design validation the effects of an unimple-
mented design are predicted

[G4] Problem investigation may be problem-driven, solution-
driven, goal-driven, or impact-driven

Section 3.1. In problem investigation, one or more of these
tasks needs to be done: diagnose a problem, operationalize
goals, check the validity of the design argument, or investigate
the impact of realized implementations.

[G5] When designing a solution, maintain the design argument
Section 3.3. The causation part of the design argument says
that the solution in a context will have certain effects, the val-
uation part says that these effects satisfy stakeholder criteria

[G6] When validating a design, consider trade-offs and sensi-
tivity

Section 3.1. In trade-offs we vary the solution, in sensitivity
analysis we vary the environment.

[G7] When validating a design, aim to incorporate conditions
of practice

Section 5.3. Scale up from controlled conditions to realistic
conditions.

[G8] When solving a knowledge question in the regulative cycle
by means of research, no research method is banned.

Section 5.3. Research design must be justified, as anywhere
else, in terms of research questions, the investigated domain
and available resources to do the research.

Figure 6: Guidelines for design science.

base or by doing original research, using conceptual analy-
sis or empirical methods such as experiments, case studies,
field research or modelling and simulation. Practical prob-
lems are solved by matching problems and solutions in a
regulative cycle.

Four of the seven design-science research guidelines of Hevner
et al. are supported by the analysis in this paper, the other
three are elaborated a bit. The ones that are adapted are
dashed: (1) design yields artifacts; (2) problems must be po-
tentially relevant but this is context-dependent, as we saw
above; (3) solution proposals must be validated; (4’) design
research must produce practice-oriented theories; (5) these
must be validated using scientific methods; (6’) design re-
search iterates over designing and validating, as part of the
regulative cycle; (7) research results must be communicated
to researchers as well as practitioners.

The proposal in this paper is very close to the proposal by
Nunamaker and Chen [24], who present a systems devel-
opment research process in the form of a regulative cycle.
The differences are that in this paper I distinguish practical
problems from research questions and that I give problem
investigation and problem nesting more attention.

As pointed out above, the design theories of Walls et al. [37]
correspond to my practice-oriented theories, which can be
solution theories, diagnostic theories, goal theories or im-
pact theories. Like Hevner et al., Walls et al. introduce
prescriptive (normative) theories, which I think is a philo-
sophically unsound concept, that is not needed to introduce
the concept of design theory. Walls et al. also require a
design theory to refer to a kernel theory, corresponding to
a nomothetic theory. I do not require nor prohibit that a
practice-oriented theory (design theory) refer to a nomoth-
etic theory (kernel theory). Any practice-oriented theory
produced by a sound research method is OK in my view.
More generally, Walls et al. and also March & Smith [20]
provide detailed prescriptions for what a theory should con-
tain; I avoid such prescriptions.

7. CONCLUSIONS
Figure 6 lists the claims of this paper in the form of guide-
lines for the design science researcher. They are consistent
with and can be added to the guidelines provided by Hevner
et al. discussed above. Each of the guidelines in figure 6
has been argued in a section of the paper, as indicated in
the table. [G6], [G7] and [G8] are additionally justified be-
cause they are sound engineering practice; [G2] and [G5] are
injunctions to be rational; [G1], [G3] and [G4] are defini-
tions, which I claim help the design scientist become aware
of what he or she is doing. Using these guidelines in our
own research, such as the thesis of Mutschler discussed in
this paper, helps researchers clarify what goals they want
to achieve and which methods are appropriate for reaching
these goals.

8. ACKNOWLEDGMENTS
I would like to thank Hans Heerkens for the numerous fruit-
ful discussions we have had about the interaction between
research and design. Thanks are due to the anonymous re-
viewers for constructive comments on an earlier version of
the paper.

9. REFERENCES
[1] B.L. Archer. The structure of the design process. In

G. Broadbent and A. Ward, editors, Design methods
in Architecture, pages 76–102. Lund Humphries, 1969.

[2] L.B. Archer. Whatever became of design
methodology? Design Studies, 1(1):17–18, July 1971.

[3] R.L. Baskerville. Distinguishing action research from
participative case studies. Journal of Systems and
Information Technology, 1(1):25–45, March 1997.

[4] M. Boon. How science is applied in technology.
International Studies in the Philosophy of Science,
20(1):27–47, March 2006.

[5] W.B. Carlson. Innovation and the modern
corporation. From heroic invention to industrial
science. In J. Krige and D. Pestre, editors, Companion
to Science in the Twentieth Century, pages 203–226.

Routledge, 2003.

[6] E.W. Constant. The Origins of the Turbojet
Revolution. Johns Hopkins, 1980.

[7] N. Cross. Engineering Design Methods: Strategies for
Product Design. Second Edition. Wiley, 1994.

[8] N. Cross. Design cognition: Results from protocol and
other empirical studies of design activity. In
C. Eastman, M. McCracken, and W. Newstetter,
editors, Design Knowing and Learning: Cognition in
Design Education, pages 79–103. Elsevier, 2001.

[9] M.J. de Vries. 80 Years of Research at the Philips
Natuurkundig Laboratorium. Pallas Publications, 2005.

[10] D.C. Gause and G.M. Weinberg. Exploring
Requirements: Quality Before Design. Dorset House
Publishing, 1989.

[11] C.A. Gunter, E.L. Gunter, M.A. Jackson, and P. Zave.
A reference model for requirements and specifications.
IEEE Software, 17(3):37–43, May/June 2000.

[12] A.D. Hall. A Methodology for Systems Engineering.
Van Nostrand, 1962.

[13] A.R. Hevner, S.T. March, Park J, and S. Ram. Design
science in information system research. MIS
Quarterly, 28(1):75–105, March 2004.

[14] T.P. Hughes. Networks of Power. Electrification in
Western Society, 1880–1930. Johns Hopkins university
Press, 1983.

[15] J.C. Jones. Design Methods: Seeds of Human Futures.
Wiley, 1970.

[16] G. Küppers. On the relation between technology and
science—goals of knowledge and dynamics of theories.
The example of combustion technology,
thermodynamics and fluid dynamics. In W. Krohn,
E.T. Layton, and P. Weingart, editors, The Dynamics
of Science and Technology. Sociology of the Sciences,
II, pages 113–133. Reidel, 1978.

[17] I. Lakatos. History of science and its rational
reconstructions. In PSA: Proceedings of the Biennial
Meeting of the Philosophy of Science Association,
pages 91–136. The University of Chicago press, 1970.

[18] E. Layton. Mirror-image twins: The communities of
science and technology in 19th century America.
Technology and Culture, 12(4):562–580, October 1971.

[19] E.T. Layton. American ideologies of science and
engineering. Technology and Culture, 17:688–701, 1976.

[20] A.T. March and G.F. Smith. Design and natural
science research on information technology. Decision
Support Systems, 15(4):251–266, December 1995.

[21] J.G. March. A Primer on Decision-Making. Free
Press, 1994.

[22] B. Mutschler. Modeling and simulating causal
dependencies on process-aware information systems
from a cost perspective. PhD thesis, Univ. of Twente,
Enschede, January 2008.
http://eprints.eemcs.utwente.nl/11864/.

[23] NASA. Systems Engineering Handbook, June 1995.
SP-610S http://human.space.edu/old/docs/

Systems_Eng_Handbook.pdf.

[24] J.F. Nunamaker, M. Chen, and T.D.M. Purdin.
Systems development in information systems research.
Journal of Management Information Systems,
7(3):89–106, Winter 1990–1991.

[25] G. Pahl and W. Beitz. Konstruktionslehre. Handbuch
für Studium und Praxis. Springer, 1986.

[26] D.L. Parnas and P.C. Clements. A rational design
process: How and why to fake it. IEEE Transactions
on Software Engineering, SE-12:251–257, 1986.

[27] R. Pawson and N. Tilley. Realistic Evaluation. Sage
Publications, 1997.

[28] L.S. Reich. The making of American industrial
research: Science and business at GE and Bell,
1876–1926. Cambridge University Press, 1985.

[29] N.F.M. Roozenburg and J. Eekels. Product design:
Fundamentals and Methods. Wiley, 1995.

[30] A. Sayer. Method in Social Science: A Realist
Approach. Routledge, 1992 (2nd edition).

[31] J.R. Searle. Speech Acts. An Essay in the Philosophy
of Language. Cambridge University Press, 1969.

[32] S. Shapin and S. Schaffer. Leviathan and the air
pump: Hobbes, Boyle and the experimental life.
Princeton University Press, 1985.

[33] H.A. Simon. A behavioral model of rational choice.
Quarterly Journal of Economics, 69:99–118, 1955.

[34] H.A. Simon. The Sciences of the Artificial. The MIT
Press, 1981. Second edition.

[35] P.J. van Strien. Towards a methodology of
psychological practice: The regulative cycle. Theory &
Psychology, 7(5):683–700, 1997.

[36] L. Suchman and E. Wynn. Procedures and problems
in the office. Office: Technology and People, 2:135–154,
1984.

[37] J.G. Walls, G.R. Widmeyer, and O.A. El Sawy.
Building an information system design theory for
vigilant EIS. Information Systems Research,
3(1):36–59, 1992.

[38] L. White. Pumps and pendula: Galileo and
technology. In C.L. Golino, editor, Galileo Reappraised,
pages 96–110. University of California Press, 1966.

[39] R. Wieringa, N. Maiden, N. Mead, and C. Rolland.
Requirements engineering paper classification and
evaluation criteria: A proposal and a discussion.
Requirements Engineering, 11(1):102–107, March 2006.

[40] R. J. Wieringa and J. M. G. Heerkens. Design science,
engineering science and requirements engineering. In
16th IEEE International Requirements Engineering
Conference, Barcelona, Spain, pages 310–313, Los
Alamitos, 2008. IEEE Computer Society Press.

[41] R.J. Wieringa. Requirements Engineering: Frameworks
for Understanding. Wiley, 1996. Also available at
http://www.cs.utwente/nl/~roelw/REFU/all.pdf.

[42] R.J. Wieringa and J.M.G. Heerkens. The
methodological soundness of requirements engineering
papers: A conceptual framework and two case studies.
Requirements Engineering Journal, 11(4):295–307,
2006.

